File size: 2,390 Bytes
3cafb82 00db898 3cafb82 00db898 3cafb82 00db898 |
1 2 3 4 5 6 7 8 9 |
text,summary,topic,document_type
Hello I am a passage,small summary,Maths,Scientific Paper
"In statistics, linear regression is a linear approach for modelling a predictive relationship between a scalar response and one or more explanatory variables (also known as dependent and independent variables), which are measured without error. The case of one explanatory variable is called simple linear regression; for more than one, the process is called multiple linear regression.[1] This term is distinct from multivariate linear regression, where multiple correlated dependent variables are predicted, rather than a single scalar variable.[2] If the explanatory variables are measured with error then errors-in-variables models are required, also known as measurement error models.
In linear regression, the relationships are modeled using linear predictor functions whose unknown model parameters are estimated from the data. Such models are called linear models.[3] Most commonly, the conditional mean of the response given the values of the explanatory variables (or predictors) is assumed to be an affine function of those values; less commonly, the conditional median or some other quantile is used. Like all forms of regression analysis, linear regression focuses on the conditional probability distribution of the response given the values of the predictors, rather than on the joint probability distribution of all of these variables, which is the domain of multivariate analysis.",small (very),Maths,News Article
"In statistics and machine learning, lasso (least absolute shrinkage and selection operator; also Lasso or LASSO) is a regression analysis method that performs both variable selection and regularization in order to enhance the prediction accuracy and interpretability of the resulting statistical model. It was originally introduced in geophysics, and later by Robert Tibshirani, who coined the term.
Lasso was originally formulated for linear regression models. This simple case reveals a substantial amount about the estimator. These include its relationship to ridge regression and best subset selection and the connections between lasso coefficient estimates and so-called soft thresholding. It also reveals that (like standard linear regression) the coefficient estimates do not need to be unique if covariates are collinear.",very difficult,Maths,News Article
|