fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
sub_astabQA H Bbar : (A \subset 'C(Bbar | 'Q)) = (A \subset 'N(H)) && (A / H \subset 'C(Bbar)). Proof. rewrite astabQ -morphpreIdom subsetI; apply: andb_id2l => nHA. by rewrite -sub_quotient_pre. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
sub_astabQ
sub_astabQRA B H : A \subset 'N(H) -> B \subset 'N(H) -> (A \subset 'C(B / H | 'Q)) = ([~: A, B] \subset H). Proof. move=> nHA nHB; rewrite sub_astabQ nHA /= (sameP commG1P eqP). by rewrite eqEsubset sub1G andbT -quotientR // quotient_sub1 // comm_subG. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
sub_astabQR
astabQRA H : A \subset 'N(H) -> 'C(A / H | 'Q) = [set x in 'N(H) | [~: [set x], A] \subset H]. Proof. move=> nHA; apply/setP=> x; rewrite astabQ -morphpreIdom 2!inE -astabQ. by case nHx: (x \in _); rewrite //= -sub1set sub_astabQR ?sub1set. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabQR
quotient_astabQH Abar : 'C(Abar | 'Q) / H = 'C(Abar). Proof. by rewrite astabQ cosetpreK. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
quotient_astabQ
conj_astabQA H x : x \in 'N(H) -> 'C(A / H | 'Q) :^ x = 'C(A :^ x / H | 'Q). Proof. move=> nHx; apply/setP=> y; rewrite !astabQ mem_conjg !in_setI -mem_conjg. rewrite -normJ (normP nHx) quotientJ //; apply/andb_id2l => nHy. by rewrite !inE centJ morphJ ?groupV ?morphV // -mem_conjg. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
conj_astabQ
index_cent1x : #|G : 'C_G[x]| = #|x ^: G|. Proof. by rewrite -astab1J -card_orbit. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
index_cent1
classes_partition: partition (classes G) G. Proof. by apply: orbit_partition; apply/actsP=> x Gx y; apply: groupJr. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
classes_partition
sum_card_class: \sum_(C in classes G) #|C| = #|G|. Proof. by apply: acts_sum_card_orbit; apply/actsP=> x Gx y; apply: groupJr. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
sum_card_class
class_formula: \sum_(C in classes G) #|G : 'C_G[repr C]| = #|G|. Proof. rewrite -sum_card_class; apply: eq_bigr => _ /imsetP[x Gx ->]. have: x \in x ^: G by rewrite -{1}(conjg1 x) imset_f. by case/mem_repr/imsetP=> y Gy ->; rewrite index_cent1 classGidl. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
class_formula
abelian_classP: reflect {in G, forall x, x ^: G = [set x]} (abelian G). Proof. rewrite /abelian -astabJ astabC. by apply: (iffP subsetP) => cGG x Gx; apply/orbit1P; apply: cGG. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
abelian_classP
card_classes_abelian: abelian G = (#|classes G| == #|G|). Proof. have cGgt0 C: C \in classes G -> 1 <= #|C| ?= iff (#|C| == 1)%N. by case/imsetP=> x _ ->; rewrite eq_sym -index_cent1. rewrite -sum_card_class -sum1_card (leqif_sum cGgt0). apply/abelian_classP/forall_inP=> [cGG _ /imsetP[x Gx ->]| cGG x Gx]. by rewrite cGG ?cards1. apply/esym/eqP; rewrite eqEcard sub1set cards1 class_refl leq_eqVlt cGG //. exact: imset_f. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
card_classes_abelian
gacentQ(gT : finGroupType) (H : {group gT}) (A : {set gT}) : 'C_(|'Q)(A) = 'C(A / H). Proof. apply/setP=> Hx; case: (cosetP Hx) => x Nx ->{Hx}. rewrite -sub_cent1 -astab1J astabC sub1set -(quotientInorm H A). have defD: qact_dom 'J H = 'N(H) by rewrite qact_domE ?subsetT ?astabsJ. rewrite !(inE, mem_quotient) //= defD setIC. apply/subsetP/subsetP=> [cAx _ /morphimP[a Na Aa ->] | cAx a Aa]. by move/cAx: Aa; rewrite !inE qactE ?defD ?morphJ. have [_ Na] := setIP Aa; move/implyP: (cAx (coset H a)); rewrite mem_morphim //. by rewrite !inE qactE ?defD ?morphJ. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
gacentQ
autact:= act ('P \ subsetT (Aut G)).
