fact
stringlengths 8
1.54k
| type
stringclasses 19
values | library
stringclasses 8
values | imports
listlengths 1
10
| filename
stringclasses 98
values | symbolic_name
stringlengths 1
42
| docstring
stringclasses 1
value |
|---|---|---|---|---|---|---|
gactV: {in D, forall a, {in R, {morph to^~ a : x / x^-1}}}.
Proof. by move=> a Da /= x Rx; move; rewrite -!actmE ?morphV. Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
gactV
| |
gactX: {in D, forall a n, {in R, {morph to^~ a : x / x ^+ n}}}.
Proof. by move=> a Da /= n x Rx; rewrite -!actmE // morphX. Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
gactX
| |
gactJ: {in D, forall a, {in R &, {morph to^~ a : x y / x ^ y}}}.
Proof. by move=> a Da /= x Rx y Ry; rewrite -!actmE // morphJ. Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
gactJ
| |
gactR: {in D, forall a, {in R &, {morph to^~ a : x y / [~ x, y]}}}.
Proof. by move=> a Da /= x Rx y Ry; rewrite -!actmE // morphR. Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
gactR
| |
gact_stable: {acts D, on R | to}.
Proof.
apply: acts_act; apply/subsetP=> a Da; rewrite !inE Da.
apply/subsetP=> x; rewrite inE; apply: contraLR => R'xa.
by rewrite -(actKin to Da x) gact_out ?groupV.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
gact_stable
| |
group_set_gacentA : group_set 'C_(|to)(A).
Proof.
apply/group_setP; split=> [|x y].
by rewrite !inE group1; apply/subsetP=> a /setIP[Da _]; rewrite inE gact1.
case/setIP=> Rx /afixP cAx /setIP[Ry /afixP cAy].
rewrite inE groupM //; apply/afixP=> a Aa.
by rewrite gactM ?cAx ?cAy //; case/setIP: Aa.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
group_set_gacent
| |
gacent_groupA := Group (group_set_gacent A).
|
Canonical
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
gacent_group
| |
gacent1: 'C_(|to)(1) = R.
Proof. by rewrite /gacent (setIidPr (sub1G _)) afix1 setIT. Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
gacent1
| |
gacent_genA : A \subset D -> 'C_(|to)(<<A>>) = 'C_(|to)(A).
Proof.
by move=> sAD; rewrite /gacent  ?gen_subG ?afix_gen_in.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
gacent_gen
| |
gacentD1A : 'C_(|to)(A^#) = 'C_(|to)(A).
Proof.
rewrite -gacentIdom -gacent_gen ?subsetIl // setIDA genD1 ?group1 //.
by rewrite gacent_gen ?subsetIl // gacentIdom.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
gacentD1
| |
gacent_cyclea : a \in D -> 'C_(|to)(<[a]>) = 'C_(|to)[a].
Proof. by move=> Da; rewrite gacent_gen ?sub1set. Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
gacent_cycle
| |
gacentYA B :
A \subset D -> B \subset D -> 'C_(|to)(A <*> B) = 'C_(|to)(A) :&: 'C_(|to)(B).
Proof. by move=> sAD sBD; rewrite gacent_gen ?gacentU // subUset sAD. Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
gacentY
| |
gacentMG H :
G \subset D -> H \subset D -> 'C_(|to)(G * H) = 'C_(|to)(G) :&: 'C_(|to)(H).
Proof.
by move=> sGD sHB; rewrite -gacent_gen ?mul_subG // genM_join gacentY.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
gacentM
| |
astab1: 'C(1 | to) = D.
Proof.
by apply/setP=> x; rewrite ?(inE, sub1set) andb_idr //; move/gact1=> ->.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
astab1
| |
astab_range: 'C(R | to) = 'C(setT | to).
Proof.
apply/eqP; rewrite eqEsubset andbC astabS ?subsetT //=.
apply/subsetP=> a cRa; have Da := astab_dom cRa; rewrite !inE Da.
apply/subsetP=> x; rewrite -(setUCr R) !inE.
by case/orP=> ?; [rewrite (astab_act cRa) | rewrite gact_out].
