fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
gactV: {in D, forall a, {in R, {morph to^~ a : x / x^-1}}}. Proof. by move=> a Da /= x Rx; move; rewrite -!actmE ?morphV. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
gactV
gactX: {in D, forall a n, {in R, {morph to^~ a : x / x ^+ n}}}. Proof. by move=> a Da /= n x Rx; rewrite -!actmE // morphX. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
gactX
gactJ: {in D, forall a, {in R &, {morph to^~ a : x y / x ^ y}}}. Proof. by move=> a Da /= x Rx y Ry; rewrite -!actmE // morphJ. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
gactJ
gactR: {in D, forall a, {in R &, {morph to^~ a : x y / [~ x, y]}}}. Proof. by move=> a Da /= x Rx y Ry; rewrite -!actmE // morphR. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
gactR
gact_stable: {acts D, on R | to}. Proof. apply: acts_act; apply/subsetP=> a Da; rewrite !inE Da. apply/subsetP=> x; rewrite inE; apply: contraLR => R'xa. by rewrite -(actKin to Da x) gact_out ?groupV. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
gact_stable
group_set_gacentA : group_set 'C_(|to)(A). Proof. apply/group_setP; split=> [|x y]. by rewrite !inE group1; apply/subsetP=> a /setIP[Da _]; rewrite inE gact1. case/setIP=> Rx /afixP cAx /setIP[Ry /afixP cAy]. rewrite inE groupM //; apply/afixP=> a Aa. by rewrite gactM ?cAx ?cAy //; case/setIP: Aa. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
group_set_gacent
gacent_groupA := Group (group_set_gacent A).
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
gacent_group
gacent1: 'C_(|to)(1) = R. Proof. by rewrite /gacent (setIidPr (sub1G _)) afix1 setIT. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
gacent1
gacent_genA : A \subset D -> 'C_(|to)(<<A>>) = 'C_(|to)(A). Proof. by move=> sAD; rewrite /gacent ![D :&: _](setIidPr _) ?gen_subG ?afix_gen_in. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
gacent_gen
gacentD1A : 'C_(|to)(A^#) = 'C_(|to)(A). Proof. rewrite -gacentIdom -gacent_gen ?subsetIl // setIDA genD1 ?group1 //. by rewrite gacent_gen ?subsetIl // gacentIdom. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
gacentD1
gacent_cyclea : a \in D -> 'C_(|to)(<[a]>) = 'C_(|to)[a]. Proof. by move=> Da; rewrite gacent_gen ?sub1set. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
gacent_cycle
gacentYA B : A \subset D -> B \subset D -> 'C_(|to)(A <*> B) = 'C_(|to)(A) :&: 'C_(|to)(B). Proof. by move=> sAD sBD; rewrite gacent_gen ?gacentU // subUset sAD. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
gacentY
gacentMG H : G \subset D -> H \subset D -> 'C_(|to)(G * H) = 'C_(|to)(G) :&: 'C_(|to)(H). Proof. by move=> sGD sHB; rewrite -gacent_gen ?mul_subG // genM_join gacentY. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
gacentM
astab1: 'C(1 | to) = D. Proof. by apply/setP=> x; rewrite ?(inE, sub1set) andb_idr //; move/gact1=> ->. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astab1
astab_range: 'C(R | to) = 'C(setT | to). Proof. apply/eqP; rewrite eqEsubset andbC astabS ?subsetT //=. apply/subsetP=> a cRa; have Da := astab_dom cRa; rewrite !inE Da. apply/subsetP=> x; rewrite -(setUCr R) !inE. by case/orP=> ?; [rewrite (astab_act cRa) | rewrite gact_out]. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astab_range
gacentCA S : A \subset D -> S \subset R -> (S \subset 'C_(|to)(A)) = (A \subset 'C(S | to)). Proof. by move=> sAD sSR; rewrite subsetI sSR astabCin // (setIidPr sAD). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
gacentC
astab_genS : S \subset R -> 'C(<<S>> | to) = 'C(S | to). Proof. move=> sSR; apply/setP=> a; case Da: (a \in D); last by rewrite !inE Da. by rewrite -!sub1set -!gacentC ?sub1set ?gen_subG. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astab_gen