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
autact
aut_action:= [action of autact].
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
aut_action
autactKa : actperm aut_action a = a. Proof. by apply/permP=> x; rewrite permE. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
autactK
autact_is_groupAction: is_groupAction G aut_action. Proof. by move=> a Aa /=; rewrite autactK. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
autact_is_groupAction
aut_groupAction:= GroupAction autact_is_groupAction.
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
aut_groupAction
perm_prime_atrans: [transitive <[c]>, on setT | 'P]. Proof. apply/imsetP; suff /existsP[x] : [exists x, ~~ (#|orbit 'P <[c]> x| < #[c])]. move=> oxT; suff /eqP orbit_x : orbit 'P <[c]> x == setT by exists x. by rewrite eqEcard subsetT cardsT -cc leqNgt. apply/forallP => olT; have o1 x : #|orbit 'P <[c]> x| == 1%N. by case/primeP: cp => _ /(_ _ (dvdn_orbit 'P _ x))/orP[]//; rewrite ltn_eqF. suff c1 : c = 1%g by rewrite c1 ?order1 in (cp). apply/permP => x; rewrite perm1; apply/set1P. by rewrite -(card_orbit1 (eqP (o1 _))) (mem_orbit 'P) ?cycle_id. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
perm_prime_atrans
perm_prime_orbitx : orbit 'P <[c]> x = [set: T]. Proof. by apply: atransP => //; apply: perm_prime_atrans. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
perm_prime_orbit
perm_prime_astabx : 'C_<[c]>[x | 'P]%g = 1%g. Proof. by apply/card1_trivg/eqP; rewrite -(@eqn_pmul2l #|orbit 'P <[c]> x|) ?card_orbit_stab ?perm_prime_orbit ?cardsT ?muln1 ?prime_gt0// -cc. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
perm_prime_astab
AutA := [set a | perm_on A a & morphic A a].
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
Aut
Aut_morphicA a : a \in Aut A -> morphic A a. Proof. by case/setIdP. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
Aut_morphic
out_AutA a x : a \in Aut A -> x \notin A -> a x = x. Proof. by case/setIdP=> Aa _; apply: out_perm. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
out_Aut
eq_AutA : {in Aut A &, forall a b, {in A, a =1 b} -> a = b}. Proof. move=> a g Aa Ag /= eqag; apply/permP=> x. by have [/eqag // | /out_Aut out] := boolP (x \in A); rewrite !out. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
eq_Aut
autmA a (AutAa : a \in Aut A) := morphm (Aut_morphic AutAa).
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
autm
autmEA a (AutAa : a \in Aut A) : autm AutAa = a. Proof. by []. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
autmE
autm_morphismA a aM := Eval hnf in [morphism of @autm A a aM].
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
autm_morphism
Aut_group_set: group_set (Aut G). Proof. apply/group_setP; split=> [|a b]. by rewrite inE perm_on1; apply/morphicP=> ? *; rewrite !permE. rewrite !inE => /andP[Ga aM] /andP[Gb bM]; rewrite perm_onM //=. apply/morphicP=> x y Gx Gy; rewrite !permM (morphicP aM) //. by rewrite (morphicP bM) ?perm_closed. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
Aut_group_set
Aut_group:= group Aut_group_set. Variable (a : {perm gT}) (AutGa : a \in Aut G).
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
Aut_group
f:= (autm AutGa).
Notation
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
f
fE:= (autmE AutGa).
