fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
orbit_rcoset_inA a x y : A \subset D -> a \in D -> (to y a \in orbit to (A :* a) x) = (y \in orbit to A x). Proof. move=> sAD Da; rewrite -orbit_inv_in ?mul_subG ?sub1set // invMg. by rewrite invg_set1 orbit_lcoset_in ?inv_subG ?groupV ?actKin ?orbit_inv_in. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbit_rcoset_in
orbit_conjsg_inA a x y : A \subset D -> a \in D -> (to y a \in orbit to (A :^ a) (to x a)) = (y \in orbit to A x). Proof. move=> sAD Da; rewrite conjsgE. by rewrite orbit_lcoset_in ?groupV ?mul_subG ?sub1set ?actKin ?orbit_rcoset_in. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbit_conjsg_in
orbit1PG x : reflect (orbit to G x = [set x]) (x \in 'Fix_to(G)). Proof. apply: (iffP afixP) => [xfix | xfix a Ga]. apply/eqP; rewrite eq_sym eqEsubset sub1set -{1}[x]act1 imset_f //=. by apply/subsetP=> y; case/imsetP=> a Ga ->; rewrite inE xfix. by apply/set1P; rewrite -xfix imset_f. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbit1P
card_orbit1G x : #|orbit to G x| = 1%N -> orbit to G x = [set x]. Proof. move=> orb1; apply/eqP; rewrite eq_sym eqEcard {}orb1 cards1. by rewrite sub1set orbit_refl. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
card_orbit1
orbit_partitionG S : [acts G, on S | to] -> partition (orbit to G @: S) S. Proof. move=> actsGS; have sGD := acts_dom actsGS. have eqiG: {in S & &, equivalence_rel [rel x y | y \in orbit to G x]}. by move=> x y z * /=; rewrite orbit_refl; split=> // /orbit_in_eqP->. congr (partition _ _): (equivalence_partitionP eqiG). apply: eq_in_imset => x Sx; apply/setP=> y. by rewrite inE /= andb_idl // => /acts_in_orbit->. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbit_partition
orbit_transversalA S := transversal (orbit to A @: S) S.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbit_transversal
orbit_transversalPG S (P := orbit to G @: S) (X := orbit_transversal G S) : [acts G, on S | to] -> [/\ is_transversal X P S, X \subset S, {in X &, forall x y, (y \in orbit to G x) = (x == y)} & forall x, x \in S -> exists2 a, a \in G & to x a \in X]. Proof. move/orbit_partition; rewrite -/P => partP. have [/eqP defS tiP _] := and3P partP. have trXP: is_transversal X P S := transversalP partP. have sXS: X \subset S := transversal_sub trXP. split=> // [x y Xx Xy /= | x Sx]. have Sx := subsetP sXS x Xx. rewrite -(inj_in_eq (pblock_inj trXP)) // eq_pblock ?defS //. by rewrite (def_pblock tiP (imset_f _ Sx)) ?orbit_refl. have /imsetP[y Xy defxG]: orbit to G x \in pblock P @: X. by rewrite (pblock_transversal trXP) ?imset_f. suffices /orbitP[a Ga def_y]: y \in orbit to G x by exists a; rewrite ?def_y. by rewrite defxG mem_pblock defS (subsetP sXS). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbit_transversalP
group_set_astabS : group_set 'C(S | to). Proof. apply/group_setP; split=> [|a b cSa cSb]. by rewrite !inE group1; apply/subsetP=> x _; rewrite inE act1. rewrite !inE groupM ?(@astab_dom _ _ _ to S) //; apply/subsetP=> x Sx. by rewrite inE actMin ?(@astab_dom _ _ _ to S) ?(astab_act _ Sx). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
group_set_astab
astab_groupS := group (group_set_astab S).