astabMM N : M \subset R -> N \subset R -> 'C(M * N | to) = 'C(M | to) :&: 'C(N | to). Proof. move=> sMR sNR; rewrite -astabU -astab_gen ?mul_subG // genM_join. by rewrite astab_gen // subUset sMR. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabM
astabs1: 'N(1 | to) = D. Proof. by rewrite astabs_set1 astab1. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabs1
astabs_range: 'N(R | to) = D. Proof. apply/setIidPl; apply/subsetP=> a Da; rewrite inE. by apply/subsetP=> x Rx; rewrite inE gact_stable. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabs_range
astabsD1S : 'N(S^# | to) = 'N(S | to). Proof. case S1: (1 \in S); last first. by rewrite (setDidPl _) // disjoint_sym disjoints_subset sub1set inE S1. apply/eqP; rewrite eqEsubset andbC -{1}astabsIdom -{1}astabs1 setIC astabsD /=. by rewrite -{2}(setD1K S1) -astabsIdom -{1}astabs1 astabsU. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabsD1
gacts_rangeA : A \subset D -> {acts A, on group R | to}. Proof. by move=> sAD; split; rewrite ?astabs_range. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
gacts_range
acts_subnorm_gacentA : A \subset D -> [acts 'N_D(A), on 'C_(| to)(A) | to]. Proof. move=> sAD; rewrite gacentE // actsI ?astabs_range ?subsetIl //. by rewrite -{2}(setIidPr sAD) acts_subnorm_fix. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
acts_subnorm_gacent
acts_subnorm_subgacentA B S : A \subset D -> [acts B, on S | to] -> [acts 'N_B(A), on 'C_(S | to)(A) | to]. Proof. move=> sAD actsB; rewrite actsI //; first by rewrite subIset ?actsB. by rewrite (subset_trans _ (acts_subnorm_gacent sAD)) ?setSI ?(acts_dom actsB). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
acts_subnorm_subgacent
acts_genA S : S \subset R -> [acts A, on S | to] -> [acts A, on <<S>> | to]. Proof. move=> sSR actsA; apply: {A}subset_trans actsA _. apply/subsetP=> a nSa; have Da := astabs_dom nSa; rewrite !inE Da. apply: subset_trans (_ : <<S>> \subset actm to a @*^-1 <<S>>) _. rewrite gen_subG subsetI sSR; apply/subsetP=> x Sx. by rewrite inE /= actmE ?mem_gen // astabs_act. by apply/subsetP=> x /[!inE]; case/andP=> Rx; rewrite /= actmE. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
acts_gen
acts_joingA M N : M \subset R -> N \subset R -> [acts A, on M | to] -> [acts A, on N | to] -> [acts A, on M <*> N | to]. Proof. by move=> sMR sNR nMA nNA; rewrite acts_gen ?actsU // subUset sMR. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
acts_joing
injm_actma : 'injm (actm to a). Proof. apply/injmP=> x y Rx Ry; rewrite /= /actm; case: ifP => Da //. exact: act_inj. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
injm_actm
im_actma : actm to a @* R = R. Proof. apply/eqP; rewrite eqEcard (card_injm (injm_actm a)) // leqnn andbT. apply/subsetP=> _ /morphimP[x Rx _ ->] /=. by rewrite /actm; case: ifP => // Da; rewrite gact_stable. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
im_actm
acts_charG M : G \subset D -> M \char R -> [acts G, on M | to]. Proof. move=> sGD /charP[sMR charM]. apply/subsetP=> a Ga; have Da := subsetP sGD a Ga; rewrite !inE Da. apply/subsetP=> x Mx; have Rx := subsetP sMR x Mx. by rewrite inE -(charM _ (injm_actm a) (im_actm a)) -actmE // mem_morphim. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
acts_char
gacts_charG M : G \subset D -> M \char R -> {acts G, on group M | to}.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
gacts_char
ract_is_groupAction: is_groupAction R (to \ sAD). Proof. by move=> a Aa /=; rewrite ractpermE actperm_Aut ?(subsetP sAD). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
ract_is_groupAction
ract_groupAction:= GroupAction ract_is_groupAction.
