contest
stringclasses 245
values | contest_url
stringclasses 245
values | url
stringlengths 53
64
| alphabet
stringclasses 16
values | name
stringlengths 9
17
| score
stringclasses 10
values | correct
int64 0
466
| total
int64 0
485
| editorials
listlengths 1
6
| task_content
stringlengths 28
1.49k
|
---|---|---|---|---|---|---|---|---|---|
OMC045 (for beginners) | https://onlinemathcontest.com/contests/omc045 | https://onlinemathcontest.com/contests/omc045/tasks/239 | A | OMC045(A) | 100 | 186 | 252 | [
{
"content": "ãäºã€ã®è§£ã $pi$ ããã³ $qi$ ãšããã°, $p,q$ 㯠$x$ ã®äºæ¬¡æ¹çšåŒ\r\n$$(x-4)^2=16-n$$\r\nã® $2$ 解ã§ãã. ãããã£ãŠ, ãããçžç°ãªãäºã€ã®å®æ°è§£ããã€ããšãå¿
èŠååæ¡ä»¶ã§, ãã㯠$n\\lt 16$ ãšåå€ã§ãã. 以äžãã, æ±ããç·å㯠$1+2+\\cdots+15=\\textbf{120}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc045/editorial/239"
}
] | ã$n$ ãæ£ã®æŽæ°ïŒ$i$ ãèæ°åäœãšããŸãïŒ$z$ ã«ã€ããŠã®äºæ¬¡æ¹çšåŒ
$$z^2-8iz=n$$
ã $2$ ã€ã®çžç°ãªãçŽèæ°ã®è§£ãæã€ãšãïŒ$n$ ãšããŠããããå€ã®ç·åãæ±ããŠãã ããïŒãã ãïŒããã§ã¯**çŽèæ°**ãšã¯ïŒ$0$ ã§ãªãå®æ° $a$ ã«ãã£ãŠ $ai$ ãšè¡šãããæ°ããããã®ãšããŸãïŒ |
OMC045 (for beginners) | https://onlinemathcontest.com/contests/omc045 | https://onlinemathcontest.com/contests/omc045/tasks/1371 | B | OMC045(B) | 200 | 192 | 211 | [
{
"content": "ã $\\ell$ ãåºå®ããŠ, $f$ ãäžããå
æºã®äœçœ®ã $A_M$, $g$ ãäžããå
æºã®äœçœ®ã $A_m$, æ£ã®äžç«¯ã $B$, $R$ ããéçŽæ¹åã«é«ã $30$ ã¡ãŒãã«ã®ç¹ïŒå£ã®äžç«¯ïŒã $C$, ç¹ $A_m$ ã«å
æºã眮ãããšãã« $W$ ã«æ ãç¹ $B$ ã®åœ±ã®äœçœ®ã $K$ ãšãã. ç¹ $A_M$ ã«å
æºã眮ãããšãã« $W$ ã«æ ãç¹ $B$ ã®åœ±ã®äœçœ®ã¯ $R$ ã§ãããã, æ£ã®é·ãã«ãããäžè§åœ¢ $A_MA_mB$ ãš $RKB$ ã¯çžäŒŒã§ãã, ãããã以äžã®ããã«è©äŸ¡ã§ãã. éã«æããã«çå·ã¯å®çŸå¯èœã§, ãããæ±ããæ倧å€ã§ãã.\r\n$$f(\\ell)-g(\\ell)=A_MA_m=\\dfrac{PQ}{QR}\\times RK=\\dfrac{2}{3}RK=\\dfrac{2}{3}RK\\leq\\dfrac{2}{3}RC=\\textbf{20}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc045/editorial/1371"
}
] | ãæ°Žå¹³ãªå°é¢äžã« $3$ ç¹ $P,Q,R$ ãåäžçŽç·äžã«ãã®é ã«äžŠãã§ãã, $PQ,QR$ éã®è·é¢ã¯ãããã $16$ ã¡ãŒãã«, $24$ ã¡ãŒãã«ã§ã. ãŸã, ç¹ $R$ ãéãçŽç· $PQ$ ã«åçŽãª, é«ã $30$ ã¡ãŒãã«ã»é·ãç¡éã®å£ $W$ ãç«ã£ãŠããŸã.\
ãããŸ, ç¹ $P$ ããéçŽæ¹åã«é«ã $x$ ã¡ãŒãã« ($x\geq0$) ã®å°ç¹ã«ç¹å
æºã眮ã, ç¹ $Q$ ã«éçŽãªé·ã $\ell$ ã¡ãŒãã« ($\ell\gt 0$) ã®æ£ãç«ãŠãŸã. ãã®æ£ã®äžç«¯éšåã®ç¹å
æºã«ãã圱ã, $W$ ã«æ ããã㪠$x$ ã®æ倧å€ã $f(\ell)$, æå°å€ã $g(\ell)$ ãšãããšã, $f(\ell)-g(\ell)$ ã®ãšãåŸãæ倧å€ãæ±ããŠãã ãã. |
OMC045 (for beginners) | https://onlinemathcontest.com/contests/omc045 | https://onlinemathcontest.com/contests/omc045/tasks/241 | C | OMC045(C) | 200 | 153 | 212 | [
{
"content": "ãæ±ããç·åã $S$ ãšããã°, 以äžã®çåŒãæç«ããããšã容æã«ããã.\r\n$$\\left(\\sum_{n=1}^{10}n\\right)^3=6S+3\\left(\\sum_{n=1}^{10}n\\right)\\left(\\sum_{n=1}^{10}n^2\\right)-2\\sum_{n=1}^{10}n^3$$\r\nãããã, $S=\\textbf{18150}$ ãšèšç®ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc045/editorial/241"
}
] | ã$1$ ä»¥äž $10$ 以äžã®æŽæ°ããçžç°ãªã $3$ ã€ãéžã¶ããšãèããŸã. ãã®ãããªéžã³æ¹ãã¹ãŠã«ã€ããŠ, $3$ æ°ã®ç©ã®ç·åãæ±ããŠãã ãã. |
OMC045 (for beginners) | https://onlinemathcontest.com/contests/omc045 | https://onlinemathcontest.com/contests/omc045/tasks/255 | D | OMC045(D) | 300 | 138 | 191 | [
{
"content": "ã$a\\leq c\\leq a$ ãããããã, ç¹ã«çå·ãæç«ãã. ããªãã¡æ¡ä»¶ã¯ \r\n$$b\\leq d\\leq 1000-a$$\r\nãã㧠$a$ ãåºå®ã, $k=1000-a$ ãšãããªããã°, çµ $(b,d)$ ãšããŠããåŸããã®ã¯ $\\dfrac{k^2+k}{2}$ åã§ããããšã容æã«ããããã, æ±ããå Žåã®æ°ã¯\r\n$$ \\sum_{k=1}^{999}\\dfrac{k^2+k}{2}=\\dfrac{999\\times1000\\times1001}{6}=\\textbf{166666500}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc045/editorial/255"
}
] | ã以äžã®äžçåŒãæºããæ£æŽæ°ã®çµ $(a,b,c,d)$ ã¯ããã€ãããŸããïŒ
$$a+b\leq b+c\leq c+d\leq d+a\leq1000$$ |
OMC045 (for beginners) | https://onlinemathcontest.com/contests/omc045 | https://onlinemathcontest.com/contests/omc045/tasks/1694 | E | OMC045(E) | 400 | 45 | 88 | [
{
"content": "ã$(1+x)^n(1+x)^n(1+x)^n=(1+x)^{3n}$ ã«ã€ããŠ, 䞡蟺㧠$x^n$ ã®ä¿æ°ãæ¯èŒããããšã§ä»¥äžãåŸãïŒ\r\n$$\\sum_{p+q+r=n}\\binom{n}{p}\\binom{n}{q}\\binom{n}{r}=\\binom{3n}{n}$$\r\näžæ¹ã§, 以äžã®çåŒãæç«ããããšããããïŒ\r\n$$\\frac{1}{p!q!r!(p+q)!(q+r)!(r+p)!}=\\frac{1}{(10!)^3}\\binom{10}{p}\\binom{10}{q}\\binom{10}{r}$$\r\nãããã£ãŠ, $S$ ã«ã€ããŠä»¥äžã®ããã«èšç®ã§ã, ç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{95381}$ ã§ãã.\r\n$$S=\\frac{1}{(10!)^3}\\binom{30}{10}=\\frac{30!}{(10!)^4\\times 20!}=\\frac{11\\times13\\times23\\times29}{2^{24}\\times3^{10}\\times5^5\\times7^2}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc045/editorial/1694"
}
] | ã$p+q+r=10$ ãªãéè² æŽæ°ã®çµ $(p,q,r)$ ãã¹ãŠã«ã€ããŠ, 以äžã®å€ã®ç·åã $S$ ãšããŸã.
$$\frac{1}{p!q!r!(p+q)!(q+r)!(r+p)!}$$
$S$ ãæ¢çŽåæ°ã«è¡šçŸãããšã, ãã®ååãšãªãæ£æŽæ°ã解çããŠãã ãã. |
OMC045 (for beginners) | https://onlinemathcontest.com/contests/omc045 | https://onlinemathcontest.com/contests/omc045/tasks/295 | F | OMC045(F) | 400 | 85 | 96 | [
{
"content": "ã$\\angle AXC=90^\\circ$ ããç¹ $X$ ã¯æ£æ¹åœ¢ $ABCD$ ã®å€æ¥åã®å£åŒ§ $AB$ äžãåã. ãããã\r\n$$\\angle AXD=\\angle ABD=45^\\circ=\\angle AXZ$$\r\nã§ãããã $D,Z,X$ ã¯åäžçŽç·äžã«ãã, ããã« $A$ ãš $Y$ ã¯ãã®çŽç·ã«é¢ããŠå¯Ÿç§°ã§ãã. ãããã£ãŠ,\r\n\r\n- $DA=DY$ ãã, ç¹ $Y$ 㯠$D$ ãäžå¿ãšã $A,C$ ãéãåã®å£åŒ§ $AC$ äž (æ²ç· $K$ ãšãã) ãåã.\r\n- $\\angle AZD=135^\\circ$ ãã, ç¹ $Z$ ã¯æ£æ¹åœ¢ $ABCD$ ã®å€æ¥åã®å£åŒ§ $AD$ ãš $AD$ ã«é¢ããŠå¯Ÿç§°ãªæ²ç· $L$ äžãåã.\r\n\r\nãç¹ã«èããã¹ãé å $S$ ã¯, æ²ç· $K,L$ ããã³å¯Ÿè§ç· $BD$ ã§å²ãŸããéšåã§ãã. ããã§, $K$ ããã³äºæ¬ã®å¯Ÿè§ç·ã§å²ãŸããé åãš, $L$ ãšèŸº $AD$ ã«å²ãŸããé åã¯é¢ç©ãçããããšãã, $S$ ã®é¢ç©ã¯æ£æ¹åœ¢ $ABCD$ ã® $4$ åã® $1$ ã«çãã, 解çãã¹ãå€ã¯ $2021+4=\\textbf{2025}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc045/editorial/295"
},
{
"content": "ã $A,B,C,D$ ã¯ãã®é ã«åæèšåãã«äžŠãã§ãããã®ãšãïŒãã®æ£æ¹åœ¢ã®å¯Ÿè§ç·ã®äº€ç¹ã $O$ ãšããïŒ\\\r\n $\\angle{AXC}=90^\\circ$ ããïŒ $X$ ã®è»è·¡ $J$ ã¯æ£æ¹åœ¢ $ABCD$ ã®å€æ¥åã®å£åŒ§ $AB$ ã®éšåïŒ\\\r\nããã§ïŒ $A$ ãäžå¿ã«åæèšåãã« $45^\\circ$ å転ããïŒ $\\sqrt{2}$ åæ¡å€§ããå€æã $f$ ãšãïŒ $A$ ãäžå¿ã«åæèšåãã« $90^\\circ$ å転ãããå€æã $g$ ãšããã°ïŒ $f(X)=Y,g(X)=Z$ ãªã®ã§ïŒ $Y$ ã®è»è·¡ $K$ ããã³ $Z$ ã®è»è·¡ $L$ 㯠$f(J)$ ããã³ $g(J)$ ã«ä»ãªããªãïŒ\\\r\nã以äžããæ±ããé¢ç©ã¯ $K,L,BD$ ã§å²ãŸããéšåã§ããïŒ $K$ ãš $AC$ ã§å²ãŸããéšåãš $L$ ãš $AD$ ã§å²ãŸããéšåã¯çžäŒŒæ¯ã $\\sqrt{2}:1$ ã®çžäŒŒãªå³åœ¢ã§ããããé¢ç©æ¯ã¯ $2:1$ ã§ããïŒ $K$ ãš $AC$ ãš $BD$ ã§å²ãŸããéšåãš $L$ ãš $AD$ ã§å²ãŸããéšåã®é¢ç©ã¯çããã®ã§ïŒæ±ããé¢ç©ã¯äžè§åœ¢ $OAD$ ã®é¢ç© $\\dfrac{2021}{4}$ ã«çããïŒ\\\r\nãã£ãŠïŒè§£çãã¹ãå€ã¯ $\\textbf{2025}$",
"text": "å転æ¡å€§ãæèãã",
"url": "https://onlinemathcontest.com/contests/omc045/editorial/295/75"
}
] | ãé¢ç© $2021$ ã®æ£æ¹åœ¢ $ABCD$ ããã, $4$ ç¹ $P,X,Y,Z$ ã以äžã®æ¡ä»¶ãã¿ãããŸã.
- $P$ ã¯èŸº $AB$ äžã«ãã.
- $X$ ãš $Y$ ã¯çŽç· $CP$ äžã«ãã, $3$ ç¹ $C,Y,X$ ã¯ãã®é ã«äžŠã¶.
- åè§åœ¢ $AXYZ$ ã¯æ£æ¹åœ¢ã§ãã.
ã$P$ ã蟺 $AB$ äžãåããšã, ç·å $XZ$ ã®ééããé åãšç·å $YZ$ ã®ééããé åã®å
±ééšåã®é¢ç©ãæ±ããŠãã ãã. ãã ã, çãã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\dfrac{a}{b}$ ãšè¡šããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC044 (Wolfram Cup) | https://onlinemathcontest.com/contests/omc044 | https://onlinemathcontest.com/contests/omc044/tasks/1 | A | OMC044(A) | 200 | 219 | 230 | [
{
"content": "ãããç¹ã«ã€ããŠ, è·é¢ã $1$ 以äžã®ç¹ãå°ãªããšã $3$ ã€ååšãããš, æ¡ä»¶ãããããã® $3$ ç¹ã®éã®è·é¢ã¯ãããã $1$ æªæºã§ããã, ãã®ãšãããã $3$ ç¹ãããªãäžè§åœ¢ã¯æ¡ä»¶ãã¿ãããªã. ãããã£ãŠ, åç¹ã«ã€ããŠè·é¢ã $1$ 以äžã®ç¹ã¯é«ã
$2$ ã€ã§ãã, åæ§ã«ããŠåç¹ã«ã€ããŠè·é¢ã $1$ 以äžã®ç¹ãé«ã
$2$ ã€ã§ãããã, ãã㯠$n\\leq 5$ ãè¡šã. éã«æ£äºè§åœ¢ãèããããšã§ $n=5$ ãé©ããããšãããããã, æ±ããæ倧å€ã¯ $\\textbf{5}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc044/editorial/1"
}
] | ã次ã®æ¡ä»¶ãã¿ããå¹³é¢äžã®çžç°ãªã $n$ ç¹ãååšãããããª, æ£æŽæ° $n$ ã®æ倧å€ãæ±ããŠãã ããïŒ
- ä»»æã® $3$ ç¹ã®ãªãäžè§åœ¢ã«ã€ããŠ, é·ãã $1$ ãã倧ãã蟺㚠$1$ ããå°ãã蟺ããšãã«ååšãã. |
OMC044 (Wolfram Cup) | https://onlinemathcontest.com/contests/omc044 | https://onlinemathcontest.com/contests/omc044/tasks/1895 | B | OMC044(B) | 300 | 195 | 222 | [
{
"content": "ãåçŽç· $AB$ äžã«ç¹ $P$ ã $\\angle APC=2\\angle C$ ãšãªãããã«ãšã, $Q$ ãçŽç· $AH$ ãšçŽç· $PC$ ã®äº€ç¹ãšãããš,\r\n$$AP=AC,\\quad AH=HQ$$\r\nãæç«ãã. ãããã, ã¡ãã©ãŠã¹ã®å®çã䜿ããš\r\n$$\\dfrac{BH}{HC}=\\dfrac{2BP}{AP}-1=\\dfrac{AC-2AB}{AC}=\\dfrac{21}{2021}$$\r\nãåŸããã, æ±ããã¹ãå€ã¯ $a+b=21+2021=\\textbf{2042}$ ã§ãã. ãªã, äžè§é¢æ°ã䜿ã£ãŠè§£ãããšãã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc044/editorial/1895"
}
] | ãäžè§åœ¢ $ABC$ 㯠$AB:AC=1000:2021$ ããã³ $\angle ABC=3\angle ACB$ ãã¿ãããŸã. $A$ ããçŽç· $BC$ ã«ããããåç·ã®è¶³ã $H$ ãšãããšã, $\dfrac{BH}{HC}$ ãæ±ããŠãã ãã. ãã ã, æ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\dfrac{a}{b}$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC044 (Wolfram Cup) | https://onlinemathcontest.com/contests/omc044 | https://onlinemathcontest.com/contests/omc044/tasks/1983 | C | OMC044(C) | 400 | 56 | 144 | [
{
"content": "ãäºé
å®ç, $2^{p-1}\\equiv 1\\pmod p$ (Fermatã®å°å®ç), $2^{p^2-p}\\equiv 1\\pmod{p^2}$ (Eulerã®å®ç) ãã, $p^2$ ãæ³ãšããŠ\r\n$$\\begin{aligned}\r\n\\sum_{k=0}^{p-1} (kp+2)^{kp+2} &\\equiv \\sum_{k=0}^{p-1} \\left({}\\_{kp+2}{\\rm C}\\_1\\times kp\\times 2^{kp+1}+2^{kp+2}\\right) \\\\\\\\\r\n&\\equiv \\sum\\_{k=0}^{p-1} \\left( k2^{kp+2}p+2^{kp+2} \\right)&\\\\\\\\\r\n&\\equiv \\sum\\_{k=0}^{p-1} \\left( k2^{k+2}p+2^{kp+2} \\right)&\\\\\\\\\r\n&\\equiv 4\\left(2^p p-2^{p+1}+2\\right)p+4\\times \\frac{2^{p^2}-1}{2^p-1}\\\\\\\\\r\n&\\equiv -8p+4\r\n\\end{aligned}$$\r\nãšèšç®ã§ãã. ãããã£ãŠ $p^2-a=8p-4=\\textbf{8000000052}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc044/editorial/1983"
}
] | ãçŽ æ° $p=10^9+7$ ã«ã€ããŠ, $\displaystyle \sum_{k=0}^{p-1} (kp+2)^{kp+2}$ ã $p^2$ ã§å²ã£ãããŸãã $a$ ãšãããšã, $p^2-a$ ãæ±ããŠãã ãã. |
OMC044 (Wolfram Cup) | https://onlinemathcontest.com/contests/omc044 | https://onlinemathcontest.com/contests/omc044/tasks/1894 | D | OMC044(D) | 500 | 44 | 152 | [
{
"content": "ãæ±ããæå°å€ã¯ $1\\/12$ ã§ããããšã瀺ã. äŸãã°ä»¥äžã®å Žåãèããããšã§ $c\\geq 1\\/12$ ãããã. $$ (x,y,z)=\\left(\\frac{3+\\sqrt{3}}{6},\\frac{3-\\sqrt{3}}{6},0 \\right) $$\r\nã$x=y=z=0$ ã®ãšã, äžçåŒã¯åžžã«æç«ãããã, ä»¥äž $x+y+z\\gt 0$ ãšãã. ãã®ãšã, äžåŒã¯æ次åŒã§ããããšã«çæããã°, $x+y+z=1$ ã®å Žåã«åž°çããŠãã. ããªãã¡, 以äžãæ倧åããã°ãã.\r\n$$ x^4(1-x)+y^4(1-y)+z^4(1-z) $$\r\näžè¬æ§ã倱ãã $x\\geq y\\geq z$ ãšãã. ãã㧠$f(x)=x^4(1-x)$ ã«ã€ããŠ, $f^{\\prime\\prime}(x)=4x^2(3-5x)$ ãã, $f(x)$ 㯠$0\\leq x\\leq 3\\/5$ ã®ç¯å²ã§äžã«åžã§ãã. ãããã£ãŠ, $y+z\\leq1\\/2\\leq3\\/5$ ããã³ $f(0)=0$ ã«çæããã°, 以äžã®äžçåŒã®æç«ããããïŒ\r\n$$ f(y)+f(z)\\leq f(y+z)=(1-x)^4x$$\r\nããã«ä»¥äžãã, $c=1\\/12$ ã§åžžã«äžçåŒãæãç«ã€ããšã瀺ããã.\r\n$$ x^4(1-x)+(1-x)x^4=\\frac{1}{3}(3x(1-x))(1-3x(1-x))\\geq \\frac{1}{3}\\times\\frac{1}{4}$$\r\nãã ãæåŸã§çžå ã»çžä¹å¹³åã®é¢ä¿ãçšãã. 以äžãã, 解çãã¹ãå€ã¯ $\\textbf{13}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc044/editorial/1894"
}
] | ãä»»æã®éè² å®æ°ã®çµ $(x,y,z)$ ã«ã€ããŠ, 以äžã®äžçåŒãæãç«ã€ãããªå®æ° $c$ ã®æå°å€ãæ±ããŠãã ããïŒ
$$ c(x+y+z)^5\geq x^4(y+z)+y^4(z+x)+z^4(x+y) $$
ãã ã, æ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\dfrac{a}{b}$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC044 (Wolfram Cup) | https://onlinemathcontest.com/contests/omc044 | https://onlinemathcontest.com/contests/omc044/tasks/1890 | E | OMC044(E) | 600 | 3 | 13 | [
{
"content": "ãçŽç· $BC$ ã«å¯Ÿã $A$ ãšå察åŽã«, 以äžãã¿ããç¹ $X$ ããšããš, $XB=XC=9$ ã§ãã.\r\n$$\\cos\\angle XBC=\\cos\\angle XCB=\\dfrac{8}{9}$$\r\nããã«, æ¥åŒŠå®çããäžè§åœ¢ $ABP$ ã®å€æ¥åãšçŽç· $XB$, äžè§åœ¢ $AQC$ ã®å€æ¥åãšçŽç· $XC$ ã¯ããããæ¥ãããã, $X$ ã¯äžè§åœ¢ $ABP$ ã®å€æ¥åããã³äžè§åœ¢ $AQC$ ã®å€æ¥åã®æ ¹è»žäžã«ãã. ããªãã¡ $A,R,X$ ã¯åäžçŽç·ã«ãã.\\\r\nããã£ãŠ, $RX=x, AB=y$ ãšãããš, $\\triangle XBE\\sim\\triangle XAB$ ãã\r\n$$x:9:7=9:(x+12):y$$\r\nããã解ããŠä»¥äžãåŸããã, ç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{37}$ ã§ãã. \r\n$$x=3\\sqrt{13}-6,\\quad y=\\dfrac{7\\sqrt{13}+14}{3}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc044/editorial/1890"
}
] | ã$BC=16$ ãªãäžè§åœ¢ $ABC$ ã«ãããŠ, 蟺 $BC$ äžã«ä»¥äžãã¿ããç¹ $P, Q$ ããšããŸãã.