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
astab_range
| |
gacentCA S :
A \subset D -> S \subset R ->
(S \subset 'C_(|to)(A)) = (A \subset 'C(S | to)).
Proof. by move=> sAD sSR; rewrite subsetI sSR astabCin // (setIidPr sAD). Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
gacentC
| |
astab_genS : S \subset R -> 'C(<<S>> | to) = 'C(S | to).
Proof.
move=> sSR; apply/setP=> a; case Da: (a \in D); last by rewrite !inE Da.
by rewrite -!sub1set -!gacentC ?sub1set ?gen_subG.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
astab_gen
| |
astabMM N :
M \subset R -> N \subset R -> 'C(M * N | to) = 'C(M | to) :&: 'C(N | to).
Proof.
move=> sMR sNR; rewrite -astabU -astab_gen ?mul_subG // genM_join.
by rewrite astab_gen // subUset sMR.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
astabM
| |
astabs1: 'N(1 | to) = D.
Proof. by rewrite astabs_set1 astab1. Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
astabs1
| |
astabs_range: 'N(R | to) = D.
Proof.
apply/setIidPl; apply/subsetP=> a Da; rewrite inE.
by apply/subsetP=> x Rx; rewrite inE gact_stable.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
astabs_range
| |
astabsD1S : 'N(S^# | to) = 'N(S | to).
Proof.
case S1: (1 \in S); last first.
by rewrite (setDidPl _) // disjoint_sym disjoints_subset sub1set inE S1.
apply/eqP; rewrite eqEsubset andbC -{1}astabsIdom -{1}astabs1 setIC astabsD /=.
by rewrite -{2}(setD1K S1) -astabsIdom -{1}astabs1 astabsU.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
astabsD1
| |
gacts_rangeA : A \subset D -> {acts A, on group R | to}.
Proof. by move=> sAD; split; rewrite ?astabs_range. Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
gacts_range
| |
acts_subnorm_gacentA : A \subset D ->
[acts 'N_D(A), on 'C_(| to)(A) | to].
Proof.
move=> sAD; rewrite gacentE // actsI ?astabs_range ?subsetIl //.
by rewrite -{2}(setIidPr sAD) acts_subnorm_fix.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
acts_subnorm_gacent
| |
acts_subnorm_subgacentA B S :
A \subset D -> [acts B, on S | to] -> [acts 'N_B(A), on 'C_(S | to)(A) | to].
Proof.
move=> sAD actsB; rewrite actsI //; first by rewrite subIset ?actsB.
by rewrite (subset_trans _ (acts_subnorm_gacent sAD)) ?setSI ?(acts_dom actsB).
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
acts_subnorm_subgacent
| |
acts_genA S :
S \subset R -> [acts A, on S | to] -> [acts A, on <<S>> | to].
Proof.
move=> sSR actsA; apply: {A}subset_trans actsA _.
apply/subsetP=> a nSa; have Da := astabs_dom nSa; rewrite !inE Da.
apply: subset_trans (_ : <<S>> \subset actm to a @*^-1 <<S>>) _.
rewrite gen_subG subsetI sSR; apply/subsetP=> x Sx.
by rewrite inE /= actmE ?mem_gen // astabs_act.
by apply/subsetP=> x /[!inE]; case/andP=> Rx; rewrite /= actmE.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
acts_gen
| |
acts_joingA M N :
M \subset R -> N \subset R -> [acts A, on M | to] -> [acts A, on N | to] ->
[acts A, on M <*> N | to].
Proof. by move=> sMR sNR nMA nNA; rewrite acts_gen ?actsU // subUset sMR. Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
acts_joing
| |
injm_actma : 'injm (actm to a).
Proof.
apply/injmP=> x y Rx Ry; rewrite /= /actm; case: ifP => Da //.
exact: act_inj.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
injm_actm
| |
im_actma : actm to a @* R = R.
Proof.
apply/eqP; rewrite eqEcard (card_injm (injm_actm a)) // leqnn andbT.
apply/subsetP=> _ /morphimP[x Rx _ ->] /=.
by rewrite /actm; case: ifP => // Da; rewrite gact_stable.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
im_actm
| |
acts_charG M : G \subset D -> M \char R -> [acts G, on M | to].