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
ract_groupAction
gacent_ractB : 'C_(|ract_groupAction)(B) = 'C_(|to)(A :&: B). Proof. by rewrite /gacent afix_ract setIA (setIidPr sAD). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
gacent_ract
actby_is_groupAction: is_groupAction G <[nGAg]>. Proof. move=> a Aa; rewrite /= inE; apply/andP; split. apply/subsetP=> x; apply: contraR => Gx. by rewrite actpermE /= /actby (negbTE Gx). apply/morphicP=> x y Gx Gy; rewrite !actpermE /= /actby Aa groupM ?Gx ?Gy //=. by case nGAg; move/acts_dom; do 2!move/subsetP=> ?; rewrite gactM; auto. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
actby_is_groupAction
actby_groupAction:= GroupAction actby_is_groupAction.
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
actby_groupAction
gacent_actbyB : 'C_(|actby_groupAction)(B) = 'C_(G | to)(A :&: B). Proof. rewrite /gacent afix_actby !setIA setIid setIUr setICr set0U. by have [nAG sGR] := nGAg; rewrite (setIidPr (acts_dom nAG)) (setIidPl sGR). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
gacent_actby
acts_qact_dom_norm: {acts qact_dom to H, on 'N(H) | to}. Proof. move=> a HDa /= x; rewrite {2}(('N(H) =P to^~ a @^-1: 'N(H)) _) ?inE {x}//. rewrite eqEcard (card_preimset _ (act_inj _ _)) leqnn andbT. apply/subsetP=> x Nx; rewrite inE; move/(astabs_act (H :* x)): HDa. rewrite mem_rcosets mulSGid ?normG // Nx => /rcosetsP[y Ny defHy]. suffices: to x a \in H :* y by apply: subsetP; rewrite mul_subG ?sub1set ?normG. by rewrite -defHy; apply: imset_f; apply: rcoset_refl. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
acts_qact_dom_norm
qact_is_groupAction: is_groupAction (R / H) (to / H). Proof. move=> a HDa /=; have Da := astabs_dom HDa. rewrite inE; apply/andP; split. apply/subsetP=> Hx /=; case: (cosetP Hx) => x Nx ->{Hx}. apply: contraR => R'Hx; rewrite actpermE qactE // gact_out //. by apply: contra R'Hx; apply: mem_morphim. apply/morphicP=> Hx Hy; rewrite !actpermE. case/morphimP=> x Nx Gx ->{Hx}; case/morphimP=> y Ny Gy ->{Hy}. by rewrite -morphM ?qactE ?groupM ?gactM // morphM ?acts_qact_dom_norm. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
qact_is_groupAction
quotient_groupAction:= GroupAction qact_is_groupAction.
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
quotient_groupAction
qact_domE: H \subset R -> qact_dom to H = 'N(H | to). Proof. move=> sHR; apply/setP=> a; apply/idP/idP=> nHa; have Da := astabs_dom nHa. rewrite !inE Da; apply/subsetP=> x Hx; rewrite inE -(rcoset1 H). have /rcosetsP[y Ny defHy]: to^~ a @: H \in rcosets H 'N(H). by rewrite (astabs_act _ nHa); apply/rcosetsP; exists 1; rewrite ?mulg1. by rewrite (rcoset_eqP (_ : 1 \in H :* y)) -defHy -1?(gact1 Da) mem_setact. rewrite !inE Da; apply/subsetP=> Hx /[1!inE] /rcosetsP[x Nx ->{Hx}]. apply/imsetP; exists (to x a). case Rx: (x \in R); last by rewrite gact_out ?Rx. rewrite inE; apply/subsetP=> _ /imsetP[y Hy ->]. rewrite -(actKVin to Da y) -gactJ // ?(subsetP sHR, astabs_act, groupV) //. by rewrite memJ_norm // astabs_act ?groupV. apply/eqP; rewrite rcosetE eqEcard. rewrite (card_imset _ (act_inj _ _)) !card_rcoset leqnn andbT. apply/subsetP=> _ /imsetP[y Hxy ->]; rewrite !mem_rcoset in Hxy *. have Rxy := subsetP sHR _ Hxy; rewrite -(mulgKV x y). case Rx: (x \in R); last by rewrite !gact_out ?mulgK // 1?groupMl ?Rx. by rewrite -gactV // -gactM 1?groupMr ?groupV // mulgK astabs_act. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
qact_domE
modact_is_groupAction: is_groupAction 'C_(|to)(H) (to %% H). Proof. move=> Ha /morphimP[a Na Da ->]; have NDa: a \in 'N_D(H) by apply/setIP. rewrite inE; apply/andP; split. apply/subsetP=> x; rewrite 2!inE andbC actpermE /= modactEcond //. by apply: contraR; case: ifP => // E Rx; rewrite gact_out. apply/morphicP=> x y /setIP[Rx cHx] /setIP[Ry cHy]. rewrite /= !actpermE /= !modactE ?gactM //. suffices: x * y \in 'C_(|to)(H) by case/setIP. by rewrite groupM //; apply/setIP. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
modact_is_groupAction
mod_groupAction:= GroupAction modact_is_groupAction.