$$\cos\angle BAP=\cos\angle CAQ=\frac{8}{9}$$
ãã®ãšã, äžè§åœ¢ $ABP$ ã®å€æ¥åãšäžè§åœ¢ $ACQ$ ã®å€æ¥åã¯, $A$ ã§ãªãäžè§åœ¢ $ABC$ ã®å
éšã®ç¹ $R$ ã§äº€ãã,
$$AR=12,\quad BR=7$$
ãæç«ããŸãã. $AB$ ã®é·ããæ±ããŠãã ãã. ãã ã, æ±ããå€ã¯æ£ã®æŽæ° $a,b,c,d$ (ãã㧠$b$ ã¯å¹³æ¹å åãæãã, $a,c,d$ ã®æ倧å
¬çŽæ°ã¯ $1$ ) ãçšã㊠$\dfrac{a\sqrt{b}+c}{d}$ ãšè¡šãããã®ã§, $a+b+c+d$ ã解çããŠãã ãã. |
OMC044 (Wolfram Cup) | https://onlinemathcontest.com/contests/omc044 | https://onlinemathcontest.com/contests/omc044/tasks/1891 | F | OMC044(F) | 700 | 13 | 34 | [
{
"content": "ããã¹ãŠã®èŸºãéãå¡ãããäžè§åœ¢ã**éãäžè§åœ¢**ãªã©ãšåŒã¶ããšãšãã. ããå¡ãæ¹ã«ã€ããŠ, ãã®ã¹ã³ã¢ã¯\r\n$$(éãäžè§åœ¢ã®çµã®åæ°)+(èµ€ãäžè§åœ¢ã®çµã®åæ°)-2\\times(éãäžè§åœ¢ãšèµ€ãäžè§åœ¢ã®ãã¢ã®åæ°)$$\r\nããã§, **éãäžè§åœ¢ã®çµ**ã¯é åºä»ãã $2$ ã€ã®éãäžè§åœ¢ã®çµãæã, åãäžè§åœ¢ $2$ ã€ã®éžæã蚱容ãããã®ãšãã.\\\r\nãããã§, è²ãèããäžè§åœ¢ $2$ ã€ãéžæãããšã, ããã蟺ãå
±æããŠããªããªãã°è²ã®éžæã«ãã£ãŠäžåŒã®åé
ã®å¯äžãæã¡æ¶ãããããšãããã. äžæ¹ã§, 蟺ãå
±æããŠãããªãã° (äžèŽãå«ã), ããããåæã«éãäžè§åœ¢ãšèµ€ãäžè§åœ¢ãšã¯ãªããªããã, äžåŒã®åã® $2$ é
ã®ã¿ãå¯äžãã. ãã£ãŠ, äžè¬ã« $n$ è§åœ¢ã§ãã¹ãŠã®å¡ãæ¹ã®ã¹ã³ã¢ã®**ç·å** $S_n$ ã¯\r\n$$\\begin{aligned}\r\nS_n&=2\\times\\left(\\frac{{}_n{\\rm P}_4}{2}\\times 2^{n(n-1)\\/2-5}+{}_n{\\rm C}_3\\times 2^{n(n-1)\\/2-3}\\right)\\\\\\\\\r\n&= 2^{n(n-1)\\/2}n(n-1)(n-2) \\left(\\frac{n-3}{32}+\\frac{1}{24}\\right)\\\\\\\\\r\n&= 2^{n(n-1)\\/2}n(n-1)(n-2)\\times\\frac{3n-5}{96}\r\n\\end{aligned}$$\r\nãããã, ç¹ã«æ±ããå¹³å㯠$\\dfrac{1}{96}n(n-1)(n-2)(3n-5)$ ã§ãã, 解çãã¹ãå€ã¯ $\\textbf{2080520642789}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc044/editorial/1891"
}
] | ãæ£ $2021$ è§åœ¢ $P$ ããã, ãã®é ç¹ã®ãã¡ $2$ ã€ãçµã¶ $2041210$ æ¬ã®ç·åã, ããããèµ€ãŸãã¯éã§å¡ãããŠããŸã. ããããã®å¡ãæ¹ã«ã€ããŠ, ãã®**ã¹ã³ã¢**ã, $P$ ã®é ç¹ãçµãã§ã§ãããã¹ãŠã®èŸºãèµ€ãäžè§åœ¢ã®åæ°ãš, $P$ ã®é ç¹ãçµãã§ã§ãããã¹ãŠã®èŸºãéãäžè§åœ¢ã®åæ°ã®å·®ã® $2$ ä¹ãšããŠå®ããŸã. ç·åã®å¡ãæ¹ãã¹ãŠã«ã€ããŠ, ã¹ã³ã¢ã®(çžå )å¹³åãæ±ããŠãã ãã. ãã ã, æ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\dfrac{a}{b}$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC043 (for beginners) | https://onlinemathcontest.com/contests/omc043 | https://onlinemathcontest.com/contests/omc043/tasks/1264 | A | OMC043(A) | 100 | 211 | 214 | [
{
"content": "**解æ³1.**ã$B,C$ ãåºå®ã㊠$AH$ ã®é·ããæ倧åããåé¡ãšç䟡ã§ãã. ãã®ãšã, $A$ 㯠$BC$ ãçŽåŸãšããååšäžãåã, $AH$ ããªãã¡ $A$ ãã $BC$ ãžã®è·é¢ã®ãšãããæ倧å€ã¯æããã« $BC\\/2$ ã§ãã.\\\r\nããããã£ãŠ, å
ã®åé¡ã«ãããŠæ±ããæå°å€ã¯ $18$ ã§ãã.\r\n\r\n**解æ³2.**ã$\\triangle ABH$ ãš $\\triangle CAH$ ã®çžäŒŒãã ${AH}^2=BH\\times CH$ ãæç«ãããã, çžå ã»çžä¹å¹³åã®é¢ä¿ãã \r\n$$BC = BH + CH \\ge 2 \\sqrt{ BH \\times CH } = 2 AH = 18$$\r\néã« $AB=AC$ ã®ãšã $BC=18$ ãå®çŸãããã, çµå± $\\textbf{18}$ ãæ±ããæå°å€ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc043/editorial/1264"
}
] | ãè§ $A$ ãçŽè§ã§ãããããªäžè§åœ¢ $ABC$ ã«ãããŠ, $A$ ãã蟺 $BC$ ã«äžãããåç·ã®è¶³ã $H$ ãšãããš, $AH=9$ ãæãç«ã¡ãŸãã. ãã®ãšã, $BC$ ã®é·ããšããŠããåŸãæå°å€ãæ±ããŠãã ãã. |
OMC043 (for beginners) | https://onlinemathcontest.com/contests/omc043 | https://onlinemathcontest.com/contests/omc043/tasks/197 | B | OMC043(B) | 200 | 150 | 197 | [
{
"content": "ãæåã«è¡šãåºããšã, 次ã¯å¿
ãè£ã§ããããšã«çæããã°, 以äžã®æŒžååŒã容æã«åŸã.\r\n$$p_{n}=\\dfrac{1}{2}p_{n-1}+\\dfrac{1}{4}p_{n-2}$$\r\nç¹ã« $q_{n}=2^{n}p_{n}$ ã¯Fibonacciæ°åããªã. $q_1=2,q_2=3$ ããèšç®ããã°,\r\n$$\\cdots\\gt p_{11}=\\dfrac{233}{2048}\\gt 0.1\\gt p_{12}=\\dfrac{377}{4096}\\gt\\cdots$$\r\nãã, æ±ããæå°å€ã¯ $\\textbf{12}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc043/editorial/197"
}
] | ãè¡šãšè£ãç確çã«åºãã³ã€ã³ã $n$ åæã, äžåºŠãè¡šãé£ç¶ããŠåºãªã確çã $P_n$ ãšããŸã.\
ã$P_n\leq 0.1$ ãã¿ããæå°ã®æ£æŽæ° $n$ ãæ±ããŠãã ãã. |
OMC043 (for beginners) | https://onlinemathcontest.com/contests/omc043 | https://onlinemathcontest.com/contests/omc043/tasks/1705 | C | OMC043(C) | 300 | 133 | 164 | [
{
"content": "ã$C$ ã極å°å€ããšãç¹ã¯ $(1,-2)$, å€æ²ç¹ã¯ $(0,0)$ ã§ãã. ããããã§ã® $C$ ã®æ¥ç·ã¯ $y=-2,y=-3x$ ã§ãã, ãããã¯ç¹ $(2\\/3,-2)$ ã§äº€ããããšã«çæãã. ãŸã $C$ ãš $\\ell_1$ ã§å²ãŸããé åã®é¢ç©ã«ã€ããŠ\r\n$$\\int_{-2}^{1}((x^3-3x)-(-2))dx=\\int_{-2}^{1}(x+2)(x-1)^2dx=\\dfrac{(1-(-2))^4}{12}=\\dfrac{27}{4}$$\r\näžæ¹ã§, ããã® $\\ell_2$ ã«é¢ããåå²ã«ã€ããŠ, $(1,-2)$ ãå«ãæ¹ã®é¢ç©ãæ±ãããš\r\n$$\\int_{0}^{1}((x^3-3x)-(-2))dx-\\dfrac{1}{2}\\times 2\\times \\dfrac{2}{3}=\\dfrac{3}{4}-\\frac{2}{3}=\\dfrac{1}{12}$$\r\nãã£ãŠæ±ããé¢ç©æ¯ã¯ $80:1$ ã§ãã, 解çãã¹ãå€ã¯ $\\textbf{81}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc043/editorial/1705"
}
] | ãæ²ç· $C:y=x^3-3x$ ã«ã€ããŠ, 極å°å€ããšãå¯äžã®ç¹ã«ãããæ¥ç·ã $\ell_1$, å¯äžã®å€æ²ç¹ã«ãããæ¥ç·ã $\ell_2$ ãšããŸã. $C$ ãš $\ell_1$ ã§å²ãŸããé åã $\ell_2$ ã§åå²ãããšãã$2$ ã€ã®é åã®é¢ç©æ¯ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $a:b$ ãšè¡šããã®ã§, $a+b$ ã解çããŠãã ãã. ãã ã, **å€æ²ç¹**ãšã¯æ²ç·ã®å¹åžãåãæ¿ããå¢ç®ã®ç¹ãæããŸã. |
OMC043 (for beginners) | https://onlinemathcontest.com/contests/omc043 | https://onlinemathcontest.com/contests/omc043/tasks/218 | D | OMC043(D) | 400 | 32 | 82 | [
{
"content": "ã$10^i$ ã®äœ $(i=0,\\cdots,19)$ ã $t$ ã§ãããã㪠$10^{20}-1$ 以äžã®æ£æŽæ°ã®ç·åã $S(t,i)$ ãšãããš,\r\n$$\\begin{aligned}\r\n S(t,i) &= (0+1+\\cdots+9)(1+10+\\cdots+10^{i-1}+10^{i+1}+\\cdots+10^{19})\\times 10^{18}+10^{i}t\\times 10^{19} \\\\\\\\ \r\n &= 45\\left(\\frac{1}{9}(10^{20}-1)-10^i\\right)\\times 10^{18}+10^{i+19}t \\\\\\\\\r\n &= 5(10^{20}-1)10^{18}+(10t-45)10^{i+18}\r\n\\end{aligned}$$\r\nãã£ãŠä»¥äžã®ããã«èšç®ã§ã, ãã®æ¡å㯠$\\textbf{129}$ ã§ãã.\r\n$$\\begin{aligned}\r\n\\sum_{n=1}^{10^{20}-1}nf(n)&=\r\n\\sum_{t=0}^{9} \\sum_{i=0}^{19} t\\times S(t,i) \\\\\\\\\r\n&= \\sum_{t=0}^{9}\\left(5t\\times 20(10^{20}-1)10^{18}+\\frac{1}{9}t(10t-45)(10^{20}-1)10^{18}\\right) \\\\\\\\\r\n&=\\frac{25}{3}\\times 551(10^{20}-1)10^{18} \\\\\\\\\r\n&=4591\\overbrace{66\\cdots66}^{16\\text{å}}2075\\times 10^{18}\r\n\\end{aligned}$$\r\n\r\nãã¡ãªã¿ã«, äžè¬ã«æ£æŽæ° $a$ ã«å¯Ÿãåæ§ã«ä»¥äžãæç«ãã.\r\n$$\\sum_{n=1}^{10^{a}-1}nf(n)=\\frac{25}{3}(27a+11)(10^a-1)10^{a-2}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc043/editorial/218"
}
] | ãæ£ã®æŽæ° $n$ ã«ã€ããŠ, ãã®åé²æ³ã§ã®åäœã®åã $f(n)$ ã§è¡šããšã, 以äžãæ±ããŠãã ãã.
$$\displaystyle f\Biggl(\sum^{10^{20}-1}_{n=1} nf(n)\Biggr)$$ |
OMC042 | https://onlinemathcontest.com/contests/omc042 | https://onlinemathcontest.com/contests/omc042/tasks/1699 | A | OMC042(A) | 100 | 219 | 250 | [
{
"content": "ã$2$ åçšããæåã $2$ åããã, $3$ åçšããæåã $1$ åãããã®ããããã§ãã.\\\r\nãåè
ã®ãšã, äŸãã° $A,A,C,C,G,N$ ã®äžŠã³æ¿ã㯠$6\\times5\\times_4\\mathrm{C}_2=180$ éãã§ãã, $2$ åçšããæåã®éžã³æ¹ã $_4\\mathrm{C}_2=6$ éãã§ããã®ã§, å
šäœã§ã¯ $180\\times6=1080$éãã§ãã.\\\r\nãåŸè
ã®ãšã, äŸãã° $A,A,A,C,G,N$ ã®äžŠã³æ¿ã㯠$6\\times5\\times4=120$ éãã§ãã, $3$ åçšããæåã®éžã³æ¹ã $4$ éãã§ããã®ã§, å
šäœã§ã¯ $120\\times4=480$ éãã§ãã.\\\r\nã以äžãã, æ±ããå Žåã®æ°ã¯ $1080+480=\\textbf{1560}$ éãã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc042/editorial/1699"
},
{
"content": "ãå
é€åçããïŒæ±ããå Žåã®æ°ã¯ $4^6-4\\times3^6+6\\times2^6-4=\\textbf{1560}$",
"text": "å
é€åç",
"url": "https://onlinemathcontest.com/contests/omc042/editorial/1699/121"
}
] | ã$A,C,G,N$ ã暪äžåã«èš $6$ å䞊ã¹ãŠã§ããæååã¯ããã€ãããŸããïŒ\
ããã ã, ã©ã®ã¢ã«ãã¡ããããå°ãªããšã $1$ åã¯çšãããã®ãšããŸã. |
OMC042 | https://onlinemathcontest.com/contests/omc042 | https://onlinemathcontest.com/contests/omc042/tasks/1700 | B | OMC042(B) | 200 | 198 | 211 | [
{
"content": "$$N^3=A^3+B^3+C^3={(111\\cdots11)}^3\\times(3^3+4^3+5^3)={(111\\cdots11)}^3\\times216$$\r\nãã, $N=\\overbrace{666\\cdots66}^{10^{100}-1å}$ ã§ãã. ãããã£ãŠ,\r\n$$S=6\\times(10^{100}-1)=6\\overbrace{000\\cdots00}^{100å}-6=5\\overbrace{999\\cdots99}^{99å}4$$\r\nã§ãããã, $T=5+9\\times99+4=\\textbf{900}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc042/editorial/1700"
}
] | $$A=\overbrace{333\cdots33}^{10^{100}-1å},\quad B=\overbrace{444\cdots44}^{10^{100}-1å},\quad C=\overbrace{555\cdots55}^{10^{100}-1å}$$
ã«ã€ããŠ, $N^3=A^3+B^3+C^3$ ãªãæŽæ° $N$ ã®åæ¡ã®åã $S$, $S$ ã®åæ¡ã®åã $T$ ãšããŸã. $T$ ãæ±ããŠãã ãã. |
OMC042 | https://onlinemathcontest.com/contests/omc042 | https://onlinemathcontest.com/contests/omc042/tasks/1789 | C | OMC042(C) | 200 | 170 | 201 | [
{
"content": "$$\\triangle LMN=\\triangle PRT=\\triangle ABC-3\\times\\triangle ATR=1-\\frac{3\\times20\\times(20+21)}{(20+21+20)^2}=\\frac{1261}{3721}$$\r\nãã, æ±ããå€ã¯ $1261+3721=\\textbf{4982}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc042/editorial/1789"
}
] | ãé¢ç©ã $1$ ã§ããæ£äžè§åœ¢ $ABC$ ã«ãããŠ, 以äžã§ $6$ ç¹ $P,Q,R,S,T,U$ ãå®ã, ããããéãå $O$ ãèããŸã.
- 蟺 $BC$ ã $20:21:20$ ã«å
åããç¹ãé ã« $P,Q$ ãšãã.
- 蟺 $CA$ ã $20:21:20$ ã«å
åããç¹ãé ã« $R,S$ ãšãã.
- 蟺 $AB$ ã $20:21:20$ ã«å
åããç¹ãé ã« $T,U$ ãšãã.
ããã«, $O$ ã«ãããŠå£åŒ§ $PQ,RS,TU$ ã®äžç¹ããããã $L,M,N$ ãšããŸã. ãã®ãšã, äžè§åœ¢ $LMN$ ã®é¢ç©ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\dfrac{a}{b}$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC042 | https://onlinemathcontest.com/contests/omc042 | https://onlinemathcontest.com/contests/omc042/tasks/1701 | D | OMC042(D) | 400 | 182 | 206 | [
{
"content": "$$2520^3=(2^3\\times3^2\\times5\\times7)^3=2^9\\times3^6\\times5^3\\times7^3$$\r\nã§ãããã, $a$ ã $9$ 以äžã®éè² æŽæ°, $b,c$ ã $3$ 以äžã®éè² æŽæ°ãšããŠ,\r\n\r\n- $2520^3$ ã®æ£ã®çŽæ°ã®ãã¡, $3$ã§å²ã£ãŠ $1$ äœããã®ã¯ $2^a\\times5^b\\times7^c\\ $($a,b$ ã®å¶å¥ãäžèŽ) ã®åœ¢.\r\n- $2520^3$ ã®æ£ã®çŽæ°ã®ãã¡, $3$ã§å²ã£ãŠ $2$ äœããã®ã¯ $2^a\\times5^b\\times7^c\\ $($a,b$ ã®å¶å¥ãç°ãªã) ã®åœ¢.\r\n\r\nãã£ãŠ, $S-T$ ã¯ä»¥äžã®åŒã§æ±ãããã (å®éã«å±éããŠã¿ããšãã®æ§åãæ³åãã).\r\n$$\\begin{aligned}\r\nS-T &=(2^0-2^1+\\cdots+2^8-2^9)\\times(5^0-5^1+5^2-5^3)\\times(7^0+7^1+7^2+7^3) \\\\\\\\\r\n&= \\frac{1-2^{10}}{1-(-2)}\\times\\frac{1-5^{4}}{1-(-5)}\\times\\frac{1-7^{4}}{1-7}\\\\\\\\\r\n&=(-341)\\times(-104)\\times400 \\\\\\\\\r\n&=\\textbf{14185600}\r\n\\end{aligned}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc042/editorial/1701"
}
] | ã$2520^3$ ã®æ£ã®çŽæ°ã®ãã¡, $3$ ã§å²ã£ãŠ $1,2$ äœããã®ã®ç·åããããã $S,T$ ãšãããšã, $S-T$ ãæ±ããŠãã ãã. |
OMC042 | https://onlinemathcontest.com/contests/omc042 | https://onlinemathcontest.com/contests/omc042/tasks/1790 | E | OMC042(E) | 500 | 59 | 131 | [
{
"content": "ã$p=33333331$ ãšãã, åååŒã®æ³ã¯ä»¥äžãã¹ãŠ $p$ ãšãã. Fermatã®å°å®çãã, æ±ããã¹ãç·åã¯\r\n$$S\\equiv(1\\times2\\times3\\times4)^{-1}+(2\\times3\\times4\\times5)^{-1}+\\cdots+((p-4)(p-3)(p-2)(p-1))^{-1}$$\r\nããã§, éšååæ°å解ã®èŠé ã§ä»¥äžãæç«ããããšã«çæããïŒ\r\n$$(k(k+1)(k+2)(k+3))^{-1}\\equiv3^{-1}((k(k+1)(k+2))^{-1}-((k+1)(k+2)(k+3))^{-1})$$\r\nãããçšããŠæé é¡åã®åœ¢åŒã«è¡šãããšã§,\r\n$$\\begin{aligned}\r\nS&\\equiv3^{-1}((1\\times2\\times3)^{-1}-((p-3)(p-2)(p-1))^{-1})\\\\\\\\\r\n&\\equiv3^{-1}(6^{-1}-(-6)^{-1})\\\\\\\\\r\n&\\equiv9^{-1}\\equiv\\textbf{7407407}\r\n\\end{aligned}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc042/editorial/1790"
}
] | ã$\displaystyle S=\sum_{k=1}^{33333327} (k(k+1)(k+2)(k+3))^{33333329}$ ãçŽ æ° $33333331$ ã§å²ã£ãäœããæ±ããŠãã ãã. |
OMC042 | https://onlinemathcontest.com/contests/omc042 | https://onlinemathcontest.com/contests/omc042/tasks/1702 | F | OMC042(F) | 600 | 42 | 76 | [
{
"content": "ã以äžã®ããã«æåãããã°, æ¡ä»¶ãã $a+c=100,b+d=111,ef=2468$ ã§ãã.\r\n$$AB=a,\\quad BC=b,\\quad CD=c,\\quad DA=d,\\quad AC=e,\\quad BD=f$$\r\nãã㧠$\\Gamma$ ã«ãããŠ, å£åŒ§ $AB$ ãšå£åŒ§ $CD$ ã®ååšè§ã®åã¯çŽè§ã§ããããšãªã©ãã, $\\Gamma$ ã®ååŸã $R$ ãšããã°\r\n$$a^2+c^2=(2R)^2=b^2+d^2$$\r\näžæ¹ã§Ptolemyã®å®çãã $ac+bd=ef$ ã§ãããã,\r\n$$8R^2=a^2+b^2+c^2+d^2=(a+c)^2+(b+d)^2-2ef=17385$$\r\nãã£ãŠæ±ããé¢ç©ã¯ $R^2\\pi$ ã§ããããšãã, 解çãã¹ãå€ã¯ $\\textbf{17393}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc042/editorial/1702"
}
] | ãå $\Gamma$ ã«å
æ¥ããåè§åœ¢ $ABCD$ ã¯, é¢ç©ã $1234$ ã§ãã, ããã«ä»¥äžã®æ¡ä»¶ãã¿ãããŸãïŒ
$$AB+CD=100,\quad BC+DA=111,\quad AC\perp BD$$
ãã®ãšã $\Gamma$ ã®é¢ç©ã¯, äºãã«çŽ ãªæ£ã®æŽæ° $m,n$ ãçšã㊠$\dfrac{m}{n}\pi$ ãšè¡šãããŸã. $m+n$ ã解çããŠãã ãã. |
OMC041 (for beginners) | https://onlinemathcontest.com/contests/omc041 | https://onlinemathcontest.com/contests/omc041/tasks/1578 | A | OMC041(A) | 100 | 222 | 228 | [
{
"content": "ãæ¥ç« ã®çŽåŸã¯ $100Ã2\\/3Ã3\\/5=40\\\\,[\\text{cm}]$ ã§ãããã, æ¥ç« ã®é¢ç©ã¯ $20Ã20ÃÏ=400Ï\\\\,[\\text{cm}^{2}]$ã§ããããã㧠$3.1415\\lt\\pi\\lt3.1416$ ãã $1256.6\\lt S\\lt 1256.64$ ãæç«ãããã, 解çãã¹ãå€ã¯ $\\textbf{1257}$ ã§ããã",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc041/editorial/1578"
}
] | ã**åœæåã³åœæã«é¢ããæ³åŸ**ã«ãããš, æ¥ç« æ (çŸè¡ã®æ¥æ¬ã®åœæ) ã®çžŠã®é·ãã¯æšªã®é·ãã® $2\/3$ ã§, æ¥ç« (åœæäžå€®ã«ããçŽ
è²ã®å) ã®çŽåŸã¯çžŠã®é·ãã® $3\/5$ ã§ãããšå®ããããŠããŸã. ãã®æ³åŸã«åŸã£ãŠ**暪ã®é·ã**ãå³å¯ã« $1\\,\text{m}$ ã§ããæ¥ç« æãäœããš, æ¥ç« ã®éšåã®é¢ç©ã¯ $S\\,\text{cm}^{2}$ ã«ãªããŸã. $S$ ã**å°æ°ç¬¬äžäœã§åæšäºå
¥ããŠ**æŽæ°å€ã§è§£çããŠãã ãã.\
ãããã§, ååšç $\pi$ ã«ã€ã㊠$3.1415\lt \pi\lt 3.1416$ ãçšããŠãæ§ããŸãã. |
OMC041 (for beginners) | https://onlinemathcontest.com/contests/omc041 | https://onlinemathcontest.com/contests/omc041/tasks/1579 | B | OMC041(B) | 200 | 208 | 226 | [
{
"content": "ãçžå ã»çžä¹å¹³åã®é¢ä¿ãã $p+q+r\\geq 3\\sqrt[3]{pqr}=147$ ã§ãã, çå·ã¯ $p=q=r=49$ ã§ã®ã¿æç«ããããšãã, $p+q+r\\geq 148$ ã§ãã. ããã« $p+q+r=148$ ãšãããš, $p,q,r$ ã®å°ãªããšãäžã€ã¯ $2$ ã§ãã, ãã®ãšã倧å°é¢ä¿ãã¿ãããªãããšã容æã«ããã.\\\r\nãéã« $(p,q,r)=(43,53,53)$ ã®ãšã $pqr\\geq 7^6$ ã〠$p+q+r=149$ ã§ãã, æ±ããæå°å€ã¯ $\\textbf{149}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc041/editorial/1579"
}
] | ã**çŽ æ°** $p,q,r$ ã $pqr\geq 7^{6}$ ãã¿ãããšã, $p+q+r$ ããšãããæå°å€ãæ±ããŠãã ãã. |
OMC041 (for beginners) | https://onlinemathcontest.com/contests/omc041 | https://onlinemathcontest.com/contests/omc041/tasks/1580 | C | OMC041(C) | 300 | 156 | 192 | [
{
"content": "ãæ¡ä»¶ãã¿ããå¡ãæ¹ã«ã€ããŠ, ãã¹ãŠã®è²ãå転ãããŠããã¯ãæ¡ä»¶ãã¿ããããšãã, äºã€ç®ã®æ¡ä»¶ã¯ã巊端ã®ã¿ã€ã«ã¯èµ€è²ã«å¡ãããŠããããšçœ®ãæããŠããã. ãã®ãšã, é£ãåã $2$ æã®ã¿ã€ã«ã®çµ $15$ åããä»»æã« $4$ åãéžã¶ããšã§, æ¡ä»¶ãã¿ããå¡ãæ¹ãããããå¯äžã€å®ãŸããã, 解çãã¹ãå€ã¯ ${}\\_{15}\\mathrm{C}\\_{4}=\\textbf{1365}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc041/editorial/1580"
}
] | ã暪äžåã« $16$ æ䞊ãã ã¿ã€ã«ã, 以äžã®æ¡ä»¶ãã¿ããããã«èµ€ãšéã® $2$ è²ã§å¡ããŸãïŒ
- é£ãåã $2$ æã®ã¿ã€ã«ã®çµã§ãã£ãŠ, ç°ãªãè²ã§å¡ãããŠãããããªãã®ãã¡ããã© $4$ ã€ãã.
- å·Šãã $7$ æç®ã®ã¿ã€ã«ã¯èµ€è²ã«å¡ãããŠãã.
å転ãå転ã«ãã£ãŠäžèŽãããããªå¡ãæ¹ãåºå¥ãããšã, ããåŸãå¡ãæ¹ã¯äœéããããŸããïŒ |
OMC041 (for beginners) | https://onlinemathcontest.com/contests/omc041 | https://onlinemathcontest.com/contests/omc041/tasks/1299 | D | OMC041(D) | 400 | 147 | 162 | [
{
"content": "ãæ¡ä»¶ãã, æ£æŽæ° $n$ ã«ãã£ãŠ $x+1\\/x=2n$ ãšè¡šãã°, $x=n\\pm\\sqrt{n^2-1}$ ã§ãã.\\\r\nã$x=n+\\sqrt{n^2-1}$ ã®ãšã, $n-1\\leq\\sqrt{n^2-1}\\lt n$ ããæ¡ä»¶ã¯\r\n$$ (n-1)+0.08 \\leq \\sqrt{n^2-1} \\lt (n-1)+0.09 \\implies 1.0\\lt n\\lt1.9 $$\r\nã$x=n-\\sqrt{n^2-1}$ ã®ãšã, äžãšåæ§ã« $x\\leq 1$ ãããããã, æ¡ä»¶ã¯\r\n$$n-0.09\\lt \\sqrt{n^2-1}\\leq n-0.08 \\implies 5.6\\lt n\\lt 6.3$$\r\nãããã $n=6$ ã®ã¿ãé©ã, ãã®ãšã $x=6-\\sqrt{35}$ ã§ãã.\\\r\nã以äžãã, 解çãã¹ãå€ã¯ç¹ã« $\\textbf{41}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc041/editorial/1299"
}
] | ã æ£ã®å®æ° $x$ ã, 以äžã®æ¡ä»¶ããšãã«ã¿ãããŸã.
- $x$ ã®å°æ°éšå㯠$0.08$ ä»¥äž $0.09$ æªæºã§ãã.
- $x+\dfrac{1}{x}$ ã¯æŽæ°ã§ãã, ç¹ã«å¶æ°ã§ãã.
ãã®ãã㪠$x$ ã®ç·åã¯, æ£æŽæ° $a,b$ ã«ãã£ãŠ $a-\sqrt{b}$ ãšè¡šãããã®ã§, $a + b$ ã解çããŠãã ãã. |
OMC040 (for experts) | https://onlinemathcontest.com/contests/omc040 | https://onlinemathcontest.com/contests/omc040/tasks/242 | A | OMC040(A) | 200 | 209 | 212 | [
{
"content": "ã$10^{10}$ ã¯æ£ã®çŽæ°ã $121$ åæã€. $d$ ãçŽæ°ãªãã° $10^{10}\\/d$ ãçŽæ°ã§ãã, $10^{10}$ ã¯å¹³æ¹æ°ã§ããããšã«çæããã°, ãã®æ£ã®çŽæ°ã®ç·ç©ã¯ $(10^{10})^{60}\\times10^{5}=10^{605}$ ã§ãã, ãã㯠$2$ 㧠$\\textbf{605}$ åå²ãåãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc040/editorial/242"
}
] | ã$10^{10}$ ã®æ£ã®çŽæ°ã®ç·ç©ã¯ $2$ ã§ã¡ããã©äœåå²ãåããŸããïŒ |
OMC040 (for experts) | https://onlinemathcontest.com/contests/omc040 | https://onlinemathcontest.com/contests/omc040/tasks/245 | B | OMC040(B) | 300 | 65 | 195 | [
{
"content": "ã$P,X$ ã®äœçœ®ãã¯ãã«ã $p,x$ ãªã©ãšè¡šãã°, æäœ $f_X$ 㯠$p$ ã $-p+2x$ ã«ç§»ã. ãããã£ãŠ, äŸãã° $f_A,f_B,f_C,\\cdots$ ã®é ã«æœãã° $p$ ã¯\r\n$$p\\mapsto -p+2a\\mapsto p-2a+2b\\mapsto -p+2a-2b+2c\\mapsto\\cdots$$\r\nãšé·ç§»ãã. ããã«çæããã°, æ¡ä»¶ã¯åæäœãå¥æ°çªç®ãšå¶æ°çªç®ã«äžåºŠãã€æœãããšãšåå€ã§ãã. ãããã£ãŠ, æ±ããå Žåã®æ°ã¯ $(5!)^2=\\textbf{14400}$ éãã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc040/editorial/245"
}
] | ã空éå
ã« $6$ ç¹ $A,B,C,D,E,P$ ããã. ç¹ $P$ ãç¹ $X$ ã«é¢ããŠå¯Ÿç§°ã«ç§»åããæäœã $f_X$ ã§è¡šããŸã.\
ã$f_A,f_B,f_C,f_D,f_E$ ããããã $2$ åãã€æœãæ¹æ³ã§ãã£ãŠ, $6$ ç¹ã®é
眮ã«ããã $P$ ãå¿
ãæåã®äœçœ®ã«æ»ã£ãŠãããããªé åºã¯äœéããããŸããïŒ |
OMC040 (for experts) | https://onlinemathcontest.com/contests/omc040 | https://onlinemathcontest.com/contests/omc040/tasks/246 | C | OMC040(C) | 400 | 134 | 155 | [
{
"content": "ã察è§ç·ã®äº€ç¹ã $E$ ãšããã°, $BCE$ ãš $CDE$ ã¯çžäŒŒãªçŽè§äžè§åœ¢ã§ãã. ãããã£ãŠ, $BE=x,DE=y$ ãšããã° $CE=\\sqrt{xy},AE=x+y-\\sqrt{xy}$ ã§ãããã, äžè§åœ¢ $ADE$ ã«ãããŠäžå¹³æ¹ã®å®çãã\r\n$$(x+y-\\sqtt{xy})^2+y^2=(x+y)^2$$\r\nãããæŽçã㊠$y=4x$ ãåŸã. äžæ¹ã§äžè§åœ¢ $ABE$ ã«çç®ããã°, $AP=5x\\/3$ ã容æã«ããããã. $x=6$ ã§ãã. 以äžãã, æ±ããé¢ç©ã¯ $AC\\times BD\\/2=\\textbf{450}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc040/editorial/246"
}
] | ã$AC=AD=BD$ ãªãåžåè§åœ¢ $ABCD$ ã«ãããŠ, è§ $C$ ã¯çŽè§ã§ãã, $2$ æ¬ã®å¯Ÿè§ç·ã¯çŽè§ã§äº€ãããŸã. ç·å $AC$ äžã®ç¹ $P$ ã $AP=BP=10$ ãã¿ãããšã, $ABCD$ ã®é¢ç©ãæ±ããŠãã ãã. |
OMC040 (for experts) | https://onlinemathcontest.com/contests/omc040 | https://onlinemathcontest.com/contests/omc040/tasks/267 | D | OMC040(D) | 600 | 30 | 85 | [
{
"content": "ã$e=a\\/3,f=c\\/3$ ãšããã°, æ¡ä»¶ã¯ $x$ ã®æ¹çšåŒ\r\n$$f(x)=x^5+ex^4+bx^3+3x^2+fx+d=0$$\r\nã®è€çŽ æ°è§£ã®çµ¶å¯Ÿå€ããã¹ãŠ $1$ ã§ããããšãšåå€ã§ãã. ãã㧠$f$ ã¯å¥æ°æ¬¡ã§ããããšãã, (éè€åºŠèŸŒã¿ã§) å®æ°æ ¹ãå¥æ°åãã€ãã, $f$ 㯠$x\\pm1$ ã®äžæ¹ã§å¥æ°åå²ãã. ãŸãèæ° $\\alpha$ ãæ ¹ã§ãããšã, $\\overline \\alpha=\\alpha^{-1}$ ãæ ¹ã§ãã, $f$ ã¯\r\n$$(x-\\alpha)(x-\\overline \\alpha)=x^2-2\\mathrm{Re}(\\alpha)+1$$\r\nã§å²ãåãã. ç¹ã« $d=\\pm1$ ã§ãã.\\\r\nã$f(x)$ ã $x-1$ ã§å¥æ°åå²ãåãããšã, $d=-1$ ã§ãã, $\\alpha$ ãæ ¹ãªãã° $\\alpha^{-1}$ ãæ ¹ã§ããããšãã\r\n$$x^5f\\left(\\displaystyle\\frac 1x\\right)=-f(x)$$\r\nããããä¿æ°ãæ¯èŒã㊠$b=-3,f=-e$ ã§ãã,\r\n$$f(x)=(x-1)(x^4+(e+1)x^3+(e-2)x^2+(e+1)x+1)$$\r\nãã㧠$t=x+1\\/x$ ãšããã°, $t^2+(e+1)t+e-4=0$ ãèããããšã«ãªã. ããã $|t|\\leq 2$ ãªãå®æ°è§£ã®ã¿ããã€ããšãå¿
èŠååæ¡ä»¶ã§ããããšã容æã«ãããã, 解ã®é
眮åé¡ã解ãã°ãã®ãã㪠$e$ ã¯ååšããªã.\\\r\nã$f(x)$ ã $x+1$ ã§å¥æ°åå²ãåãããšããåæ§ã«, $b=3,d=1,e=f$ ãã\r\n$$f(x)=(x+1)(x^4+(e-1)x^3-(e-4)x^2+(e-1)x+1)$$\r\nã§, $t$ ã®æ¹çšåŒ $t^2+(e-1)t-e+2=0$ ãèããããšã«åž°çããã. åæ§ã«è§£ã®é
眮åé¡ã解ãã°,\r\n$$\\dfrac{5}{3}\\lt 2\\sqrt{2}-1\\leq e \\leq\\dfrac{8}{3}$$\r\nãããã $a=3e$ ãšããŠããåŸããã®ã¯ $6,7,8$ ã§ãã, ããããã«ã€ããŠ\r\n$$(a,b,c,d)=(6,3,6,1),(7,3,7,1),(8,3,8,1)$$\r\nã以äžãã, æ±ããç·ç©ã¯ $108\\times 147\\times 192=\\textbf{3048192}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc040/editorial/267"
}
] | ãæŽæ°ã®çµ $(a,b,c,d)$ ã«å¯ŸããŠ, 以äžã® $x$ ã®äºæ¬¡æ¹çšåŒã®è€çŽ æ°è§£ã¯ãã¹ãŠçµ¶å¯Ÿå€ã $3$ ã§ãã.