Proof.
move=> sGD /charP[sMR charM].
apply/subsetP=> a Ga; have Da := subsetP sGD a Ga; rewrite !inE Da.
apply/subsetP=> x Mx; have Rx := subsetP sMR x Mx.
by rewrite inE -(charM _ (injm_actm a) (im_actm a)) -actmE // mem_morphim.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
acts_char
| |
gacts_charG M :
G \subset D -> M \char R -> {acts G, on group M | to}.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
gacts_char
| |
ract_is_groupAction: is_groupAction R (to \ sAD).
Proof. by move=> a Aa /=; rewrite ractpermE actperm_Aut ?(subsetP sAD). Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
ract_is_groupAction
| |
ract_groupAction:= GroupAction ract_is_groupAction.
|
Canonical
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
ract_groupAction
| |
gacent_ractB : 'C_(|ract_groupAction)(B) = 'C_(|to)(A :&: B).
Proof. by rewrite /gacent afix_ract setIA (setIidPr sAD). Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
gacent_ract
| |
actby_is_groupAction: is_groupAction G <[nGAg]>.
Proof.
move=> a Aa; rewrite /= inE; apply/andP; split.
apply/subsetP=> x; apply: contraR => Gx.
by rewrite actpermE /= /actby (negbTE Gx).
apply/morphicP=> x y Gx Gy; rewrite !actpermE /= /actby Aa groupM ?Gx ?Gy //=.
by case nGAg; move/acts_dom; do 2!move/subsetP=> ?; rewrite gactM; auto.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
actby_is_groupAction
| |
actby_groupAction:= GroupAction actby_is_groupAction.
|
Canonical
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
actby_groupAction
| |
gacent_actbyB :
'C_(|actby_groupAction)(B) = 'C_(G | to)(A :&: B).
Proof.
rewrite /gacent afix_actby !setIA setIid setIUr setICr set0U.
by have [nAG sGR] := nGAg; rewrite (setIidPr (acts_dom nAG)) (setIidPl sGR).
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
gacent_actby
| |
acts_qact_dom_norm: {acts qact_dom to H, on 'N(H) | to}.
Proof.
move=> a HDa /= x; rewrite {2}(('N(H) =P to^~ a @^-1: 'N(H)) _) ?inE {x}//.
rewrite eqEcard (card_preimset _ (act_inj _ _)) leqnn andbT.
apply/subsetP=> x Nx; rewrite inE; move/(astabs_act (H :* x)): HDa.
rewrite mem_rcosets mulSGid ?normG // Nx => /rcosetsP[y Ny defHy].
suffices: to x a \in H :* y by apply: subsetP; rewrite mul_subG ?sub1set ?normG.
by rewrite -defHy; apply: imset_f; apply: rcoset_refl.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
acts_qact_dom_norm
| |
qact_is_groupAction: is_groupAction (R / H) (to / H).
Proof.
move=> a HDa /=; have Da := astabs_dom HDa.
rewrite inE; apply/andP; split.
apply/subsetP=> Hx /=; case: (cosetP Hx) => x Nx ->{Hx}.
apply: contraR => R'Hx; rewrite actpermE qactE // gact_out //.
by apply: contra R'Hx; apply: mem_morphim.
apply/morphicP=> Hx Hy; rewrite !actpermE.
case/morphimP=> x Nx Gx ->{Hx}; case/morphimP=> y Ny Gy ->{Hy}.
by rewrite -morphM ?qactE ?groupM ?gactM // morphM ?acts_qact_dom_norm.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
qact_is_groupAction
| |
quotient_groupAction:= GroupAction qact_is_groupAction.
|
Canonical
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
quotient_groupAction
| |
qact_domE: H \subset R -> qact_dom to H = 'N(H | to).