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
mod_groupAction
modgactEx a : H \subset 'C(R | to) -> a \in 'N_D(H) -> (to %% H)%act x (coset H a) = to x a. Proof. move=> cRH NDa /=; have [Da Na] := setIP NDa. have [Rx | notRx] := boolP (x \in R). by rewrite modactE //; apply/afixP=> b /setIP[_ /(subsetP cRH)/astab_act->]. rewrite gact_out //= /modact; case: ifP => // _; rewrite gact_out //. suffices: a \in D :&: coset H a by case/mem_repr/setIP. by rewrite inE Da val_coset // rcoset_refl. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
modgactE
gacent_modG M : H \subset 'C(M | to) -> G \subset 'N(H) -> 'C_(M | mod_groupAction)(G / H) = 'C_(M | to)(G). Proof. move=> cMH nHG; rewrite -gacentIdom gacentE ?subsetIl // setICA. have sHD: H \subset D by rewrite (subset_trans cMH) ?subsetIl. rewrite -quotientGI // afix_mod ?setIS // setICA -gacentIim (setIC R) -setIA. rewrite -gacentE ?subsetIl // gacentIdom setICA (setIidPr _) //. by rewrite gacentC // ?(subset_trans cMH) ?astabS ?subsetIl // setICA subsetIl. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
gacent_mod
acts_irr_modG M : H \subset 'C(M | to) -> G \subset 'N(H) -> acts_irreducibly G M to -> acts_irreducibly (G / H) M mod_groupAction. Proof. move=> cMH nHG /mingroupP[/andP[ntM nMG] minM]. apply/mingroupP; rewrite ntM astabs_mod ?quotientS //; split=> // L modL ntL. have cLH: H \subset 'C(L | to) by rewrite (subset_trans cMH) ?astabS //. apply: minM => //; case/andP: modL => ->; rewrite astabs_mod ?quotientSGK //. by rewrite (subset_trans cLH) ?astab_sub. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
acts_irr_mod
modact_coset_astabx a : a \in D -> (to %% 'C(R | to))%act x (coset _ a) = to x a. Proof. move=> Da; apply: modgactE => {x}//. rewrite !inE Da; apply/subsetP=> _ /imsetP[c Cc ->]. have Dc := astab_dom Cc; rewrite !inE groupJ //. apply/subsetP=> x Rx; rewrite inE conjgE !actMin ?groupM ?groupV //. by rewrite (astab_act Cc) ?actKVin // gact_stable ?groupV. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
modact_coset_astab
acts_irr_mod_astabG M : acts_irreducibly G M to -> acts_irreducibly (G / 'C_G(M | to)) M (mod_groupAction _). Proof. move=> irrG; have /andP[_ nMG] := mingroupp irrG. apply: acts_irr_mod irrG; first exact: subsetIr. by rewrite normsI ?normG // (subset_trans nMG) // astab_norm. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
acts_irr_mod_astab
comp_is_groupAction: is_groupAction R (comp_action to f). Proof. move=> a /morphpreP[Ba Dfa]; apply: etrans (actperm_Aut to Dfa). by congr (_ \in Aut R); apply/permP=> x; rewrite !actpermE. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
comp_is_groupAction
comp_groupAction:= GroupAction comp_is_groupAction.
