fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
purely_inseparableU W : bool := all (purely_inseparable_element U) (vbasis W).
Definition
field
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset prime", "From mathcomp Require Import binomial ssralg poly polydiv fingroup perm", "From mathcomp Require Import morphism quotient gproduct finalg zmodp cyclic", "From mathcomp Require Import matrix mxalgebra mxpoly polyXY vector falgebra", "From mathcomp Require Import fieldext" ]
field/separable.v
purely_inseparable
separable_addK x y : separable_element K x -> separable_element K y -> separable_element K (x + y). Proof. move/(separable_elementS (subv_adjoin K y))=> sepKy_x sepKy. have [z defKz] := Primitive_Element_Theorem x sepKy. have /(adjoin_separableP _): x + y \in <<K; z>>%VS. by rewrite -defKz rpredD ?memv_adjoin // subvP_adjoin ?memv_adjoin. apply; apply: adjoin_separable sepKy (adjoin_separable sepKy_x _). by rewrite defKz base_separable ?memv_adjoin. Qed.
Lemma
field
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset prime", "From mathcomp Require Import binomial ssralg poly polydiv fingroup perm", "From mathcomp Require Import morphism quotient gproduct finalg zmodp cyclic", "From mathcomp Require Import matrix mxalgebra mxpoly polyXY vector falgebra", "From mathcomp Require Import fieldext" ]
field/separable.v
separable_add
separable_sumI r (P : pred I) (v_ : I -> L) K : (forall i, P i -> separable_element K (v_ i)) -> separable_element K (\sum_(i <- r | P i) v_ i). Proof. move=> sepKi. by elim/big_ind: _; [apply/base_separable/mem0v | apply: separable_add |]. Qed.
Lemma
field
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset prime", "From mathcomp Require Import binomial ssralg poly polydiv fingroup perm", "From mathcomp Require Import morphism quotient gproduct finalg zmodp cyclic", "From mathcomp Require Import matrix mxalgebra mxpoly polyXY vector falgebra", "From mathcomp Require Import fieldext" ]
field/separable.v
separable_sum
inseparable_addK x y : purely_inseparable_element K x -> purely_inseparable_element K y -> purely_inseparable_element K (x + y). Proof. have insepP := purely_inseparable_elementP_pchar. move=> /insepP[n pcharLn Kxn] /insepP[m pcharLm Kym]; apply/insepP. have pcharLnm: [pchar L].-nat (n * m)%N by rewrite pnatM pcharLn. by exists (n * m)%N; rewrite ?exprDn_pchar // {2}mulnC !exprM memvD // rpredX. Qed.
Lemma
field
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset prime", "From mathcomp Require Import binomial ssralg poly polydiv fingroup perm", "From mathcomp Require Import morphism quotient gproduct finalg zmodp cyclic", "From mathcomp Require Import matrix mxalgebra mxpoly polyXY vector falgebra", "From mathcomp Require Import fieldext" ]
field/separable.v
inseparable_add
inseparable_sumI r (P : pred I) (v_ : I -> L) K : (forall i, P i -> purely_inseparable_element K (v_ i)) -> purely_inseparable_element K (\sum_(i <- r | P i) v_ i). Proof. move=> insepKi. by elim/big_ind: _; [apply/base_inseparable/mem0v | apply: inseparable_add |]. Qed.
Lemma
field
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset prime", "From mathcomp Require Import binomial ssralg poly polydiv fingroup perm", "From mathcomp Require Import morphism quotient gproduct finalg zmodp cyclic", "From mathcomp Require Import matrix mxalgebra mxpoly polyXY vector falgebra", "From mathcomp Require Import fieldext" ]
field/separable.v
inseparable_sum
separableP{K E} : reflect (forall y, y \in E -> separable_element K y) (separable K E). Proof. apply/(iffP idP)=> [/allP|] sepK_E; last by apply/allP=> x /vbasis_mem/sepK_E. move=> y /coord_vbasis->; apply/separable_sum=> i _. have: separable_element K (vbasis E)`_i by apply/sepK_E/memt_nth. by move/adjoin_separableP; apply; rewrite rpredZ ?memv_adjoin. Qed.