$$x^5+ax^4+9bx^3+81x^2+27cx+243d=0$$
ãã®ãããªçµãã¹ãŠã«å¯ŸããŠ, å€ $a\times b\times c\times d$ ã®**ç·ç©**ãæ±ããŠãã ãã. \
ããã ã, è€çŽ æ° $a+bi$ ($a,b$ ã¯å®æ°)ã®**絶察å€**㯠$\sqrt{a^2+b^2}$ ã§å®çŸ©ãããŸã. |
OMC040 (for experts) | https://onlinemathcontest.com/contests/omc040 | https://onlinemathcontest.com/contests/omc040/tasks/253 | E | OMC040(E) | 700 | 36 | 87 | [
{
"content": "ãæ®ã $2$ æ°ã $p\\lt q$ ã§ãããšãããš, æããã«å
ã« $q$ ãåãã¹ãã§ããããšã«çæãã.\\\r\nãäžè¬ã« $2000$ ã $2n(\\geq 4)$ ãšãã, $2n-2$ ãå
ã«åã£ãæ¹ãå¿
åã§ããããšã瀺ã. ããªãã¡, $m=2n-2$ ã®ãšã $X=A$, ããã§ãªããšã $X=B$ ãšã, $Y$ ã $X$ ã§ãªãæ¹ãšããã°, $X$ ãå¿
åã§ããããšã瀺ã. $X$ ã¯æ®ã $2$ æ°ãŸã§ã¯ä»¥äžã®æŠç¥ãåããã®ãšãã.\r\n\r\n- æ®ãã®æ°ã®ãã¡ $2n-2$ 以äžã§æ倧ã®ãã®ãéžã¶.\r\n\r\n(i) $Y$ ã $2n-1,2n$ ã®ãããããåããªããšã, $M_X\\gt M_Y$ ããã³ $(p,q)=(2n-1,2n)$ ã«çæããã°\r\n$$pM_X-qM_Y\\geq(2n-1)(2n-2)-2n(2n-3)=2\\gt0$$\r\nãã $X$ ã®å¿
åã§ãã. \r\n\r\n(ii) $Y$ ã $2n-1,2n$ ããã¡ããã©äžã€ãåããšã, $M_X\\lt M_Y$ ããã³ $p\\leq n-1,q\\geq 2n-1$ ã«çæããã°\r\n$$qm_X-pm_Y\\geq(2n-1)(2n-2)-(n-1)\\times2n=2(n-1)^2\\gt 0$$\r\nãã $X$ ã®å¿
åã§ãã.\r\n\r\n(iii) $Y$ ã $2n-1,2n$ ã®äž¡æ¹ãåããšã, $M_X\\lt M_Y$ ããã³ $p\\lt q\\lt n$ ã«çæããã°\r\n$$qM_X-pM_Y\\geq q(2n-2)-(q-1)\\times2n=2(n-q)\\gt0$$\r\nãã $X$ ã®å¿
åã§ãã. \r\n\r\nã以äžãã, æ±ããç·åã¯ä»¥äžã®ããã«èšç®ã§ãã.\r\n$$\\sum_{m=1}^{2000}f(m)=\\sum_{m=1}^{2000}m-2\\times1998=\\textbf{1997004}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc040/editorial/253"
}
] | ã$A,B$ ã®äºäººã以äžã®ã«ãŒã«ã«åºã¥ã, $2000$ 以äžã®æ£æŽæ°äžã€ãã€ãåãåãã²ãŒã ãè¡ããŸãïŒ
- æ®ã $2$ æ°ã«ãªããŸã§ã¯, $A$ ãå
æ»ãšããŠäº€äºã«æ°ãäžã€ãã€éžãã§åã.
- æ®ã $2$ æ°ã«ãªã£ãæç¹ã§, $A,B$ ã®åã£ã $999$ æ°ã®æ倧å€ããããã $M_A,M_B$ ãšãã.
- $M_A\lt M_B$ ãªãã° $A$ ã, $M_A\gt M_B$ ãªãã° $B$ ãäžæ¹ã®æ°ãéžãã§åã, ããäžæ¹ãæåŸã®äžã€ãåã.
- æåŸã« $A,B$ ãåã£ãæ°ããããã $a,b$ ãšãã.
- $aM_A\gt bM_B$ ãªãã° $A$ ã®åã¡, $aM_A\lt bM_B$ ãªãã° $B$ ã®åã¡, $aM_A=bM_B$ ãªãã°åŒãåããšãã.
ãããã§, $2000$ 以äžã®æ£æŽæ°ã«å¯ŸããŠå®çŸ©ãããé¢æ° $f$ ã次ã®ããã«å®ããŸãïŒ
- $A$ ãæåã« $m$ ãæžãããã«ãŒããåã£ãã®ã¡, äž¡è
ãåã¡ãç®æããŠæåãªè¡åãåãç¶ãããšä»®å®ãããšã, åž°çµã $B$ ã®åã¡ãªãã° $f(m)=m$, $A$ ã®åã¡ãªãã° $f(m)=-m$, åŒãåããªãã° $f(m)=0$ ãšãã.
ãã®ãšã, $m=1,2,\cdots,2000$ ã«ã€ã㊠$f(m)$ ã®ç·åãæ±ããŠãã ãã. |
OMC040 (for experts) | https://onlinemathcontest.com/contests/omc040 | https://onlinemathcontest.com/contests/omc040/tasks/277 | F | OMC040(F) | 900 | 11 | 17 | [
{
"content": "ã$x$ ã®äºæ¬¡æ¹çšåŒ $x^2-x-N=0$ ã¯çžç°ãªãäºã€ã®å®æ°è§£ããã€ãã, ãããã $\\alpha\\gt\\beta$ ãšããã°, 以äžãæç«ããããšãããã. ãã ã, 解ãšä¿æ°ã®é¢ä¿ãã $\\alpha+\\beta=1$ ã§ããããšãçšãã.\r\n$$a_n=\\dfrac{\\alpha^n-\\beta^n}{\\alpha-\\beta}$$\r\n----\r\n**è£é¡1.**ã$a_{n+m}=a_{n}a_{m+1}+Na_{n-1}a_{m}$.\\\r\n**蚌æ.**ã$\\alpha\\beta=-N$ ã«çæããã°, straightforwardãªåŒå€åœ¢ã§ãã.\r\n----\r\n**è£é¡2.**ã$a_{n}$ ãš $a_{n+1}$ ã¯äºãã«çŽ ã§ãã.\\\r\n**蚌æ.**ã$a_{n}$ ã¯åžžã« $N$ ãšäºãã«çŽ ã§ããããšã«çæããã°, åž°çŽçã«ç€ºããã.\r\n----\r\n**è£é¡3.**ã$\\textrm{gcd}(a_{n},a_{m})=a_{\\textrm{gcd}(n,m)}$ ã§ãã. ç¹ã« $n\\mid m\\implies a_n\\mid a_m$ ã§ãã.\\\r\n**蚌æ.**ãè£é¡2ã«çæããã°, Euclidã®äºé€æ³ã®èŠé ã§è£é¡1ãé 次é©çšããããšã§ç€ºããã.\r\n----\r\n**è£é¡4.**ãæ£æŽæ°ãçŽ æ° $p$ ã§å²ãåããåæ°ã $v_p$ ã§è¡šã. $a_n$ ã $p$ ã§å²ãåãããšã, ä»»æã® $m$ ã«ã€ããŠ\r\n$$v_p(a_{nm})=v_p(a_n)+v_p(m)$$\r\nãã ã, $p=2$ ã®ãšã㯠$a_n$ ã $4$ ã§å²ãåããããšãèŠè«ãããã®ãšãã.\r\n\r\n**蚌æ.**ããŸã $m=p\\neq 2$ ã®å Žåã«ç€ºã. $b=v_p(a_n)$ ã«ã€ã㊠$a_n=cp^{b}$ ãšããã°,\r\n$$\\begin{aligned}\r\na_{np} &=\\frac{\\alpha ^{np} -\\beta ^{np}}{\\alpha -\\beta } \\\\\\\\\r\n&=\\frac{\\alpha ^{np} -\\left( \\alpha ^{n} -\\alpha ^{n} +\\beta ^{n}\\right)^{p}}{\\alpha -\\beta }\\\\\\\\\r\n&=\\frac{\\alpha ^{np} -\\left( \\alpha ^{n} -cp^{b}( \\alpha -\\beta )\\right)^{p}}{\\alpha -\\beta }\\\\\\\\\r\n&={}\\_{p}\\mathrm{C}\\_{1}cp^{b} \\alpha ^{n( p-1)} - {}\\_p\\mathrm{C}\\_{2} c^2p^{2b} \\alpha ^{n( p-2)}( \\alpha -\\beta ) +\\cdots+c^{p} p^{bp}( \\alpha -\\beta )^{p-1}\r\n\\end{aligned}$$\r\n$\\alpha$ ãš $\\beta$ ãå
¥ãæ¿ããŠãæç«ãããã, ãããã蟺ã
足ãåãããããšã§\r\n$$2a_{np} ={}\\_{p}\\mathrm{C}\\_{1} cp^{b}\\left( \\alpha ^{n( p-1)} +\\beta ^{n( p-1)}\\right) +{}\\_{p}\\mathrm{C}\\_{3} c^{3} p^{3b}\\left( \\alpha ^{n( p-3)} +\\beta ^{n( p-3)}\\right)( \\alpha -\\beta )^{2} +\\cdots+2c^{p} p^{bp}( \\alpha -\\beta )^{p-1}$$\r\nããã㧠$d_{k} =\\alpha ^{k} +\\beta ^{k}=\\dfrac{a_{2k}}{a_k}$ ããã³ $e_k=(\\alpha-\\beta)^{2k}=(1+4N)^{k}$ ã¯ãšãã«æŽæ°ã§ãã,\r\n$${d\\_{k}}^{2} =e_{1} {a\\_{k}}^{2} +4(-N)^{k}$$\r\nä»®å® $p\\mid a_n$ ãã $N$ 㯠$p$ ã§å²ãåããªããã, $p\\mid a_k$ ãªãã° $d_k$ 㯠$p$ ã§å²ãåããªã. äžåŒã¯\r\n$$2a_{np} ={}\\_{p}\\mathrm{C}\\_{1} cp^{b} d_{n( p-1)} +{}\\_{p}\\mathrm{C}\\_{3} c^{3} p^{3b} d_{n( p-3)} e_{1} +...+2c^{p} p^{bp} e_{\\frac{p-1}{2}}$$\r\nãšæžãæãããã. $3b\\geq b+2$ ãã ${}\\_{p} \\mathrm{C}\\_{3} c^{3} p^{3b} d_{n( p-3)} e_{1} +...+2c^{p} p^{bp} e_{\\frac{p-1}{2}}$ 㯠$p$ 㧠$b+2$ å以äžå²ãåããäžæ¹ã§, ${}\\_{p}\\mathrm{C}\\_{1} cp^{b} d_{n( p-1)}$ 㯠$p$ 㧠$b+1$ åããå²ãåããªããã, $v_{p}( a_{np}) =v_{p}( a_{n}) +1$ ãæç«ãã.\\\r\nã$m=p=2$ ã®ãšã, äžãšåæ§ã« $N$ ã¯å¥æ°ã§ãã, $e_{1} {a_{n}}^{2} +4(-N)^{n}$ ã $2$ ã§ã¡ããã© $2$ åå²ãåããããšãã $d_n$ 㯠$2$ ã§ã¡ããã© $1$ åå²ãåãã. ãã£ãŠ $v_{2}( a_{2n})=v_2(a_nd_n)=v_{2}( a_{n})+1$ ããã¯ãæç«ãã.\\\r\nããç¶ããŠ, $m$ ã $p$ ã§å²ãåããªããšã, $v_p(a_{nm})\\gt v_p(a_n)$ ã§ãããšä»®å®ãã.ãã®ãšã, $a_{\\gcd{(nm,np)}}=a_n$ ã§ããäžæ¹ã§, 以äžããççŸãã. ããªãã¡, $v_p(a_{nm})=v_p(a_n)+v_p(m)$ ãããã§ãæç«ãã.\r\n$$v_p(\\gcd(a_{nm},a_{np}))=\\min(v_p(a_{nm}),v_p(a_{np}))\\gt v_p(a_n)$$\r\nããããçšããŠ, äžè¬ã® $m$ ã«ã€ããŠ, $k=v_p(m)$ ã®åž°çŽæ³ã«ãã£ãŠç€ºã. ãã $k$ ã§æç«ãä»®å®ã, $m=cp^{k+1}$ ($c$ 㯠$p$ ã§å²ãåããªã) ãšãããš, $v_p(a_{nm})=v_p(a_{ncp^k})+1=v_p(a_{n})+v_p(cp^k)+1=v_p(a_n)+v_p(m)$ ã§ãã.\r\n----\r\n**è£é¡5.**ã$2$ 以äžã®æŽæ° $b,p$ ã«å¯Ÿã, $a_{bp}\\gt p a_b$ ãæç«ãã.\\\r\n**蚌æ.**ã$b=2$ ã®ãšãæç«ã容æã«ããã. ãã $b\\geq 2$ ã§æç«ãä»®å®ãããš, $\\\\{a_n\\\\}$ ã®å
¬å·®ãå調å¢å ã§ããããšãã\r\n$$a_{(b+1)p}-a_{bp}=(a_{(b+1)p}-a_{(b+1)p-1})+\\cdots+(a_{bp+1}-a_{bp}) \\geq p(a_{b+1}-a_{b})$$\r\nãã $b+1$ ã§ãæç«ã, 以äžãã瀺ããã.\r\n----\r\nã以äž, ææã® $a_n=p^m$ ãªãçµã«ã€ããŠèãã. $n$ ã®æå°ã®çŽ å æ°ã $c$ ãšã, $n=bc$ ãšããã°, è£é¡3ãã $a_b=p^k$ ãšããã. $a_b\\neq 1,2$ ã®ãšã, è£é¡4ãã $m=k+v_p(c)$ ã§ãã, $c=p$ ãšãªãã»ããªã. ããã, ããã¯è£é¡5ã«ççŸãããã, $a_b=1,2$ ã§ãã. ãã㧠$a_b=2\\iff (N,b)=(1,3)$ ã§ãã, $n$ ãšããŠããåŸãã®ã¯ $6,9$ ã®ã¿ã§ãã. å
·äœçã«èšç®ããã°, $a_6=8,a_9=34$ ããåè
ã®ã¿ãé©ãããã, ä»¥äž $a_b=1$ ãšããŠãã.\\\r\nããã®ãšã $b=2$ ã§, $n$ ãšããŠããåŸãã®ã¯ $4$ ã®ã¿ã§ãã. ãã㧠$a_4=2N+1$ ãã, $p\\leq 79$ ã®ç¯å²ã§èããã°ååã§ãã. å
·äœçã«ã¯, $29\\leq p\\leq 79$ ãªã $13$ åã§ã¯ $p^3$ ã®ã¿, $p=17,19,23$ ã§ã¯ $p^3$ ãš $p^4$ ãé©ã, $p= 3,5,7,11,13$ ã§ã¯äžããããå€ãããããã $10,6,4,3,3$ åãé©ãã. 以äžãã, æ±ããåæ°ã¯\r\n$$ 1+13+2\\times 3+10+6+4+3+3=\\textbf{46}. $$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc040/editorial/277"
}
] | ã$N$ ãæ£æŽæ°ãšããŸã. æ°å $\lbrace a_n\rbrace_{n=1,2,\cdots}$ ã
$$a_1=a_2=1,\ \ a_{n+2}=a_{n+1}+Na_{n}\ \ (n=1,2,\cdots)$$
ã§å®ãããšã, $a_n=p^m$ ãªã**åææ°** $n$, **çŽ æ°** $p$, $3$ **以äžã®æŽæ°** $m$ ã®çµã®åæ°ã $f(N)$ ãšããŸã. ãã®ãšã
$$f(1)+f(2)+\cdots+f\left(\dfrac{3^{12}-1}{2}\right)$$
ãæ±ããŠãã ãã. ãã ã, ããããå°æ°ç¬¬ $4$ äœã§åæšäºå
¥ããå€ãšããŠ, 以äžãä¿èšŒãããŸã.
$$\log_{5}{3}\approx 0.683,\ \ \log_{7}{3}\approx 0.565,\ \ \log_{11}{3}\approx 0.458,\ \ \log_{13}{3}\approx 0.428$$ |
OMC039 (for beginners) | https://onlinemathcontest.com/contests/omc039 | https://onlinemathcontest.com/contests/omc039/tasks/1213 | A | OMC039(A) | 100 | 204 | 204 | [
{
"content": "ãäºã€ã®ç·åã¯å解ã§ãã. ããªãã¡ \r\n$$\\sum_{i=1}^{9}\\sum_{j=1}^{9}ij=\\sum_{i=1}^{9}\\left(i\\left(\\sum_{j=1}^{9}j\\right)\\right)=\\textbf{2025}$$\r\nããªã, 以äžã®ããã«è§£éããŠãè¯ã.\r\n$$\\sum_{i=1}^{9}\\sum_{j=1}^{9}ij=\\left(\\sum_{i=1}^{9}i\\right)\\times\\left(\\sum_{j=1}^{9}j\\right)=\\textbf{2025}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc039/editorial/1213"
}
] | ãä¹ä¹ã®è¡šã«ç©ãšããŠçŸãã $81$ åã®æ°ã®ç·åãæ±ããŠãã ãã.\
ã圢åŒçã«ã¯, 以äžã§äžããããç·åãèšç®ããŠãã ããïŒ
$$\sum_{i=1}^{9}\sum_{j=1}^{9}ij$$ |
OMC039 (for beginners) | https://onlinemathcontest.com/contests/omc039 | https://onlinemathcontest.com/contests/omc039/tasks/2 | B | OMC039(B) | 200 | 179 | 198 | [
{
"content": "ã$A,B,C$ ããã³ $D,E,F$ ã¯ããããçžç°ãªã $3$ è²ã§å¡ãããå¿
èŠããã. $A,B,C$ ã®å¡ãæ¹ãå®ãããšã, é©ãã $D,E,F$ ã®å¡ãæ¹ã $3$ éãããåŸããã, $M=3!\\times 3=\\textbf{18}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc039/editorial/2"
}
] | ãå¹³é¢äžã«æ£å
è§åœ¢ $ABCDEF$ ããã, ç¹ $A$ ãš $C$ , ç¹ $D$ ãš $F$ ãããããç·åã§çµã°ããŠããŸã. 以äžã®æ¡ä»¶ãã¿ããããã« $6$ é ç¹ãçœ, é», 赀㮠$3$ è²ã§å¡ãåããæ¹æ³ã¯ $M$ éããããŸã. $M$ ã解çããŠãã ãã.
- 蟺ãŸãã¯ç·åã§çµã°ããŠãã $2$ é ç¹ã¯ç°ãªãè²ã§å¡ã.