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
comp_groupAction
gacent_compU : 'C_(|comp_groupAction)(U) = 'C_(|to)(f @* U). Proof. rewrite /gacent afix_comp ?subIset ?subxx //. by rewrite -(setIC U) (setIC D) morphim_setIpre. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
gacent_comp
morph_astabs: f @* 'N(S | to1) = 'N(h @: S | to2). Proof. apply/setP=> fx; apply/morphimP/idP=> [[x D1x nSx ->] | nSx]. rewrite 2!inE -{1}defD2 mem_morphim //=; apply/subsetP=> _ /imsetP[u Su ->]. by rewrite inE -hfJ ?imset_f // (astabs_act _ nSx). have [|x D1x _ def_fx] := morphimP (_ : fx \in f @* D1). by rewrite defD2 (astabs_dom nSx). exists x => //; rewrite !inE D1x; apply/subsetP=> u Su. have /imsetP[u' Su' /injh def_u']: h (to1 u x) \in h @: S. by rewrite hfJ // -def_fx (astabs_act _ nSx) imset_f. by rewrite inE def_u' ?actsDR ?(subsetP sSR). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
morph_astabs
morph_astab: f @* 'C(S | to1) = 'C(h @: S | to2). Proof. apply/setP=> fx; apply/morphimP/idP=> [[x D1x cSx ->] | cSx]. rewrite 2!inE -{1}defD2 mem_morphim //=; apply/subsetP=> _ /imsetP[u Su ->]. by rewrite inE -hfJ // (astab_act cSx). have [|x D1x _ def_fx] := morphimP (_ : fx \in f @* D1). by rewrite defD2 (astab_dom cSx). exists x => //; rewrite !inE D1x; apply/subsetP=> u Su. rewrite inE -(inj_in_eq injh) ?actsDR ?(subsetP sSR) ?hfJ //. by rewrite -def_fx (astab_act cSx) ?imset_f. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
morph_astab
morph_afix: h @: 'Fix_(S | to1)(A) = 'Fix_(h @: S | to2)(f @* A). Proof. apply/setP=> hu; apply/imsetP/setIP=> [[u /setIP[Su cAu] ->]|]. split; first by rewrite imset_f. by apply/afixP=> _ /morphimP[x D1x Ax ->]; rewrite -hfJ ?(afixP cAu). case=> /imsetP[u Su ->] /afixP c_hu_fA; exists u; rewrite // inE Su. apply/afixP=> x Ax; have Dx := subsetP sAD1 x Ax. by apply: injh; rewrite ?actsDR ?(subsetP sSR) ?hfJ // c_hu_fA ?mem_morphim. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
morph_afix
morph_gastabsS : S \subset R1 -> f @* 'N(S | to1) = 'N(h @* S | to2). Proof. have [[_ defD2] [injh _]] := (isomP iso_f, isomP iso_h). move=> sSR1; rewrite (morphimEsub _ sSR1). apply: (morph_astabs (gact_stable to1) (injmP injh)) => // u x. by move/(subsetP sSR1); apply: hfJ. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
morph_gastabs
morph_gastabS : S \subset R1 -> f @* 'C(S | to1) = 'C(h @* S | to2). Proof. have [[_ defD2] [injh _]] := (isomP iso_f, isomP iso_h). move=> sSR1; rewrite (morphimEsub _ sSR1). apply: (morph_astab (gact_stable to1) (injmP injh)) => // u x. by move/(subsetP sSR1); apply: hfJ. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
morph_gastab
morph_gacentA : A \subset D1 -> h @* 'C_(|to1)(A) = 'C_(|to2)(f @* A). Proof. have [[_ defD2] [injh defR2]] := (isomP iso_f, isomP iso_h). move=> sAD1; rewrite !gacentE //; last by rewrite -defD2 morphimS. rewrite morphimEsub ?subsetIl // -{1}defR2 morphimEdom. exact: (morph_afix (gact_stable to1) (injmP injh)). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
morph_gacent
morph_gact_irrA M : A \subset D1 -> M \subset R1 -> acts_irreducibly (f @* A) (h @* M) to2 = acts_irreducibly A M to1. Proof. move=> sAD1 sMR1. have [[injf defD2] [injh defR2]] := (isomP iso_f, isomP iso_h). have h_eq1 := morphim_injm_eq1 injh. apply/mingroupP/mingroupP=> [] [/andP[ntM actAM] minM]. split=> [|U]; first by rewrite -h_eq1 // ntM -(injmSK injf) ?morph_gastabs. case/andP=> ntU acts_fAU sUM; have sUR1 := subset_trans sUM sMR1. apply: (injm_morphim_inj injh) => //; apply: minM; last exact: morphimS. by rewrite h_eq1 // ntU -morph_gastabs ?morphimS. split=> [|U]; first by rewrite h_eq1 // ntM -morph_gastabs ?morphimS. case/andP=> ntU acts_fAU sUhM. have sUhR1 := subset_trans sUhM (morphimS h sMR1). have sU'M: h @*^-1 U \subset M by rewrite sub_morphpre_injm. rewrite /= -(minM _ _ sU'M) ?morphpreK // -h_eq1 ?subsetIl // -(injmSK injf) //. by rewrite morph_gastabs ?(subset_trans sU'M) // morphpreK ?ntU. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
morph_gact_irr
mulgr_action:= TotalAction (@mulg1 gT) (@mulgA gT).