Lemma
field
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset prime", "From mathcomp Require Import binomial ssralg poly polydiv fingroup perm", "From mathcomp Require Import morphism quotient gproduct finalg zmodp cyclic", "From mathcomp Require Import matrix mxalgebra mxpoly polyXY vector falgebra", "From mathcomp Require Import fieldext" ]
field/separable.v
separableP
purely_inseparableP{K E} : reflect (forall y, y \in E -> purely_inseparable_element K y) (purely_inseparable K E). Proof. apply/(iffP idP)=> [/allP|] sep'K_E; last by apply/allP=> x /vbasis_mem/sep'K_E. move=> y /coord_vbasis->; apply/inseparable_sum=> i _. have: purely_inseparable_element K (vbasis E)`_i by apply/sep'K_E/memt_nth. case/purely_inseparable_elementP_pchar=> n pcharLn K_Ein. by apply/purely_inseparable_elementP_pchar; exists n; rewrite // exprZn rpredZ. Qed.
Lemma
field
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset prime", "From mathcomp Require Import binomial ssralg poly polydiv fingroup perm", "From mathcomp Require Import morphism quotient gproduct finalg zmodp cyclic", "From mathcomp Require Import matrix mxalgebra mxpoly polyXY vector falgebra", "From mathcomp Require Import fieldext" ]
field/separable.v
purely_inseparableP
adjoin_separable_eqK x : separable_element K x = separable K <<K; x>>%VS. Proof. exact: sameP adjoin_separableP separableP. Qed.
Lemma
field
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset prime", "From mathcomp Require Import binomial ssralg poly polydiv fingroup perm", "From mathcomp Require Import morphism quotient gproduct finalg zmodp cyclic", "From mathcomp Require Import matrix mxalgebra mxpoly polyXY vector falgebra", "From mathcomp Require Import fieldext" ]
field/separable.v
adjoin_separable_eq
separable_inseparable_decompositionE K : {x | x \in E /\ separable_element K x & purely_inseparable <<K; x>> E}. Proof. without loss sKE: K / (K <= E)%VS. case/(_ _ (capvSr K E)) => x [Ex sepKEx] /purely_inseparableP sep'KExE. exists x; first by split; last exact/(separable_elementS _ sepKEx)/capvSl. apply/purely_inseparableP=> y /sep'KExE; apply: sub_inseparable. exact/adjoinSl/capvSl. pose E_ i := (vbasis E)`_i; pose fP i := separable_exponent_pchar K (E_ i). pose f i := E_ i ^+ ex_minn (fP i); pose s := mkseq f (\dim E). pose K' := <<K & s>>%VS. have sepKs: all (separable_element K) s. by rewrite all_map /f; apply/allP=> i _ /=; case: ex_minnP => m /andP[]. have [x sepKx defKx]: {x | x \in E /\ separable_element K x & K' = <<K; x>>%VS}. have: all [in E] s. rewrite all_map; apply/allP=> i; rewrite mem_iota => ltis /=. by rewrite rpredX // vbasis_mem // memt_nth. rewrite {}/K'; elim/last_ind: s sepKs => [|s t IHs]. by exists 0; [rewrite base_separable mem0v | rewrite adjoin_nil addv0]. rewrite adjoin_rcons !all_rcons => /andP[sepKt sepKs] /andP[/= Et Es]. have{IHs sepKs Es} [y [Ey sepKy] ->{s}] := IHs sepKs Es. have /sig_eqW[x defKx] := Primitive_Element_Theorem t sepKy. exists x; [split | exact: defKx]. suffices: (<<K; x>> <= E)%VS by case/FadjoinP. by rewrite -defKx !(sameP FadjoinP andP) sKE Ey Et. apply/adjoin_separableP=> z; rewrite -defKx => Kyt_z. apply: adjoin_separable sepKy _; apply: adjoin_separableP Kyt_z. exact: separable_elementS (subv_adjoin K y ...