ããã ã, å転ãè£è¿ãã§äžèŽãããã®ãåºå¥ããŠæ°ããŸã. |
OMC039 (for beginners) | https://onlinemathcontest.com/contests/omc039 | https://onlinemathcontest.com/contests/omc039/tasks/1568 | C | OMC039(C) | 300 | 144 | 170 | [
{
"content": "ãäžå¹³æ¹ã®å®çãã\r\n$$12^2=AE^2+BE^2,\\quad 13^2=CE^2+DE^2$$\r\nã§ãããã, CauchyâSchwarzã®äžçåŒããã³æ¹ã¹ãã®å®çãã\r\n$$12^2\\times 13^2=(AE^2+BE^2)(CE^2+DE^2)â¥(AE\\times CE+BE\\times DE)^2=(2\\times AE\\times CE)^2$$\r\nãããã $AE\\times CE\\leq 78$ ãæãç«ã€. éã«\r\n$$AE=BE=6\\sqrt{2},\\quad CE=DE=\\cfrac{13\\sqrt{2}}{2}$$\r\nã®ãšãçå·ãæç«ãããã, 以äžããæ±ããæ倧å€ã¯ $\\textbf{78}$ ã§ããã",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc039/editorial/1568"
}
] | ãåã«å
æ¥ããåè§åœ¢ $ABCD$ ã«ãããŠ, $2$ æ¬ã®å¯Ÿè§ç·ã¯ $E$ ã§åçŽã«äº€ãããŸã. $AB=12,CD=13$ ã§ãããšã, $AE\times CE$ ã®ãšãåŸãæ倧å€ãæ±ããŠãã ãã. |
OMC039 (for beginners) | https://onlinemathcontest.com/contests/omc039 | https://onlinemathcontest.com/contests/omc039/tasks/262 | D | OMC039(D) | 400 | 70 | 155 | [
{
"content": "**è£é¡.**ã$n$ ãäºé²æ³è¡šèšã«ãã£ãŠ\r\n$$n=2^{a_k} +2^{a_{k-1}}+ \\dots +2^{a_2}+2^{a_1}\\ (a_{k}\\gt a_{k-1}\\gt\\cdots\\gt a_2\\gt a_1 \\geq 0)$$\r\nãšè¡šããããšã, $n!$ ã $2$ ã§å²ãåããæ倧ã®åæ° $f(n)$ 㯠$n-k$ ã§ãã.\r\n\r\n**蚌æ.**ã$n=1$ ã®ãšãæããã«æç«ãããã, 以äžãã $m\\geq 2$ ã«ã€ã㊠$n\\lt m$ ã§æç«ãä»®å®ã, $m=n$ ã§æç«ã瀺ãã°ãã. $m$ ãå¶æ°ã®ãšã, åž°çŽæ³ã®ä»®å®ãã $f(m\\/2)=m\\/2-k$ ã§ãããã, Legendreã®å®çãã\r\n$$f(m)=\\dfrac{m}{2}+f\\left(\\dfrac{m}{2}\\right)=m-k$$\r\nãåŸã. $m$ ãå¥æ°ã®å Žåãåæ§ã§ãã. ãªã, $f(m)$ ã $f(m-1)$ ã«ãã£ãŠè¡šãæ¹éã§ã瀺ããã. (蚌æçµ)\r\n\r\nããããã, $2^{100}$ æªæºã®è¯ãæ°ãšã¯\r\n$$ n = 2^{a_4}+2^{a_3}+2^{a_2}+2^{a_1}\\ \\ (99\\geq a_4\\gt a_3\\gt a_2\\gt a_1\\geq0)$$\r\nãšè¡šããããã®ã«ä»ãªãã, ãã®åæ°ã¯ ${}\\_{100}\\mathrm{C}\\_{4}=\\textbf{3921225}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc039/editorial/262"
}
] | ãæ£ã®æŽæ° $n$ ã«ã€ããŠ, $n!$ ã $2$ ã§å²ãåããæ倧ã®åæ°ã $n-4$ ã§ãããšã, ããã**è¯ã**æ°ãšåŒã³ãŸã.\
ã$2^{100}$ æªæºã®è¯ãæ°ã¯ããã€ãããŸããïŒ |
OMC038 | https://onlinemathcontest.com/contests/omc038 | https://onlinemathcontest.com/contests/omc038/tasks/1209 | A | OMC038(A) | 100 | 214 | 223 | [
{
"content": "ã$3$ æ¬ã®èŸºãäŒãã®ãæçã§ãã. æ£äºåé¢äœã®åé ç¹ã¯ $5$ æ¬ã®èŸºãšæ¥ç¶ããŠãã, $1$ æ¬ç®ã®èŸºãåºå®ãããšã $2$ æ¬ç®ã®èŸºãšããŠéžã¹ããã®ã¯ $2$ æ¬ã§ãããã, æ±ããçµè·¯ã¯ $\\textbf{10}$ éãååšãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc038/editorial/1209"
}
] | ãæ£äºåé¢äœã«ãããŠ, ããç¹å®ã®é ç¹ãããããšåããåãé ç¹ãŸã§, 蟺äžãäŒã£ãŠæçè·é¢ã§ç§»åããæ¹æ³ã¯äœéããããŸããïŒãã ã, æ£äºåé¢äœã®ããé ç¹ $X$ ãšåããåãé ç¹ãšã¯, æ£äºåé¢äœã®äžå¿ã«ã€ã㊠$X$ ãšå¯Ÿç§°ãªç¹ã§ã. |
OMC038 | https://onlinemathcontest.com/contests/omc038 | https://onlinemathcontest.com/contests/omc038/tasks/1288 | B | OMC038(B) | 200 | 201 | 205 | [
{
"content": "ãäžäžçåŒã¯, 以äžã®ããã«å æ°å解ã§ãã.\r\n$$(x^2-2x+4)(x^2-6x+4)\\leq 0$$\r\nãã㧠$x^2-2x+4=(x-1)^2+3$ ã¯åžžã«æ£ã§ãããã, èããã¹ãäžçåŒã¯çµå±\r\n$$x^2-6x+4\\leq 0$$\r\nããã解ã㊠$3-\\sqrt{5}\\leq x\\leq 3+\\sqrt{5}$ ãåŸããã, ç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{16}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc038/editorial/1288"
}
] | ãå®æ° $x$ ã«ã€ããŠã®äžçåŒ
$$x^4-8x^3+20x^2-32x+16\leq0$$
ã®è§£ã¯, æ£ã®æŽæ° $a,b,c,d$ ãçšã㊠$a-\sqrt{b}\leq x\leq c+\sqrt{d}$ ãšè¡šãããŸã. $a+b+c+d$ ã解çããŠãã ãã. |
OMC038 | https://onlinemathcontest.com/contests/omc038 | https://onlinemathcontest.com/contests/omc038/tasks/280 | C | OMC038(C) | 300 | 122 | 169 | [
{
"content": "ãå¡ãåãæ¹ãç¡èŠããã°, 移åçµè·¯ãšããŠããåŸããã®ã¯ ${}\\_{200}\\mathrm{C}\\_{100}$ éãååšãã. ãã®ãã¡äžã€ãåºå®ãããšã, ãããçãã«ç®å
¥ãããåæ°ãèãããš, çµè·¯äžã«ãã $201$ ãã¹ãçœããããªå¡ãåãæ¹ã®å Žåã®æ°ã«çãã. ããã¯æ®ãã® $10000$ ãã¹ãä»»æã«å¡ãããšã«ä»ãªããªããã, $2^{10000}$ éãã§ãã. ããªãã¡, $M=2^{10000}\\times{}\\_{200}\\mathrm{C}\\_{100}$ ã§ãã, Legendreã®å®çããããã $2$ ã§å²ãåããæ倧ã®åæ°ã¯ $\\textbf{10003}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc038/editorial/280"
}
] | ã$101 \times 101$ ã®ãã¹ç®ããã, äžãã $i$ è¡ç®ïŒå·Šãã $j$ åç®ã®ãã¹ã $(i,j)$ ãšè¡šãããšã«ããŸãïŒ\
ãOMCåã¯ãã®ãã¹ç®ã®åãã¹ãçœãŸãã¯é»ã§å¡ãåããããšã«ããŸããïŒãã ã $(1,1)$ ããã³ $(101,101)$ ã¯åžžã«çœãå¡ãããšãšããŸã. ãã®ãããªå¡ãåãæ¹ã¯å
šéšã§ $2^{10199}$ éãèããããŸãã, ãã®ãã¹ãŠã«å¯ŸããŠãããã以äžã®**åé¡**ã解ã, ãããã®çãã®ç·å $M$ ã $2$ ã§å²ãåããæ倧ã®åæ°ãæ±ããŠãã ããïŒ
- **åé¡**ïŒCMO åã¯çŸåšãã¹ $(1,1)$ ã«ãã, å³ãäžã«é£ãåãçœããã¹ãžã®ç§»åãç¹°ãè¿ããŠãã¹ $(101,101)$ ãŸã§ç§»åããããšããŠããŸã. ãã®ãšã, CMO åã®ç§»åçµè·¯ãšããŠããåŸããã®ã¯äœéããããŸããïŒãã ã, ããäºã€ã®ç§»åçµè·¯ãç°ãªããšã¯, éã£ããã¹ã®éåãç°ãªãããšãæããŸã. |
OMC038 | https://onlinemathcontest.com/contests/omc038 | https://onlinemathcontest.com/contests/omc038/tasks/235 | D | OMC038(D) | 400 | 83 | 118 | [
{
"content": "ããŸã $\\Gamma_{1},\\Gamma_{2},\\Gamma_{3}$ ããããã® $3$ äžå¿ã®éå¿ãäžå¿ãšããåå¿åãã§ãããšããŠã, æ±ããé åã¯äžå€ã§ããããšã容æã«ããã. åãã« $P_2,P_3$ ãåºå®ã $P_1$ ãåããã°, $P_1P_2$ ã®äžç¹ã¯ååŸ $10$ ã®ååšäžãåã. ããã« $P_2$ ãåããã°, ãã®è»è·¡ã®ééããé åã¯ååŸ $20.5$ ã®åç€ããååŸ $0.5$ ã®åç€ãé€ãããã®ã«ãªã. åæ§ã«ããŠ, æçµçã«æ±ããé åã¯ååŸ $2062\\/3$ ã®åç€ããååŸ $660$ ã®åç€ãé€ãããã®ã§ããããšãããã, ãã®é¢ç©ã¯ $331444\\pi\\/9$ ã§ãããã, 解çãã¹ãå€ã¯ $\\textbf{331453}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc038/editorial/235"
}
] | ãååŸããããã $20,21,2021$ ãšããååš $\Gamma_{1},\Gamma_{2},\Gamma_{3}$ ãå¹³é¢äžã«ãã, äºãã«å
±æç¹ãæããªããã®ãšããŸã. åååšäžãä»»æã«åãç¹ $P_{1},P_{2},P_{3}$ ã«ã€ããŠ, ãããã®éå¿ (幟äœäžå¿) ã®ééãåŸãé åã®é¢ç©ãæ±ããŠãã ãã. ãã ã, æ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\dfrac{a}{b}\pi$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC038 | https://onlinemathcontest.com/contests/omc038 | https://onlinemathcontest.com/contests/omc038/tasks/233 | E | OMC038(E) | 500 | 30 | 88 | [
{
"content": "ã$b$ ãš $c$ ã®æ倧å
¬çŽæ°ã $g$ ãšã, $b=gp,c=gq$ ãšãã. ãã®ãšã $a$ 㯠$p$ ã§å²ãåãããã, ãã®åã $k$ ãšããã° $d=kq$ ã§ãã, 以äžãã¿ããæ£æŽæ°ã®çµã®åæ°ãæ±ããããšã«åž°çããã.\r\n$$kg(p^2+q^2)=29^{1000},\\ \\ p\\\\,\\text{ãš}\\\\,q\\\\,\\text{ã¯äºãã«çŽ }$$\r\nãããã§æ£æŽæ° $n$ ã«å¯Ÿã, $p^2+q^2=29^{n}$ ãªãäºãã«çŽ ãªæ£æŽæ°ã®çµ $(p,q)$ ã¯åžžã« $2$ çµã§ãããã, çµå±æ±ããçµã®æ°ã¯ $2\\times(1+\\cdots+1000)=\\textbf{1001000}$ ã§ãã. 詳ããã¯[**OMC022(F)ã®è§£èª¬**](https:\\/\\/onlinemathcontest.com\\/contests\\/omc022\\/editorial\\/139)ãåç
§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc038/editorial/233"
}
] | ã$ab+cd=29^{1000}$ ã〠$ac=bd$ ãã¿ããæ£æŽæ°ã®çµ $(a,b,c,d)$ ã¯ããã€ãããŸããïŒ |
OMC038 | https://onlinemathcontest.com/contests/omc038 | https://onlinemathcontest.com/contests/omc038/tasks/1453 | F | OMC038(F) | 500 | 24 | 74 | [
{
"content": "ã$N=10^{999}$ ãšãã. $(x,y-x,z-y)$ ã $(x,y,z)$ ãšçœ®ããªããããšã§, 以äžã®åé¡ã解ãããšãšç䟡ã§ãã.\r\n\r\n- $x\\gt y+z$ ã〠$3x+2y+z=60N$ ãã¿ãã**æ£æŽæ°**ã®çµ $(x,y,z)$ ã¯ããã€ãããïŒ\r\n\r\nããã«ãããã $z$ ãæ¶å»ããã°, 以äžã®åé¡ã解ãããšãšç䟡ã§ãã.\r\n\r\n- $3x+2y\\lt 60N\\lt4x+y$ ãã¿ããæ£æŽæ°ã®çµ $(x,y)$ ã¯ããã€ãããïŒ\r\n\r\nããã¯åº§æšå¹³é¢äžã§ä»¥äžã $3$ é ç¹ãšããäžè§åœ¢é å $S$ ã®å
éšã®æ Œåç¹ãæ°ããããšãšç䟡ã§ãã.\r\n$$(15N,0),(20N,0),(12N,12N)$$\r\nãããæçŽã«èšç®ããŠãããã, Pickã®å®çã䜿ãã°æ©ã. $S$ ã®é¢ç©ã¯ $30N^2$ ã§, 蟺äžã®æ Œåç¹ã¯ $12N$ åã ãã, \r\n$$M=30N^2-6N+1=2\\underbrace{999...999}\\_{999å}4\\underbrace{000...000}\\_{998å}1$$\r\nãã£ãŠ, æ±ããæ¡å㯠$\\textbf{8998}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc038/editorial/1453"
}
] | ã$x\lt y\lt z\lt 2x$ ã〠$x+y+z=6\times 10^{1000}$ ãã¿ããæŽæ°ã®çµ $(x,y,z)$ 㯠$M$ åãããŸã.\
ã$M$ ã® (åé²æ³ã§ã®) åäœã®æ°ã®åãæ±ããŠãã ãã. |
OMC037 (for beginners) | https://onlinemathcontest.com/contests/omc037 | https://onlinemathcontest.com/contests/omc037/tasks/1599 | A | OMC037(A) | 100 | 201 | 201 | [
{
"content": "ã解ãšä¿æ°ã®é¢ä¿ãã, $\\dfrac{1}{a}+\\dfrac{1}{b}=\\dfrac{a+b}{ab}=\\dfrac{200}{5}=\\textbf{40}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc037/editorial/1599"
}
] | ã$x$ ã®äºæ¬¡æ¹çšåŒ $x^2-200x+5=0$ ã® $2$ 解ã $x=a,b$ ãšãããšã, $\dfrac{1}{a}+\dfrac{1}{b}$ ãæ±ããŠãã ãã. |
OMC037 (for beginners) | https://onlinemathcontest.com/contests/omc037 | https://onlinemathcontest.com/contests/omc037/tasks/1601 | B | OMC037(B) | 200 | 158 | 196 | [
{
"content": "ãéžãã $3$ æ°ã $\\\\{1,2,3\\\\},\\\\{1,1,2\\\\},\\\\{1,1,3\\\\}$ ã§ãããšã, äžè§åœ¢ãäœãããšãã§ããªã. ããŒã«ããã¹ãŠåºå¥ãããšã, äžã€ç®ã«ãªãéžã³æ¹ã¯ $10^3$ éã, äºã€ç®ããã³äžã€ç®ã«ãªãéžã³æ¹ã¯ ${}\\_{10}\\mathrm{C}\\_{2}\\times 10$ éãã§ãããã, æ±ãã確çã¯\r\n$$1-\\dfrac{10^3+2\\times({}\\_{10}\\mathrm{C}\\_{2}\\times 10)}{{}\\_{30}\\mathrm{C}\\_{3}}=\\dfrac{108}{203}$$\r\nã§ãã, ç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{311}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc037/editorial/1601"
}
] | ãç®±ã®äžã« $1,2,3$ ãšæžãããçããããã $10$ åãã€, èš $30$ åå
¥ã£ãŠããŸã. ãããã $3$ ã€ã®çãåæã«åãåºãããšã, ãããã«æžããã $3$ æ°ãäžèŸºã®é·ããšããééåãªäžè§åœ¢ãäœãã確çã¯, äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šããŸã. $a+b$ ã解çããŠãã ãã. ããã§, $3$ é ç¹ãåäžçŽç·äžã«ãªããããªäžè§åœ¢ã**ééå**ã§ãããšåŒã³ãŸã. |
OMC037 (for beginners) | https://onlinemathcontest.com/contests/omc037 | https://onlinemathcontest.com/contests/omc037/tasks/1434 | C | OMC037(C) | 300 | 166 | 191 | [
{
"content": "ã$ab+bc+cd+da=(a+c)(b+d)$ ãšå æ°å解ãããããšã«çæãã. ããéè² æŽæ° $n$ ã $2$ ã€ã®éè² æŽæ°ã®åã«å解ããæ¹æ³ã¯ $n+1$ éããããã, ãã¹ãŠã® $1000$ ã®æ£ã®çŽæ° $t$ ã«ã€ããŠ\r\n$$(t+1)\\left(\\frac{1000}{t}+1\\right)=t+\\dfrac{1000}{t}+1001$$\r\nã®ç·åãæ±ããã°ãã. $1000=2^3\\times5^3$ ã¯æ£ã®çŽæ°ã $16$ åãã¡, ãããã®ç·å㯠$2340$ ã§ãããã, ããã¯\r\n$$2340\\times 2+1001\\times 16=\\textbf{20696}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc037/editorial/1434"
}
] | ã$ab+bc+cd+da=1000$ ãªãéè² æŽæ°ã®çµ $(a,b,c,d)$ ã¯ããã€ãããŸããïŒ |
OMC037 (for beginners) | https://onlinemathcontest.com/contests/omc037 | https://onlinemathcontest.com/contests/omc037/tasks/1595 | D | OMC037(D) | 400 | 43 | 112 | [
{
"content": "ãæåäºå®ãšã㊠$DC=DA+DB$ ã§ãã. äžæ¹ã§, ç°¡åãªè§åºŠèšç®ããäžè§åœ¢ $DEB$ ãš $DFC$ ã¯çžäŒŒã§ãããã, ããããã $DB=6,DC=8$ ãåŸã. ãã£ãŠ, äžè§åœ¢ $BCD$ ã«ãããäœåŒŠå®çãã $BC=2\\sqrt{13}$ ã§ãããã, æ±ããã¹ãé¢ç©ã¯ $13\\sqrt{3}=\\sqrt{\\textbf{507}}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc037/editorial/1595"
}
] | ãæ£äžè§åœ¢ $ABC$ ã«ãããŠ, ãã®å€æ¥åã®åŒ§ $AB$ ($C$ ãå«ãŸãªãæ¹) äžã«ç¹ $D$ ã, 蟺 $AB$ äžã«ç¹ $E$ ããããŸã. ããã§, $ADE$ ã®å€æ¥åãšç·å $AC$ ã $A$ ã§ãªãç¹ã§äº€ãã£ãã®ã§ããã $F$ ãšãããšãã, 以äžã®æ¡ä»¶ãæç«ããŸããïŒ
$$DA=2,\quad DE=3,\quad DF=4$$
ãã®ãšã, $ABC$ ã®é¢ç©ã® $2$ ä¹ãæ±ããŠãã ãã. |
OMC036 (Wolfram Cup) | https://onlinemathcontest.com/contests/omc036 | https://onlinemathcontest.com/contests/omc036/tasks/17 | A | OMC036(A) | 200 | 270 | 275 | [
{
"content": "**泚æ**ïŒä»¥äžã®è§£èª¬ã§ã¯, $V(\\mathfrak{C})$ ãåã« $V$ ã§è¡šã, $AB,AD,AE$ ã®é·ãããããã $a,b,c$ ãšãã. ãŸã $|XYZ|$ ã§äžè§åœ¢ $XYZ$ ã®é¢ç©ã, $|W-XYZ|$ ã§åé¢äœ $W-XYZ$ ã®äœç©ã, ãããã誀解ãªãè¡šããã®ãšãã.\r\n\r\n----\r\nã$a,b,c$ ã¯ãã¹ãŠçžç°ãªãããšã«çæãã. ãããããã¹ãŠå¹³æ¹æ°ã§ãããšã, $V$ 㯠$1\\times 4\\times 9=36$ 以äžã§ãã. å°ãªããšãäžã€ãå¹³æ¹æ°ã§ãªããšã, äžã€ããããå¹³æ¹æ°ã§ã¯ãªã. ãã®ãšã $V\\lt 36$ ãšä»®å®ããã° $\\lbrace a,b,c\\rbrace=\\lbrace 2,3,5\\rbrace$ ã§ããã»ããªãã, ããã¯äžé©ã§ãããã, æ±ããæå°å€ã¯ $\\textbf{36}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc036/editorial/17"
}
] | **泚æ**ïŒãã®ã³ã³ãã¹ãã§ã¯, ãã¹ãŠã®åé¡ã§çŽæ¹äœ $ABCD-EFGH$ ã $\mathfrak{C}$ ã§è¡šã, ãã®äœç©ã $V(\mathfrak{C})$ ã§è¡šããŸã.
----
ã$\mathfrak{C}$ ã¯å蟺ã®é·ããæ£æŽæ°å€ã§ãã, é¢ $ABCD,ABFE,ADHE$ ã®é¢ç©ã¯ããããçžç°ãªãå¹³æ¹æ°å€ã§ã. ãã®ãšã, $V(\mathfrak{C})$ ãšããŠããåŸãæå°å€ãæ±ããŠãã ãã. |
OMC036 (Wolfram Cup) | https://onlinemathcontest.com/contests/omc036 | https://onlinemathcontest.com/contests/omc036/tasks/18 | B | OMC036(B) | 400 | 190 | 235 | [
{
"content": "**泚æ**ïŒä»¥äžã®è§£èª¬ã§ã¯, $V(\\mathfrak{C})$ ãåã« $V$ ã§è¡šã, $AB,AD,AE$ ã®é·ãããããã $a,b,c$ ãšãã. ãŸã $|XYZ|$ ã§äžè§åœ¢ $XYZ$ ã®é¢ç©ã, $|W-XYZ|$ ã§åé¢äœ $W-XYZ$ ã®äœç©ã, ãããã誀解ãªãè¡šããã®ãšãã.\r\n\r\n----\r\nã$\\mathfrak{C}$ ã«ãããŠ, å°ç«æ¹äœãçµã¿åãããŠã§ããéšåçŽæ¹äœ $1$ ã€ã«å¯Ÿã, è¯ãäžè§åœ¢ $8$ ã€ã察å¿ããããšã容æã«ããã. éšåçŽæ¹äœã¯ ${}\\_{a+1}\\textrm{C}\\_{2} \\times {}\\_{b+1}\\textrm{C}\\_{2}\\times {}\\_{c+1}\\textrm{C}\\_{2} $ åååšããããšãã, æ¡ä»¶ãæŽçããã°ä»¥äžã®ããã«ãªã.\r\n$$a(a+1)b(b+1)c(c+1)=2^6\\times 3\\times 7^2\\times 11\\times 13=7\\times 8\\times11\\times12\\times13\\times14$$\r\nãã®ãã㪠$\\lbrace a,b,c\\rbrace$ 㯠$\\lbrace 7,11,13\\rbrace$ ã«éããããã(æ±å€ã®äžã§ã¯äžææ§ãçšããã°ãã), $V=\\textbf{1001}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc036/editorial/18"
}
] | **泚æ**ïŒãã®ã³ã³ãã¹ãã§ã¯, ãã¹ãŠã®åé¡ã§çŽæ¹äœ $ABCD-EFGH$ ã $\mathfrak{C}$ ã§è¡šã, ãã®äœç©ã $V(\mathfrak{C})$ ã§è¡šããŸã.
----
ã$\mathfrak{C}$ ã¯å蟺ã®é·ããæ£æŽæ°å€ã§ãã, äžèŸº $1$ ã®å°ç«æ¹äœã«åå²ãããŠããŸã. ããå°ç«æ¹äœã®é ç¹ã§ãããããªçžç°ãªã $3$ ç¹ãç¹ãã§ã§ããäžè§åœ¢ã**è¯ã**ãšã¯, 以äžã®æ¡ä»¶ãã¿ããããšããããŸã.
- å蟺ã¯ãããããã $\mathfrak{C}$ ã®é¢ãšå¹³è¡ã§ãã.
- äžè§åœ¢ã®ãªãå¹³é¢ã¯ $\mathfrak{C}$ ã®ã©ã®é¢ãšãå¹³è¡ã§ãªã.
è¯ãäžè§åœ¢ã $2^6\times 3\times 7^2\times 11\times 13$ åååšãããšã, $V(\mathfrak{C})$ ãæ±ããŠãã ãã.\
ããã ã, ããã§çããäžæã«å®ãŸãããšãä¿èšŒãããŸã. |
OMC036 (Wolfram Cup) | https://onlinemathcontest.com/contests/omc036 | https://onlinemathcontest.com/contests/omc036/tasks/192 | C | OMC036(C) | 600 | 106 | 146 | [
{
"content": "**泚æ**ïŒä»¥äžã®è§£èª¬ã§ã¯, $V(\\mathfrak{C})$ ãåã« $V$ ã§è¡šã, $AB,AD,AE$ ã®é·ãããããã $a,b,c$ ãšãã. ãŸã $|XYZ|$ ã§äžè§åœ¢ $XYZ$ ã®é¢ç©ã, $|W-XYZ|$ ã§åé¢äœ $W-XYZ$ ã®äœç©ã, ãããã誀解ãªãè¡šããã®ãšãã.\r\n\r\n----\r\nãäžè§åœ¢ $AP_1P_6$ ãš $GP_4P_3$ ã®çžäŒŒããçŽç· $AG,P_1P_4,P_3P_6$ ã¯äžç¹ã§äº€ãã, ãã㯠$Q_1$ ã«äžèŽãã. ãããã£ãŠ $AQ_1:GQ_1=P_1P_6:P_3P_4=1:2$ ã§ãããã, $OQ_1:OA=1:3$ ãåŸã. åæ§ã«ã㊠$OQ_2:OH=1:4,OQ_3:OF=1:2$ ã§ãããã, åé¢äœ $O-AFH$ ã®äœç©ã¯ $24$ ã§ãã. ããã§\r\n$$ |O-AFH|=|O-AEF|+|O-AEH+|O-EFH|-|A-EFH|=3\\times\\frac{V}{12}-\\frac{V}{6}=\\frac{V}{12} $$\r\nãåŸããã, $V=\\textbf{288}$ ã§ãã. \r\n![figure 1](\\/images\\/8qsuth72cFUU9OPMKxuTvffzPMOSk5qP2tVdTBns)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc036/editorial/192"
}
] | **泚æ**ïŒãã®ã³ã³ãã¹ãã§ã¯, ãã¹ãŠã®åé¡ã§çŽæ¹äœ $ABCD-EFGH$ ã $\mathfrak{C}$ ã§è¡šã, ãã®äœç©ã $V(\mathfrak{C})$ ã§è¡šããŸã.
----
ã$\mathfrak{C}$ ã«ãããŠ, ç·å $AB,BF,FG ,GH,HD,DA,AG,BH,DF$ (䞡端ãé€ã)ãå¹³é¢ $\alpha$ ãšãã¹ãŠäº€ãã£ãŠããŸã. ãã®äº€ç¹ããããã $P_1,P_2,P_3,P_4,P_5,P_6,Q_1,Q_2,Q_3$ ãšãããšã, 以äžã®æ¡ä»¶ãããããæç«ããŸãã.
$$ P_1P_2:P_4P_5=5:3,\ \ P_2P_3:P_5P_6=1:3,\ \ P_3P_4:P_6P_1=2:1 $$
察è§ç· $AG$ ã®äžç¹ $O$ ã«ã€ããŠ, åé¢äœ $O-Q_1Q_2Q_3$ ã®äœç©ã $1$ ã§ãããšã, $V(\mathfrak{C})$ ãæ±ããŠãã ãã. |
OMC036 (Wolfram Cup) | https://onlinemathcontest.com/contests/omc036 | https://onlinemathcontest.com/contests/omc036/tasks/193 | D | OMC036(D) | 700 | 45 | 95 | [
{
"content": "**泚æ**ïŒä»¥äžã®è§£èª¬ã§ã¯, $V(\\mathfrak{C})$ ãåã« $V$ ã§è¡šã, $AB,AD,AE$ ã®é·ãããããã $a,b,c$ ãšãã. ãŸã $|XYZ|$ ã§äžè§åœ¢ $XYZ$ ã®é¢ç©ã, $|W-XYZ|$ ã§åé¢äœ $W-XYZ$ ã®äœç©ã, ãããã誀解ãªãè¡šããã®ãšãã.\r\n\r\n----\r\nã$AD=x,A^{\\prime}B^{\\prime}=y, A^{\\prime}D^{\\prime}=z$ ãšãã. ãã®ãšã, $A^{\\prime}E^{\\prime}=y+z, AE=x+y, AB=x+y+z$ ãšè¡šããã. \r\näºã€ã®çŽæ¹äœã®èŸºã®é·ãããã¹ãŠæ£ã§ããããã«ã¯ $x,y,z\\gt 0$ ã§ããã°ãã. ãããã£ãŠ, åé¡ã¯\r\n\r\n- æ£ã®å®æ° $x,y,z$ ã $yz(y+z)=1, 2y+z\\leq x$ ãã¿ãããšã, $x(x+y)(x+y+z)$ ã®æå°å€ãæ±ãã.\r\n\r\nãšèšãæãããã. ããã§, $y,z\\gt 0$ ãåºå®ãããšã, $x(x+y)(x+y+z)$ 㯠$x\\gt 0$ ã®ç¯å²ã§åºçŸ©å調å¢å ã§ãããã, $x=2y+z$ ã®ãšãã«æå°å€ããšã. ãã®ãšã, 次æ°ã«çæããã°, æ±ãããã®ã¯\r\n$$ V=\\dfrac{(2y+z)(3y+z)(3y+2z)}{yz(y+z)} $$\r\nã®æå°å€ãšçãã, ããã« $2y+z=yz$ ã®å ŽåãèããŠäžè¬æ§ã倱ããªã. ãããã $z$ ãæ¶å»ã, ããã« $y\\gt 1$ ã§ããããšãã $y-1$ ã $y$ ãšããçŽãã°, $V$ ã¯ä»¥äžã®ããã«å€åœ¢ããã.\r\n$$ V=9y+9+\\dfrac{4}{y}+\\dfrac{4}{y+2} $$\r\nããã§, çžå ã»çžä¹å¹³åã®é¢ä¿ãã\r\n$$\\begin{aligned}\r\nV &= \\left(\\dfrac{1}{2}(9+4\\sqrt{2}+\\sqrt{5})y+\\dfrac{4}{y}+\\dfrac{1}{2}(9-4\\sqrt{2}-\\sqrt{5})(y+2)+\\dfrac{4}{y+2}\\right)+4\\sqrt{2}+\\sqrt{5} \\\\\\\\\r\n&\\geq 2\\sqrt{2}\\left(\\sqrt{9+4\\sqrt{2}+\\sqrt{5}}+\\sqrt{9-4\\sqrt{2}-\\sqrt{5}}\\right)+4\\sqrt{2}+\\sqrt{5}\\\\\\\\\r\n&= 2\\sqrt{2}(2+\\sqrt{10})+4\\sqrt{2}+\\sqrt{5}\\\\\\\\\r\n&= 8\\sqrt{2}+5\\sqrt{5}\r\n\\end{aligned}$$\r\nçå·ã¯ $y=\\dfrac{2\\sqrt{2}+\\sqrt{5}-3}{3}$ ã§æç«ãããã $m=8\\sqrt{2}+5\\sqrt{5}$ ã§, ç¹ã«æ±ããå€ã¯ $128+125=\\textbf{253}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc036/editorial/193"
}
] | **泚æ**ïŒãã®ã³ã³ãã¹ãã§ã¯, ãã¹ãŠã®åé¡ã§çŽæ¹äœ $ABCD-EFGH$ ã $\mathfrak{C}$ ã§è¡šã, ãã®äœç©ã $V(\mathfrak{C})$ ã§è¡šããŸã.
----
ã$\mathfrak{C}$ ããã³äœç© $1$ ã®çŽæ¹äœ $A^{\prime}B^{\prime}C^{\prime}D^{\prime}-E^{\prime}F^{\prime}G^{\prime}H^{\prime}$ ã, 以äžã®æ¡ä»¶ãããããã¿ãããŸã.
$$\begin{aligned}
&A^{\prime}B^{\prime}+A^{\prime}D^{\prime}=A^{\prime}E^{\prime},&& A^{\prime}B^{\prime}=AE-AD,\\\\
&A^{\prime}D^{\prime}=AB-AE, &&
A^{\prime}B^{\prime}+A^{\prime}E^{\prime}\leq AD
\end{aligned}$$
ãã®ãšã, $V(\mathfrak{C})$ ã®ãšãåŸãæå°å€ $m$ ã¯ããæ£ã®æŽæ° $a\lt b$ ã«ãã£ãŠ $m=\sqrt{a}+\sqrt{b}$ ãšäžæã«è¡šãããã®ã§, $a+b$ ãæ±ããŠäžãã. |
OMC036 (Wolfram Cup) | https://onlinemathcontest.com/contests/omc036 | https://onlinemathcontest.com/contests/omc036/tasks/195 | E | OMC036(E) | 700 | 23 | 53 | [
{
"content": "**泚æ**ïŒä»¥äžã®è§£èª¬ã§ã¯, $V(\\mathfrak{C})$ ãåã« $V$ ã§è¡šã, $AB,AD,AE$ ã®é·ãããããã $a,b,c$ ãšãã. ãŸã $|XYZ|$ ã§äžè§åœ¢ $XYZ$ ã®é¢ç©ã, $|W-XYZ|$ ã§åé¢äœ $W-XYZ$ ã®äœç©ã, ãããã誀解ãªãè¡šããã®ãšãã.\r\n\r\n----\r\nã察è§ç· $AG$ ã®äžç¹ã $O$ ãšããã°, æããã«ãã㯠$O_1O_2$ ã®äžç¹ã§ããã. ãŸã $OB=OD=OG$ ãã $OO_2$ ã¯é¢ $BDG$ ã«åçŽã§ãããã, $BDG$ ã®å€æ¥åã®ååŸã¯ $\\sqrt{OG^2-OO_2^2}=17$ ã§ãã. äžæ¹ã§ $BDG$ ã®åå¿ã $I$ ãšããã° $CI$ ãé¢ $BDG$ ã«åçŽã§ãã, \r\n$$CI\\times |BDG|=|G-BCD|=|G-ABD|=O_1O_2\\times|BDG|$$\r\nãã $CI=12$ ãåŸã. ãã£ãŠ $O_2I=\\sqrt{CO^2-(OO_2+CI)^2}=1$ ãåŸã.\\\r\nããã㧠$GI=2O_2N=12\\sqrt{2}$ ã«çæããã°, $GI^2+O_2I^2=O_2G^2$ ãã $\\angle O_2IG$ ã¯çŽè§ã§ãã. ãããã $BD=2\\sqrt{O_2D^2-O_2N^2}=2\\sqrt{217}$ ãšäœµããŠ, $|BDG|=BD\\times (O_2N+GI)\\/2=18\\sqrt{434}$. ãã£ãŠ\r\n$$ V=6\\times|C-BDG|=6\\times\\frac{1}{3}\\times CI\\times|BDG|=432\\sqrt{434}=\\sqrt{\\textbf{80994816}} $$ \r\n(â»ä»¥äžã®å³ã«ãããç¹ $M$ ã¯è§£èª¬ã«ãããç¹ $O$ ã§ã)\r\n![figure 1](\\/images\\/oJuqIKyuD5srPAdG7DP77puXMOyJB82ww51qCjxT)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc036/editorial/195"
}
] | **泚æ**ïŒãã®ã³ã³ãã¹ãã§ã¯, ãã¹ãŠã®åé¡ã§çŽæ¹äœ $ABCD-EFGH$ ã $\mathfrak{C}$ ã§è¡šã, ãã®äœç©ã $V(\mathfrak{C})$ ã§è¡šããŸã.
----
ã$\mathfrak{C}$ ã«ãããŠ, äžè§åœ¢ $AFH,BDG$ ã®å€å¿ããããã $O_1,O_2$ ãšã, ç·å $BD$ ã®äžç¹ã $N$ ãšãããš,
$$ AG=10\sqrt{13},\ \ O_1O_2=12,\ \ O_2N=6\sqrt{2} $$
ãæç«ããŸãã. ãã®ãšã, $V(\mathfrak{C})^2$ ãæ±ããŠãã ãã. |
OMC036 (Wolfram Cup) | https://onlinemathcontest.com/contests/omc036 | https://onlinemathcontest.com/contests/omc036/tasks/194 | F | OMC036(F) | 700 | 23 | 47 | [
{
"content": "**泚æ**ïŒä»¥äžã®è§£èª¬ã§ã¯, $V(\\mathfrak{C})$ ãåã« $V$ ã§è¡šã, $AB,AD,AE$ ã®é·ãããããã $a,b,c$ ãšãã. ãŸã $|XYZ|$ ã§äžè§åœ¢ $XYZ$ ã®é¢ç©ã, $|W-XYZ|$ ã§åé¢äœ $W-XYZ$ ã®äœç©ã, ãããã誀解ãªãè¡šããã®ãšãã.\r\n\r\n----\r\nã$m=250$ ãšãã. $i,j,k$ ããã¹ãŠå¶æ°,å¥æ°ã§ãããã㪠$N(i,j,k)$ ã®ç·åããããã $S_{eee},S_{ooo}$ ãªã©ãšããŠ, å¶å¥ $8$ éãã«å¯ŸããŠç·åãå®ãã. ããã«ä»¥äžã®ããã«å®ãã.\r\n$$S_{ooo}+S_{eee}=S_{1},\\ \\ S_{oee}+S_{eoo}=S_{2},\\ \\ S_{eoe}+S_{oeo}=S_{3},\\ \\ S_{eeo}+S_{ooe}=S_{4}$$\r\nãã®ãšã, äžæ¡ä»¶ã¯ $S_{1}=S_{2}=S_{3}=S_{4}=m$ ãšåå€ã§ããããšã容æã«ããã.\\\r\nãããã§äŸ¿å®çã« $T=V\\/4$ ãšããã°, $S_1,S_2,S_3,S_4$ ã¯ãããã $T$ åã®å°ç«æ¹äœã«å²ãåœãŠãããæ°ã®åã§ãããã, $M(\\mathfrak{C})$ ã¯ä»¥äžã®ããã«è¡šãã. ãã ã, ç·å㯠$a_{1}+\\cdots+a_{T}=m$ ãªãéè² æŽæ°ã®çµå
šäœããšã.\r\n$$ M(\\mathfrak{C})=\\left(\\sum a_{1}a_{2}\\cdots a_{T}\\right)^4 $$\r\nç¹ã« $M(\\mathfrak{C})$ 㯠$T$ ã®ã¿ã«äŸåãããã, å¶æ° $T$ ã«ã€ã㊠$S(T)=\\sum a_{1}a_{2}\\cdots a_{T}$ ã®æ倧åãèããã°ãã.\r\n\r\n----\r\n**è£é¡.**ã$S(T)={}\\_{T+m-1}\\mathrm{C}\\_{2T-1}$ ãæç«ãã.\r\n\r\n**蚌æ.**ãäžåã«äžŠãã $T+m-1$ åã®çœäžžã®ãã¡, $2T-1$ åãé»ãå¡ãã€ã¶ãæ¹æ³ãèãã. ãã®ãã¡, å·Šãã $2,4,\\cdots,2T-2$ çªç®ã®é»äžžãå·Šãã$$a_{1}+1, a_{1}+a_{2}+2,\\cdots,a_{1}+\\cdots+a_{T-1}+T-1$$çªç®ã«ãããããªãã®ã¯ $a_{1}a_{2}\\cdots a_{T}$ éãã§ããããšãããã. ããªãã¡ $S(T)$ 㯠${}\\_{T+m-1}\\mathrm{C}\\_{2T-1}$ ã«çãã.\r\n\r\n----\r\nãæããã« $T\\leq m$ ã®ç¯å²ã§èããã°ååã§ãã. ãã®ãšã $\\dfrac{S(T+1)}{S(T)}=\\dfrac{(m+T)(m-T)}{2T(2T+1)}$ ãã,\r\n$$ S(T+1)\\gt S(T)\\iff 5T^2+2T\\lt m^2\\iff T\\lt\\frac{\\sqrt{5m^2+1}-1}{5}$$\r\nããã«ä»¥äžã®äžçåŒãã, $S(1)\\lt S(2)\\lt\\cdots\\lt S(111)\\lt S(112)\\gt S(113)\\gt\\cdots\\gt S(m)$ ãåŸã.\r\n$$ 111\\lt\\frac{\\sqrt{5m^2}-1}{5}\\lt\\frac{\\sqrt{5m^2+1}-1}{5}\\lt\\frac{\\sqrt{5m^2}}{5}\\lt112 $$\r\nãã ã3ã€ç®ã®äžçå·ã§äžçåŒ $\\sqrt{x+1}\\lt\\sqrt{x}+1$ ãçšãã. ãã£ãŠæ±ããå€ã¯ $4\\times112=\\textbf{448}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc036/editorial/194"
}
] | **泚æ**ïŒãã®ã³ã³ãã¹ãã§ã¯, ãã¹ãŠã®åé¡ã§çŽæ¹äœ $ABCD-EFGH$ ã $\mathfrak{C}$ ã§è¡šã, ãã®äœç©ã $V(\mathfrak{C})$ ã§è¡šããŸã.
----
ã$\mathfrak{C}$ ã¯å蟺ã®é·ããæ£ã®**å¶æ°**å€ã§ãã, äžèŸº $1$ ã®å°ç«æ¹äœã«åå²ãããŠããŸã. äžãã $i$ çªç®, å·Šãã $j$ çªç®, æåãã $k$ çªç®ã®å°ç«æ¹äœã«ã¯éè² æŽæ° $N(i,j,k)$ ãå²ãåœãŠãããŠããŸã.\
ãããã§, ããéè² æŽæ°ã®å²ãåœãŠæ¹ã**åªãã**ãšã¯, 以äžã®æ¡ä»¶ãã¿ããããšããããŸã.
- $N(i,j,k)$ ã®**ç·å**㯠$1000$ ã§ãã.
- $i+j$ ãå¶æ°ã§ãããã㪠$N(i,j,k)$ ã®ç·åãš, $i+j$ ãå¥æ°ã§ãããã㪠$N(i,j,k)$ ã®ç·åãçãã.
- $j+k$ ãå¶æ°ã§ãããã㪠$N(i,j,k)$ ã®ç·åãš, $j+k$ ãå¥æ°ã§ãããã㪠$N(i,j,k)$ ã®ç·åãçãã.
- $i+k$ ãå¶æ°ã§ãããã㪠$N(i,j,k)$ ã®ç·åãš, $i+k$ ãå¥æ°ã§ãããã㪠$N(i,j,k)$ ã®ç·åãçãã.
ãå²ãåœãŠæ¹ $\sigma$ ã«å¯Ÿã $N(i,j,k)$ ã®**ç·ç©**ã $P(\sigma)$ ã§è¡šã, ãã¹ãŠã®åªããå²ãåœãŠæ¹ $\sigma$ ã«ã€ã㊠$P(\sigma)$ ã®**ç·å**ã $M(\mathfrak{C})$ ãšããŸã. $M(\mathfrak{C})$ ãæ倧å€ããšããã㪠$\mathfrak{C}$ ã«ã€ããŠ, $V(\mathfrak{C})$ ãšããŠããåŸãå€ã®**ç·å**ãæ±ããŠãã ãã.\
ããã ã, $1.41\lt\sqrt{2}\lt1.42,1.73\lt\sqrt{3}\lt1.74,2.23\lt\sqrt{5}\lt2.24$ ãä¿èšŒãããŸã. |
OMC035 (for beginners) | https://onlinemathcontest.com/contests/omc035 | https://onlinemathcontest.com/contests/omc035/tasks/299 | A | OMC035(A) | 100 | 196 | 215 | [
{
"content": "ãã¬ãã« $n$ ã®ã¹ã©ã€ã ãçã¿åºãããã«, å°ãªããšã $2^n-1$ åã®çµåãå¿
èŠã§ããããšãããã. ãããã£ãŠ, $2^n-1\\leq10^5$ ãªãæ倧㮠$n$ ãæ±ããã°ãã, ãã㯠$n=\\textbf{16}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc035/editorial/299"
}
] | ãã¬ãã« $0$ ã®ã¹ã©ã€ã ãç¡æ°ã«ãããŸã. åè
ã§ããããªãã¯, ãããã®ã¹ã©ã€ã ã**çµå**ãããããšãã§ããŸã. ããã¯, ã¬ãã« $n$ ã®ã¹ã©ã€ã $2$ äœãæ¶ãå»ã, ãããã«ã¬ãã« $n+1$ ã®ã¹ã©ã€ã $1$ äœãçã¿åºãè¡çºã§ã. ããªã㯠$10^5$ åãŸã§ã¹ã©ã€ã ãçµåãããããšãã§ããŸã. ã¹ã©ã€ã ã®ã¬ãã«ã®æ倧å€ãšããŠããåŸãæ倧ã®å€ãæ±ããŠãã ãã. |
OMC035 (for beginners) | https://onlinemathcontest.com/contests/omc035 | https://onlinemathcontest.com/contests/omc035/tasks/1331 | B | OMC035(B) | 200 | 159 | 181 | [
{
"content": "$$i(k-i+1)=-\\biggl(i-\\displaystyle\\frac{k+1}{2} \\biggr)^2+\\displaystyle\\frac{(k+1)^2}{4}$$\r\nãã, $k$ ãå¥æ° $2m-1$ ã®ãšã $M_k=m^2$, å¶æ° $2m$ ã®ãšã $M_k=m(m+1)$ ã§ãã. ãã£ãŠæ±ããç·åã¯\r\n$$\\displaystyle\\sum_{m=1}^{60}m^2+\\displaystyle\\sum_{m=1}^{59}m(m+1)=\\textbf{145790}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc035/editorial/1331"
}
] | ã$k=1,2,\cdots,119$ ã®ããããã«å¯Ÿã, $k$ é
ãããªãæ°å $\\{a_{k,i}\\}\_{i=1,2,\cdots k}$ ã
$$a\_{k,i}=i(k-i+1)\ \ (i=1,2,\cdots k)$$
ã§å®ã, ãã®äžã§ã®æ倧å€ã $M_k$ ãšãããŸã. $M_1+M_2+\cdots M_{119}$ ãæ±ããŠãã ãã. |
OMC035 (for beginners) | https://onlinemathcontest.com/contests/omc035 | https://onlinemathcontest.com/contests/omc035/tasks/1406 | C | OMC035(C) | 300 | 129 | 154 | [
{
"content": "ã$x+y=p,xy=q$ ãšãã, ããã« $p+q=r,pq=s$ ãšããã°, äžæ¹çšåŒã¯\r\n\r\n- $41=(x+y)xy+x+y+xy=pq+p+q=r+s$\r\n- $330=(x+y+xy)(x+y)xy=(p+q)pq=rs$\r\n\r\nãã£ãŠ $r,s$ 㯠$t$ ã®äºæ¬¡æ¹çšåŒ $t^2-41t+330=0$ ã® $2$ 解ã§ãããã,\r\n$$(p+q,pq)=(11,30),(30,11)$$\r\nã§ãã, åæ§ã«äºæ¬¡æ¹çšåŒã解ãããšã§\r\n$$(x+y,xy)=(5,6),(6,5),(15+\\sqrt{214},15-\\sqrt{214}),(15-\\sqrt{214},15+\\sqrt{214})$$\r\n以äžãã, 解çãã¹ãå€ã¯ $15+214=\\textbf{229}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc035/editorial/1406"
}
] | ã以äžã®é£ç«æ¹çšåŒãã¿ããå®æ°ã®çµ $(x,y)$ ã«ã€ããŠ, $x+y$ ã®æ倧å€ãæ±ããŠãã ãã.
- $x^2y+xy^2+xy+x+y=41$
- $x^3y^2+x^3y+x^2y^3+2x^2y^2+xy^3=330$
ãã ã, çãã¯æ£æŽæ° $a,b$ ã«ãã£ãŠ $a+\sqrt{b}$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC035 (for beginners) | https://onlinemathcontest.com/contests/omc035 | https://onlinemathcontest.com/contests/omc035/tasks/303 | D | OMC035(D) | 400 | 35 | 60 | [
{
"content": "ã$Q_2$ ãéã $Q_1Q_2$ ã«åçŽãªçŽç·ãš $P_2P_3$ ã®äº€ç¹ã $Y$ ãšããã°, äžè§åœ¢ $P_1Q_2X$ ãš $P_2Q_2Y$ ãååã§ããããšã容æã«ããããã,\r\n$$(P_2Q_1-P_1X)^2=(P_2Q_1-P_2Y)^2=Q_1Y^2=\\left(\\dfrac{5}{\\cos18^\\circ}\\right)^2=50-10\\sqrt{5}$$\r\nç¹ã«è§£çãã¹ãå€ã¯ $50+500=\\textbf{550}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc035/editorial/303"
}
] | ãå¹³é¢äžã«æ£äºè§åœ¢ $P_1P_2P_3P_4P_5$ ããã³æ£äºåè§åœ¢ $Q_1Q_2\cdots Q_{19}Q_{20}$ ããã (ãã ãé ç¹ã®çªå·ã¯ããããæèšåãã§ãããšãã), 以äžã®æ¡ä»¶ããšãã«ã¿ãããŠããŸã.
- æ£äºè§åœ¢ã®äžå¿ã¯ $Q_2$ ã§ãã.
- $4$ ç¹ $Q_1,P_3,P_2,Q_4$ ã¯ãã®é ã«åäžçŽç·äžã«ãã.
ãæ£äºåè§åœ¢ã®äžèŸºã®é·ãã $5$ ã§ãããšã, $P_1P_2$ ãš $Q_2Q_3$ ã®äº€ç¹ $X$ ã«ã€ã㊠$(P_2Q_1-P_1X)^2$ ãæ±ããŠãã ãã. ãã ã, æ±ããå€ã¯æ£æŽæ° $a,b$ ã«ãã£ãŠ $a-\sqrt{b}$ ãšè¡šããã®ã§, $a+b$ ã解çããŠãã ãã.\
ãããã§, $\sin18^\circ=\dfrac{\sqrt{5}-1}{4}$ ããã³ $\cos36^\circ=\dfrac{\sqrt{5}+1}{4}$ ãçšããŠãæ§ããŸãã. |
OMC034 | https://onlinemathcontest.com/contests/omc034 | https://onlinemathcontest.com/contests/omc034/tasks/263 | A | OMC034(A) | 100 | 252 | 252 | [
{
"content": "ããç¬ã£ãŠããåçãã $x$ æ, ãæ³£ããŠããåçãã $y$ æã§ãã£ããšãããš, æ¡ä»¶ã¯ä»¥äžã®ããã«è¡šçŸã§ãã.\r\n$$x:y=9:7,\\ \\ (x-6):(y-6)=13:10$$\r\nããã解ããš $x=162, y=126$ ã§ãããã, ã¢ã«ãã å
ã®åçã¯å
šéšã§ $162+126-6=\\textbf{282}$ æã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc034/editorial/263"
}
] | TKGåã¯ããã¢ã«ãã ãèŠã€ããŸãã. ã¢ã«ãã å
ã®ãã¹ãŠã®åçã«ã¯TKGåãäžäººã§åã£ãŠããŸã. ããã«ç®ãéããš, 以äžã®ããšãããããŸãã.
- ãç¬ã£ãŠããåçããšãæ³£ããŠããåçãã®ææ°æ¯ã¯ $9:7$ ã ã£ã.
- ãç¬ã£ãŠãããæ³£ããŠã¯ããªãåçããšãæ³£ããŠãããç¬ã£ãŠããªãåçãã®ææ°æ¯ã¯ $13:10$ ã ã£ã.
- ãç¬ãæ³£ãããŠããåçãã¯ã¡ããã© $6$ æãã£ã.
- ãç¬ã£ãŠãæ³£ããŠãããªãåçãã¯ååšããªãã£ã.
ãã®ã¢ã«ãã ã«ã¯, å
šéšã§äœæã®åçããããŸããïŒ ãã ã, ãç¬ãæ³£ãããŠããããšã¯, ãç¬ã£ãŠããããã€ãæ³£ããŠãããç¶æ
ãæããã®ãšããŸã. |
OMC034 | https://onlinemathcontest.com/contests/omc034 | https://onlinemathcontest.com/contests/omc034/tasks/261 | B | OMC034(B) | 300 | 128 | 206 | [
{
"content": "ã$S_k$ ã«ã€ããŠ, æäžè¡ã«é
眮ãã $k$ åã®ã³ããå
ã«å®ã, æ®ãã¯ä» $46$ è¡ã«ä»»æã«é
眮ã§ããããšãã,\r\n$$S\\_k={}\\_{2021}\\mathrm{C}\\_{k}\\times46^{2021-k}$$\r\nãããã£ãŠ, $\\dfrac{S_{k+1}}{S_k}=\\dfrac{2021-k}{46(k+1)}$ ãš $1$ ã®å€§å°ãèããããšã§, 以äžãåŸãïŒ\r\n$$S_1\\lt S_2\\lt \\cdots\\lt S_{43}\\gt S_{44}\\gt\\cdots\\gt S_{2021}$$\r\nããªãã¡, $S=S_{43}=\\dfrac{2021!}{43!\\times1978!}\\times46^{1978}$ ã§ãã, Legendreã®å®çãããã㯠$2$ 㧠$\\textbf{1982}$ åå²ãåãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc034/editorial/261"
}
] | ã$47$ è¡ $2021$ åã®ãã¹ç®ããã, ãã®æäžè¡ã® $2021$ ãã¹ã«ã¯åäžã®ã³ããããããäžã€ãã€çœ®ãããŠããŸã. ãããã®ã³ãã«å¯Ÿã, 以äžã®æäœã $46$ åã«ããã£ãŠè¡ããŸã. å
·äœçã«ã¯, $n$ åç®ã®æäœã¯ä»¥äžã§å®çŸ©ãããŸãïŒ
- äžããæ°ã㊠$n$ è¡ç®ã«çœ®ãããŠããã³ãããäžã€ä»¥äžãéžã³, é£æ¥ããçäžã®ãã¹ã«ç§»åããã.
ã$46$ åã®æäœã®åŸ, æäžè¡ã« $k$ åã®ã³ãããããããªé
眮ãšããŠããåŸããã®ã®ç·æ°ã $S_k$ ãšãããŸã.\
ã$S_1,S_2,\cdots,S_{2021}$ ã«ãããæ倧å€ã $S$ ãšãããšã, $S$ ã $2$ ã§å²ãåããæ倧ã®åæ°ãæ±ããŠãã ãã. |
OMC034 | https://onlinemathcontest.com/contests/omc034 | https://onlinemathcontest.com/contests/omc034/tasks/269 | C | OMC034(C) | 300 | 60 | 95 | [
{
"content": "ãæ°ãã飲æ $A,B$ ããããã $21$ æ¬ãã€ãã£ãŠããç¶æ³ãèãããš, ãŸããããã®äº€æã§é£²æ $A,B$ ããããã $3,7$ æ¬åŸãã, ããã«ãããã®äº€æã§é£²æ $A,B$ ããšãã« $1$ æ¬ãã€åŸããã. ããªãã¡, å $20$ æ¬ãã€ã®æ°ãã飲æ $A,B$ ã倱ããšåæã«, ãããã $24,28$ æ¬ãã€ã飲ãã ãšèŠãªãããšãã§ãã. ãã£ãŠ, ä»åã®ç¶æ³ã«ãããŠ\r\n$$M=\\dfrac{(2\\times10^{2023}+21)-1}{20}\\times(24+28)+2=52\\times10^{2022}+54=52\\underbrace{0000...00000}_{2020\\text{å}}54$$\r\nãã£ãŠæ±ããã¹ãå€ã¯ $\\textbf{200}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc034/editorial/269"
},
{
"content": "##### 1. ã¯ããã«\r\nããã®è§£èª¬ã¯å
¬åŒè§£èª¬ã®è§£èª¬ã®ãããªç«ã¡äœçœ®ã§ã. \r\nãã®ãã解説ãšããŠã®æ°èŠæ§ã¯ç¹ã«ãããŸãã. \r\n\r\n\r\n##### 2. æé©ãªäº€ææé ãã® $1$ \r\nããŸã以äžã®ç¹ã«çæããŸã. \r\n\r\n- 亀æã§ãã空容åšãããã°äº€æããæ¹ãè¯ã.\r\n- 亀æã®é çªã¯çµæã«åœ±é¿ããªã. \r\n\r\nãããš, äŸãã°ä»¥äžã®ãããªäº€æã®æé ãã® $1$ ãæãã€ããŸã. \r\n(ãã ã, å
šãŠé£²æã¯åŸãç¬éã«é£²ã¿å¹²ããŠãããšããŸã.) \r\n\r\n- $A$ ãå
šãŠé£²ã¿, $A$ ã®ç©ºå®¹åšã亀æã§ããã ã $B$ ã«äº€æãã. \r\n- $B$ ãå
šãŠé£²ã¿, $B$ ã®ç©ºå®¹åšã亀æã§ããã ã $A$ ã«äº€æãã. \r\n- äžèšã® $2$ ã€ã亀æã§ãã空容åšãããéãç¹°ãè¿ã. \r\n\r\næåã«èŠãçæç¹ãã, ãã®æé ã¯æé©ãªäº€ææé (ã®äžäŸ)ãšãªããŸã. \r\n\r\n<details>\r\n<summary>亀ææé 1ã®å
·äœäŸ<\\/summary> \r\n\r\nå
·äœçã«, $A,B$ ã $401$ æ¬ãã€æã£ãŠãããšãã®å®¹åšã®æ°ã®æåãèŠãŠã¿ãŸããã. \r\n$(a,b)$ ãšæžããã $A,B$ ã®å®¹åšããããã $a,b$ åæã£ãŠããç¶æ
ãè¡šããšããŸã. \r\n\r\n1. $(401,401)$ ãã, $A$ ã®ç©ºå®¹åšã $399$ å亀æããŠ, $B$ ã $133$ ååŸã. $(2,534)$ ãšãªã.\r\n2. $(2,534)$ ãã, $B$ ã®ç©ºå®¹åšã $532$ å亀æããŠ, $A$ ã $76$ ååŸã. $(78,2)$ ãšãªã.\r\n3. $(78,2)$ ãã, $A$ ã®ç©ºå®¹åšã $78$ å亀æããŠ, $B$ ã $26$ ååŸã. $(0,28)$ ãšãªã.\r\n4. $(0,28)$ ãã, $B$ ã®ç©ºå®¹åšã $28$ å亀æããŠ, $A$ ã $4$ ååŸã. $(4,0)$ ãšãªã.\r\n5. $(4,0)$ ãã, $A$ ã®ç©ºå®¹åšã $3$ å亀æããŠ, $B$ ã $1$ ååŸã. $(1,1)$ ãšãªã.\r\n6. 亀æã§ãããã®ãç¡ãããçµäºãã. \r\n\r\n<\\/details> \r\n\r\nãã®æé èªäœã¯ããªãçŽæçã ãšæããŸãã, åæäœã§, äžæ¹ã®çš®é¡ã®å®¹åšãæžãããäžæ¹ãå¢ãããã, 容åšæ°ã®æåãè¿œãã«ãããšããæ¬ ç¹ããããŸã. \r\nããã§, 次ã¯ãããæ¹åããŠã¿ãŸããã. \r\n\r\n##### 3. æé©ãªäº€ææé ãã® $2$\r\n\r\nã第äºç¯ã§è¿°ã¹ãåé¡ç¹ã«ã€ããŠèããŸã. \r\nãããã§ã®åé¡ç¹ãšã¯, $A$ ãæžãããã $B$ ãå¢ããããšã«ããã®ã§ãã. \r\nããã§, $A$ ã $B$ ã«äº€æããçŽåŸã«, å¢ããåã® $B$ ãå
šãŠ $A$ ã«äº€æããã $B$ ã®æ¬æ°ãå€ããããšãªã, $A$ ã®æ¬æ°ã®å€åãå®çŸã§ããã®ã§ã¯, ãšããçºæ³ã«è³ããŸã. ( $B\\to A\\to B$ ã®äº€æãåæ§ã«èããããŸã. )\r\n\r\nããã®ã¢ã€ãã¢ã解æ³ã«èœãšã蟌ãããã«çŽ°éšãè©°ããŠãããŸããã. \r\n\r\nãŸã, å
ã»ã©ã¯ããåã® $A$ ãå
šãŠãŸãšã㊠$B$ ã«äº€æããŠããŸããã, ãããšå°äœã®é¢ä¿ã§, å¢ããåã® $B$ ãå
šãŠ $A$ ã«äº€æã§ãããšã¯éããŸãã. \r\nããã®è§£æ±ºæ³ãšããŠã¯, å
ã»ã©ãã䜿ã£ãŠãã \"亀æã®æé©æ§ã¯æé ã«äŸããªã\" ãšããäºå®ã䜿ããŸã. \r\nå
·äœçã«ã¯, å
šãŠãŸãšããŠäº€æããã®ã§ã¯ãªã, 亀æã§å¢ãã $B$ ãå
šãŠ $A$ ã«å€æã§ããæ°ãã€, ããã«å
·äœçã«ã¯ $3\\times 7=21$ æ¬ã〠$A$ ã $B$ ã«äº€æãããã°è¯ãã§ã. \r\n\r\n次ã«, ãã®æ¹æ³ã§æåŸãŸã§äº€æããããããéèªæã§ãããšããåé¡ç¹ããããŸã. \r\nããã, ããã¯ãã®æ®µéã§ã¯æ°ã«ããªããŠè¯ãã§ã. \r\nãšããã®ã, ããæåŸã«äžéšã®ç©ºå®¹åšãäœã£ããšããŠã, ããã¯é«ã
$20$ æ¬ä»¥äžãã€ã§ããã®ã§, ãã®åŸæé ãã® $1$ ãããã°ååæèšç®ã§ãããã ããã§ã. \r\n\r\n 以äžããŸãšãããš, 次ã®ãããªäº€æã®æé ãã® $2$ ãåŸãŸã. \r\n\r\n- 飲ãã§ããªã $A$ ã $21$ æ¬ä»¥äžããã°, $A$ $21$ æ¬ã飲ã¿, æ°èŠã® $B$ $7$ æ¬ã«äº€æã, 亀æã§åŸã $B$ $7$ æ¬ãå
šãŠé£²ãã§æ°èŠã® $A$ $1$ æ¬ã«äº€æãã. \r\n- 飲ãã§ããªã $B$ ã $21$ æ¬ä»¥äžããã°, $B$ $21$ æ¬ã飲ã¿, æ°èŠã® $A$ $3$ æ¬ã«äº€æã, 亀æã§åŸã $A$ $3$ æ¬ãå
šãŠé£²ãã§æ°èŠã® $B$ $1$ æ¬ã«äº€æãã. \r\n- äžèšã®ãå°ãªããšãäžæ¹ãã§ããéç¹°ãè¿ã. \r\n- ç¹°ãè¿ãçµäºæã«ããæ®ããããã°æé ãã®1ã®ããã«ãã.\r\n\r\n<details>\r\n<summary>亀ææé 2ã®å
·äœäŸ<\\/summary> \r\n\r\nå
·äœçã«, $A,B$ ã $401$ æ¬ãã€æã£ãŠãããšãã®å®¹åšã®æ°ã®æåãèŠãŠã¿ãŸããã. \r\n$(a,b)$ ãšæžããã $A,B$ ã®å®¹åšããããã $a,b$ åæã£ãŠããç¶æ
ãè¡šããšããŸã. \r\n\r\n1. $(401,401)$ ãã, $A$ $21$ åã亀æããŠ, $B$ ã $7$ ååŸã. $(380,401+7)$ ãšãªã. åŸã $7$ åã® $B$ ã, $1$ åã® $A$ ã«äº€æãã. $(381,401)$ ãšãªã.\r\n2. $(381,401)$ ãã, $A$ $21$ åã亀æããŠ, $B$ ã $7$ ååŸã. $(360,401+7)$ ãšãªã. åŸã $7$ åã® $B$ ã, $1$ åã® $A$ ã«äº€æãã. $(361,401)$ ãšãªã. \r\n3. ãããç¶ãã. \r\n<\\/details> \r\n\r\nãã®åæé ã®ã§ã®ååŸã®æ¬æ°ã, ãã®éã«é£²ãã 飲ææ°ãã¿ãã°, ããã¯ä»¥äžãšåãã§ãããšåãããŸã. \r\n\r\n- 飲ãã§ããªã $A$ ã $21$ æ¬ä»¥äžããã°, $A$ $21$ æ¬ã飲ã¿, æ°èŠã® $A$ $1$ æ¬ã«äº€æã, **ãããšã¯å¥ã« $B$ $7$ æ¬ã飲ãã ãšããäºå®ã®ã¿ãåŸã**. \r\n- 飲ãã§ããªã $B$ ã $21$ æ¬ä»¥äžããã°, $B$ $21$ æ¬ã飲ã¿, æ°èŠã® $B$ $1$ æ¬ã«äº€æã, **ãããšã¯å¥ã« $A$ $3$ æ¬ã飲ãã ãšããäºå®ã®ã¿ãåŸã**. \r\n- äžèšã®ãå°ãªããšãäžæ¹ãã§ããéç¹°ãè¿ã. \r\n- ç¹°ãè¿ãçµäºæã«ããæ®ããããã°æé ãã®1ã®ããã«ãã. \r\n\r\n\r\nããã«, 飲æã飲ã¿äº€æãããšããã, **飲ãã äºå®ãåŸã**ããŒããšäº€æããããŒãã«åããŠèããããšã§, \r\n\r\n- 飲ãã§ããªã $A$ ã $21$ æ¬ä»¥äžããã°, 飲ãã§ããªã $A$ $20$ æ¬ãæžãã, **ãããšã¯å¥ã« $B$ $7$ æ¬ãš $A$ $21$ æ¬ã®èš $28$ æ¬ã飲ãã ãšããäºå®ã®ã¿ãåŸã**. \r\n- 飲ãã§ããªã $B$ ã $21$ æ¬ä»¥äžããã°, 飲ãã§ããªã $B$ $20$ æ¬ãæžãã, **ãããšã¯å¥ã« $A$ $3$ æ¬ãš $B$ $21$ æ¬ã®èš $24$ æ¬ã飲ãã ãšããäºå®ã®ã¿ãåŸã**. \r\n- äžèšã®ãå°ãªããšãäžæ¹ãã§ããéç¹°ãè¿ã. \r\n- ç¹°ãè¿ãçµäºæã«ããæ®ããããã°æé ãã®1ã®ããã«ãã. \r\n\r\nãããŸã§ããã°, ç°¡åãªèšç®ã«èœãšã蟌ãããšãã§ããŸã. \r\n$N=200\\dots0021$ ãšããã°, äžèšã®æäœã¯ãããã, $\\dfrac{N-1}{20}$ åè¡ãäºãã§ãããã, 飲æã飲ãã äºå®ã¯, \r\n$$\\frac{N-1}{20}*28+\\frac{N-1}{20}*24$$\r\næ¬ååŸãŸã. \r\nãã®æäœãçµããæ, $A,B$ ã¯ãããã $1$ æ¬ãã€æ®ãã®ã§, (çµå±å
ã»ã©æžå¿µããäžéå端ã«æ®ã£ããæé 1ãããããšèšã£ãŠããã®ããããŸã§ããªã, ) ãããã飲ãã æ¬æ°ã«å ããã°, å
¬åŒè§£èª¬ã®\r\n\r\n$$M=\\frac{N-1}{20}*(24+28)+2$$\r\n\r\nãšããåŒãåŸãŸã.",
"text": "解説ã®è£è¶³ã®è©Šã¿",
"url": "https://onlinemathcontest.com/contests/omc034/editorial/269/241"
}
] | ãããåºã§ã¯ $2$ çš®é¡ã®é£²æ $A,B$ ã売ãããŠããŸã. ãã®åºã§ã¯, 飲æ $A$ ã®ç©ºå®¹åš $3$ æ¬ã $1$ æ¬ã®æ°ãã飲æ $B$ ã«, ãŸã飲æ $B$ ã®ç©ºå®¹åš $7$ æ¬ã $1$ æ¬ã®æ°ãã飲æ $A$ ã«äº€æããŠãããããšãã§ããŸã.\
ãããŸ, OMCåãæ°ãã飲æ $A,B$ ããããã $2\underbrace{0000...00000}_{2021\text{å}}21$ æ¬ãã£ãŠãããšã, 圌ã¯æçµçã«åèšã§æ倧 $M$ æ¬ã®é£²æ $A,B$ ã飲ãããšãã§ããŸã. $M$ ã® (åé²æ³ã§ã®) åäœã®æ°ã®ãã¡, $0$ ã§ãªããã®ã®**ç©**ã解çããŠãã ãã.\
ããã ã, 亀æã«ãã£ãŠåŸã飲æã亀æã«çšããããšãã§ããŸã. |
OMC034 | https://onlinemathcontest.com/contests/omc034 | https://onlinemathcontest.com/contests/omc034/tasks/275 | D | OMC034(D) | 400 | 69 | 137 | [
{
"content": "ããç·å $AC$ ã®äžç¹ã $F$ ãšã, ç·å $DE$ äžã« $AB\\parallel FG \\parallel CE$ ãªãç¹ $G$ ããšããš, $ABF$ ã¯æ£äžè§åœ¢ã§ãã,\r\n$$\\angle BFG=\\angle ABF=60^\\circ=\\angle BDG$$\r\nãã $B,D,F,G$ ã¯å
±å, ããã« $BDG$ ãæ£äžè§åœ¢ã§ãã. ãããã£ãŠ\r\n$$DF:DC=DG:DE=BD:DE=2:5$$\r\nãã㧠$AC=12x$ ãšãã, $AF$ ã®äžç¹ã $M$ ãšããã°, $BDM$ ã«ãããäžå¹³æ¹ã®å®çãã\r\n$$28x^2=(3\\sqrt{3}x)^2+x^2=BM^2+DM^2=BD^2=4$$\r\nãã£ãŠ $AC=12\\/\\sqrt{7}$ ã§ãã, ç¹ã«è§£çãã¹ãå€ã¯ $144+7=\\textbf{151}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc034/editorial/275"
},
{
"content": "ã$CE=CF$ ãªãç¹ $F$ ã $D,C,F$ ããã®é ã«åäžçŽç·äžã«ããããã«ãšããšïŒäžè§åœ¢ $ADB$ ãšäžè§åœ¢ $FED$ ã¯çžäŒŒã§ããïŒ$AB=x, ~ CE=y$ ãšãããš $\\dfrac{5}{2}x=2x+\\dfrac{3}{5}y$ ãã $y=\\dfrac{5}{6}x$ ãåããïŒäœåŒŠå®çãã $BE=\\sqrt{19}$ ã§ïŒ$BC=\\sqrt{3}x$ ãªã®ã§ïŒäžå¹³æ¹ã®å®çãã $x=\\sqrt{\\dfrac{36}{7}}$ ãšæ±ãŸãïŒãã£ãŠ $AC=2x=\\sqrt{\\dfrac{144}{7}}$ ã§ããïŒç¹ã«è§£çãã¹ãå€ã¯ $144+7=\\mathbf{151}$ ã§ããïŒ",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc034/editorial/275/3"
}
] | ã$\angle A=60^\circ, \angle B=90^\circ$ ãªãäžè§åœ¢ $ABC$ ã«ãããŠ, 蟺 $AC$ äžã®ç¹ $D$ ã $BD=2$ ãã¿ãããŸãã. ããã«, ç¹ $C$ ãéãçŽç· $AB$ ã«å¹³è¡ãªçŽç·äžã« $\angle BDE=60^\circ$ ãªãç¹ $E$ ããšããš, $DE=5$ ãæãç«ã¡ãŸãã.\
ããã®ãšã $AC$ ã®é·ãã¯, äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\sqrt{\dfrac{a}{b}}$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC034 | https://onlinemathcontest.com/contests/omc034 | https://onlinemathcontest.com/contests/omc034/tasks/279 | E | OMC034(E) | 500 | 50 | 84 | [
{
"content": "ã$7$ ã $3$ ã®åæ°ã§ãªãããšãã, $x=y=z$ ãªã解ãååšã, ç¹ã« $b$ 㯠$3$ ã®åæ°ã§ãã. ãããã£ãŠ $b=3k$ ãšå®ã, $x-k,y-k,z-k$ ã $x,y,z$ ãšãããªããã°, äžæ¡ä»¶ã¯ä»¥äžã®ããã«æžãæãããã.\r\n$$x^2+y^2+z^2\\leq \\frac{3}{25}a^2-3k^2,\\ \\ x+y+z=0$$\r\nãæŽæ° $(x,y,z)$ ã $x+y+z=0$ ãã¿ãããªããåããšã, $x^2+y^2+z^2$ ã®ãšãåŸãå€ãå°ããã»ãããèãã. ãŸã $(0,0,0)$ 㧠$0$ ããšã, ç¶ã㊠$(1,0,-1)$ ããã³ãã®äžŠã¹æ¿ã㧠$2$ ããšã, ããã« $(2,1,-1)$ ããã³ãã®äžŠã¹æ¿ã㧠$6$ ããšããã, åé¡ã¯ä»¥äžãã¿ããæ£æŽæ°ã®çµ $(a,k)$ ããã¹ãŠæ±ããããšã«åž°çããã.\r\n$$2\\leq \\dfrac{3}{25}a^2-3k^2\\lt 6 \\implies 3(5k)^2+50\\leq 3a^2\\lt 3(5k)^2+150$$\r\nã$a^2=(5k)^2+N$ ãšããã° ($17\\leq N\\leq 49$), $N$ ã¯å·®ã $10k$ ã§ããäºã€ã®æ£æŽæ°ã®ç©ãšããŠè¡šããããšã«çæããŠå·¥å€«ããã°, 以äžã®ããã«åæã§ãã.\r\n\r\n- $N=21=1\\times 21$ ã®ãšã $(a,k)=(11,2)$\r\n- $N=24=2\\times 12$ ã®ãšã $(a,k)=(7,1)$\r\n- $N=31=1\\times 31$ ã®ãšã $(a,k)=(16,3)$\r\n- $N=39=3\\times 13$ ã®ãšã $(a,k)=(8,1)$\r\n- $N=31=1\\times 41$ ã®ãšã $(a,k)=(21,4)$\r\n- $N=44=2\\times 22$ ã®ãšã $(a,k)=(12,2)$\r\n\r\nã以äžãã, æ±ããå€ã¯ $(11+6)+(7+3)+(16+9)+(8+3)+(21+12)+(12+6)=\\textbf{114}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc034/editorial/279"
}
] | ã以äžã® $2$ åŒããšãã«ã¿ããæŽæ°ã®çµ $(x,y,z)$ ãã¡ããã© $7$ ã€ååšãããããªæ£æŽæ°ã®çµ $(a,b)$ ããã¹ãŠæ±ã, ãããã® $a+b$ ã®ç·åã解çããŠãã ãã.
$$ x^2+y^2+z^2\leq \frac{3}{25}a^2,\ \ x+y+z=b $$ |
OMC034 | https://onlinemathcontest.com/contests/omc034 | https://onlinemathcontest.com/contests/omc034/tasks/1279 | F | OMC034(F) | 500 | 44 | 75 | [
{
"content": "ã$f(x)=0$ ã®è§£ã (éè€èŸŒã¿ã§) $x=a_1,a_2,...,a_{2021}$ ãšããã°,\r\n$$f(x)=(x-a_1)(x-a_2)\\cdots (x-a_{2021})$$\r\n$f(x^2)$ ã $f(x)$ ã§å²ãåããããã®å¿
èŠæ¡ä»¶ã¯, ä»»æã® $i$ ã«å¯Ÿããã $j$ ãååšã㊠$a_i^2=a_j$ ãšãªãããšã§ãã.\r\n----\r\n**è£é¡.**ãä»»æã® $i$ ã«ã€ã㊠$a_i\\in\\\\{1,0,-1\\\\}$ ã§ãã.\r\n\r\n**蚌æ.**ã$M=\\max\\\\{|a_1|,...,|a_{2021}|\\\\}$ ã«ã€ã㊠$M\\gt1$ ã®ãšã, $M^2\\gt M$ ããäžé©ã§ãã. äžæ¹ $0\\lt |a_i|\\lt 1$ ãªã $i$ ãååšãããšã, ãã®ãã㪠$|a_i|$ ã®ãã¡æå°ã®ãã® $m$ ã«ã€ã㊠$0\\lt m^2\\lt m$ ããäžé©ã§ãã. (蚌æçµ)\r\n\r\n----\r\nãããã£ãŠ, $f(x)$ 㯠$p+q+r=2021$ ãªãéè² æŽæ° $p,q,r$ ãçšããŠ\r\n$$f(x)=x^p(x-1)^q(x+1)^r$$\r\nãšè¡šãã. ãã®ãšã,\r\n$$f(x^2)=x^{2p}(x-1)^q(x+1)^q(x^2+1)^r$$\r\nã§ããããšã«çæããã°, 以äžã®åé¡ã解ãããšã«åž°çããã.\r\n\r\n- $p+q+r=2021$ ã〠$q\\geq r$ ãªãéè² æŽæ°ã®çµ $(p,q,r)$ ã¯ããã€ãããïŒ\r\n\r\nãæ¡ä»¶ $q\\geq r$ ãç¡èŠããã° ${}\\_{2023}\\textrm{C}\\_{2}$ éãã§ãã, ãã®ãã¡ $q=r$ ã§ãããã®ã¯ $1011$ éãã§ãã. $q\\geq r$ ãªããã®ã¯ $q\\leq r$ ãªããã®ã®åæ°ãšçããããšã«çæããã°, 以äžããæ±ããã¹ãå€ã¯\r\n$$\\dfrac{1}{2}\\times({}\\_{2023}\\textrm{C}\\_{2}+1011)=\\textbf{1023132}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc034/editorial/1279"
}
] | ã以äžã®æ¡ä»¶ããã¹ãŠã¿ããå®æ°ä¿æ°å€é
åŒ $f(x)$ ã¯ããã€ãããŸããïŒ
- $2021$ 次ã§, $x^{2021}$ ã®ä¿æ°ã¯ $1$ ã§ãã.
- $f(x)=0$ ã®è€çŽ æ°è§£ã¯ãã¹ãŠå®æ°ã§ãã.
- $f(x^2)$ 㯠$f(x)$ ã§å²ãåãã. |
OMC033 (for beginners) | https://onlinemathcontest.com/contests/omc033 | https://onlinemathcontest.com/contests/omc033/tasks/254 | A | OMC033(A) | 100 | 189 | 197 | [
{
"content": "$$\\frac{1}{S(n)}=\\frac{2}{n(n+1)}=2\\left(\\frac 1n-\\frac{1}{n+1}\\right)$$\r\nãæãç«ã€ãã, æ±ããç·åã¯\r\n$$2\\left\\\\{\\left(1-\\frac 12\\right)+\\left(\\frac 12-\\frac 13\\right)+\\cdots +\\left(\\frac{1}{2021}-\\frac{1}{2022}\\right)\\right\\\\}=2\\left(1-\\frac{1}{2022}\\right)=\\frac{2021}{1011}$$\r\nç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{3032}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc033/editorial/254"
}
] | ã$n$ 以äžã®æ£æŽæ°ã®ç·åã $S(n)$ ã§è¡šããšã, 以äžã®ç·åãæ±ããŠãã ãã.
$$\frac{1}{S(1)}+\frac{1}{S(2)}+\cdots+\frac{1}{S(2021)}$$
ãçãã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC033 (for beginners) | https://onlinemathcontest.com/contests/omc033 | https://onlinemathcontest.com/contests/omc033/tasks/240 | B | OMC033(B) | 200 | 174 | 189 | [
{
"content": "ãå $2$ åã®åºç®ãåºå®ãããšã, $N$ ãšããŠããåŸãæ°ã¯ $6$ ã€ã®é£ç¶ããæŽæ°ã§ããããšãã, ç¹ã«ãã®ãã¡ $6$ ã®åæ°ãã¡ããã©äžã€ååšãã. ãã£ãŠæ±ãã確ç㯠$1\\/6$ ã§ãã, 解çãã¹ãå€ã¯ $\\textbf{7}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc033/editorial/240"
}
] | ã$1$ ãã $6$ ãŸã§ã®ç®ãç確çã§åºããµã€ã³ãã $3$ åæ¯ã, åºãç®ãé ã«å·Šãã䞊ã¹ãŠã§ãã $3$ æ¡ã®æ°ã $7$ é²æ³ã§è§£éããŠæŽæ° $N$ ãäœããŸã. ãã®ãšã, $N$ ã $6$ ã§å²ãåãã確çãæ±ããŠãã ãã. ãã ã, çãã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC033 (for beginners) | https://onlinemathcontest.com/contests/omc033 | https://onlinemathcontest.com/contests/omc033/tasks/256 | C | OMC033(C) | 300 | 61 | 97 | [
{
"content": "ãçŽç· $AB$ ãš $\\ell$ ã®äº€ç¹ã $M$ ãšããã°, æ¹ã¹ãã®å®çãã\r\n$$MP^2=AM\\times BM=MQ^2$$\r\nããªãã¡ $M$ 㯠$PQ$ ã®äžç¹ã§ãããã, äžç·å®çãã\r\n$$AP^2+AQ^2=2\\left(AM^2+PM^2\\right)\\implies AM=\\sqrt{\\frac{5^2+7^2}{2}-3^2}=2\\sqrt 7$$\r\nãããã, $BM=AM\\pm AB$ ãäžã®æ¹ã¹ãã®åŒã«ä»£å
¥ããããšã§ $AB=19\\/2\\sqrt{7}$ ãåŸããã, ç¹ã«è§£çãã¹ãå€ã¯ $361+28=\\textbf{389}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc033/editorial/256"
}
] | ãçžç°ãªã $2$ ç¹ $A,B$ ã§äº€ãã $2$ å $C_1,C_2$ ãå¹³é¢äžã«ãããŸã. ãããã®å
±éæ¥ç·ã® $1$ ã€ã $\ell$ ãšã, ãã® $C_1,C_2$ ãšã®æ¥ç¹ããããã $P,Q$ ãšãããšã, 以äžã®åŒãæãç«ã¡ãŸããã
$$AP=5,\ \ AQ=7,\ \ PQ=6$$
ããã®ãšã, ç·å $AB$ ã®é·ãã® $2$ ä¹ãæ±ããŠãã ãã. ãã ã, çãã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\dfrac{a}{b}$ ãšè¡šããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC033 (for beginners) | https://onlinemathcontest.com/contests/omc033 | https://onlinemathcontest.com/contests/omc033/tasks/1515 | D | OMC033(D) | 400 | 104 | 140 | [
{
"content": "ãäžå®æ¹çšåŒ $3m-7n=2021$ ã®éè² æŽæ°è§£ã¯, éè² æŽæ° $k$ ãçšããŠ\r\n$$(m,n)=(7k+676,3k+1)$$\r\nãšè¡šããã. ãã®ãšã, $m=\\left\\lfloor x^2\\right\\rfloor,n=\\left\\lfloor 3x\\right\\rfloor$ ãšãªããã㪠$k,x$ ã®æ¡ä»¶ãèããã°\r\n$$ 7k+676\\le x^2\\lt 7k+677,\\quad k+\\frac13\\le x\\lt k+\\frac 23$$\r\nãããåæã«ã¿ããæ£ã®å®æ° $x$ ãååšããããã«ã¯, $2$ ã€ã®åºé\r\n$$ [ 7k+676, 7k+677 ),\\quad \\left[\\left(k+\\dfrac{1}{3}\\right)^2, \\left(k+\\dfrac{2}{3}\\right)^2\\right)$$\r\nã®å
±ééšåãååšããã°ãã. ãã㯠\r\n$$7k+676 \\lt \\left(k+\\frac{2}{3} \\right)^2 \\text{ãã€} \\left(k+\\frac{1}{3}\\right)^2 \\lt 7k+677$$\r\nãæºããéè² æŽæ° $k$ ãæ±ããã°ãã, $k=29$ ã«éãããããšãããã. ãããã£ãŠ, æ±ãã $x$ ã®ç¯å²ã¯\r\n$$ \\sqrt{879}\\leq x\\lt \\sqrt{880} $$\r\nã§ãã, 解çãã¹ãå€ã¯ $879+880=\\textbf{1759}$ ã§ãã. \r\n\r\n**åè.**ããªãåé¡æäžã«äžããããŠããéã $x$ ã®è§£ã $a\\leq x\\lt b$ ãšèªããã°, ããç°¡åãªæ¹çããã. ããªãã¡, $a^2$ ãŸã㯠$3a$ ã¯æŽæ°ãšãªãã¯ãã§ãããã ($b$ ãåæ§), ãã®ãããªåœ¢ãå®éã«ä»£å
¥ããŠå¢çãšããŠé©ããã確ãããã°ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc033/editorial/1515"
}
] | ã以äžã® $x$ ã«ã€ããŠã®æ¹çšåŒ
$$3\left\lfloor x^2\right\rfloor-7\lfloor3x\rfloor=2021$$
ã®**æ£ã®å®æ°è§£**ã¯, å®æ° $a,b$ ãçšã㊠$a\leq x\lt b$ ãšè¡šããŸã. $a^2+b^2$ ã解çããŠãã ãã.\
ããã ãã$\lfloor x\rfloor$ 㧠$x$ ãè¶
ããªãæ倧ã®æŽæ°ãè¡šããŸã. |
OMC032 (for experts) | https://onlinemathcontest.com/contests/omc032 | https://onlinemathcontest.com/contests/omc032/tasks/11 | A | OMC032(A) | 100 | 217 | 219 | [
{
"content": "ã$\\angle CAD+\\angle DBE+\\angle ACE+\\angle ADB+\\angle BEC=180^{\\circ}$ ãã, $M=\\textbf{46}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc032/editorial/11"
}
] | ãåžäºè§åœ¢ $ABCDE$ ã以äžã®æ¡ä»¶ãã¿ãããŸã.
$$\angle DBE=\angle ACE=\angle ADB=36^\circ,\ \ \angle BEC=26^\circ$$
ãã®ãšã $\angle CAD$ ã®å€§ããã¯åºŠæ°æ³ã§ $M^\circ$ ã§ã(ãã ã $0\lt M\lt 180$). $M$ ã解çããŠãã ãã. |
OMC032 (for experts) | https://onlinemathcontest.com/contests/omc032 | https://onlinemathcontest.com/contests/omc032/tasks/12 | B | OMC032(B) | 400 | 109 | 184 | [
{
"content": "ãæŠéåã® (åé²æ³ã§ã®) æ¡åãšææéã®åãåžžã«äžå®ã§ãã. $2^{63}-1$ 以äžã§æ倧ã®æ¡åã¯\r\n$$9\\times 10^{18}-1=8,999,999,999,999,999,999$$\r\nã§ã® $170$ ã ãã, æ±ããæå°å€ã¯ $\\textbf{171}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc032/editorial/12"
}
] | ãåè
ã»ããããã¯éçã»æ»éæ»éãåããã**æŠéå**ãäžãããã§ã. ãããã㯠$1$ åãæãããšã§æŠéåã $1$ äžããããšãã§ã, ããã«æŠéåã $x$ ã«äžãããšåæã«ããŒãã¹ãšã㊠$9\times(x\text{ã}10\text{ã§å²ãåããåæ°})$ åãæ¯çµŠãããŸã. ææéã $0$ åã«ãªããš, ãã以äžæŠéåãäžããããšã¯ã§ããŸãã.\
ãçŸåšããããã¯æŠéå $0$ ã§ææéã $n$ åã§ã. ãããããæŠéåã
$$2^{63}-1=9,223,372,036,854,775,807$$
ãŸã§äžãããããããª, $n$ ãšããŠããåŸãæå°ã®æ£æŽæ°ãæ±ããŠäžãã. |
OMC032 (for experts) | https://onlinemathcontest.com/contests/omc032 | https://onlinemathcontest.com/contests/omc032/tasks/13 | C | OMC032(C) | 400 | 75 | 127 | [
{
"content": "ã$3$ ç¹ $B,G,I$ ããã³ $C,G,H$ ãåäžçŽç·äžã«ããããšã«çæãã.\\\r\nãäžè§åœ¢ $BEG$ ã®é¢ç©ã $s$ ãšããã°, $CEH$ ã®é¢ç©ã $s$ ã§ãã. $BG$ ãš $EH$ ã®å¹³è¡ãã $GH:HC=BE:EC$ ã§ãããã, é¢ç©æ¯ãèã㊠$1:s=s:(s+1)$, ããªãã¡ $s=(1+\\sqrt{5})\\/2$ ãåŸã. ãã£ãŠ\r\n$$S=4+6s=7+3\\sqrt{5}$$\r\nããã㧠$T=7-3\\sqrt{5}$ ãšããã°, $ST=4,S+T=14,S^2+T^2=188$ ã§ãã,\r\n$$ S^{n+1}+T^{n+1}=(S+T)(S^{n}+T^{n})-ST(S^{n-1}+T^{n-1}) $$\r\nããåž°çŽçã« $f(S^n+T^n)$ ã¯åšæ $4,8,6,2$ ãç¹°ãè¿ãããšãããã. ãã£ãŠ $T^n\\lt 1$ ãã $f(S^n)$ ã¯åšæ $3,7,5,1$ ãç¹°ãè¿ããã, æ±ããå€ã¯ $250\\times(3+7+5+1)-1=\\textbf{3999}$ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc032/editorial/13"
}
] | ãé¢ç© $S$ ã®æ£äžè§åœ¢ $ABC$ ã®èŸº $AB,BC,CA$ äžã«ããããç¹ $D,E,F$ ããã, $AD=BE=CF$ ãã¿ãããŠããŸã. $DE,EF,FD$ ã®äžç¹ããããã $G,H,I$ ãšãããš, äžç¹ $A,H,I$ ã¯åäžçŽç·äžã«ååšã, äžè§åœ¢ $GHI$ ã®é¢ç©ã¯ $1$ ã§ãã.\
ããšããã§, å®æ° $x$ ã«å¯Ÿãã$x$ ã $10$ é²æ°å±éãããšãã® $1$ ã®äœãã $f(x)$ ã§è¡šããã®ãšããŸã. äŸãã°
$$f(2021)=1,\ \ f(\sqrt{2021})=4,\ \ f\left(\dfrac{\pi}{4}\right)=0$$
ã§ã. ãã®ãšã, 以äžã®ç·åãæ±ããŠãã ããïŒ
$$f(S)+f(S^2)+f(S^3)+\cdots+f(S^{999})$$ |
OMC032 (for experts) | https://onlinemathcontest.com/contests/omc032 | https://onlinemathcontest.com/contests/omc032/tasks/14 | D | OMC032(D) | 600 | 55 | 66 | [
{
"content": "ã$6\\times10^8$ åãé€ãå
šå¡ãå
ã«æ«ã§ã人ãäºã決ããŠãããšããã°, $x$ åã®æäœã¯ä»¥äžã®ããã«èªã¿æ¿ãããã.\r\n\r\n- äºã決ãã人ã $x^2$ åæ«ã§ã. ãã ãå
šãŠã®äººã¯, èªåãæ«ã§ãããçŽåŸã«ãäºã決ãã人ãæ«ã§ã.\r\n\r\nã$n\\leq 3\\times10^8+7$ ã«ã€ã㊠$n$ åã®æäœãèãããš, $3\\times10^8+8$ åãæ«ã§ãããããšã¯\r\n\r\n- $3\\times10^8+8\\text{å},3\\times10^8+9\\text{å},\\cdots,6\\times10^8$ åã®äžã§æåã« $3\\times10^8+8$ åãæ«ã§ãããããš\r\n\r\nãšåå€ã§ãããã, $3\\times10^8+8$ åãæ«ã§ããã確ç㯠$1\\/(3\\times10^8-7)$ ã§ãã.\r\n\r\nããã®äºå®ãçŽæçã«ä¿¡ãé£ããã°, 次ã®ãããªæœçãåã£ãŠãããã ããïŒ\r\n\r\n- simaå§åŠ¹ã $y$ 人ãããªããšããŠ, $x$ åãæ«ã§ããã確ç, ããªãã¡ $x\\text{å},\\cdots,y$ åã®äžã§æåã« $x$ åãæ«ã§ããã確çã $p_{x,y}$ ãšãã. ãã®ãšã, $1$ åãæ«ã§ãå
ãèããããšã§ä»¥äžãæç«ããïŒ\r\n$$p_{x,y}=\\frac{1}{y-1}(p_{x-1,y-1}+p_{x-2,y-2}+\\cdots+p_{2,y-x+2}+1)$$\r\nããããåž°çŽçã« $p_{x,y}=\\dfrac{1}{y-x+1}$ ãæç«ãã.\r\n\r\nãçµå±, æ±ããæåŸ
å€ã¯ä»¥äžã®ããã«èšç®ã§ãããã, 解çãã¹ãå€ã¯ $\\textbf{17150000133}$ ã§ãã.\r\n$$\\sum_{k=1}^{3\\times10^8+7}\\frac{k^2}{3\\times10^8-7}=\\frac{9000000675000016850000140}{299999993}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc032/editorial/14"
}
] | ãsimaå§åŠ¹ã¯ $6\times10^8$人ã®å¥³åãããªã, çãŸããæ©ãæ¹ãã $1\text{å},2\text{å},\cdots,6\times10^8$ åãšåä»ããããŠããŸã. ããã§å人ã®ç幎ææ¥ã¯ç°ãªããã®ãšããŸã. å $x=1,2\cdots,6\times10^8-1$ ã®é ã«, $x$ åã以äžã®æäœãè¡ããŸã.
- èªåã®åŠ¹ $(6\times10^8-x)$ 人ããç確çã«äžäººãéžã³, $(\text{ä»ãŸã§èªåãæ«ã§ãããåæ°}+x^2)å$ æ«ã§ã.
ãã®ãšã $3\times10^8+8$ åãæ«ã§ãããåæ°ã®æåŸ
å€ãæ±ããŠãã ãã.\
ããã ã, çãã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\dfrac{a}{b}$ ãšè¡šãããã®ã§, $a+b$ ã $10^{12}$ ã§å²ã£ãäœãã解çããŠãã ãã. |
OMC032 (for experts) | https://onlinemathcontest.com/contests/omc032 | https://onlinemathcontest.com/contests/omc032/tasks/15 | E | OMC032(E) | 700 | 11 | 35 | [
{
"content": "ãããé»ãã¹ãã $1179$ æ以å
ã§ç§»ããç¯å²ãè¡šçŸããå³åœ¢ $S$ ãèãã.\r\n![figure 1](\\/images\\/ow4Nm4IlTqZVT8njLvs0hPjz48MXx8uDg5ougG0u)\r\nãããš, ããã«ãã£ãŠç¡éãã¹ç®ã¯ééãéè€ãªãå
å¡«å¯èœã§ãã.\r\n![figure 1](\\/images\\/zurV4jGHF9Se1VKyg0DeiTnquOaytjhJL3v6gvP5)\r\n\r\näžã®åå³ã¯ $5$ æã®å Žåã瀺ããŠããã, $1179$ æã®å Žåãåæ§ã§ãã.\r\n\r\nããã®å
å¡«ã«ãããŠ, é©åœã« $10^{1341398}\\times 10^{1341398}$ ã®éšåãã¹ç®ãåãåºã. ãã®ãšã, ããã€ãã® $S$ ã¯éšåçã«çŸãã. ãã㧠$S$ 㯠$4173661$ ãã¹ãããªããã, ããããã® $S$ ã®åãã¹ã« $1,2,\\cdots,4173661$ ãåãé
眮ã§æžã蟌ãã§äžã®å
å¡«ãè¡ãããšãèãã. ãã®ãšã, åãæ°ã®æžã蟌ãŸãããã¹ãé»ãå¡ãã°ãããã¯ãècial distanceããä¿ã£ãŠãããã, 鳩ã®å·£åçãã $x\\geq 1\\/4173661$ ãããã. ç¹ã« $p\\geq 1\\/4173661$ ã§ãã.\\\r\nããšããã§, éšåçã«çŸãã $S$ ã«å±ãããã¹ç®ã¯, å€åšãã $2358$ ãã¹ä»¥å
ã«ååšããããšã«çæããã°, éã«\r\n$$x\\leq \\dfrac{1}{4173661}+\\dfrac{4\\times2358}{10^{1341398}}$$\r\nãšè©äŸ¡ã§ãã. ãã®ç¯å²ã«ã¯æããã«åæ¯ã $10^{20}$ 以äžã§ããæ¢çŽåæ°ã $1\\/4173661$ ã®ã»ãã«ååšããªããã, çµå±ããã $p$ ã§ãã, 解çãã¹ãå€ã¯ $\\textbf{4173662}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc032/editorial/15"
}
] | ãéçã»æ»éæ»éã«æããåè
ã»ããããã®é£ã°ãããç°äžçã§ã¯, å°æ£ã®ã«ãŒã«ã«**èå°**ãšããé§ãè¿œå ãããŠããŸãã. ãã®é§ã¯, 以äžã«ç€ºããã $6$ ãã¹ã®ããããã« $1$ æã§ç§»åã§ããŸã.
![figure 1](\/images\/dJKKWJ4kYFW7og4wqOs2D8Tj4u1wVvAzQVkDzRqU)
ã$10^{1341398}\times 10^{1341398}$ ã®æ£æ¹åœ¢ç¶ã®ãã¹ç®ããã, ãã®ãã¡ããã€ãã®ãã¹ãé»ãå¡ããŸã. ã©ã®é»ãã¹ã«èå°ã眮ããŠã, ä»ã®é»ãã¹ãžèå°ã $2358$ æ以å
ã«ç§»ãããšãã§ããªãç¶æ
ãã**ècial distance**ã**ãä¿ãããŠãã**ãšåŒã¶ããšã«ããŸã.\
ãããããã¯ãècial distanceããä¿ã£ããŸãŸé»ãã¹ãåºæ¥ãã ãããããå¡ãããã§ã. ãã®ãšã, ãã¹å
šäœã«å ããé»ãã¹ã®å²åã $x$ ãšãããŸã. åæ¯ã $10^{20}$ 以äžã®æ£æŽæ°ã§ãããããªæ¢çŽåæ°ã§ãã£ãŠ, $x$ 以äžã§æ倧ã®ãã® $p$ ã«ã€ããŠ, ãã®åæ¯ãšååã®åãæ±ããŠãã ãã. |
OMC032 (for experts) | https://onlinemathcontest.com/contests/omc032 | https://onlinemathcontest.com/contests/omc032/tasks/16 | F | OMC032(F) | 700 | 7 | 62 | [
{
"content": "ãæäœã«ãã㊠$a,b,c$ ãæ¶ããŠæžãããæ°ã®å€©äºèšå·ã®äžèº«ã $f(a,b,c)$ ãšãã.\\\r\nãé©åœãªæ£æŽæ° $a,b,c$ ããã³çŽ æ° $p$ ã«ã€ããŠ, $a,b,c$ ã $p$ ã§å²ãåããåæ°ããããã $x,y,z$ åãšãã. $x\\geq y\\geq z$ ãšããŠãäžè¬æ§ã倱ããªã. ãã®ãšã, $abc$ 㯠$p$ 㧠$x+y+z$ å, $\\gcd(a,b,c)$ 㯠$p$ 㧠$z$ å, $\\textrm{lcm}(a,b,c)$ 㯠$p$ 㧠$x$ åå²ãåãããã, $f(a,b,c)$ ã¯æ£æŽæ°ã§ãã, ç¹ã« $p$ 㧠$y$ åå²ãåãã. éã« $f(a,b,c)$ ãé©åœãªçŽ ã¹ã $p^n$ ã§å²ãåãããªãã° $a,b,c$ ã®ãã¡å°ãªããšãäºã€ã¯ $p^n$ ã§å²ãåãããã, é©åœãªçŽ æ° $p\\neq q$ ã«ã€ã㊠$p^nq^m$ ã§å²ãåãããªãã° $a,b,c$ ã«ã¯ $p^nq^m$ ã®åæ°ãå«ãŸãã. ãããã, ç¹ã« $M$ 㯠$11$ 以äžã®çŽ å æ°ãé«ã
äžã€ããæãã, $M=2^w3^x5^y7^zp^n$ ãšè¡šãã. 以äž, $M\\leq 32760$ ã§ããããšã瀺ãã.\\\r\nã$n=0$ ã®ãšã, äžã®è°è«ãã $2^w3^x,5^y7^z\\leq 121$ ã§ãããã $M\\leq 14641$. åæ§ã«ããŠ, ä»¥äž $w,x,y,z,n$ ã¯ãã¹ãŠ $0$ ã§ãªããšããŠãã. ãã®ãšã $n=1$ ã§ãã, $p=11,13,17$ ã§ãã. ãããã以äžã®ããã«èšç®ã§ãã.\r\n\r\n- $p=11$ ã®ãšã, $M=2^3\\times3^2\\times5\\times7\\times11=27720$ ãæ倧.\r\n- $p=13$ ã®ãšã, $M=2^3\\times3^2\\times5\\times7\\times13=32760$ ãæ倧.\r\n- $p=17$ ã®ãšã, $M=2^2\\times3\\times5\\times7\\times17=7140$ ãæ倧.\r\n\r\nãããšã¯ $M=32760$ ãšãªãæäœãå
·äœçã«æ瀺ããã°ããã, ããã¯ä»¥äžã®ããã«å®çŸããã.\r\n$$ \\begin{aligned}\r\n f(109,113,\\text{é©åœãªæ°})&=1,& f(1,35,105)&=35,& f(35,40,112)&=280,& f(63,70,90)&=630,\\\\\\\\\r\n f(72,280,630)&=2520,& f(56,91,104)&=728,& f(45,65,117)&=585,& f(585,728,2520)&=32760\r\n\\end{aligned}$$\r\nãã ã, **é©åœãªæ°**ã¯æ®ãã®æ°ã«é©åœã«æäœãæœããŠåŸã. 以äžãã, æ±ããæ倧å€ã¯ $\\textbf{32760}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc032/editorial/16"
}
] | ãé»æ¿ã« $1$ ãã $121$ ãŸã§ã®æŽæ°ãäžã€ãã€æžãããŠããŸã. siosioåã¯, é»æ¿ã«æžãããŠããæ°ãã¡ããã©äžã€ã«ãªããŸã§, 以äžã®æäœãç¹°ãè¿ãè¡ããŸã.
- é»æ¿ãã $3$ æ° $a,b,c$ ãéžãã§æ¶ã, æ°ãã« $\left\lceil \dfrac{abc}{\gcd(a,b,c)\times\textrm{lcm}(a,b,c)} \right\rceil$ ãæžã足ã.
ãã®ãšã, æåŸã«é»æ¿ã«æ®ãæ° $M$ ãšããŠããåŸãæ倧å€ãæ±ããŠãã ãã.\
ãããã§, æŽæ° $a,b,c$ ã«å¯Ÿããããã®æ倧å
¬çŽæ°ã $\gcd(a,b,c)$ ã§, æå°å
¬åæ°ã $\textrm{lcm}(a,b,c)$ ã§è¡šããŸã. ãŸãå®æ° $x$ ã«å¯Ÿã, $\lceil x\rceil$ 㧠$x$ 以äžã®æå°ã®æŽæ°ãè¡šããŸã. |
OMC031 (for beginners) | https://onlinemathcontest.com/contests/omc031 | https://onlinemathcontest.com/contests/omc031/tasks/1390 | A | OMC031(A) | 100 | 249 | 250 | [
{
"content": "ã0105ãããæçµçã«æã«å
¥ãããå°é£ã㯠$3N$ åã§ãããã,\r\n$$N+5000=2(3N-5000)$$\r\nãæç«ã, ããã解ãããšã§ $N=\\textbf{3000}$ ãåŸã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc031/editorial/1390"
}
] | ãATãããš0105ããã¯ãå°é£ããããããŸãã. ããã, 0105ããã¯ATããã®ååã®ãå°é£ããããããã, åæ
ããATããã¯ãå°é£ããã $5000$ åã0105ããã«è²ããŸãã. ãããš, æçµçã«0105ãããæã«å
¥ãããå°é£ãã¯ATããã® $3$ åã®éé¡ã«ãªããŸãã. æçµçã«ATãããæã«å
¥ãããå°é£ãã $N$ åã§ãã£ããšã, $N$ ã解çããŠãã ãã. |
OMC031 (for beginners) | https://onlinemathcontest.com/contests/omc031 | https://onlinemathcontest.com/contests/omc031/tasks/219 | B | OMC031(B) | 200 | 217 | 245 | [
{
"content": "ã$101$ 以äžã®çŽ æ°ã(éè€åºŠèŸŒã¿ã§) $2$ ã€ä»¥äžçŽ å æ°ã«æã€ããšã¯åºæ¥ãªã. ãŸã $97$ ãçŽ å æ°ã«æã¡, ã〠$96$ 以äžã®çŽ æ°ãçŽ å æ°ã«æããªãæ°ã¯, $97$ ã®ã»ãã« $97^2,97\\times101,97\\times103$ ã® $3$ ã€ã§ãã. 以äžãã, æ±ããæ°ã®éåã¯ãããã« $97$ ä»¥äž $10000$ 以äžã®çŽ æ°ãå ãããã®ã§, ãã㯠$\\textbf{1208}$ å
ãããªã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc031/editorial/219"
}
] | ã$2$ ä»¥äž $10000$ 以äžã®æŽæ°ã§ãã£ãŠ, $96$ 以äžã®ã©ã®çŽ æ°ã§ãå²ãåããªããããªãã®ã¯ããã€ãããŸããïŒ\
ããã ã, $96$ 以äžã®çŽ æ°ã¯ $24$ å, $10000$ 以äžã®çŽ æ°ã¯ $1229$ åã§ããããšãä¿èšŒãããŸã. |
OMC031 (for beginners) | https://onlinemathcontest.com/contests/omc031 | https://onlinemathcontest.com/contests/omc031/tasks/301 | C | OMC031(C) | 300 | 108 | 191 | [
{
"content": "ãäžè§åœ¢ $A_2A_3A_4$ ã®äžå¿ã $H$ ãšããã°, $A_1G:A_1H=3:4$ ãã $A_1G$ ã®äžç¹ $M_1$ ã«ã€ã㊠$A_1M:A_1H=3:8$ ã®æç«ãããã. ãããã, äºã€ç®ã®æ¡ä»¶ã $PA_1\\geq PG$ ã«éã£ãŠèããã°, æ±ããé å㯠$T$ ããçžäŒŒæ¯ $3\\/8$ ã®æ£åé¢äœãåãé€ããéšåã§ãã. åæ§ã«ä»ã® $3$ é ç¹ã«ã€ããŠãèããããšã§, æ±ããå€ã¯\r\n$$M=1-4\\times\\left(\\dfrac{3}{8}\\right)^3=\\dfrac{101}{128}$$\r\nããªãã¡è§£çãã¹ãå€ã¯ $\\textbf{229}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc031/editorial/301"
}
] | ã$A_1,A_2,A_3,A_4$ ã $4$ é ç¹ãšããæ£åé¢äœ $T$ ã«ãããŠ, ãã®äžå¿ ($4$ é ç¹ã®å¹Ÿäœéå¿) ã $G$ ãšããŸã. 以äžã®æ¡ä»¶ããšãã«ã¿ããç¹ $P$ ã®ååšãåŸãé åã®äœç©ã¯, $T$ ã®äœç©ã® $M$ åã§ã.
- $T$ ã®å
éš (å€åšãå«ã) ã«ãã.
- å $i=1,2,3,4$ ã«å¯Ÿã㊠$PA_i\geq PG$ ãã¿ãã.
ãã®ãšã, $M$ ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $M=\dfrac{a}{b}$ ãšè¡šããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC031 (for beginners) | https://onlinemathcontest.com/contests/omc031 | https://onlinemathcontest.com/contests/omc031/tasks/1308 | D | OMC031(D) | 400 | 55 | 120 | [
{
"content": "ãPickã®å®çãã, æ Œåå€è§åœ¢ã®ã¹ã³ã¢ã¯ $2(\\text{é¢ç©}+1)$ ã«çãããã, åè§åœ¢ã®é¢ç©ã®æåŸ
å€ $E$ ã«ã€ããŠèããã°ãã. ããã§, ååè§åœ¢ã¯ $S$ ãã $4$ åã®äžè§åœ¢ãé€ãããã®ã§ãããšã¿ãªãããšã§, $E$ ã«ã€ããŠ\r\n$$E = 101^2 - 4\\left(\\frac{1}{2}\\left(\\frac{101}{2}\\right)^2\\right)=\\dfrac{10201}{2}$$\r\nãåŸã. 以äžãã, æ±ããã¹ã³ã¢ã®ç·åã¯\r\n$$2\\left(\\dfrac{10201}{2} +1\\right) \\times 100^4 = \\textbf{1020300000000}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc031/editorial/1308"
}
] | ãçŽäº€åº§æšå¹³é¢äžã®æ Œåç¹ãé ç¹ãšããåè§åœ¢ $R$ ã«ã€ããŠ, ãã®**ã¹ã³ã¢**ã以äžã§å®ããŸã.
$$R\ \text{ã®èŸºäžã®æ Œåç¹ã®åæ°} + 2\times(R\ \text{ã®å
éšã«ããæ Œåç¹ã®åæ°})$$
ãã ã, $R$ ã®å
éšã«èŸºäžã¯å«ãŸãªããã®ãšããŸã.\
ã$4$ ç¹ $(0,0),(101,0),(101,101),(0,101)$ ãé ç¹ãšããæ£æ¹åœ¢ã $S$ ãšããŸã. $S$ ã® $4$ 蟺 (端ç¹ãé€ã) ããããããæ Œåç¹ãäžã€ãã€éžã³, ããããé ç¹ãšããåè§åœ¢ãèããŸã. ãã®ãããªåè§åœ¢ãšããŠããåŸããã®ã¯ $100^4$ éããããŸãã, ããããã¹ãŠã«ã€ããŠã¹ã³ã¢ã®ç·åãæ±ããŠãã ãã. |
OMC030 | https://onlinemathcontest.com/contests/omc030 | https://onlinemathcontest.com/contests/omc030/tasks/1261 | A | OMC030(A) | 100 | 272 | 281 | [
{
"content": "ãå人ãçžç¶ããéã®äŸ¡å€ã®åèšã¯ $2525$ äžãã«ã§ãããã, æ±ããæå€§å€ $M$ ã«ã€ããŠäžçåŒ\r\n$$\\dfrac{1}{2}M(M+1)=1+2+\\cdots+M\\leq 2525$$\r\nãæç«ãã. ãããã $M\\leq 70$ ã§ãã. éã«, 倪éåã¯äŸãã°\r\n$$1,2,\\cdots,58,59,61,62,\\cdots,69,70,100$$\r\néãçžç¶ããããšã§æ¡ä»¶ãã¿ãããã, $M=\\textbf{70}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc030/editorial/1261"
}
] | ã$100$ é建ãŠã®ãã«ããã, ãã® $n$ éã®äŸ¡å€ã¯ $n$ äžãã«ã§ã ($n$ 㯠$100$ 以äžã®æ£æŽæ°). å°äžéã¯ååšããŸãã.\
ããã®ãã«ã®ããããã®éã, 倪éåãšæ¬¡éåã®ããããã«çžç¶ãããããšã«ãªããŸãã. ããã§, äž¡è
ã®ä¿æããéã®äŸ¡å€ã®ç·åãçãããªãããã«ããŸã. \
ã倪éåã¯åºæ¥ãã ãããããã®æ°ã®ããã¢ãæã«å
¥ãããã§ã. 倪éåãæ倧ã§æã«å
¥ããããšãã§ããããã¢ã®æ°ãæ±ããŠãã ãã. |
OMC030 | https://onlinemathcontest.com/contests/omc030 | https://onlinemathcontest.com/contests/omc030/tasks/1340 | B | OMC030(B) | 200 | 236 | 252 | [
{
"content": "ã$P$ ãã $AB,CD$ ã«ããããåç·ã®è¶³ããããã $X,Y$ ãšããã°, äžå¹³æ¹ã®å®çãã\r\n$$\\begin{aligned}\r\nPA^2 + PC^2 &= (AX^2+PX^2)+(CY^2+PY^2) \\\\\\\\\r\n&= DY^2+PX^2+BX^2+PY^2 \\\\\\\\\r\n&= (BX^2+PX^2)+(DY^2+PY^2) \\\\\\\\\r\n& = PB^2 + PD^2\r\n\\end{aligned}$$\r\nç¹ã« $PD = \\sqrt{28^2 + 29^2 - 16^2} = \\textbf{37}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc030/editorial/1340"
}
] | ãæ£æ¹åœ¢ $ABCD$ ãšãã®å
éšã®ç¹ $P$ ã«ã€ããŠ,
$$PA = 28,\quad PB = 16,\quad PC=29$$
ã§ãããšãã$PD$ ã®é·ããæ±ããŠãã ãã. |
OMC030 | https://onlinemathcontest.com/contests/omc030 | https://onlinemathcontest.com/contests/omc030/tasks/227 | C | OMC030(C) | 300 | 154 | 221 | [
{
"content": "ã$\\max\\lbrace a,b,c\\rbrace=k$ ã§ããçµ $(a,b,c)$ ã®æ°ã $a_k$ ãšãããš, $f(N)$ ã¯ä»¥äžã®ããã«è¡šãã.\r\n$$f(N)=\\sum_{k=1}^{N}ka_{k}$$\r\nãã㧠$a_{k}=k^3-(k-1)^3$ ã§ãã, $ka_{k}=(k^4-(k-1)^4)-(k-1)^3$ ã§ãããã,\r\n$$4f(N)=4\\left(N^4-\\sum_{k=1}^{N}(k-1)^3\\right)=N^2(N+1)(3N-1)$$\r\nããã« $N=10^{2021}$ ã代å
¥ããå€ã¯, 以äžã®ããã«è¡šãããããšã容æã«ããã.\r\n$$ 3\\overbrace{0\\cdots0}^{2020\\text{å}}1\\overbrace{9\\cdots9}^{2021\\text{å}}\\overbrace{0\\cdots0}^{4042\\text{å}}$$\r\nããã®åäœã®æ°ã®ç·å㯠$\\textbf{18193}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc030/editorial/227"
}
] | ã$N$ 以äžã®æ£æŽæ°ã®çµ $(a,b,c)$ ãã¹ãŠã«ã€ããŠ, $\max\\{a,b,c\\}$ ã®ç·åã $f(N)$ ãšãããŸã.\
ã$4f(10^{2021})$ ã®åäœã®æ°ã®ç·åãæ±ããŠãã ãã. |
OMC030 | https://onlinemathcontest.com/contests/omc030 | https://onlinemathcontest.com/contests/omc030/tasks/276 | D | OMC030(D) | 400 | 93 | 178 | [
{
"content": "ãäžãã $i$ æ¬ç®ã®éã $i$ **è¡ç®ã®é**, å·Šãã $j$ æ¬ç®ã®éã $j$ **åç®ã®é**ãšåŒã¶. 察称æ§ããåãã«äžãžåãã£ãŠé²ãå Žåã®ã¿èããã°ãã. ãã®ãšã, ãã $a,b,c,d$ ã«ã€ã㊠$1$ åç®, $a$ è¡ç®, $b$ åç®, $c$ è¡ç®, $d$ åç®, $12$ è¡ç®ã®éãé ã«é²ãããšã«ãªã, ç¹ã« $1\\leq a,b,c,d\\leq12$ ã¯ä»¥äžã®æ¡ä»¶ãã¿ãã.\r\n$$a,b\\neq 1,\\ \\ c,d\\neq12,\\ \\ a\\neq c,\\ \\ b\\neq d,\\ \\ (a,b)\\neq(12,12)$$\r\nããããã£ãŠ, 以äžãããã¿ããçµã®æ°ãæ°ããã°ãã. $(a,b)\\neq(12,12)$ ãäžæŠç¡èŠããã°, $a,c$ ãš $b,d$ ã¯ç¬ç«ã«èããŠãã, ãããã $a,b$ ã $12$ ãåŠãã§å Žååãããããšã§ $10^2+11=111$ éãã§ãã. ãã®ãã¡ $a=b=12$ ã§ãããã®ã¯ $11^2=121$ éãã§ãããã, 以äžããæ±ããå Žåã®æ°ã¯ $2(111^2-121)=\\textbf{24400}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc030/editorial/276"
}
] | ã瞊暪ãããã $12$ æ¬ãããªãç¢ç€ã®ç®ç¶ã®éããã, äžãã $i$ æ¬ç®ã®éãšå·Šãã $j$ æ¬ç®ã®éã®äº€ç¹ãç¹ $(i,j)$ ãšè¡šããŸã. ç¹ $(1,1)$ ããåºãŠ, ã¡ããã© $5$ åæ²ãã£ãŠ**åããŠ**ç¹ $(12,12)$ ã«å°éãããããªçµè·¯ã¯ããã€ãããŸããïŒ\
ããã ã, åãéã亀ç¹ãäœåºŠéã£ãŠãããã§ãã, çŽåã«æ¥ãéãåŒãè¿ãããšã¯ã§ããŸãã. |
OMC030 | https://onlinemathcontest.com/contests/omc030 | https://onlinemathcontest.com/contests/omc030/tasks/236 | E | OMC030(E) | 500 | 55 | 73 | [
{
"content": "**è£é¡1.**ã$S(1,n)$ ãå¹³æ¹æ°ã§ããããšã¯, $n$ ã $2$ ã¹ãã§ããããšãšåå€ã§ãã.\r\n\r\n**蚌æ.**ã$\\varphi$ ãEulerã®ããŒã·ã§ã³ããšã, $n$ ã®ãã€çŽ å æ° $p_1\\lt p_2\\lt\\cdots\\lt p_k$ ã«ã€ã㊠$p_k\\gt 2$ ãšä»®å®ãã. ãã®ãšã, $r$ ã $n$ ãšäºãã«çŽ ãªãã° $n-r$ ãäºãã«çŽ ã§ããããšãã,\r\n$$S(1,n)=n\\times\\dfrac{\\varphi(n)}{2}=\\dfrac{n^2}{2}\\prod_{i=1}^{k}\\dfrac{p_i-1}{p_i}$$\r\nãããã $S(1,n)$ ã $p_k$ ã§å²ãåããåæ°ã¯å¥æ°ã§ããããšãããããã, ç¹ã« $S(1,n)$ ã¯å¹³æ¹æ°ãšãªãåŸãªã.\\\r\nãéã«, $n$ ã $2$ ã¹ããªãã° $S(1,n)=(n\\/2)^2$ ã§ãããã, ç¹ã«ããã¯å¹³æ¹æ°ã§ãã.\r\n\r\n**è£é¡2.**ã$S(m,n)=m^2S(1,n)$\r\n\r\n**蚌æ.**ã$(a-1)n$ ãã倧ãã $an$ 以äžã®æŽæ°ã§ãã£ãŠ, $n$ ãšäºãã«çŽ ãªãã®ã®ç·åã¯, è£é¡1ã®èšŒæãšåæ§ã®èŠé ã§\r\n$$ (a-1)n\\times\\varphi(n)+S(1,n)=\\left(a-\\dfrac{1}{2}\\right)n\\varphi(n)=(2a-1)S(1,n) $$\r\nãšèšç®ã§ãã (ãã㯠$n=2$ ã§ãæ£ãã). äžåŒã $a=1,\\cdots,m$ ã«ã€ããŠè¶³ãåãããããšã§, ææã®çµè«ãåŸã.\r\n\r\nã以äžãã, 解çãã¹ãå€ã¯ $\\displaystyle\\frac{1}{10^6}\\sum_{m=1}^{10^6}\\sum_{N=1}^{19} m2^N=\\textbf{524287524287}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc030/editorial/236"
}
] | ã$m,n$ ã $10^6$ 以äžã®æ£æŽæ°ãšããŸã. ãã ã $n$ 㯠$1$ ã§ã¯ãªããšããŸã.\
ã$n$ ãšäºãã«çŽ 㪠$mn$ 以äžã®æ£æŽæ°ã®ç·åã $S(m,n)$ ãšããããšã, $S(m,n)$ ãå¹³æ¹æ°ãšãªããããªçµ $(m,n)$ ãã¹ãŠã«ã€ã㊠$mn$ ã®ç·åã $T$ ãšããŸã. $\dfrac{T}{10^6}$ ã解çããŠãã ãã. |
OMC030 | https://onlinemathcontest.com/contests/omc030 | https://onlinemathcontest.com/contests/omc030/tasks/234 | F | OMC030(F) | 600 | 58 | 110 | [
{
"content": "ã$B$ ãã $AP$ ã«ããããåç·ã®è¶³ã $Q$, $AC$ ãš $BQ$ ã®äº€ç¹ã $R$ ãšãã. ãã®ãšã,\r\n$$AQ:AP=AR:AC=AB:AC=15:19$$\r\nããã³ $QD:DP=BD:DC=15:19$ ãæç«ãããã, $AD=285x$ ãšããã° $DP=38x$ ã§ãã.\\\r\nããã㧠$A,C,H,P$ ã¯å
±åã§ãããã, äžè§åœ¢ $ACD$ ãš $HPD$ ã®çžäŒŒãã $CD=722x$ ãããã, ç¹ã«\r\n$$AD:BC=285x:\\dfrac{15+19}{19}\\times 722x=15:68$$\r\nããªãã¡è§£çãã¹ãå€ã¯ $\\textbf{83}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc030/editorial/234"
}
] | ã$AB=15,AC=19$ ãªãäžè§åœ¢ $ABC$ ã«ãããŠ, è§ $A$ ã®äºçåç·ãš $BC$ ã®äº€ç¹ã $D$ ãšã, ç¹ $A$ ãã $BC$ ã«ããããåç·ã®è¶³ã $H$, ç¹ $C$ ãã $AD$ ã«ããããåç·ã®è¶³ã $P$ ãšããŸã. $HP=1$ ãæç«ãããšã, æ¯ $AD:BC$ ã¯äºãã«çŽ ãªæ£æŽæ° $p,q$ ã«ãã£ãŠ $p:q$ ãšè¡šãããã®ã§, $p+q$ ã解çããŠãã ãã. |
OMC029 (for beginners) | https://onlinemathcontest.com/contests/omc029 | https://onlinemathcontest.com/contests/omc029/tasks/7 | A | OMC029(A) | 100 | 251 | 254 | [
{
"content": "ã$(\\text{äžåŒ})=\\dfrac{(111\\times(9+8+7))\\cdots(111\\times(6+5+4))}{(111\\times(5+4+3))\\cdots(111\\times(2+1+0))}=\\dfrac{(8\\times3)(7\\times3)(6\\times3)(5\\times3)}{(4\\times3)(3\\times3)(2\\times3)(1\\times3)}=\\textbf{70}$.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc029/editorial/7"
}
] | ã以äžã®èšç®ãå®è¡ããŠãã ãã.
$$\dfrac{(987+879+798)\times(876+768+687)\times(765+657+576)\times(654+546+465)}{(543+435+354)\times(432+324+243)\times(321+213+132)\times(210+102+21)}$$ |
OMC029 (for beginners) | https://onlinemathcontest.com/contests/omc029 | https://onlinemathcontest.com/contests/omc029/tasks/8 | B | OMC029(B) | 200 | 218 | 251 | [
{
"content": "ã $360=2^3\\times3^2\\times5$ ã§ããããšãã, ãã®æ£ã®çŽæ°ã¯ $(3+1)(2+1)(1+1)=24$ å, ãããã®ç·åã¯\r\n$$(1+2+2^2+2^3)(1+3+3^2)(1+5)=1170$$\r\nã§ããããšã«çæãã. æ£ $n$ è§åœ¢ã«ãããŠäžã€ã®å
è§ã®å€§ãã㯠$180-(360\\/n)$ 床ã§ãããã, $360$ ã®æ£ã®çŽæ° $n\\geq 3$ ã«å¯ŸããŠããã®ç·åãæ±ããã°ãã, ãã㯠$180\\times(24-2)-(1170-360-180)=\\textbf{3330}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc029/editorial/8"
}
] | ãæ£å€è§åœ¢ã®äžã€ã®å
è§ã®(床æ°æ³ã§ã®)倧ãããšããŠããåŸãæ£æŽæ°ã®ç·åãæ±ããŠãã ãã. |
OMC029 (for beginners) | https://onlinemathcontest.com/contests/omc029 | https://onlinemathcontest.com/contests/omc029/tasks/9 | C | OMC029(C) | 300 | 117 | 222 | [
{
"content": "ãã²ã圢ã®äžå¿ã $O$ ãšãããš, ãã㯠$PQ$ äžã«ãã, ããã« $\\angle APB=90^{\\circ}=\\angle AOB$ ãã $A,B,O,P$ ã¯å
±åã§ãã. ãã£ãŠ $\\angle BPR=\\angle BAO=65^{\\circ}$ ã§ãã, $\\angle BRP=\\angle 180^{\\circ}-\\angle BPR-\\angle PBR=\\textbf{95}^{\\circ}$ ãåŸã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc029/editorial/9"
}
] | ã$\angle ABC=50^{\circ}$ ãªãã²ã圢 $ABCD$ ã«ãããŠ, å
éšã®ç¹ $P,Q$ ã
$$\angle PAB=\angle QCD=60^{\circ},\ \angle PBA=\angle QDC=30^{\circ}$$
ãã¿ãããŸãã. ãã®ãšã, çŽç· $BC$ ãš $PQ$ ã®äº€ç¹ $R$ ã«ã€ããŠ, $\angle BRP$ ã®å€§ããã床æ°æ³ã§æ±ããŠãã ãã. |
OMC029 (for beginners) | https://onlinemathcontest.com/contests/omc029 | https://onlinemathcontest.com/contests/omc029/tasks/10 | D | OMC029(D) | 400 | 67 | 135 | [
{
"content": "ããã¹ãŠã®é¢ã«ã€ããŠèµ€ã蟺ã®æ°ãåèšãããš, ããã¯å¶æ°ã«ãªãããšãã, èµ€ã蟺ãå¥æ°æ¬ãã€é¢ã¯å¶æ°åã§ãã. ç¹ã«æ¡ä»¶ããåé¢ã®èµ€ã蟺㯠$2$ æ¬ãŸã㯠$3$ æ¬ã§ãããã, $n$ ã¯å¶æ°ã§ãã.\r\n\r\nãéã«, å蟺ã以äžã®ããã«å¡ãã°, ãŸã å¡ãããŠããªã蟺 $6$ æ¬ãã©ã®ããã«å¡ã£ãŠãæ¡ä»¶ãã¿ãããã, $n=0,2,\\cdots,12$ ã¯ãã¹ãŠé©ãã. ç¹ã«æ±ããå€ã¯ $\\textbf{1010101010101}$ ã§ãã.\r\n\r\n![figure 1](\\/images\\/bMOuy5tn3706F7ABOU6Oieebh8fjayZ21i1YVpNy)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc029/editorial/10"
}
] | ãæ£åäºé¢äœã®å蟺ãèµ€ãŸãã¯éã§å¡ã£ããšãã, ã©ã®é¢ã«ãããŠã以äžã®æ¡ä»¶ãæç«ããŸãã.