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
mulgr_action
conjg_action:= TotalAction (@conjg1 gT) (@conjgM gT).
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
conjg_action
conjg_is_groupAction: is_groupAction setT conjg_action. Proof. move=> a _; rewrite inE; apply/andP; split; first by apply/subsetP=> x /[1!inE]. by apply/morphicP=> x y _ _; rewrite !actpermE /= conjMg. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
conjg_is_groupAction
conjg_groupAction:= GroupAction conjg_is_groupAction.
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
conjg_groupAction
rcoset_is_action: is_action setT (@rcoset gT). Proof. by apply: is_total_action => [A|A x y]; rewrite !rcosetE (mulg1, rcosetM). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
rcoset_is_action
rcoset_action:= Action rcoset_is_action.
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
rcoset_action
conjsg_action:= TotalAction (@conjsg1 gT) (@conjsgM gT).
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
conjsg_action
conjG_is_action: is_action setT (@conjG_group gT). Proof. apply: is_total_action => [G | G x y]; apply: val_inj; rewrite /= ?act1 //. exact: actM. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
conjG_is_action
conjG_action:= Action conjG_is_action.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
conjG_action
orbitRG x : orbit 'R G x = x *: G. Proof. by rewrite -lcosetE. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbitR
astab1Rx : 'C[x | 'R] = 1. Proof. apply/trivgP/subsetP=> y cxy. by rewrite -(mulKg x y) [x * y](astab1P cxy) mulVg set11. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astab1R
astabRG : 'C(G | 'R) = 1. Proof. apply/trivgP/subsetP=> x cGx. by rewrite -(mul1g x) [1 * x](astabP cGx) group1. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabR
astabsRG : 'N(G | 'R) = G. Proof. apply/setP=> x; rewrite !inE -setactVin ?inE //=. by rewrite -groupV -{1 3}(mulg1 G) rcoset_sym -sub1set -mulGS -!rcosetE. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabsR
atransRG : [transitive G, on G | 'R]. Proof. by rewrite /atrans -{1}(mul1g G) -orbitR imset_f. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
atransR
faithfulRG : [faithful G, on G | 'R]. Proof. by rewrite /faithful astabR subsetIr. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
faithfulR
Cayley_reprG := actperm <[atrans_acts (atransR G)]>.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
Cayley_repr
Cayley_isomG : isom G (Cayley_repr G @* G) (Cayley_repr G). Proof. exact: faithful_isom (faithfulR G). Qed.
Theorem
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
Cayley_isom
Cayley_isogG : G \isog Cayley_repr G @* G. Proof. exact: isom_isog (Cayley_isom G). Qed.