Lemma
field
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset prime", "From mathcomp Require Import binomial ssralg poly polydiv fingroup perm", "From mathcomp Require Import morphism quotient gproduct finalg zmodp cyclic", "From mathcomp Require Import matrix mxalgebra mxpoly polyXY vector falgebra", "From mathcomp Require Import fieldext" ]
field/separable.v
separable_inseparable_decomposition
separable_generatorK E : L := s2val (locked (separable_inseparable_decomposition E K)).
Definition
field
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset prime", "From mathcomp Require Import binomial ssralg poly polydiv fingroup perm", "From mathcomp Require Import morphism quotient gproduct finalg zmodp cyclic", "From mathcomp Require Import matrix mxalgebra mxpoly polyXY vector falgebra", "From mathcomp Require Import fieldext" ]
field/separable.v
separable_generator
separable_generator_memE K : separable_generator K E \in E. Proof. by rewrite /separable_generator; case: (locked _) => ? []. Qed.
Lemma
field
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset prime", "From mathcomp Require Import binomial ssralg poly polydiv fingroup perm", "From mathcomp Require Import morphism quotient gproduct finalg zmodp cyclic", "From mathcomp Require Import matrix mxalgebra mxpoly polyXY vector falgebra", "From mathcomp Require Import fieldext" ]
field/separable.v
separable_generator_mem
separable_generatorPE K : separable_element K (separable_generator K E). Proof. by rewrite /separable_generator; case: (locked _) => ? []. Qed.
Lemma
field
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset prime", "From mathcomp Require Import binomial ssralg poly polydiv fingroup perm", "From mathcomp Require Import morphism quotient gproduct finalg zmodp cyclic", "From mathcomp Require Import matrix mxalgebra mxpoly polyXY vector falgebra", "From mathcomp Require Import fieldext" ]
field/separable.v
separable_generatorP
separable_generator_maximalE K : purely_inseparable <<K; separable_generator K E>> E. Proof. by rewrite /separable_generator; case: (locked _). Qed.
Lemma
field
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset prime", "From mathcomp Require Import binomial ssralg poly polydiv fingroup perm", "From mathcomp Require Import morphism quotient gproduct finalg zmodp cyclic", "From mathcomp Require Import matrix mxalgebra mxpoly polyXY vector falgebra", "From mathcomp Require Import fieldext" ]
field/separable.v
separable_generator_maximal
sub_adjoin_separable_generatorE K : separable K E -> (E <= <<K; separable_generator K E>>)%VS. Proof. move/separableP=> sepK_E; apply/subvP=> v Ev. rewrite -separable_inseparable_element. have /purely_inseparableP-> // := separable_generator_maximal E K. by rewrite (separable_elementS _ (sepK_E _ Ev)) // subv_adjoin. Qed.
Lemma
field
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset prime", "From mathcomp Require Import binomial ssralg poly polydiv fingroup perm", "From mathcomp Require Import morphism quotient gproduct finalg zmodp cyclic", "From mathcomp Require Import matrix mxalgebra mxpoly polyXY vector falgebra", "From mathcomp Require Import fieldext" ]
field/separable.v
sub_adjoin_separable_generator
eq_adjoin_separable_generatorE K : separable K E -> (K <= E)%VS -> E = <<K; separable_generator K E>>%VS :> {vspace _}. Proof. move=> sepK_E sKE; apply/eqP; rewrite eqEsubv sub_adjoin_separable_generator //. by apply/FadjoinP/andP; rewrite sKE separable_generator_mem. Qed.
Lemma
field
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset prime", "From mathcomp Require Import binomial ssralg poly polydiv fingroup perm", "From mathcomp Require Import morphism quotient gproduct finalg zmodp cyclic", "From mathcomp Require Import matrix mxalgebra mxpoly polyXY vector falgebra", "From mathcomp Require Import fieldext" ]
field/separable.v
eq_adjoin_separable_generator
separable_reflK : separable K K. Proof. exact/separableP/base_separable. Qed.
Lemma
field
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset prime", "From mathcomp Require Import binomial ssralg poly polydiv fingroup perm", "From mathcomp Require Import morphism quotient gproduct finalg zmodp cyclic", "From mathcomp Require Import matrix mxalgebra mxpoly polyXY vector falgebra", "From mathcomp Require Import fieldext" ]
field/separable.v
separable_refl
separable_transM K E : separable K M -> separable M E -> separable K E. Proof. move/sub_adjoin_separable_generator. set x := separable_generator K M => sMKx /separableP sepM_E. apply/separableP => w /sepM_E/(separable_elementS sMKx). case/strong_Primitive_Element_Theorem => _ _ -> //. exact: separable_generatorP. Qed.
Lemma
field
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset prime", "From mathcomp Require Import binomial ssralg poly polydiv fingroup perm", "From mathcomp Require Import morphism quotient gproduct finalg zmodp cyclic", "From mathcomp Require Import matrix mxalgebra mxpoly polyXY vector falgebra", "From mathcomp Require Import fieldext" ]
field/separable.v
separable_trans
separableSK1 K2 E2 E1 : (K1 <= K2)%VS -> (E2 <= E1)%VS -> separable K1 E1 -> separable K2 E2. Proof. move=> sK12 /subvP sE21 /separableP sepK1_E1. by apply/separableP=> y /sE21/sepK1_E1/(separable_elementS sK12). Qed.
Lemma
field
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset prime", "From mathcomp Require Import binomial ssralg poly polydiv fingroup perm", "From mathcomp Require Import morphism quotient gproduct finalg zmodp cyclic", "From mathcomp Require Import matrix mxalgebra mxpoly polyXY vector falgebra", "From mathcomp Require Import fieldext" ]
field/separable.v
separableS
separableSlK M E : (K <= M)%VS -> separable K E -> separable M E. Proof. by move/separableS; apply. Qed.
Lemma
field
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset prime", "From mathcomp Require Import binomial ssralg poly polydiv fingroup perm", "From mathcomp Require Import morphism quotient gproduct finalg zmodp cyclic", "From mathcomp Require Import matrix mxalgebra mxpoly polyXY vector falgebra", "From mathcomp Require Import fieldext" ]
field/separable.v
separableSl
separableSrK M E : (M <= E)%VS -> separable K E -> separable K M. Proof. exact: separableS. Qed.
Lemma
field
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset prime", "From mathcomp Require Import binomial ssralg poly polydiv fingroup perm", "From mathcomp Require Import morphism quotient gproduct finalg zmodp cyclic", "From mathcomp Require Import matrix mxalgebra mxpoly polyXY vector falgebra", "From mathcomp Require Import fieldext" ]
field/separable.v
separableSr
separable_Fadjoin_seqK rs : all (separable_element K) rs -> separable K <<K & rs>>. Proof. elim/last_ind: rs => [|s x IHs] in K *. by rewrite adjoin_nil subfield_closed separable_refl. rewrite all_rcons adjoin_rcons => /andP[sepKx /IHs/separable_trans-> //]. by rewrite -adjoin_separable_eq (separable_elementS _ sepKx) ?subv_adjoin_seq. Qed.
Lemma
field
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset prime", "From mathcomp Require Import binomial ssralg poly polydiv fingroup perm", "From mathcomp Require Import morphism quotient gproduct finalg zmodp cyclic", "From mathcomp Require Import matrix mxalgebra mxpoly polyXY vector falgebra", "From mathcomp Require Import fieldext" ]
field/separable.v
separable_Fadjoin_seq
purely_inseparable_reflK : purely_inseparable K K. Proof. by apply/purely_inseparableP; apply: base_inseparable. Qed.