Proof.
move=> sHR; apply/setP=> a; apply/idP/idP=> nHa; have Da := astabs_dom nHa.
rewrite !inE Da; apply/subsetP=> x Hx; rewrite inE -(rcoset1 H).
have /rcosetsP[y Ny defHy]: to^~ a @: H \in rcosets H 'N(H).
by rewrite (astabs_act _ nHa); apply/rcosetsP; exists 1; rewrite ?mulg1.
by rewrite (rcoset_eqP (_ : 1 \in H :* y)) -defHy -1?(gact1 Da) mem_setact.
rewrite !inE Da; apply/subsetP=> Hx /[1!inE] /rcosetsP[x Nx ->{Hx}].
apply/imsetP; exists (to x a).
case Rx: (x \in R); last by rewrite gact_out ?Rx.
rewrite inE; apply/subsetP=> _ /imsetP[y Hy ->].
rewrite -(actKVin to Da y) -gactJ // ?(subsetP sHR, astabs_act, groupV) //.
by rewrite memJ_norm // astabs_act ?groupV.
apply/eqP; rewrite rcosetE eqEcard.
rewrite (card_imset _ (act_inj _ _)) !card_rcoset leqnn andbT.
apply/subsetP=> _ /imsetP[y Hxy ->]; rewrite !mem_rcoset in Hxy *.
have Rxy := subsetP sHR _ Hxy; rewrite -(mulgKV x y).
case Rx: (x \in R); last by rewrite !gact_out ?mulgK // 1?groupMl ?Rx.
by rewrite -gactV // -gactM 1?groupMr ?groupV // mulgK astabs_act.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
qact_domE
| |
modact_is_groupAction: is_groupAction 'C_(|to)(H) (to %% H).
Proof.
move=> Ha /morphimP[a Na Da ->]; have NDa: a \in 'N_D(H) by apply/setIP.
rewrite inE; apply/andP; split.
apply/subsetP=> x; rewrite 2!inE andbC actpermE /= modactEcond //.
by apply: contraR; case: ifP => // E Rx; rewrite gact_out.
apply/morphicP=> x y /setIP[Rx cHx] /setIP[Ry cHy].
rewrite /= !actpermE /= !modactE ?gactM //.
suffices: x * y \in 'C_(|to)(H) by case/setIP.
by rewrite groupM //; apply/setIP.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
modact_is_groupAction
| |
mod_groupAction:= GroupAction modact_is_groupAction.
|
Canonical
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
mod_groupAction
| |
modgactEx a :
H \subset 'C(R | to) -> a \in 'N_D(H) -> (to %% H)%act x (coset H a) = to x a.
Proof.
move=> cRH NDa /=; have [Da Na] := setIP NDa.
have [Rx | notRx] := boolP (x \in R).
by rewrite modactE //; apply/afixP=> b /setIP[_ /(subsetP cRH)/astab_act->].
rewrite gact_out //= /modact; case: ifP => // _; rewrite gact_out //.
suffices: a \in D :&: coset H a by case/mem_repr/setIP.
by rewrite inE Da val_coset // rcoset_refl.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
modgactE
| |
gacent_modG M :
H \subset 'C(M | to) -> G \subset 'N(H) ->
'C_(M | mod_groupAction)(G / H) = 'C_(M | to)(G).
Proof.
move=> cMH nHG; rewrite -gacentIdom gacentE ?subsetIl // setICA.
have sHD: H \subset D by rewrite (subset_trans cMH) ?subsetIl.
rewrite -quotientGI // afix_mod ?setIS // setICA -gacentIim (setIC R) -setIA.
rewrite -gacentE ?subsetIl // gacentIdom setICA (setIidPr _) //.
by rewrite gacentC // ?(subset_trans cMH) ?astabS ?subsetIl // setICA subsetIl.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
gacent_mod
| |
acts_irr_modG M :
H \subset 'C(M | to) -> G \subset 'N(H) -> acts_irreducibly G M to ->
acts_irreducibly (G / H) M mod_groupAction.
Proof.
move=> cMH nHG /mingroupP[/andP[ntM nMG] minM].
apply/mingroupP; rewrite ntM astabs_mod ?quotientS //; split=> // L modL ntL.
have cLH: H \subset 'C(L | to) by rewrite (subset_trans cMH) ?astabS //.
apply: minM => //; case/andP: modL => ->; rewrite astabs_mod ?quotientSGK //.
by rewrite (subset_trans cLH) ?astab_sub.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
acts_irr_mod
| |
modact_coset_astabx a :
a \in D -> (to %% 'C(R | to))%act x (coset _ a) = to x a.