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astab_group
afix_gen_inA : A \subset D -> 'Fix_to(<<A>>) = 'Fix_to(A). Proof. move=> sAD; apply/eqP; rewrite eqEsubset afixS ?sub_gen //=. by rewrite -astabCin gen_subG ?astabCin. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
afix_gen_in
afix_cycle_ina : a \in D -> 'Fix_to(<[a]>) = 'Fix_to[a]. Proof. by move=> Da; rewrite afix_gen_in ?sub1set. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
afix_cycle_in
afixYinA B : A \subset D -> B \subset D -> 'Fix_to(A <*> B) = 'Fix_to(A) :&: 'Fix_to(B). Proof. by move=> sAD sBD; rewrite afix_gen_in ?afixU // subUset sAD. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
afixYin
afixMinG H : G \subset D -> H \subset D -> 'Fix_to(G * H) = 'Fix_to(G) :&: 'Fix_to(H). Proof. by move=> sGD sHD; rewrite -afix_gen_in ?mul_subG // genM_join afixYin. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
afixMin
sub_astab1_inA x : A \subset D -> (A \subset 'C[x | to]) = (x \in 'Fix_to(A)). Proof. by move=> sAD; rewrite astabCin ?sub1set. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
sub_astab1_in
group_set_astabsS : group_set 'N(S | to). Proof. apply/group_setP; split=> [|a b cSa cSb]. by rewrite !inE group1; apply/subsetP=> x Sx; rewrite inE act1. rewrite !inE groupM ?(@astabs_dom _ _ _ to S) //; apply/subsetP=> x Sx. by rewrite inE actMin ?(@astabs_dom _ _ _ to S) ?astabs_act. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
group_set_astabs
astabs_groupS := group (group_set_astabs S).
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabs_group
astab_normS : 'N(S | to) \subset 'N('C(S | to)). Proof. apply/subsetP=> a nSa; rewrite inE sub_conjg; apply/subsetP=> b cSb. have [Da Db] := (astabs_dom nSa, astab_dom cSb). rewrite mem_conjgV !inE groupJ //; apply/subsetP=> x Sx. rewrite inE !actMin ?groupM ?groupV //. by rewrite (astab_act cSb) ?actKVin ?astabs_act ?groupV. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astab_norm
astab_normalS : 'C(S | to) <| 'N(S | to). Proof. by rewrite /normal astab_sub astab_norm. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astab_normal
acts_sub_orbitG S x : [acts G, on S | to] -> (orbit to G x \subset S) = (x \in S). Proof. move/acts_act=> GactS. apply/subsetP/idP=> [| Sx y]; first by apply; apply: orbit_refl. by case/orbitP=> a Ga <-{y}; rewrite GactS. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
acts_sub_orbit
acts_orbitG x : G \subset D -> [acts G, on orbit to G x | to]. Proof. move/subsetP=> sGD; apply/subsetP=> a Ga; rewrite !inE sGD //. apply/subsetP=> _ /imsetP[b Gb ->]. by rewrite inE -actMin ?sGD // imset_f ?groupM. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
acts_orbit
acts_subnorm_fixA : [acts 'N_D(A), on 'Fix_to(D :&: A) | to]. Proof. apply/subsetP=> a nAa; have [Da _] := setIP nAa; rewrite !inE Da. apply/subsetP=> x Cx /[1!inE]; apply/afixP=> b DAb. have [Db _]:= setIP DAb; rewrite -actMin // conjgCV actMin ?groupJ ?groupV //. by rewrite /= (afixP Cx) // memJ_norm // groupV (subsetP (normsGI _ _) _ nAa). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
acts_subnorm_fix
atrans_orbitG x : [transitive G, on orbit to G x | to]. Proof. by apply: imset_f; apply: orbit_refl. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
atrans_orbit