Lemma
field
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset prime", "From mathcomp Require Import binomial ssralg poly polydiv fingroup perm", "From mathcomp Require Import morphism quotient gproduct finalg zmodp cyclic", "From mathcomp Require Import matrix mxalgebra mxpoly polyXY vector falgebra", "From mathcomp Require Import fieldext" ]
field/separable.v
purely_inseparable_refl
purely_inseparable_transM K E : purely_inseparable K M -> purely_inseparable M E -> purely_inseparable K E. Proof. have insepP := purely_inseparableP => /insepP insepK_M /insepP insepM_E. have insepPe := purely_inseparable_elementP_pchar. apply/insepP=> x /insepM_E/insepPe[n pcharLn /insepK_M/insepPe[m pcharLm Kxnm]]. by apply/insepPe; exists (n * m)%N; rewrite ?exprM // pnatM pcharLn pcharLm. Qed.
Lemma
field
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset prime", "From mathcomp Require Import binomial ssralg poly polydiv fingroup perm", "From mathcomp Require Import morphism quotient gproduct finalg zmodp cyclic", "From mathcomp Require Import matrix mxalgebra mxpoly polyXY vector falgebra", "From mathcomp Require Import fieldext" ]
field/separable.v
purely_inseparable_trans
act_morphto x := forall a b, to x (a * b) = to (to x a) b.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
act_morph
is_actionto := left_injective to /\ forall x, {in D &, act_morph to x}.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
is_action
action:= Action {act :> rT -> aT -> rT; _ : is_action act}.
Record
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
action
clone_actionto := let: Action _ toP := to return {type of Action for to} -> action in fun k => k toP.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
clone_action
act_domaT D rT of @action aT D rT := D.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
act_dom
is_total_action: is_action setT to. Proof. split=> [a | x a b _ _] /=; last by rewrite toM. by apply: can_inj (to^~ a^-1) _ => x; rewrite -toM ?mulgV. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
is_total_action
TotalAction:= Action is_total_action.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
TotalAction
morph_actrT rT' (to : action D rT) (to' : action D' rT') f fA := forall x a, f (to x a) = to' (f x) (fA a). Variable rT : finType. Implicit Type to : action D rT. Implicit Type A : {set aT}. Implicit Type S : {set rT}.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
morph_act
actmto a := if a \in D then to^~ a else id.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
actm
setactto S a := [set to x a | x in S].
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
setact
orbitto A x := to x @: A.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbit
amoveto A x y := [set a in A | to x a == y].
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
amove
afixto A := [set x | A \subset [set a | to x a == x]].
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
afix
astabS to := D :&: [set a | S \subset [set x | to x a == x]].
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astab
astabsS to := D :&: [set a | S \subset to^~ a @^-1: S].
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabs
acts_onA S to := {in A, forall a x, (to x a \in S) = (x \in S)}.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
acts_on
atransA S to := S \in orbit to A @: S.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
atrans
faithfulA S to := A :&: astab S to \subset [1].
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
faithful
act_inj: left_injective to. Proof. by case: to => ? []. Qed. Arguments act_inj : clear implicits.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
act_inj
actMinx : {in D &, act_morph to x}. Proof. by case: to => ? []. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
actMin
actmEfuna : a \in D -> actm to a = to^~ a. Proof. by rewrite /actm => ->. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
actmEfun
actmEa : a \in D -> actm to a =1 to^~ a. Proof. by move=> Da; rewrite actmEfun. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
actmE
setactES a : to^* S a = [set to x a | x in S]. Proof. by []. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
setactE
mem_setactS a x : x \in S -> to x a \in to^* S a. Proof. exact: imset_f. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
mem_setact
card_setactS a : #|to^* S a| = #|S|. Proof. by apply: card_imset; apply: act_inj. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
card_setact
setact_is_action: is_action D to^*. Proof. split=> [a R S eqRS | a b Da Db S]; last first. by rewrite /setact /= -imset_comp; apply: eq_imset => x; apply: actMin. apply/setP=> x; apply/idP/idP=> /(mem_setact a). by rewrite eqRS => /imsetP[y Sy /act_inj->]. by rewrite -eqRS => /imsetP[y Sy /act_inj->]. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
setact_is_action
set_action:= Action setact_is_action.
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
set_action
orbitEA x : orbit to A x = to x @: A. Proof. by []. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbitE
orbitPA x y : reflect (exists2 a, a \in A & to x a = y) (y \in orbit to A x). Proof. by apply: (iffP imsetP) => [] [a]; exists a. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbitP
mem_orbitA x a : a \in A -> to x a \in orbit to A x. Proof. exact: imset_f. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
mem_orbit
afixPA x : reflect (forall a, a \in A -> to x a = x) (x \in 'Fix_to(A)). Proof. rewrite inE; apply: (iffP subsetP) => [xfix a /xfix | xfix a Aa]. by rewrite inE => /eqP. by rewrite inE xfix. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
afixP
afixSA B : A \subset B -> 'Fix_to(B) \subset 'Fix_to(A). Proof. by move=> sAB; apply/subsetP=> u /[!inE]; apply: subset_trans. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
afixS
afixUA B : 'Fix_to(A :|: B) = 'Fix_to(A) :&: 'Fix_to(B). Proof. by apply/setP=> x; rewrite !inE subUset. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
afixU
afix1Pa x : reflect (to x a = x) (x \in 'Fix_to[a]). Proof. by rewrite inE sub1set inE; apply: eqP. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
afix1P
astabIdomS : 'C_D(S | to) = 'C(S | to). Proof. by rewrite setIA setIid. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabIdom
astab_domS : {subset 'C(S | to) <= D}. Proof. by move=> a /setIP[]. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astab_dom
astab_actS a x : a \in 'C(S | to) -> x \in S -> to x a = x. Proof. rewrite 2!inE => /andP[_ cSa] Sx; apply/eqP. by have /[1!inE] := subsetP cSa x Sx. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astab_act
astabSS1 S2 : S1 \subset S2 -> 'C(S2 | to) \subset 'C(S1 | to). Proof. by move=> sS12; apply/subsetP=> x /[!inE] /andP[->]; apply: subset_trans. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabS
astabsIdomS : 'N_D(S | to) = 'N(S | to). Proof. by rewrite setIA setIid. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabsIdom
astabs_domS : {subset 'N(S | to) <= D}. Proof. by move=> a /setIdP[]. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabs_dom
astabs_actS a x : a \in 'N(S | to) -> (to x a \in S) = (x \in S). Proof. rewrite 2!inE subEproper properEcard => /andP[_]. rewrite (card_preimset _ (act_inj _)) ltnn andbF orbF => /eqP{2}->. by rewrite inE. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabs_act
astab_subS : 'C(S | to) \subset 'N(S | to). Proof. apply/subsetP=> a cSa; rewrite !inE (astab_dom cSa). by apply/subsetP=> x Sx; rewrite inE (astab_act cSa). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astab_sub
astabsCS : 'N(~: S | to) = 'N(S | to). Proof. apply/setP=> a; apply/idP/idP=> nSa; rewrite !inE (astabs_dom nSa). by rewrite -setCS -preimsetC; apply/subsetP=> x; rewrite inE astabs_act. by rewrite preimsetC setCS; apply/subsetP=> x; rewrite inE astabs_act. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabsC
astabsIS T : 'N(S | to) :&: 'N(T | to) \subset 'N(S :&: T | to). Proof. apply/subsetP=> a; rewrite !inE -!andbA preimsetI => /and4P[-> nSa _ nTa] /=. by rewrite setISS. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabsI
astabs_setactS a : a \in 'N(S | to) -> to^* S a = S. Proof. move=> nSa; apply/eqP; rewrite eqEcard card_setact leqnn andbT. by apply/subsetP=> _ /imsetP[x Sx ->]; rewrite astabs_act. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabs_setact
astab1_setS : 'C[S | set_action] = 'N(S | to). Proof. apply/setP=> a; apply/idP/idP=> nSa. case/setIdP: nSa => Da; rewrite !inE Da sub1set inE => /eqP defS. by apply/subsetP=> x Sx; rewrite inE -defS mem_setact. by rewrite !inE (astabs_dom nSa) sub1set inE /= astabs_setact. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astab1_set
astabs_set1x : 'N([set x] | to) = 'C[x | to]. Proof. apply/eqP; rewrite eqEsubset astab_sub andbC setIS //. by apply/subsetP=> a; rewrite ?(inE,sub1set). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabs_set1
acts_domA S : [acts A, on S | to] -> A \subset D. Proof. by move=> nSA; rewrite (subset_trans nSA) ?subsetIl. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
acts_dom
acts_actA S : [acts A, on S | to] -> {acts A, on S | to}. Proof. by move=> nAS a Aa x; rewrite astabs_act ?(subsetP nAS). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
acts_act
astabCinA S : A \subset D -> (A \subset 'C(S | to)) = (S \subset 'Fix_to(A)). Proof. move=> sAD; apply/subsetP/subsetP=> [sAC x xS | sSF a aA]. by apply/afixP=> a aA; apply: astab_act (sAC _ aA) xS. rewrite !inE (subsetP sAD _ aA); apply/subsetP=> x xS. by move/afixP/(_ _ aA): (sSF _ xS) => /[1!inE] ->. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabCin
astabU: 'C(S :|: T | to) = 'C(S | to) :&: 'C(T | to). Proof. by apply/setP=> a; rewrite !inE subUset; case: (a \in D). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabU
astabsU: 'N(S | to) :&: 'N(T | to) \subset 'N(S :|: T | to). Proof. by rewrite -(astabsC S) -(astabsC T) -(astabsC (S :|: T)) setCU astabsI. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabsU
astabsD: 'N(S | to) :&: 'N(T | to) \subset 'N(S :\: T| to). Proof. by rewrite setDE -(astabsC T) astabsI. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabsD
actsI: [acts A, on S :&: T | to]. Proof. by apply: subset_trans (astabsI S T); rewrite subsetI AactS. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
actsI
actsU: [acts A, on S :|: T | to]. Proof. by apply: subset_trans astabsU; rewrite subsetI AactS. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
actsU
actsD: [acts A, on S :\: T | to]. Proof. by apply: subset_trans astabsD; rewrite subsetI AactS. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
actsD
acts_in_orbitA S x y : [acts A, on S | to] -> y \in orbit to A x -> x \in S -> y \in S. Proof. by move=> nSA/imsetP[a Aa ->{y}] Sx; rewrite (astabs_act _ (subsetP nSA a Aa)). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
acts_in_orbit
subset_faithfulA B S : B \subset A -> [faithful A, on S | to] -> [faithful B, on S | to]. Proof. by move=> sAB; apply: subset_trans; apply: setSI. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
subset_faithful
reindex_astabsa F : a \in 'N(S | to) -> \big[op/idx]_(i in S) F i = \big[op/idx]_(i in S) F (to i a). Proof. move=> nSa; rewrite (reindex_inj (act_inj a)); apply: eq_bigl => x. exact: astabs_act. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
reindex_astabs
reindex_actsA a F : [acts A, on S | to] -> a \in A -> \big[op/idx]_(i in S) F i = \big[op/idx]_(i in S) F (to i a). Proof. by move=> nSA /(subsetP nSA); apply: reindex_astabs. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
reindex_acts
act1x : to x 1 = x. Proof. by apply: (act_inj to 1); rewrite -actMin ?mulg1. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
act1
actKin: {in D, right_loop inv to}. Proof. by move=> a Da /= x; rewrite -actMin ?groupV // mulgV act1. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
actKin
actKVin: {in D, rev_right_loop inv to}. Proof. by move=> a Da /= x; rewrite -{2}(invgK a) actKin ?groupV. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
actKVin
setactVinS a : a \in D -> to^* S a^-1 = to^~ a @^-1: S. Proof. by move=> Da; apply: can2_imset_pre; [apply: actKVin | apply: actKin]. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
setactVin
actXinx a i : a \in D -> to x (a ^+ i) = iter i (to^~ a) x. Proof. move=> Da; elim: i => /= [|i <-]; first by rewrite act1. by rewrite expgSr actMin ?groupX. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
actXin
afix1: 'Fix_to(1) = setT. Proof. by apply/setP=> x; rewrite !inE sub1set inE act1 eqxx. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
afix1
afixD1G : 'Fix_to(G^#) = 'Fix_to(G). Proof. by rewrite -{2}(setD1K (group1 G)) afixU afix1 setTI. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
afixD1
orbit_reflG x : x \in orbit to G x. Proof. by rewrite -{1}[x]act1 mem_orbit. Qed. Local Notation orbit_rel A := (fun x y => x \in orbit to A y).
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbit_refl
contra_orbitG x y : x \notin orbit to G y -> x != y. Proof. by apply: contraNneq => ->; apply: orbit_refl. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
contra_orbit
orbit_in_symG : G \subset D -> symmetric (orbit_rel G). Proof. move=> sGD; apply: symmetric_from_pre => x y /imsetP[a Ga]. by move/(canLR (actKin (subsetP sGD a Ga))) <-; rewrite mem_orbit ?groupV. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbit_in_sym
orbit_in_transG : G \subset D -> transitive (orbit_rel G). Proof. move=> sGD _ _ z /imsetP[a Ga ->] /imsetP[b Gb ->]. by rewrite -actMin ?mem_orbit ?groupM // (subsetP sGD). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbit_in_trans
orbit_in_eqPG x y : G \subset D -> reflect (orbit to G x = orbit to G y) (x \in orbit to G y). Proof. move=> sGD; apply: (iffP idP) => [yGx|<-]; last exact: orbit_refl. by apply/setP=> z; apply/idP/idP=> /orbit_in_trans-> //; rewrite orbit_in_sym. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbit_in_eqP
orbit_in_translG x y z : G \subset D -> y \in orbit to G x -> (y \in orbit to G z) = (x \in orbit to G z). Proof. by move=> sGD Gxy; rewrite !(orbit_in_sym sGD _ z) (orbit_in_eqP y x sGD Gxy). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbit_in_transl
orbit_act_inx a G : G \subset D -> a \in G -> orbit to G (to x a) = orbit to G x. Proof. by move=> sGD /mem_orbit/orbit_in_eqP->. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbit_act_in
orbit_actr_inx a G y : G \subset D -> a \in G -> (to y a \in orbit to G x) = (y \in orbit to G x). Proof. by move=> sGD /mem_orbit/orbit_in_transl->. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbit_actr_in
orbit_inv_inA x y : A \subset D -> (y \in orbit to A^-1 x) = (x \in orbit to A y). Proof. move/subsetP=> sAD; apply/imsetP/imsetP=> [] [a Aa ->]. by exists a^-1; rewrite -?mem_invg ?actKin // -groupV sAD -?mem_invg. by exists a^-1; rewrite ?memV_invg ?actKin // sAD. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbit_inv_in
orbit_lcoset_inA a x : A \subset D -> a \in D -> orbit to (a *: A) x = orbit to A (to x a). Proof. move/subsetP=> sAD Da; apply/setP=> y; apply/imsetP/imsetP=> [] [b Ab ->{y}]. by exists (a^-1 * b); rewrite -?actMin ?mulKVg // ?sAD -?mem_lcoset. by exists (a * b); rewrite ?mem_mulg ?set11 ?actMin // sAD. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbit_lcoset_in