Proof.
move=> Da; apply: modgactE => {x}//.
rewrite !inE Da; apply/subsetP=> _ /imsetP[c Cc ->].
have Dc := astab_dom Cc; rewrite !inE groupJ //.
apply/subsetP=> x Rx; rewrite inE conjgE !actMin ?groupM ?groupV //.
by rewrite (astab_act Cc) ?actKVin // gact_stable ?groupV.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
modact_coset_astab
| |
acts_irr_mod_astabG M :
acts_irreducibly G M to ->
acts_irreducibly (G / 'C_G(M | to)) M (mod_groupAction _).
Proof.
move=> irrG; have /andP[_ nMG] := mingroupp irrG.
apply: acts_irr_mod irrG; first exact: subsetIr.
by rewrite normsI ?normG // (subset_trans nMG) // astab_norm.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
acts_irr_mod_astab
| |
comp_is_groupAction: is_groupAction R (comp_action to f).
Proof.
move=> a /morphpreP[Ba Dfa]; apply: etrans (actperm_Aut to Dfa).
by congr (_ \in Aut R); apply/permP=> x; rewrite !actpermE.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
comp_is_groupAction
| |
comp_groupAction:= GroupAction comp_is_groupAction.
|
Canonical
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
comp_groupAction
| |
gacent_compU : 'C_(|comp_groupAction)(U) = 'C_(|to)(f @* U).
Proof.
rewrite /gacent afix_comp ?subIset ?subxx //.
by rewrite -(setIC U) (setIC D) morphim_setIpre.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
gacent_comp
| |
morph_astabs: f @* 'N(S | to1) = 'N(h @: S | to2).
Proof.
apply/setP=> fx; apply/morphimP/idP=> [[x D1x nSx ->] | nSx].
rewrite 2!inE -{1}defD2 mem_morphim //=; apply/subsetP=> _ /imsetP[u Su ->].
by rewrite inE -hfJ ?imset_f // (astabs_act _ nSx).
have [|x D1x _ def_fx] := morphimP (_ : fx \in f @* D1).
by rewrite defD2 (astabs_dom nSx).
exists x => //; rewrite !inE D1x; apply/subsetP=> u Su.
have /imsetP[u' Su' /injh def_u']: h (to1 u x) \in h @: S.
by rewrite hfJ // -def_fx (astabs_act _ nSx) imset_f.
by rewrite inE def_u' ?actsDR ?(subsetP sSR).
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
morph_astabs
| |
morph_astab: f @* 'C(S | to1) = 'C(h @: S | to2).
Proof.
apply/setP=> fx; apply/morphimP/idP=> [[x D1x cSx ->] | cSx].
rewrite 2!inE -{1}defD2 mem_morphim //=; apply/subsetP=> _ /imsetP[u Su ->].
by rewrite inE -hfJ // (astab_act cSx).
have [|x D1x _ def_fx] := morphimP (_ : fx \in f @* D1).
by rewrite defD2 (astab_dom cSx).
exists x => //; rewrite !inE D1x; apply/subsetP=> u Su.
rewrite inE -(inj_in_eq injh) ?actsDR ?(subsetP sSR) ?hfJ //.
by rewrite -def_fx (astab_act cSx) ?imset_f.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
morph_astab
| |
morph_afix: h @: 'Fix_(S | to1)(A) = 'Fix_(h @: S | to2)(f @* A).
Proof.
apply/setP=> hu; apply/imsetP/setIP=> [[u /setIP[Su cAu] ->]|].
split; first by rewrite imset_f.
by apply/afixP=> _ /morphimP[x D1x Ax ->]; rewrite -hfJ ?(afixP cAu).
case=> /imsetP[u Su ->] /afixP c_hu_fA; exists u; rewrite // inE Su.
apply/afixP=> x Ax; have Dx := subsetP sAD1 x Ax.
by apply: injh; rewrite ?actsDR ?(subsetP sSR) ?hfJ // c_hu_fA ?mem_morphim.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
morph_afix
| |
morph_gastabsS : S \subset R1 -> f @* 'N(S | to1) = 'N(h @* S | to2).
Proof.
have [[_ defD2] [injh _]] := (isomP iso_f, isomP iso_h).
move=> sSR1; rewrite (morphimEsub _ sSR1).
apply: (morph_astabs (gact_stable to1) (injmP injh)) => // u x.
by move/(subsetP sSR1); apply: hfJ.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
morph_gastabs
| |
morph_gastabS : S \subset R1 -> f @* 'C(S | to1) = 'C(h @* S | to2).
Proof.
have [[_ defD2] [injh _]] := (isomP iso_f, isomP iso_h).
move=> sSR1; rewrite (morphimEsub _ sSR1).
apply: (morph_astab (gact_stable to1) (injmP injh)) => // u x.
by move/(subsetP sSR1); apply: hfJ.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
morph_gastab
| |
morph_gacentA : A \subset D1 -> h @* 'C_(|to1)(A) = 'C_(|to2)(f @* A).
Proof.
have [[_ defD2] [injh defR2]] := (isomP iso_f, isomP iso_h).
move=> sAD1; rewrite !gacentE //; last by rewrite -defD2 morphimS.
rewrite morphimEsub ?subsetIl // -{1}defR2 morphimEdom.
exact: (morph_afix (gact_stable to1) (injmP injh)).
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
morph_gacent
| |
morph_gact_irrA M :
A \subset D1 -> M \subset R1 ->
acts_irreducibly (f @* A) (h @* M) to2 = acts_irreducibly A M to1.
Proof.
move=> sAD1 sMR1.
have [[injf defD2] [injh defR2]] := (isomP iso_f, isomP iso_h).
have h_eq1 := morphim_injm_eq1 injh.
apply/mingroupP/mingroupP=> [] [/andP[ntM actAM] minM].
split=> [|U]; first by rewrite -h_eq1 // ntM -(injmSK injf) ?morph_gastabs.
case/andP=> ntU acts_fAU sUM; have sUR1 := subset_trans sUM sMR1.
apply: (injm_morphim_inj injh) => //; apply: minM; last exact: morphimS.
by rewrite h_eq1 // ntU -morph_gastabs ?morphimS.
split=> [|U]; first by rewrite h_eq1 // ntM -morph_gastabs ?morphimS.
case/andP=> ntU acts_fAU sUhM.
have sUhR1 := subset_trans sUhM (morphimS h sMR1).
have sU'M: h @*^-1 U \subset M by rewrite sub_morphpre_injm.
rewrite /= -(minM _ _ sU'M) ?morphpreK // -h_eq1 ?subsetIl // -(injmSK injf) //.
by rewrite morph_gastabs ?(subset_trans sU'M) // morphpreK ?ntU.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
morph_gact_irr
| |
mulgr_action:= TotalAction (@mulg1 gT) (@mulgA gT).
|
Definition
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
mulgr_action
| |
conjg_action:= TotalAction (@conjg1 gT) (@conjgM gT).
|
Canonical
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
conjg_action
| |
conjg_is_groupAction: is_groupAction setT conjg_action.
Proof.
move=> a _; rewrite inE; apply/andP; split; first by apply/subsetP=> x /[1!inE].
by apply/morphicP=> x y _ _; rewrite !actpermE /= conjMg.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
conjg_is_groupAction
| |
conjg_groupAction:= GroupAction conjg_is_groupAction.
|
Canonical
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
conjg_groupAction
| |
rcoset_is_action: is_action setT (@rcoset gT).
Proof.
by apply: is_total_action => [A|A x y]; rewrite !rcosetE (mulg1, rcosetM).
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
rcoset_is_action
| |
rcoset_action:= Action rcoset_is_action.
|
Canonical
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
rcoset_action
| |
conjsg_action:= TotalAction (@conjsg1 gT) (@conjsgM gT).
|
Canonical
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
conjsg_action
| |
conjG_is_action: is_action setT (@conjG_group gT).