amove_acta : a \in G -> amove to G x (to x a) = 'C_G[x | to] :* a. Proof. move=> Ga; apply/setP=> b; have Da := ssGD Ga. rewrite mem_rcoset !(inE, sub1set) !groupMr ?groupV //. by case Gb: (b \in G); rewrite //= actMin ?groupV ?ssGD ?(canF_eq (actKVin Da)). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
amove_act
amove_orbit: amove to G x @: orbit to G x = rcosets 'C_G[x | to] G. Proof. apply/setP => Ha; apply/imsetP/rcosetsP=> [[y] | [a Ga ->]]. by case/imsetP=> b Gb -> ->{Ha y}; exists b => //; rewrite amove_act. by rewrite -amove_act //; exists (to x a); first apply: mem_orbit. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
amove_orbit
amoveK: {in orbit to G x, cancel (amove to G x) (fun Ca => to x (repr Ca))}. Proof. move=> _ /orbitP[a Ga <-]; rewrite amove_act //= -[G :&: _]/(gval _). case: repr_rcosetP => b; rewrite !(inE, sub1set)=> /and3P[Gb _ xbx]. by rewrite actMin ?ssGD ?(eqP xbx). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
amoveK
orbit_stabilizer: orbit to G x = [set to x (repr Ca) | Ca in rcosets 'C_G[x | to] G]. Proof. rewrite -amove_orbit -imset_comp /=; apply/setP=> z. by apply/idP/imsetP=> [xGz | [y xGy ->]]; first exists z; rewrite /= ?amoveK. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbit_stabilizer
act_reprK: {in rcosets 'C_G[x | to] G, cancel (to x \o repr) (amove to G x)}. Proof. move=> _ /rcosetsP[a Ga ->] /=; rewrite amove_act ?rcoset_repr //. rewrite -[G :&: _]/(gval _); case: repr_rcosetP => b /setIP[Gb _]. exact: groupM. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
act_reprK
card_orbit_inG x : G \subset D -> #|orbit to G x| = #|G : 'C_G[x | to]|. Proof. move=> sGD; rewrite orbit_stabilizer 1?card_in_imset //. exact: can_in_inj (act_reprK _). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
card_orbit_in
card_orbit_in_stabG x : G \subset D -> (#|orbit to G x| * #|'C_G[x | to]|)%N = #|G|. Proof. by move=> sGD; rewrite mulnC card_orbit_in ?Lagrange ?subsetIl. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
card_orbit_in_stab
acts_sum_card_orbitG S : [acts G, on S | to] -> \sum_(T in orbit to G @: S) #|T| = #|S|. Proof. by move/orbit_partition/card_partition. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
acts_sum_card_orbit
astab_setact_inS a : a \in D -> 'C(to^* S a | to) = 'C(S | to) :^ a. Proof. move=> Da; apply/setP=> b; rewrite mem_conjg !inE -mem_conjg conjGid //. apply: andb_id2l => Db; rewrite sub_imset_pre; apply: eq_subset_r => x. by rewrite !inE !actMin ?groupM ?groupV // invgK (canF_eq (actKVin Da)). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astab_setact_in
astab1_act_inx a : a \in D -> 'C[to x a | to] = 'C[x | to] :^ a. Proof. by move=> Da; rewrite -astab_setact_in // /setact imset_set1. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astab1_act_in
Frobenius_CauchyG S : [acts G, on S | to] -> \sum_(a in G) #|'Fix_(S | to)[a]| = (#|orbit to G @: S| * #|G|)%N. Proof. move=> GactS; have sGD := acts_dom GactS. transitivity (\sum_(a in G) \sum_(x in 'Fix_(S | to)[a]) 1%N). by apply: eq_bigr => a _; rewrite -sum1_card. rewrite (exchange_big_dep [in S]) /= => [|a x _]; last by case/setIP. rewrite (set_partition_big _ (orbit_partition GactS)) -sum_nat_const /=. apply: eq_bigr => _ /imsetP[x Sx ->]. rewrite -(card_orbit_in_stab x sGD) -sum_nat_const. apply: eq_bigr => y; rewrite orbit_in_sym // => /imsetP[a Ga defx]. rewrite defx astab1_act_in ?(subsetP sGD) //. rewrite -{2}(conjGid Ga) -conjIg cardJg -sum1_card setIA (setIidPl sGD). by apply: eq_bigl => b; rewrite !(sub1set, inE) -(acts_act GactS Ga) -defx Sx. Qed.
Theorem
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
Frobenius_Cauchy
atrans_dvd_index_inG S : G \subset D -> [transitive G, on S | to] -> #|S| %| #|G : 'C_G(S | to)|. Proof. move=> sGD /imsetP[x Sx {1}->]; rewrite card_orbit_in //. by rewrite indexgS // setIS // astabS // sub1set. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
atrans_dvd_index_in
atrans_dvd_inG S : G \subset D -> [transitive G, on S | to] -> #|S| %| #|G|. Proof. move=> sGD transG; apply: dvdn_trans (atrans_dvd_index_in sGD transG) _. exact: dvdn_indexg. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
atrans_dvd_in
atransPinG S : G \subset D -> [transitive G, on S | to] -> forall x, x \in S -> orbit to G x = S. Proof. by move=> sGD /imsetP[y _ ->] x; apply/orbit_in_eqP. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
atransPin
atransP2inG S : G \subset D -> [transitive G, on S | to] -> {in S &, forall x y, exists2 a, a \in G & y = to x a}. Proof. by move=> sGD transG x y /(atransPin sGD transG) <- /imsetP. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
atransP2in
atrans_acts_inG S : G \subset D -> [transitive G, on S | to] -> [acts G, on S | to]. Proof. move=> sGD transG; apply/subsetP=> a Ga; rewrite !inE (subsetP sGD) //. by apply/subsetP=> x /(atransPin sGD transG) <-; rewrite inE imset_f. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
atrans_acts_in
subgroup_transitivePinG H S x : x \in S -> H \subset G -> G \subset D -> [transitive G, on S | to] -> reflect ('C_G[x | to] * H = G) [transitive H, on S | to]. Proof. move=> Sx sHG sGD trG; have sHD := subset_trans sHG sGD. apply: (iffP idP) => [trH | defG]. rewrite group_modr //; apply/setIidPl/subsetP=> a Ga. have Sxa: to x a \in S by rewrite (acts_act (atrans_acts_in sGD trG)). have [b Hb xab]:= atransP2in sHD trH Sxa Sx. have Da := subsetP sGD a Ga; have Db := subsetP sHD b Hb. rewrite -(mulgK b a) mem_mulg ?groupV // !inE groupM //= sub1set inE. by rewrite actMin -?xab. apply/imsetP; exists x => //; apply/setP=> y; rewrite -(atransPin sGD trG Sx). apply/imsetP/imsetP=> [] [a]; last by exists a; first apply: (subsetP sHG). rewrite -defG => /imset2P[c b /setIP[_ cxc] Hb ->] ->. exists b; rewrite ?actMin ?(astab_dom cxc) ?(subsetP sHD) //. by rewrite (astab_act cxc) ?inE. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
subgroup_transitivePin
actMx a b : to x (a * b) = to (to x a) b. Proof. by rewrite actMin ?inE. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
actM
actK: right_loop inv to. Proof. by move=> a; apply: actKin; rewrite inE. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
actK
actKV: rev_right_loop inv to. Proof. by move=> a; apply: actKVin; rewrite inE. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
actKV
actXx a n : to x (a ^+ n) = iter n (to^~ a) x. Proof. by elim: n => [|n /= <-]; rewrite ?act1 // -actM expgSr. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
actX
actCJa b x : to (to x a) b = to (to x b) (a ^ b). Proof. by rewrite !actM actK. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
actCJ
actCJVa b x : to (to x a) b = to (to x (b ^ a^-1)) a. Proof. by rewrite (actCJ _ a) conjgKV. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
actCJV
orbit_symG x y : (x \in orbit to G y) = (y \in orbit to G x). Proof. exact/orbit_in_sym/subsetT. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbit_sym
orbit_transG x y z : x \in orbit to G y -> y \in orbit to G z -> x \in orbit to G z. Proof. exact/orbit_in_trans/subsetT. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbit_trans
orbit_eqPG x y : reflect (orbit to G x = orbit to G y) (x \in orbit to G y). Proof. exact/orbit_in_eqP/subsetT. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbit_eqP
orbit_translG x y z : y \in orbit to G x -> (y \in orbit to G z) = (x \in orbit to G z). Proof. exact/orbit_in_transl/subsetT. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbit_transl
orbit_actG a x: a \in G -> orbit to G (to x a) = orbit to G x. Proof. exact/orbit_act_in/subsetT. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbit_act
orbit_actrG a x y : a \in G -> (to y a \in orbit to G x) = (y \in orbit to G x). Proof. by move/mem_orbit/orbit_transl; apply. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbit_actr
orbit_eq_memG x y : (orbit to G x == orbit to G y) = (x \in orbit to G y). Proof. exact: sameP eqP (orbit_eqP G x y). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbit_eq_mem
orbit_invA x y : (y \in orbit to A^-1 x) = (x \in orbit to A y). Proof. by rewrite orbit_inv_in ?subsetT. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbit_inv
orbit_lcosetA a x : orbit to (a *: A) x = orbit to A (to x a). Proof. by rewrite orbit_lcoset_in ?subsetT ?inE. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbit_lcoset
orbit_rcosetA a x y : (to y a \in orbit to (A :* a) x) = (y \in orbit to A x). Proof. by rewrite orbit_rcoset_in ?subsetT ?inE. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbit_rcoset
orbit_conjsgA a x y : (to y a \in orbit to (A :^ a) (to x a)) = (y \in orbit to A x). Proof. by rewrite orbit_conjsg_in ?subsetT ?inE. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbit_conjsg
astabPS a : reflect (forall x, x \in S -> to x a = x) (a \in 'C(S | to)). Proof. apply: (iffP idP) => [cSa x|cSa]; first exact: astab_act. by rewrite !inE; apply/subsetP=> x Sx; rewrite inE cSa. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabP
astab1Px a : reflect (to x a = x) (a \in 'C[x | to]). Proof. by rewrite !inE sub1set inE; apply: eqP. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astab1P
sub_astab1A x : (A \subset 'C[x | to]) = (x \in 'Fix_to(A)). Proof. by rewrite sub_astab1_in ?subsetT. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
sub_astab1
astabCA S : (A \subset 'C(S | to)) = (S \subset 'Fix_to(A)). Proof. by rewrite astabCin ?subsetT. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabC
afix_cyclea : 'Fix_to(<[a]>) = 'Fix_to[a]. Proof. by rewrite afix_cycle_in ?inE. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
afix_cycle
afix_genA : 'Fix_to(<<A>>) = 'Fix_to(A). Proof. by rewrite afix_gen_in ?subsetT. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
afix_gen
afixMG H : 'Fix_to(G * H) = 'Fix_to(G) :&: 'Fix_to(H). Proof. by rewrite afixMin ?subsetT. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
afixM
astabsPS a : reflect (forall x, (to x a \in S) = (x \in S)) (a \in 'N(S | to)). Proof. apply: (iffP idP) => [nSa x|nSa]; first exact: astabs_act. by rewrite !inE; apply/subsetP=> x; rewrite inE nSa. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabsP
card_orbitG x : #|orbit to G x| = #|G : 'C_G[x | to]|. Proof. by rewrite card_orbit_in ?subsetT. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
card_orbit
dvdn_orbitG x : #|orbit to G x| %| #|G|. Proof. by rewrite card_orbit dvdn_indexg. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
dvdn_orbit
card_orbit_stabG x : (#|orbit to G x| * #|'C_G[x | to]|)%N = #|G|. Proof. by rewrite mulnC card_orbit Lagrange ?subsetIl. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
card_orbit_stab
actsPA S : reflect {acts A, on S | to} [acts A, on S | to]. Proof. apply: (iffP idP) => [nSA x|nSA]; first exact: acts_act. by apply/subsetP=> a Aa /[!inE]; apply/subsetP=> x; rewrite inE nSA. Qed. Arguments actsP {A S}.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
actsP
setact_orbitA x b : to^* (orbit to A x) b = orbit to (A :^ b) (to x b). Proof. apply/setP=> y; apply/idP/idP=> /imsetP[_ /imsetP[a Aa ->] ->{y}]. by rewrite actCJ mem_orbit ?memJ_conjg. by rewrite -actCJ mem_setact ?mem_orbit. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
setact_orbit
astab_setactS a : 'C(to^* S a | to) = 'C(S | to) :^ a. Proof. apply/setP=> b; rewrite mem_conjg. apply/astabP/astabP=> stab x => [Sx|]. by rewrite conjgE invgK !actM stab ?actK //; apply/imsetP; exists x. by case/imsetP=> y Sy ->{x}; rewrite -actM conjgCV actM stab. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astab_setact
astab1_actx a : 'C[to x a | to] = 'C[x | to] :^ a. Proof. by rewrite -astab_setact /setact imset_set1. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astab1_act
atransPG S : [transitive G, on S | to] -> forall x, x \in S -> orbit to G x = S. Proof. by case/imsetP=> x _ -> y; apply/orbit_eqP. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
atransP
atransP2G S : [transitive G, on S | to] -> {in S &, forall x y, exists2 a, a \in G & y = to x a}. Proof. by move=> GtrS x y /(atransP GtrS) <- /imsetP. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
atransP2
atrans_actsG S : [transitive G, on S | to] -> [acts G, on S | to]. Proof. move=> GtrS; apply/subsetP=> a Ga; rewrite !inE. by apply/subsetP=> x /(atransP GtrS) <-; rewrite inE imset_f. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
atrans_acts
atrans_supgroupG H S : G \subset H -> [transitive G, on S | to] -> [transitive H, on S | to] = [acts H, on S | to]. Proof. move=> sGH trG; apply/idP/idP=> [|actH]; first exact: atrans_acts. case/imsetP: trG => x Sx defS; apply/imsetP; exists x => //. by apply/eqP; rewrite eqEsubset acts_sub_orbit ?Sx // defS imsetS. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
atrans_supgroup
atrans_acts_cardG S : [transitive G, on S | to] = [acts G, on S | to] && (#|orbit to G @: S| == 1%N). Proof. apply/idP/andP=> [GtrS | [nSG]]. split; first exact: atrans_acts. rewrite ((_ @: S =P [set S]) _) ?cards1 // eqEsubset sub1set. apply/andP; split=> //; apply/subsetP=> _ /imsetP[x Sx ->]. by rewrite inE (atransP GtrS). rewrite eqn_leq andbC lt0n => /andP[/existsP[X /imsetP[x Sx X_Gx]]]. rewrite (cardD1 X) {X}X_Gx imset_f // ltnS leqn0 => /eqP GtrS. apply/imsetP; exists x => //; apply/eqP. rewrite eqEsubset acts_sub_orbit // Sx andbT. apply/subsetP=> y Sy; have:= card0_eq GtrS (orbit to G y). by rewrite !inE /= imset_f // andbT => /eqP <-; apply: orbit_refl. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
atrans_acts_card