Notation
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
fE
injm_autm: 'injm f. Proof. by apply/injmP; apply: in2W; apply: perm_inj. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
injm_autm
ker_autm: 'ker f = 1. Proof. by move/trivgP: injm_autm. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
ker_autm
im_autm: f @* G = G. Proof. apply/setP=> x; rewrite morphimEdom (can_imset_pre _ (permK a)) inE. by have /[1!inE] /andP[/perm_closed <-] := AutGa; rewrite permKV. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
im_autm
Aut_closedx : x \in G -> a x \in G. Proof. by move=> Gx; rewrite -im_autm; apply: mem_morphim. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
Aut_closed
Aut1: Aut 1 = 1. Proof. apply/trivgP/subsetP=> a /= AutGa; apply/set1P. apply: eq_Aut (AutGa) (group1 _) _ => _ /set1P->. by rewrite -(autmE AutGa) morph1 perm1. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
Aut1
perm_in_inj: injective (fun x => if x \in A then f x else x). Proof. move=> x y /=; wlog Ay: x y / y \in A. by move=> IH eqfxy; case: ifP (eqfxy); [symmetry | case: ifP => //]; auto. rewrite Ay; case: ifP => [Ax | nAx def_x]; first exact: injf. by case/negP: nAx; rewrite def_x (subsetP sBf) ?imset_f. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
perm_in_inj
perm_in:= perm perm_in_inj.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
perm_in
perm_in_on: perm_on A perm_in. Proof. by apply/subsetP=> x; rewrite inE /= permE; case: ifP => // _; case/eqP. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
perm_in_on
perm_inE: {in A, perm_in =1 f}. Proof. by move=> x Ax; rewrite /= permE Ax. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
perm_inE
morphim_fixPA : A \subset G -> reflect (f @* A = A) (f @* A \subset A). Proof. rewrite /morphim => sAG; have:= eqEcard (f @: A) A. rewrite (setIidPr sAG) card_in_imset ?leqnn ?andbT => [<-|]; first exact: eqP. by move/injmP: injf; apply: sub_in2; apply/subsetP. Qed. Hypothesis Gf : f @* G = G.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
morphim_fixP
aut_closed: f @: G \subset G. Proof. by rewrite -morphimEdom; apply/morphim_fixP. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
aut_closed
aut:= perm_in (injmP injf) aut_closed.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
aut
autE: {in G, aut =1 f}. Proof. exact: perm_inE. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
autE
morphic_aut: morphic G aut. Proof. by apply/morphicP=> x y Gx Gy /=; rewrite !autE ?groupM // morphM. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
morphic_aut
Aut_aut: aut \in Aut G. Proof. by rewrite inE morphic_aut perm_in_on. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
Aut_aut
imset_autEA : A \subset G -> aut @: A = f @* A. Proof. move=> sAG; rewrite /morphim (setIidPr sAG). by apply: eq_in_imset; apply: sub_in1 autE; apply/subsetP. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
imset_autE
preim_autEA : A \subset G -> aut @^-1: A = f @*^-1 A. Proof. move=> sAG; apply/setP=> x; rewrite !inE permE /=. by case Gx: (x \in G) => //; apply/negP=> Ax; rewrite (subsetP sAG) in Gx. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
preim_autE
Aut_isom_subproofa : {a' | a' \in Aut (f @* G) & a \in Aut G -> {in G, a' \o f =1 f \o a}}. Proof. set Aut_a := autm (subgP (subg [Aut G] a)). have aDom: 'dom (f \o Aut_a \o invm injf) = f @* G. rewrite /dom /= morphpre_invm -morphpreIim; congr (f @* _). by rewrite [_ :&: D](setIidPl _) ?injmK ?injm_autm ?im_autm. have [af [def_af ker_af _ im_af]] := domP _ aDom. have inj_a': 'injm af by rewrite ker_af !injm_comp ?injm_autm ?injm_invm. have im_a': af @* (f @* G) = f @* G. by rewrite im_af !morphim_comp morphim_invm // im_autm. pose a' := aut inj_a' im_a'; exists a' => [|AutGa x Gx]; first exact: Aut_aut. have Dx := domG Gx; rewrite /= [a' _]autE ?mem_morphim //. by rewrite def_af /= invmE // autmE subgK. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
Aut_isom_subproof
Aut_isoma := s2val (Aut_isom_subproof a).