Theorem
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
Cayley_isog
orbitJG x : orbit 'J G x = x ^: G. Proof. by []. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbitJ
afixJA : 'Fix_('J)(A) = 'C(A). Proof. apply/setP=> x; apply/afixP/centP=> cAx y Ay /=. by rewrite /commute conjgC cAx. by rewrite conjgE cAx ?mulKg. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
afixJ
astabJA : 'C(A |'J) = 'C(A). Proof. apply/setP=> x; apply/astabP/centP=> cAx y Ay /=. by apply: esym; rewrite conjgC cAx. by rewrite conjgE -cAx ?mulKg. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabJ
astab1Jx : 'C[x |'J] = 'C[x]. Proof. by rewrite astabJ cent_set1. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astab1J
astabsJA : 'N(A | 'J) = 'N(A). Proof. by apply/setP=> x; rewrite -2!groupV !inE -conjg_preim -sub_conjg. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabsJ
setactJA x : 'J^*%act A x = A :^ x. Proof. by []. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
setactJ
gacentJA : 'C_(|'J)(A) = 'C(A). Proof. by rewrite gacentE ?setTI ?subsetT ?afixJ. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
gacentJ
orbitRsG A : orbit 'Rs G A = rcosets A G. Proof. by []. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbitRs
sub_afixRs_normsG x A : (G :* x \in 'Fix_('Rs)(A)) = (A \subset G :^ x). Proof. rewrite inE /=; apply: eq_subset_r => a. rewrite inE rcosetE -(can2_eq (rcosetKV x) (rcosetK x)) -!rcosetM. rewrite eqEcard card_rcoset leqnn andbT mulgA (conjgCV x) mulgK. by rewrite -{2 3}(mulGid G) mulGS sub1set -mem_conjg. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
sub_afixRs_norms
sub_afixRs_normG x : (G :* x \in 'Fix_('Rs)(G)) = (x \in 'N(G)). Proof. by rewrite sub_afixRs_norms -groupV inE sub_conjgV. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
sub_afixRs_norm
afixRs_rcosetsA G : 'Fix_(rcosets G A | 'Rs)(G) = rcosets G 'N_A(G). Proof. apply/setP=> Gx; apply/setIP/rcosetsP=> [[/rcosetsP[x Ax ->]]|[x]]. by rewrite sub_afixRs_norm => Nx; exists x; rewrite // inE Ax. by case/setIP=> Ax Nx ->; rewrite -{1}rcosetE imset_f // sub_afixRs_norm. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
afixRs_rcosets
astab1RsG : 'C[G : {set gT} | 'Rs] = G. Proof. apply/setP=> x. by apply/astab1P/idP=> /= [<- | Gx]; rewrite rcosetE ?rcoset_refl ?rcoset_id. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astab1Rs
actsRs_rcosetsH G : [acts G, on rcosets H G | 'Rs]. Proof. by rewrite -orbitRs acts_orbit ?subsetT. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
actsRs_rcosets
transRs_rcosetsH G : [transitive G, on rcosets H G | 'Rs]. Proof. by rewrite -orbitRs atrans_orbit. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
transRs_rcosets
astabRs_rcosetsH G : 'C(rcosets H G | 'Rs) = gcore H G. Proof. have transGH := transRs_rcosets H G. by rewrite (astab_trans_gcore transGH (orbit_refl _ G _)) astab1Rs. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabRs_rcosets
orbitJsG A : orbit 'Js G A = A :^: G. Proof. by []. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbitJs
astab1JsA : 'C[A | 'Js] = 'N(A). Proof. by apply/setP=> x; apply/astab1P/normP. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astab1Js
card_conjugatesA G : #|A :^: G| = #|G : 'N_G(A)|. Proof. by rewrite card_orbit astab1Js. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
card_conjugates
afixJGG A : (G \in 'Fix_('JG)(A)) = (A \subset 'N(G)). Proof. by apply/afixP/normsP=> nG x Ax; apply/eqP; move/eqP: (nG x Ax). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
afixJG
astab1JGG : 'C[G | 'JG] = 'N(G). Proof. by apply/setP=> x; apply/astab1P/normP=> [/congr_group | /group_inj]. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astab1JG
dom_qactJH : qact_dom 'J H = 'N(H). Proof. by rewrite qact_domE ?subsetT ?astabsJ. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
dom_qactJ
qactJH (Hy : coset_of H) x : 'Q%act Hy x = if x \in 'N(H) then Hy ^ coset H x else Hy. Proof. case: (cosetP Hy) => y Ny ->{Hy}. by rewrite qactEcond // dom_qactJ; case Nx: (x \in 'N(H)); rewrite ?morphJ. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
qactJ
actsQA B H : A \subset 'N(H) -> A \subset 'N(B) -> [acts A, on B / H | 'Q]. Proof. by move=> nHA nBA; rewrite acts_quotient // subsetI dom_qactJ nHA astabsJ. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
actsQ
astabsQG H : H <| G -> 'N(G / H | 'Q) = 'N(H) :&: 'N(G). Proof. by move=> nsHG; rewrite astabs_quotient // dom_qactJ astabsJ. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabsQ
astabQH Abar : 'C(Abar |'Q) = coset H @*^-1 'C(Abar). Proof. apply/setP=> x; rewrite inE /= dom_qactJ morphpreE in_setI /=. apply: andb_id2l => Nx; rewrite !inE -sub1set centsC cent_set1. apply: eq_subset_r => {Abar} Hy; rewrite inE qactJ Nx (sameP eqP conjg_fixP). by rewrite (sameP cent1P eqP) (sameP commgP eqP). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabQ