Datasets:
pain
/

Languages:
Arabic
ArXiv:
License:
File size: 1,929 Bytes
4e6d7df
 
d98a838
 
 
 
 
 
 
4e6d7df
d98a838
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
license: cc-by-sa-4.0
task_categories:
- image-segmentation
language:
- ar
pretty_name: RGB Arabic Alphabets Sign Language Dataset
size_categories:
- 1K<n<10K
---
# Dataset Card for Dataset Name

## Dataset Description

- **Repository:** https://www.kaggle.com/datasets/muhammadalbrham/rgb-arabic-alphabets-sign-language-dataset
- **Paper:** https://arxiv.org/abs/2301.11932
- **Point of Contact:** muhammadal-brham@ieee.org

### Dataset Summary

RGB Arabic Alphabet Sign Language (AASL) dataset comprises 7,857 raw and fully labelled RGB images of the Arabic sign language alphabets, which to our best knowledge is the first publicly available RGB dataset. The dataset is aimed to help those interested in developing real-life Arabic sign language classification models. AASL was collected from more than 200 participants and with different settings such as lighting, background, image orientation, image size, and image resolution. Experts in the field supervised, validated and filtered the collected images to ensure a high-quality dataset.

### Supported Tasks and Leaderboards

- Image Classification

### Languages

- Arabic

## Dataset Structure

### Data Splits

- All images for now


### Licensing Information

https://creativecommons.org/licenses/by-sa/4.0/

### Citation Information
```
@misc{https://doi.org/10.48550/arxiv.2301.11932,
  doi = {10.48550/ARXIV.2301.11932},
  
  url = {https://arxiv.org/abs/2301.11932},
  
  author = {Al-Barham, Muhammad and Alsharkawi, Adham and Al-Yaman, Musa and Al-Fetyani, Mohammad and Elnagar, Ashraf and SaAleek, Ahmad Abu and Al-Odat, Mohammad},
  
  keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
  
  title = {RGB Arabic Alphabets Sign Language Dataset},
  
  publisher = {arXiv},
  
  year = {2023},
  
  copyright = {Creative Commons Attribution 4.0 International}
}
```