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
Aut_isom
Aut_Aut_isoma : Aut_isom a \in Aut (f @* G). Proof. by rewrite /Aut_isom; case: (Aut_isom_subproof a). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
Aut_Aut_isom
Aut_isomEa : a \in Aut G -> {in G, forall x, Aut_isom a (f x) = f (a x)}. Proof. by rewrite /Aut_isom; case: (Aut_isom_subproof a). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
Aut_isomE
Aut_isomM: {in Aut G &, {morph Aut_isom: x y / x * y}}. Proof. move=> a b AutGa AutGb. apply: (eq_Aut (Aut_Aut_isom _)); rewrite ?groupM ?Aut_Aut_isom // => fx. case/morphimP=> x Dx Gx ->{fx}. by rewrite permM !Aut_isomE ?groupM /= ?permM ?Aut_closed. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
Aut_isomM
Aut_isom_morphism:= Morphism Aut_isomM.
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
Aut_isom_morphism
injm_Aut_isom: 'injm Aut_isom. Proof. apply/injmP=> a b AutGa AutGb eq_ab'; apply: (eq_Aut AutGa AutGb) => x Gx. by apply: (injmP injf); rewrite ?domG ?Aut_closed // -!Aut_isomE //= eq_ab'. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
injm_Aut_isom
im_Aut_isom: Aut_isom injf sGD @* Aut G = Aut (f @* G). Proof. apply/eqP; rewrite eqEcard; apply/andP; split. by apply/subsetP=> _ /morphimP[a _ AutGa ->]; apply: Aut_Aut_isom. have inj_isom' := injm_Aut_isom (injm_invm injf) (morphimS _ sGD). rewrite card_injm ?injm_Aut_isom // -(card_injm inj_isom') ?subset_leq_card //. apply/subsetP=> a /morphimP[a' _ AutfGa' def_a]. by rewrite -(morphim_invm injf sGD) def_a Aut_Aut_isom. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
im_Aut_isom
Aut_isomP: isom (Aut G) (Aut (f @* G)) (Aut_isom injf sGD). Proof. by apply/isomP; split; [apply: injm_Aut_isom | apply: im_Aut_isom]. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
Aut_isomP
injm_Aut: Aut (f @* G) \isog Aut G. Proof. by rewrite isog_sym (isom_isog _ _ Aut_isomP). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
injm_Aut
conjgmof {set gT} := fun x y : gT => y ^ x.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
conjgm
conjgmEA x y : conjgm A x y = y ^ x. Proof. by []. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
conjgmE
conjgm_morphismA x := @Morphism _ _ A (conjgm A x) (in2W (fun y z => conjMg y z x)).
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
conjgm_morphism
morphim_conjA x B : conjgm A x @* B = (A :&: B) :^ x. Proof. by []. Qed. Variable G : {group gT}.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
morphim_conj
injm_conjx : 'injm (conjgm G x). Proof. by apply/injmP; apply: in2W; apply: conjg_inj. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
injm_conj
conj_isomx : isom G (G :^ x) (conjgm G x). Proof. by apply/isomP; rewrite morphim_conj setIid injm_conj. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
conj_isom
conj_isogx : G \isog G :^ x. Proof. exact: isom_isog (conj_isom x). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
conj_isog
norm_conjg_imx : x \in 'N(G) -> conjgm G x @* G = G. Proof. by rewrite morphimEdom; apply: normP. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
norm_conjg_im
norm_conj_isomx : x \in 'N(G) -> isom G G (conjgm G x). Proof. by move/norm_conjg_im/restr_isom_to/(_ (conj_isom x))->. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
norm_conj_isom
conj_autx := aut (injm_conj _) (norm_conjg_im (subgP (subg _ x))).
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
conj_aut
norm_conj_autE: {in 'N(G) & G, forall x y, conj_aut x y = y ^ x}. Proof. by move=> x y nGx Gy; rewrite /= autE //= subgK. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
norm_conj_autE
conj_autE: {in G &, forall x y, conj_aut x y = y ^ x}. Proof. by apply: sub_in11 norm_conj_autE => //; apply: subsetP (normG G). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
conj_autE
conj_aut_morphM: {in 'N(G) &, {morph conj_aut : x y / x * y}}. Proof. move=> x y nGx nGy; apply/permP=> z /=; rewrite permM. case Gz: (z \in G); last by rewrite !permE /= !Gz. by rewrite !norm_conj_autE // (conjgM, memJ_norm, groupM). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
conj_aut_morphM
conj_aut_morphism:= Morphism conj_aut_morphM.
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
conj_aut_morphism
ker_conj_aut: 'ker conj_aut = 'C(G). Proof. apply/setP=> x /[1!inE]; case nGx: (x \in 'N(G)); last first. by symmetry; apply/idP=> cGx; rewrite (subsetP (cent_sub G)) in nGx. rewrite 2!inE /=; apply/eqP/centP=> [cx1 y Gy | cGx]. by rewrite /commute (conjgC y) -norm_conj_autE // cx1 perm1. apply/permP=> y; case Gy: (y \in G); last by rewrite !permE Gy. by rewrite perm1 norm_conj_autE // conjgE -cGx ?mulKg. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
ker_conj_aut
Aut_conj_autA : conj_aut @* A \subset Aut G. Proof. by apply/subsetP=> _ /imsetP[x _ ->]; apply: Aut_aut. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
Aut_conj_aut
characteristicA B := (A \subset B) && [forall f in Aut B, f @: A \subset A]. Infix "\char" := characteristic.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
characteristic
charPH G : let fixH (f : {morphism G >-> gT}) := 'injm f -> f @* G = G -> f @* H = H in reflect [/\ H \subset G & forall f, fixH f] (H \char G). Proof. do [apply: (iffP andP) => -[sHG chHG]; split] => // [f injf Gf|]. by apply/morphim_fixP; rewrite // -imset_autE ?(forall_inP chHG) ?Aut_aut. apply/forall_inP=> f Af; rewrite -(autmE Af) -morphimEsub //. by rewrite chHG ?injm_autm ?im_autm. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
charP
char1G : 1 \char G. Proof. by apply/charP; split=> [|f _ _]; rewrite (sub1G, morphim1). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
char1
char_reflG : G \char G. Proof. exact/charP. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
char_refl
char_transH G K : K \char H -> H \char G -> K \char G. Proof. case/charP=> sKH chKH; case/charP=> sHG chHG. apply/charP; split=> [|f injf Gf]; first exact: subset_trans sHG. rewrite -{1}(setIidPr sKH) -(morphim_restrm sHG) chKH //. by rewrite ker_restrm; move/trivgP: injf => ->; apply: subsetIr. by rewrite morphim_restrm setIid chHG. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
char_trans
char_normsH G : H \char G -> 'N(G) \subset 'N(H). Proof. case/charP=> sHG chHG; apply/normsP=> x /normP-Nx. have:= chHG [morphism of conjgm G x] => /=. by rewrite !morphimEsub //=; apply; rewrite // injm_conj. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
char_norms
char_subA B : A \char B -> A \subset B. Proof. by case/andP. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
char_sub
char_norm_transH G A : H \char G -> A \subset 'N(G) -> A \subset 'N(H). Proof. by move/char_norms=> nHnG nGA; apply: subset_trans nHnG. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
char_norm_trans
char_normal_transH G K : K \char H -> H <| G -> K <| G. Proof. move=> chKH /andP[sHG nHG]. by rewrite /normal (subset_trans (char_sub chKH)) // (char_norm_trans chKH). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
char_normal_trans
char_normalH G : H \char G -> H <| G. Proof. by move/char_normal_trans; apply; apply/andP; rewrite normG. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
char_normal
char_normH G : H \char G -> G \subset 'N(H). Proof. by case/char_normal/andP. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
char_norm
charIG H K : H \char G -> K \char G -> H :&: K \char G. Proof. case/charP=> sHG chHG; case/charP=> _ chKG. apply/charP; split=> [|f injf Gf]; first by rewrite subIset // sHG. by rewrite morphimGI ?(chHG, chKG) //; apply: subset_trans (sub1G H). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
charI
charYG H K : H \char G -> K \char G -> H <*> K \char G. Proof. case/charP=> sHG chHG; case/charP=> sKG chKG. apply/charP; split=> [|f injf Gf]; first by rewrite gen_subG subUset sHG. by rewrite morphim_gen ?(morphimU, subUset, sHG, chHG, chKG). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