Proof.
apply: is_total_action => [G | G x y]; apply: val_inj; rewrite /= ?act1 //.
exact: actM.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
conjG_is_action
| |
conjG_action:= Action conjG_is_action.
|
Definition
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
conjG_action
| |
orbitRG x : orbit 'R G x = x *: G.
Proof. by rewrite -lcosetE. Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
orbitR
| |
astab1Rx : 'C[x | 'R] = 1.
Proof.
apply/trivgP/subsetP=> y cxy.
by rewrite -(mulKg x y) [x * y](astab1P cxy) mulVg set11.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
astab1R
| |
astabRG : 'C(G | 'R) = 1.
Proof.
apply/trivgP/subsetP=> x cGx.
by rewrite -(mul1g x) [1 * x](astabP cGx) group1.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
astabR
| |
astabsRG : 'N(G | 'R) = G.
Proof.
apply/setP=> x; rewrite !inE -setactVin ?inE //=.
by rewrite -groupV -{1 3}(mulg1 G) rcoset_sym -sub1set -mulGS -!rcosetE.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
astabsR
| |
atransRG : [transitive G, on G | 'R].
Proof. by rewrite /atrans -{1}(mul1g G) -orbitR imset_f. Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
atransR
| |
faithfulRG : [faithful G, on G | 'R].
Proof. by rewrite /faithful astabR subsetIr. Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
faithfulR
| |
Cayley_reprG := actperm <[atrans_acts (atransR G)]>.
|
Definition
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
Cayley_repr
| |
Cayley_isomG : isom G (Cayley_repr G @* G) (Cayley_repr G).
Proof. exact: faithful_isom (faithfulR G). Qed.
|
Theorem
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
Cayley_isom
| |
Cayley_isogG : G \isog Cayley_repr G @* G.
Proof. exact: isom_isog (Cayley_isom G). Qed.
|
Theorem
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
Cayley_isog
| |
orbitJG x : orbit 'J G x = x ^: G. Proof. by []. Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
orbitJ
| |
afixJA : 'Fix_('J)(A) = 'C(A).
Proof.
apply/setP=> x; apply/afixP/centP=> cAx y Ay /=.
by rewrite /commute conjgC cAx.
by rewrite conjgE cAx ?mulKg.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
afixJ
| |
astabJA : 'C(A |'J) = 'C(A).
Proof.
apply/setP=> x; apply/astabP/centP=> cAx y Ay /=.
by apply: esym; rewrite conjgC cAx.
by rewrite conjgE -cAx ?mulKg.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
astabJ
| |
astab1Jx : 'C[x |'J] = 'C[x].
Proof. by rewrite astabJ cent_set1. Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
astab1J
| |
astabsJA : 'N(A | 'J) = 'N(A).
Proof. by apply/setP=> x; rewrite -2!groupV !inE -conjg_preim -sub_conjg. Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
astabsJ
| |
setactJA x : 'J^*%act A x = A :^ x. Proof. by []. Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
setactJ
| |
gacentJA : 'C_(|'J)(A) = 'C(A).
Proof. by rewrite gacentE ?setTI ?subsetT ?afixJ. Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
gacentJ
| |
orbitRsG A : orbit 'Rs G A = rcosets A G. Proof. by []. Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
orbitRs
| |
sub_afixRs_normsG x A : (G :* x \in 'Fix_('Rs)(A)) = (A \subset G :^ x).
Proof.
rewrite inE /=; apply: eq_subset_r => a.
rewrite inE rcosetE -(can2_eq (rcosetKV x) (rcosetK x)) -!rcosetM.
rewrite eqEcard card_rcoset leqnn andbT mulgA (conjgCV x) mulgK.
by rewrite -{2 3}(mulGid G) mulGS sub1set -mem_conjg.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
sub_afixRs_norms
| |
sub_afixRs_normG x : (G :* x \in 'Fix_('Rs)(G)) = (x \in 'N(G)).
Proof. by rewrite sub_afixRs_norms -groupV inE sub_conjgV. Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
sub_afixRs_norm
| |
afixRs_rcosetsA G : 'Fix_(rcosets G A | 'Rs)(G) = rcosets G 'N_A(G).
Proof.
apply/setP=> Gx; apply/setIP/rcosetsP=> [[/rcosetsP[x Ax ->]]|[x]].
by rewrite sub_afixRs_norm => Nx; exists x; rewrite // inE Ax.
by case/setIP=> Ax Nx ->; rewrite -{1}rcosetE imset_f // sub_afixRs_norm.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
afixRs_rcosets
| |
astab1RsG : 'C[G : {set gT} | 'Rs] = G.
Proof.
apply/setP=> x.
by apply/astab1P/idP=> /= [<- | Gx]; rewrite rcosetE ?rcoset_refl ?rcoset_id.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
astab1Rs
| |
actsRs_rcosetsH G : [acts G, on rcosets H G | 'Rs].
Proof. by rewrite -orbitRs acts_orbit ?subsetT. Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
actsRs_rcosets
| |
transRs_rcosetsH G : [transitive G, on rcosets H G | 'Rs].
Proof. by rewrite -orbitRs atrans_orbit. Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
transRs_rcosets
| |
astabRs_rcosetsH G : 'C(rcosets H G | 'Rs) = gcore H G.
Proof.
have transGH := transRs_rcosets H G.
by rewrite (astab_trans_gcore transGH (orbit_refl _ G _)) astab1Rs.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
astabRs_rcosets
| |
orbitJsG A : orbit 'Js G A = A :^: G. Proof. by []. Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
orbitJs
| |
astab1JsA : 'C[A | 'Js] = 'N(A).
Proof. by apply/setP=> x; apply/astab1P/normP. Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
astab1Js
| |
card_conjugatesA G : #|A :^: G| = #|G : 'N_G(A)|.
Proof. by rewrite card_orbit astab1Js. Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
card_conjugates
| |
afixJGG A : (G \in 'Fix_('JG)(A)) = (A \subset 'N(G)).
Proof. by apply/afixP/normsP=> nG x Ax; apply/eqP; move/eqP: (nG x Ax). Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
afixJG
| |
astab1JGG : 'C[G | 'JG] = 'N(G).
Proof.
by apply/setP=> x; apply/astab1P/normP=> [/congr_group | /group_inj].
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
astab1JG
| |
dom_qactJH : qact_dom 'J H = 'N(H).
Proof. by rewrite qact_domE ?subsetT ?astabsJ. Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
dom_qactJ
| |
qactJH (Hy : coset_of H) x :
'Q%act Hy x = if x \in 'N(H) then Hy ^ coset H x else Hy.
Proof.
case: (cosetP Hy) => y Ny ->{Hy}.
by rewrite qactEcond // dom_qactJ; case Nx: (x \in 'N(H)); rewrite ?morphJ.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
qactJ
| |
actsQA B H :
A \subset 'N(H) -> A \subset 'N(B) -> [acts A, on B / H | 'Q].
Proof.
by move=> nHA nBA; rewrite acts_quotient // subsetI dom_qactJ nHA astabsJ.
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
actsQ
| |
astabsQG H : H <| G -> 'N(G / H | 'Q) = 'N(H) :&: 'N(G).
Proof. by move=> nsHG; rewrite astabs_quotient // dom_qactJ astabsJ. Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
astabsQ
| |
astabQH Abar : 'C(Abar |'Q) = coset H @*^-1 'C(Abar).
Proof.
apply/setP=> x; rewrite inE /= dom_qactJ morphpreE in_setI /=.
apply: andb_id2l => Nx; rewrite !inE -sub1set centsC cent_set1.
apply: eq_subset_r => {Abar} Hy; rewrite inE qactJ Nx (sameP eqP conjg_fixP).
by rewrite (sameP cent1P eqP) (sameP commgP eqP).
Qed.
|
Lemma
|
fingroup
|
[
"From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype",
"From mathcomp Require Import ssrnat div seq prime fintype bigop finset",
"From mathcomp Require Import fingroup morphism perm automorphism quotient"
] |
fingroup/action.v
|
astabQ
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.