atrans_dvdG S : [transitive G, on S | to] -> #|S| %| #|G|. Proof. by case/imsetP=> x _ ->; apply: dvdn_orbit. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
atrans_dvd
acts_fix_normA B : A \subset 'N(B) -> [acts A, on 'Fix_to(B) | to]. Proof. move=> nAB; have:= acts_subnorm_fix to B; rewrite !setTI. exact: subset_trans. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
acts_fix_norm
faithfulPA S : reflect (forall a, a \in A -> {in S, to^~ a =1 id} -> a = 1) [faithful A, on S | to]. Proof. apply: (iffP subsetP) => [Cto1 a Aa Ca | Cto1 a]. by apply/set1P; rewrite Cto1 // inE Aa; apply/astabP. by case/setIP=> Aa /astabP Ca; apply/set1P; apply: Cto1. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
faithfulP
astab_trans_gcoreG S u : [transitive G, on S | to] -> u \in S -> 'C(S | to) = gcore 'C[u | to] G. Proof. move=> transG Su; apply/eqP; rewrite eqEsubset. rewrite gcore_max ?astabS ?sub1set //=; last first. exact: subset_trans (atrans_acts transG) (astab_norm _ _). apply/subsetP=> x cSx; apply/astabP=> uy. case/(atransP2 transG Su) => y Gy ->{uy}. by apply/astab1P; rewrite astab1_act (bigcapP cSx). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astab_trans_gcore
subgroup_transitivePG H S x : x \in S -> H \subset G -> [transitive G, on S | to] -> reflect ('C_G[x | to] * H = G) [transitive H, on S | to]. Proof. by move=> Sx sHG; apply: subgroup_transitivePin (subsetT G). Qed.
Theorem
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
subgroup_transitiveP
trans_subnorm_fixPx G H S : let C := 'C_G[x | to] in let T := 'Fix_(S | to)(H) in [transitive G, on S | to] -> x \in S -> H \subset C -> reflect ((H :^: G) ::&: C = H :^: C) [transitive 'N_G(H), on T | to]. Proof. move=> C T trGS Sx sHC; have actGS := acts_act (atrans_acts trGS). have:= sHC; rewrite subsetI sub_astab1 => /andP[sHG cHx]. have Tx: x \in T by rewrite inE Sx. apply: (iffP idP) => [trN | trC]. apply/setP=> Ha; apply/setIdP/imsetP=> [[]|[a Ca ->{Ha}]]; last first. by rewrite conj_subG //; case/setIP: Ca => Ga _; rewrite imset_f. case/imsetP=> a Ga ->{Ha}; rewrite subsetI !sub_conjg => /andP[_ sHCa]. have Txa: to x a^-1 \in T. by rewrite inE -sub_astab1 astab1_act actGS ?Sx ?groupV. have [b] := atransP2 trN Tx Txa; case/setIP=> Gb nHb cxba. exists (b * a); last by rewrite conjsgM (normP nHb). by rewrite inE groupM //; apply/astab1P; rewrite actM -cxba actKV. apply/imsetP; exists x => //; apply/setP=> y; apply/idP/idP=> [Ty|]. have [Sy cHy]:= setIP Ty; have [a Ga defy] := atransP2 trGS Sx Sy. have: H :^ a^-1 \in H :^: C. rewrite -trC inE subsetI imset_f 1?conj_subG ?groupV // sub_conjgV. by rewrite -astab1_act -defy sub_astab1. case/imsetP=> b /setIP[Gb /astab1P cxb] defHb. rewrite defy -{1}cxb -actM mem_orbit // inE groupM //. by apply/normP; rewrite conjsgM -defHb conjsgKV. case/imsetP=> a /setIP[Ga nHa] ->{y}. by rewrite inE actGS // Sx (acts_act (acts_fix_norm _) nHa). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
trans_subnorm_fixP
ractof A \subset D := act to. Variable sAD : A \subset D.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
ract
ract_is_action: is_action A (ract sAD). Proof. rewrite /ract; case: to => f [injf fM]. by split=> // x; apply: (sub_in2 (subsetP sAD)). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
ract_is_action
raction:= Action ract_is_action.
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
raction
ractE: raction =1 to. Proof. by []. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
ractE
actby_cond(A : {set aT}) R (to : action D rT) : Prop := [acts A, on R | to].
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
actby_cond
actbyA R to of actby_cond A R to := fun x a => if (x \in R) && (a \in A) then to x a else x. Variables (A : {group aT}) (R : {set rT}) (to : action D rT). Hypothesis nRA : actby_cond A R to.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
actby
actby_is_action: is_action A (actby nRA). Proof. rewrite /actby; split=> [a x y | x a b Aa Ab /=]; last first. rewrite Aa Ab groupM // !andbT actMin ?(subsetP (acts_dom nRA)) //. by case Rx: (x \in R); rewrite ?(acts_act nRA) ?Rx. case Aa: (a \in A); rewrite ?andbF ?andbT //. case Rx: (x \in R); case Ry: (y \in R) => // eqxy; first exact: act_inj eqxy. by rewrite -eqxy (acts_act nRA Aa) Rx in Ry. by rewrite eqxy (acts_act nRA Aa) Ry in Rx. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
actby_is_action
action_by:= Action actby_is_action. Local Notation "<[nRA]>" := action_by : action_scope.
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
action_by
actbyEx a : x \in R -> a \in A -> <[nRA]>%act x a = to x a. Proof. by rewrite /= /actby => -> ->. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
actbyE
afix_actbyB : 'Fix_<[nRA]>(B) = ~: R :|: 'Fix_to(A :&: B). Proof. apply/setP=> x; rewrite !inE /= /actby. case: (x \in R); last by apply/subsetP=> a _ /[!inE]. apply/subsetP/subsetP=> [cBx a | cABx a Ba] /[!inE]. by case/andP=> Aa /cBx; rewrite inE Aa. by case: ifP => //= Aa; have:= cABx a; rewrite !inE Aa => ->. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
afix_actby
astab_actbyS : 'C(S | <[nRA]>) = 'C_A(R :&: S | to). Proof. apply/setP=> a; rewrite setIA (setIidPl (acts_dom nRA)) !inE. case Aa: (a \in A) => //=; apply/subsetP/subsetP=> cRSa x => [|Sx]. by case/setIP=> Rx /cRSa; rewrite !inE actbyE. by have:= cRSa x; rewrite !inE /= /actby Aa Sx; case: (x \in R) => //; apply. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astab_actby
astabs_actbyS : 'N(S | <[nRA]>) = 'N_A(R :&: S | to). Proof. apply/setP=> a; rewrite setIA (setIidPl (acts_dom nRA)) !inE. case Aa: (a \in A) => //=; apply/subsetP/subsetP=> nRSa x => [|Sx]. by case/setIP=> Rx /nRSa; rewrite !inE actbyE ?(acts_act nRA) ?Rx. have:= nRSa x; rewrite !inE /= /actby Aa Sx ?(acts_act nRA) //. by case: (x \in R) => //; apply. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabs_actby
acts_actby(B : {set aT}) S : [acts B, on S | <[nRA]>] = (B \subset A) && [acts B, on R :&: S | to]. Proof. by rewrite astabs_actby subsetI. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
acts_actby
subact_dom:= 'N([set x | sP x] | to).
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
subact_dom
subact_dom_group:= [group of subact_dom]. Implicit Type Na : {a | a \in subact_dom}.
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
subact_dom_group
sub_act_proofu Na : sP (to (val u) (val Na)). Proof. by case: Na => a /= /(astabs_act (val u)); rewrite !inE valP. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
sub_act_proof
subactu a := if insub a is Some Na then Sub _ (sub_act_proof u Na) else u.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
subact
val_subactu a : val (subact u a) = if a \in subact_dom then to (val u) a else val u. Proof. by rewrite /subact -if_neg; case: insubP => [Na|] -> //=; rewrite SubK => ->. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
val_subact