charY
charMG H K : H \char G -> K \char G -> H * K \char G. Proof. move=> chHG chKG; rewrite -norm_joinEl ?charY //. exact: subset_trans (char_sub chHG) (char_norm chKG). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
charM
lone_subgroup_charG H : H \subset G -> (forall K, K \subset G -> K \isog H -> K \subset H) -> H \char G. Proof. move=> sHG Huniq; apply/charP; split=> // f injf Gf; apply/eqP. have{} injf: {in H &, injective f}. by move/injmP: injf; apply: sub_in2; apply/subsetP. have fH: f @* H = f @: H by rewrite /morphim (setIidPr sHG). rewrite eqEcard {2}fH card_in_imset ?{}Huniq //=. by rewrite -{3}Gf morphimS. rewrite isog_sym; apply/isogP. exists [morphism of restrm sHG f] => //=; first exact/injmP. by rewrite morphimEdom fH. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
lone_subgroup_char
injm_char(G H : {group aT}) : G \subset D -> H \char G -> f @* H \char f @* G. Proof. move=> sGD /charP[sHG charH]. apply/charP; split=> [|g injg gfG]; first exact: morphimS. have /domP[h [_ ker_h _ im_h]]: 'dom (invm injf \o g \o f) = G. by rewrite /dom /= -(morphpreIim g) (setIidPl _) ?injmK // gfG morphimS. have hH: h @* H = H. apply: charH; first by rewrite ker_h !injm_comp ?injm_invm. by rewrite im_h !morphim_comp gfG morphim_invm. rewrite /= -{2}hH im_h !morphim_comp morphim_invmE morphpreK //. by rewrite (subset_trans _ (morphimS f sGD)) //= -{3}gfG !morphimS. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
injm_char
char_injm(G H : {group aT}) : G \subset D -> H \subset D -> (f @* H \char f @* G) = (H \char G). Proof. move=> sGD sHD; apply/idP/idP; last exact: injm_char. by move/(injm_char (injm_invm injf)); rewrite !morphim_invm ?morphimS // => ->. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import finset fingroup perm morphism" ]
fingroup/automorphism.v
char_injm
BuildG := (isStarMonoid.Build G) (only parsing).
Notation
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
Build
isMulBaseGroupG := (isStarMonoid G) (only parsing).
Notation
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
isMulBaseGroup
BuildG := (StarMonoid_isGroup.Build G) (only parsing).
Notation
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
Build
BaseFinGroup_isGroupG := (StarMonoid_isGroup G) (only parsing). #[arg_sort, short(type="finStarMonoidType")] HB.structure Definition FinStarMonoid := { G of StarMonoid G & Finite G }. #[deprecated(since="mathcomp 2.5.0", note="Use Algebra.finStarMonoidType instead.")]
Notation
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
BaseFinGroup_isGroup
baseFinGroupType:= finStarMonoidType (only parsing).
Notation
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
baseFinGroupType
sort:= (FinStarMonoid.sort) (only parsing). #[deprecated(since="mathcomp 2.5.0", note="Use Algebra.FinStarMonoid.arg_sort instead.")]
Notation
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
sort
arg_sort:= (FinStarMonoid.arg_sort) (only parsing). #[deprecated(since="mathcomp 2.5.0", note="Use Algebra.FinStarMonoid.on instead.")]
Notation
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
arg_sort
onM := (FinStarMonoid.on M) (only parsing). #[deprecated(since="mathcomp 2.5.0", note="Use Algebra.FinStarMonoid.copy instead.")]
Notation
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
on
copyM N := (FinStarMonoid.copy M N) (only parsing). #[deprecated(since="mathcomp 2.5.0", note="Use Algebra.FinStarMonoid.clone instead.")]
Notation
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype div path tuple bigop prime finset", "From mathcomp Require Export monoid" ]
fingroup/fingroup.v
copy