- é ç¹ãå
±æããèµ€ã $2$ 蟺ãš, é ç¹ãå
±æããéã $2$ 蟺ã, ãšãã«ååšãã.
ãã®ãšã, èµ€ã蟺ãã¡ããã© $2$ æ¬ãã€é¢ã®æ°ãšããŠããåŸãéè² æŽæ° $n$ ãã¹ãŠã«ã€ããŠ, $10^n$ ã®ç·åãæ±ããŠãã ãã. |
OMCG001 (幟äœã³ã³ãã¹ã) | https://onlinemathcontest.com/contests/omcg001 | https://onlinemathcontest.com/contests/omcg001/tasks/212 | A | OMCG001(A) | 200 | 53 | 71 | [
{
"content": "**解æ³1.**ãå
šäœã $169$ åã«æ¡å€§ããŠèããŠããã. ãã®ãšã,\r\n$$A:(0,845),\\ \\ B:(0,0),\\ \\ C:(2028,0)$$\r\nãšããŠçŽäº€åº§æšãå®ãããš, 以äžã®ããã«é 次èšç®ã§ãã.\r\n$$D:(120,795),\\ \\ E:(915,675),\\ \\ F:(732,540)$$\r\nãããã $BF:FE=4:1$ ããã³ $CF:FD=36:17$ ãåŸããã, 解çãã¹ãå€ã¯ $144+17=\\textbf{161}$ ã§ãã. \r\n\r\n**解æ³2.**ã$B$ ãã $AC$ ã«ããããåç·ã®è¶³ã $H$ ãšããã°, $AH:BH=BH:CH=5:12$ ãªã©ãã\r\n$$AH=\\dfrac{25}{13},\\ \\ BH=\\dfrac{60}{13},\\ \\ DH=\\dfrac{15}{13}$$\r\nãšèšç®ã§ãã. ããªãã¡ $\\tan\\angle DBH=1\\/4$ ã§ãããã, \r\n$$\\dfrac{FH}{BH}=\\tan\\angle FBH=\\tan(45^\\circ-\\angle DBH)=\\dfrac{3}{5}$$\r\nãããã $FH=36\\/13$ ã§ãããã, 以äžãã $CF:DF=36:17$ ãšèšç®ã§ãã.\\\r\nãããã§, $D$ ãã $BE$ ã«ããããåç·ã®è¶³ã $H^\\prime$ ãšããã°, çŽè§äžè§åœ¢ $BFH$ ãš $DFH^\\prime$ ã®çžäŒŒãã\r\n$$DH^\\prime:FH^\\prime=BH:FH=5:3$$\r\näžæ¹ã§ $BH^\\prime=DH^\\prime=EH^\\prime$ ãæç«ãããã, $BF:EF=(5+3):(5-3)=4:1$ ãããã. 以äžåæ§.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcg001/editorial/212"
}
] | ã$AB=5,BC=12,AC=13$ ãªãäžè§åœ¢ $ABC$ ã«ãããŠ, $AC$ ã $10:159$ ã«å
åããç¹ã $D$ ãšã,$$BD=DE,\ \ \angle{BDE}=90^\circ$$ãªãç¹ $E$ ãçŽç· $DB$ ã«é¢ããŠç¹ $A$ ãšå察åŽã«ãšããŸã. $AC$ ãš $BE$ ã®äº€ç¹ãç¹ $F$ ãšãããšã, äžè§åœ¢ $BCF$ ãš $DEF$ ã®é¢ç©æ¯ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$a:b$ ãšè¡šãããŸã. $a+b$ ã解çããŠãã ãã. |
OMCG001 (幟äœã³ã³ãã¹ã) | https://onlinemathcontest.com/contests/omcg001 | https://onlinemathcontest.com/contests/omcg001/tasks/210 | B | OMCG001(B) | 200 | 67 | 73 | [
{
"content": "ãäžè§åœ¢ $BPQ$ ã¯åžžã«æ£äžè§åœ¢ã§ãããã, ååšè§ã®å®çãã $ABQ$ ã®å€æ¥å $O^\\prime$ ã¯äžå€ã§ãã. $A$ ã«ããã $O$ ã®æ¥ç·ãš $O^\\prime$ ã®äº€ç¹ã $C(\\neq A)$ ãšããã°, æ±ããé å㯠(å $O$ ã®) å£åŒ§ $AB$ , (å $O^\\prime$ ã®)å£åŒ§ $BC$, ç·å $CA$ ã«å²ãŸããéšåã§ãã, ãã®é¢ç©ã¯äžèŸºã $\\sqrt{3}$ ã®æ£äžè§åœ¢ã®ãããšçãã. ç¹ã«è§£çãã¹ãå€ã¯ $27+16=\\textbf{43}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcg001/editorial/210"
}
] | ãååŸ $1$ ã®ååš $O$ äžã« $2$ ç¹ $A,B$ ããã, $AB=\sqrt{3}$ ãã¿ãããŠããŸã. å£åŒ§ $AB$ äžã®ç¹ $P$ ã«ã€ããŠ, çŽç· $AP$ ã® $P$ åŽã®å»¶é·ç·äžã« $PQ=BP$ ãªãç¹ $Q$ ããšããŸã. $P$ ã å£åŒ§ $AB$ äž (端ç¹ãé€ã) ãåããšã, ç·å $PQ$ ãééããé åã®é¢ç©ã¯, äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\displaystyle \sqrt{\frac{a}{b}}$ ãšè¡šãããŸã. $a+b$ ã解çããŠãã ãã. |
OMCG001 (幟äœã³ã³ãã¹ã) | https://onlinemathcontest.com/contests/omcg001 | https://onlinemathcontest.com/contests/omcg001/tasks/206 | C | OMCG001(C) | 200 | 43 | 50 | [
{
"content": "**解æ³1.**ãç°¡åãªè§åºŠèšç®ã«ãã£ãŠ $\\angle BAR=\\angle BRA$ ããã³ $\\angle CAP=\\angle CPA$ ãåŸã. ããªãã¡ $CR=x$ ãšããã° $AB=16,AC=8+x$ ã§ãã. äžæ¹ã§ $AB:AC=BQ:QC$ ã§ãããã, 以äžãã $x=8\\/5$ ãåŸã. ç¹ã«è§£çãã¹ãå€ã¯ $88ïŒ5=\\textbf{93}$ ã§ãã.\r\n\r\n**解æ³2.**ãäžè§åœ¢ $ABC$ ã®å
å¿ã $I$ ãšãããš, $\\angle{IBP}=\\angle{PAI}$ ãã $4$ ç¹ $A,B,I,P$ ã¯å
±åã§ãã, åæ§ã« $A,C,I,R$ ãå
±å. ãããã£ãŠæ¹ã¹ãã®å®çãã以äžãæãç«ã€.\r\n$$PQ\\times BQ=QI\\times QA=QR\\times QC$$\r\nãããã«æ¡ä»¶ã代å
¥ããããšã§ $QC=\\displaystyle\\frac{33}{5}$ ãåŸãã, $BC=\\displaystyle\\frac{88}{5}$ ã§ãããã, 解çãã¹ãå€ã¯ $88ïŒ5=\\textbf{93}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcg001/editorial/206"
}
] | ãäžè§åœ¢ $ABC$ ã®èŸº $BC$ äžã«ç¹ $B,P,Q,R,C$ ããã®é ã«ãã, 以äžã®æ¡ä»¶ãã¿ãããŠããŸã.
$$\begin{aligned}
\angle BAQ=\angle QAC,\ \ \angle ABQ&=2 \angle PAQ,\ \ \angle{ACQ}=2 \angle{QAR}\\\\
BP=8,\ \ PQ&=3,\ \ QR=5
\end{aligned}$$
ãã®ãšã, 蟺 $BC$ ã®é·ãã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\displaystyle\frac{a}{b}$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMCG001 (幟äœã³ã³ãã¹ã) | https://onlinemathcontest.com/contests/omcg001 | https://onlinemathcontest.com/contests/omcg001/tasks/207 | D | OMCG001(D) | 300 | 54 | 56 | [
{
"content": "ã$AB$ ãš $DO$ ãçŽäº€ããããšãã $AD=BD$ ã§ãã. ãã®ãšã $AB$ ã®äžç¹ã $M$ ãšãããš, $AM=4,AO=5$ ãã $OM=3$ ã§ãããã, $DM=8$ ãã $BC=AD=4\\sqrt{5}$ ãåŸã. ãšãã㧠$CD$ 㯠$\\Omega$ ã«æ¥ããããæ¹ã¹ãã®å®çãã $CE=CD^2\\/BC=16\\/\\sqrt{5}$ ã§ãã. 以äžãã $BE:EC=1:4$ ã§, 解çãã¹ãå€ã¯ $\\textbf{5}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcg001/editorial/207"
}
] | ã$\angle{A}\lt 90^\circ$ ã〠$AB\lt BD$ ã〠$AB=8$ ãªãå¹³è¡å蟺圢 $ABCD$ ã«ãããŠ, äžè§åœ¢ $ABD$ ã®å€æ¥åã $\Omega$, å€å¿ã $O$ ãšãããš, $\Omega$ ã®ååŸã¯ $5$ ã§, $CD$ ãš $DO$ ã¯çŽäº€ããŸãã. ãã®ãšã, $\Omega$ ãšèŸº $BC$ ã®äº€ç¹ã®ãã¡ $B$ ã§ãªãæ¹ã $E$ ãšãããš, æ¯ $BE:EC$ ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$a:b$ ãšè¡šãããŸã. $a+b$ ã解çããŠãã ãã. |
OMCG001 (幟äœã³ã³ãã¹ã) | https://onlinemathcontest.com/contests/omcg001 | https://onlinemathcontest.com/contests/omcg001/tasks/214 | E | OMCG001(E) | 300 | 43 | 47 | [
{
"content": "ã$I,E$ ãã $AB$ ã«ããããåç·ã®è¶³ããããã $J,K$ ãšããã°, $AJ:JK=3:1$ ããã³ $AJ=EK$ ãæãç«ã€ãã, $EK=12\\/5,JK=4\\/5$ ãããã. ãã£ãŠ, $E$ ãã $BC$ ã«ããããåç·ã®è¶³ã $L$ ãšããã°, æ±ããå€ã¯\r\n$$EF^2=EL^2+FL^2=(BE^2-BL^2)+FL^2=BE^2-EK^2+JK^2=\\dfrac{497}{25}$$\r\nãšãªã, ç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{522}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcg001/editorial/214"
}
] | ãæ£æ¹åœ¢ $ABCD$ ã®å
éšã«æ£æ¹åœ¢ $EFGH$ ããã, $F,G$ ã¯ãããã蟺 $BC,CD$ äžã«ãããŸã. ãŸã, ç·å $AE$ äžã« $BC\parallel HI$ ãã¿ããç¹ $I$ ããšã£ããšãã, 以äžãæãç«ã¡ãŸãã.
$$AI=3\ \ IE=1,\ \ EB=5$$
ãã®ãšã, æ£æ¹åœ¢ $EFGH$ ã®é¢ç©ã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$\displaystyle\frac{a}{b}$ ãšè¡šãããŸã. $a+b$ ã解çããŠãã ãã. |
OMCG001 (幟äœã³ã³ãã¹ã) | https://onlinemathcontest.com/contests/omcg001 | https://onlinemathcontest.com/contests/omcg001/tasks/211 | F | OMCG001(F) | 400 | 52 | 54 | [
{
"content": "ã$D$ ãã $CE$ ã«ããããåç·ã®è¶³ã $F$, $F$ ã«ã€ã㊠$D$ ãšå¯Ÿç§°ãªç¹ã $G$ ãšããã°, $CG=CD=25$ ãã $BG=15$ ã§ãã. ãã㧠$AFG$ ãš $DEG$ ã¯çžäŒŒãªäºç蟺äžè§åœ¢ã§ãããã, $DG=13\\sqrt{10}$ ããç°¡åãªèŸºæ¯èšç®ã«ãã£ãŠ $DE=65\\/3$ ãåŸã. ç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{68}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcg001/editorial/211"
}
] | ãè§ $A,B$ ããšãã«çŽè§ã§ããåè§åœ¢ $ABCD$ ã $AD=13ãAB=24ãBC=20$ ãã¿ãããŠããŸã. 蟺 $AB$ äžã®ç¹ $E$ ã $\angle{BEC}=\angle{CED}$ ãã¿ãããšã, $DE$ ã®é·ãã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\dfrac{a}{b}$ ãšè¡šãããŸã. $a+b$ ã解çããŠäžãã. |
OMCG001 (幟äœã³ã³ãã¹ã) | https://onlinemathcontest.com/contests/omcg001 | https://onlinemathcontest.com/contests/omcg001/tasks/208 | G | OMCG001(G) | 600 | 12 | 19 | [
{
"content": "ã$A$ ãã察蟺ã«ããããåç·ã®è¶³ã $A_H$ ãšã, $H$ ã $A_H$ ã«ã€ããŠå¯Ÿç§°ç§»åããç¹ã $H^\\prime$ ãšãããš, æåäºå®ãšã㊠$H^\\prime$ ã¯å $ABC$ äžã«ãã. ãŸãæåäºå®ãšããŠå€å¿ãšåå¿ã¯çè§å
±åœ¹ã®é¢ä¿ã«ããããšã«çæããŠé©åœã«è§åºŠãèããã°, $DH$ ãš $AO$ ã®å¹³è¡ããã³ $O,D,H^\\prime$ ã®å
±ç·ãããã. ããããå $ABC$ ã®ååŸã¯ $13$ ãšãããã»ã, $HA_H=32\\/5$ ãšèšç®ã§ãããã, $BC$ ã®äžç¹ã $M$ ãšããã°çžäŒŒãã $OM=4,DM=3$ ãåŸã. ãããã $BD=BM-DM=3\\sqrt{17}-3$ ã§, 解çãã¹ãå€ã¯ $\\mathbf{150}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcg001/editorial/208"
}
] | ã$AB\lt AC$ ãªãäžè§åœ¢ $ABC$ ã«ãããŠ, å€å¿ã $O$, åå¿ã $H$, è§ $A$ ã®äºçåç·ãšèŸº $BC$ ã®äº€ç¹ã $D$ ãšãããš, 以äžãæãç«ã¡ãŸãã.
$$AH=DH=8,\ \ DO=5$$
ãã®ãšã, $BD$ ã®é·ãã¯æŽæ° $a,b$ ãçšã㊠$\sqrt{a}+b$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMCG001 (幟äœã³ã³ãã¹ã) | https://onlinemathcontest.com/contests/omcg001 | https://onlinemathcontest.com/contests/omcg001/tasks/209 | H | OMCG001(H) | 600 | 3 | 6 | [
{
"content": "ã$\\Omega$ ã® $D,G$ ã§ã®æ¥ç·ã®äº€ç¹ $P$ ã¯æ ¹å¿ãèããããšã§ $AB$ äžã«ãã. ããã« $ABC$ ã®å€å¿ã $O$ ãšããã° $D,G,M,O$ 㯠$OP$ ãçŽåŸãšããåäžã«ãã. åæ§ã« $D,H,N,O$ ãå
±åã§ãã. ãã㧠$\\triangle{ABC}$ ã®å€æ¥åã®ååŸã®é·ãã $R$ ãšããã°, Ptolemyã®å®çãã以äžãæç«ããããšã容æã«ããã.\r\n$$\\dfrac{MD-MG}{DG}\\times\\dfrac{ND-NH}{DH}=\\dfrac{MO}{R}\\times\\dfrac{NO}{R}=\\cos B\\times\\cos C$$\r\nããã¯äœåŒŠå®çã«ãã£ãŠ $\\dfrac{143}{722}$ ãšèšç®ã§ãããã, 解çãã¹ãå€ã¯ $\\textbf{865}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcg001/editorial/209"
}
] | ã$AB=16,BC=19,CA=21$ ãªãäžè§åœ¢ $ABC$ ã«ãããŠ, ãã®å€æ¥å $\Omega$ ããã³èŸº $AB,AC$ ã«æ¥ããå $\omega$ ããã, åæ¥ç¹ã $D,E,F$ ãšããŸã. ãŸã, $\omega$ ã«ãããã $E,F$ ã§å€æ¥ã $\Omega$ ã«å
æ¥ãã $2$ åã«ã€ããŠ, ãããããš $\Omega$ ã®æ¥ç¹ã $G,H$ ãšããŸã. ãã®ãšã, $AB,AC$ ã®äžç¹ $M,N$ ã«ã€ããŠ, 以äžã®å€ãæ±ããŠãã ãã.
$$\dfrac{(MD-MG)(ND-NH)}{DG\times DH}$$
ããã ã, çãã¯äºãã«çŽ ãªæ£æŽæ° $a,b$ ã«ãã£ãŠ $\displaystyle\frac{a}{b}$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMCG001 (幟äœã³ã³ãã¹ã) | https://onlinemathcontest.com/contests/omcg001 | https://onlinemathcontest.com/contests/omcg001/tasks/213 | I | OMCG001(I) | 700 | 8 | 12 | [
{
"content": "ã$BCDP$ ãã²ã圢ãšãªããããªç¹ $P$ ããšããš, ç°¡åãªè§åºŠèšç®ã«ãã£ãŠ $\\angle APE$ ã¯çŽè§ã§ãã. ãããã, $AE$ ã®äžç¹ã $M$ ãšããã° $ABPM$ ããã³ $EDPM$ ã¯å§åœ¢ã§ãã, äºè§åœ¢ $ABCDE$ ã®é¢ç©ã¯çŽè§äžè§åœ¢ $BDM$ ã®é¢ç©ã® $2$ åã§ãã. äžè§åœ¢ $ABE$ ããã³ $ADE$ ã«ãããäžç·å®çãã $BM=\\sqrt{19},DM=\\sqrt{13}$ ãåŸããã, 解çãã¹ãå€ã¯ $19\\times13=\\textbf{247}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcg001/editorial/213"
},
{
"content": "ã $\\angle{B}+\\angle{D}=180^\\circ,\\angle{A}+\\angle{C}+\\angle{E}=360^\\circ$ ã«æ³šæããŠïŒäºè§åœ¢ $ABCDE,GHABF,EJIHA,LDEJK$ ã察å¿é ãå«ããŠååãšãªãããã«ç¹ $F$ ããç¹ $L$ ãŸã§ããšãïŒå
è§åœ¢ $CFGIKKL$ ãäœãïŒ\\\r\nã$BDJH$ ã¯ã²ã圢ãšãªãïŒãã®é¢ç©ã¯äºè§åœ¢ $ABCDE$ ã®é¢ç© $S$ ã® $2$ åãšãªãïŒ\\\r\nã$AE$ ã®äžç¹ã $M$ ãšãããšïŒäžè§åœ¢ $ABE,ADE$ ã§äžç·å®çãçšããããšã§ïŒ $BM=\\sqrt{19},DM=\\sqrt{13}$ ãšãªãïŒ\\\r\nããã£ãŠïŒ $S^2={BM}^2\\times{DM}^2=\\textbf{247}$",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcg001/editorial/213/26"
}
] | ãè§ $A,E$ ããšãã«éè§ã§ããåžäºè§åœ¢ $ABCDE$ ã, 以äžã®æ¡ä»¶ãã¿ãããŠããŸã.
$$\begin{aligned}
&AB=BC=CD=DE,\quad AE=4,\\\\
&AB^2+AD^2=34,\quad BE^2+DE^2=46,\\\\
&\angle{B}+\angle{D}=180^\circ
\end{aligned}$$
ãã®ãšã, äºè§åœ¢ $ABCDE$ ã®é¢ç©ã® $2$ ä¹ãæ±ããŠãã ãã. |
OMCG001 (幟äœã³ã³ãã¹ã) | https://onlinemathcontest.com/contests/omcg001 | https://onlinemathcontest.com/contests/omcg001/tasks/215 | J | OMCG001(J) | 1000 | 1 | 6 | [
{
"content": "ããŸãæåäºå®ãšããŠ, 以äžã®è£é¡1ãèªãã.\r\n\r\n**è£é¡1.**ãã©ã® $3$ ç¹ãåäžçŽç·äžã«ç¡ã, ãã€åå¿ç³»ããªããªã $4$ ç¹ $V,W,Y,Z$ ã«ã€ããŠ, 以äžã§å®ãããã $8$ åã¯ãã¹ãŠããäžç¹ (Ponceletç¹) ãéã.\r\n\r\n- äžè§åœ¢ $VWY,WYZ,YZV,ZVW$ ã®ä¹ç¹å\r\n- $Z$ ã«ã€ããŠã®äžè§åœ¢ $VWY$ ã®å足å, ããã³åæ§ã«å®ãŸã $3$ å\r\n\r\n**è£é¡2.**ã蟺 $BC$ ãšå
æ¥åã®æ¥ç¹ã $D$ ãšãã. $I$ ã«ã€ã㊠$D$ ãšå¯Ÿç§°ãªç¹ã $P$ ãšããã°, äžè¬ã« $M,P,Fe$ ã¯å
±ç·ã§ãã.\r\n\r\n**蚌æ.**ã蟺 $AC$ ã®äžç¹ã $M_B$, 蟺 $AC$ ãšå
æ¥åã®æ¥ç¹ã $E$ ãšããã°, è£é¡1ãã $E,M_B,M,Fe$ ã®å
±åãããã. ãããã\r\n$$\\angle EFeM=\\angle AM_BM=\\angle ACI=\\angle EDP=\\angle EFeP$$\r\nãæãç«ã€ãã, ç¹ã«ææã®å
±ç·ã瀺ããã.\r\n\r\n**è£é¡3.**ã$A$ ãã $BC$ ã«ããããåç·ã®è¶³ã $H$, $I$ ãã $AH$ ã«ããããåç·ã®è¶³ã $U$ ãšãã. ãŸã匧 $BC$ ã® $A$ ãå«ãŸãªãæ¹ã®äžç¹ã $N$ ãšãã. ãã®ãšã, $U,D,N$ ã¯å
±ç·ã§ãã.\r\n\r\n**蚌æ.**ãå $ABC$ ãš $AI$ ãçŽåŸãšããåã®äº€ç¹ã $K(\\neq A)$ ãšããã°, æåäºå®ãšã㊠$K,D,N$ ã¯å
±ç·ã§ãã, ãã㧠$KN$ ãš $AH$ ã®äº€ç¹ãšã㊠$U^\\prime$ ãå®ããã°, ç°¡åãªè§åºŠèšç®ã«ãã£ãŠãã㯠$AI$ ãçŽåŸãšããåäžã«ããããšãããããã, ç¹ã« $U$ ã«äžèŽããããšãããã.\r\n\r\nãè£é¡2ãã, æ¡ä»¶ã $M,P,O$ ã®å
±ç·ã«çœ®ãæããŠãã.$HI$ ã® (ããªãã¡ $DU$ ã®) äžç¹ã $V$ ãšããã°, $MV,PD,ON$ ã¯å¹³è¡ã§ãã, \r\n$$ID:ON=PI:ON=MP:MO=VD:VN$$\r\nãã $V,I,O$ ã¯å
±ç·ã§ãã. ãããã£ãŠ $DION$ ã¯çèå°åœ¢ã§, ç¹ã« $DN=OI$ ã§ãã.\r\n\r\nããã㧠$y=10000$ ãšããã°, Eulerã®å®çãã $DN^2=OI^2=x(x-2y)$ ã§ãã. ãŸã $BC$ ã®äžç¹ã $M_A$ ãšããã° $M_AN=(x-y)\\/2$ ãæãç«ã€. ãããã,\r\n$$DM_A^2=DN^2-M_AN^2=\\dfrac{1}{4}(3x^2-6xy-y^2)$$\r\nãåŸã, å³èŸºãæ£ã§ããããšãã以äžã®äžçåŒãæç«ãã.\r\n$$x\\gt\\left(1+\\dfrac{2}{3}\\sqrt{3}\\right)y\\gt 21547$$\r\nãéã« $x=\\textbf{21548}$ ã§æ¡ä»¶ãæç«ãããããããšã確èªã§ãããã, ãããæ±ããæå°å€ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omcg001/editorial/215"
}
] | ã$AB\neq AC$ ãªãäžè§åœ¢ $ABC$ ã¯, äžå¿ã $O$ ã§ååŸã $x$ ã®å€æ¥åãš, äžå¿ã $I$ ã§ååŸã $10000$ ã®å
æ¥åããã¡ãŸã. $AI$ ã®äžç¹ã $M$ ãšã, äžè§åœ¢ $ABC$ ã®ãã©ã€ãšã«ãããç¹ã $Fe$ ãšãããš, $3$ ç¹ $M,O,Fe$ ã¯çžç°ãªã, ãã€åäžçŽç·äžã«ãããŸãã. ãã®ãšã, $x$ ãšããŠããããæå°ã®æŽæ°å€ãæ±ããŠãã ãã.
ããã ã, $1.414213\lt\sqrt{2}\lt1.414214$ ããã³ $1.73205\lt\sqrt{3}\lt1.732051$ ãä¿èšŒãããŸã.
**泚æ.**ãäžè§åœ¢ã®å
æ¥åãšä¹ç¹åã¯å¿
ãæ¥ããããšãç¥ãããŠãã, ãã®æ¥ç¹ã**ãã©ã€ãšã«ãããç¹**ãšåŒã³ãŸã. |
OMC028 (ãšããæ°åŠã®ã³ã³ãã¹ã) | https://onlinemathcontest.com/contests/omc028 | https://onlinemathcontest.com/contests/omc028/tasks/226 | A | OMC028(A) | 100 | 304 | 309 | [
{
"content": "ãäžå¹³æ¹ã®å®çãã $BD=5$ ã§ãã. ãããš $BD^2+BC^2=CD^2$ ãæãç«ã€ãã $\\angle BDC$ ãçŽè§ã§ãã, $ABCD$ ã®é¢ç© $S$ ã«ã€ããŠ\r\n$$S=\\frac 12\\times 1\\times 2\\sqrt{6}+\\frac 12\\times 5\\times 2\\sqrt{6}=6\\sqrt{6}$$\r\nç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{216}$ ã§ãã. ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc028/editorial/226"
}
] | ãåžåè§åœ¢ $ABCD$ ã以äžã®æ¡ä»¶
$$AB=1,\ \ BC=7,\ \ CD=DA=2\sqrt{6},\ \ \angle DAB=90^\circ$$
ãã¿ãããšã, ãã®é¢ç©ã® $2$ ä¹ãæ±ããŠãã ãã. |
OMC028 (ãšããæ°åŠã®ã³ã³ãã¹ã) | https://onlinemathcontest.com/contests/omc028 | https://onlinemathcontest.com/contests/omc028/tasks/203 | B | OMC028(B) | 200 | 273 | 294 | [
{
"content": "ã$\\lbrace a_n\\rbrace$ ã®å
¬å·®ã $d$, æ倧åãã¹ãå€ã $S$ ãšããã°, 以äžãæç«ãã. ããªãã¡ $S=50+25d$ ã§ãã.\r\n$$100=\\sum_{k=1}^{100}a_i=\\sum_{k=1}^{50}(2a_{2k}-d)=2S-50d$$\r\näžæ¹ã§ $2=\\dfrac{100}{50}=a_1+a_{100}=2a_1+99d$ ã§ãã, $a_1\\geq 0$ ãã $d\\leq\\dfrac{2}{99}$ ãåŸã. 以äžãã\r\n$$S\\leq50+25\\times\\dfrac{2}{99}=\\dfrac{5000}{99}$$\r\nãéã« $\\displaystyle a_n=\\frac{2}{99}(n-1)$ ã§çå·ãæç«ãããã, ç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{5099}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc028/editorial/203"
}
] | ã$100$ é
ãããªã, åé
ããã¹ãŠ $0$ 以äžã®çå·®æ°å $\lbrace a_n\rbrace\_{n=1,2,\cdots,100}$ ã«ãããŠ,
$$a_1+a_2+\cdots+a_{100}=100$$
ãæãç«ã€ãšã, $a_2+a_4+a_6+\cdots+a_{100}$ ãšããŠããåŸãæ倧å€ãæ±ããŠãã ãã.\
ããã ã, æ±ããå€ã¯äºãã«çŽ ãªæ£æŽæ° $x,y$ ã«ãã£ãŠ $\dfrac{x}{y}$ ãšè¡šãããã®ã§, $x+y$ ã解çããŠãã ãã. |
OMC028 (ãšããæ°åŠã®ã³ã³ãã¹ã) | https://onlinemathcontest.com/contests/omc028 | https://onlinemathcontest.com/contests/omc028/tasks/228 | C | OMC028(C) | 300 | 220 | 283 | [
{
"content": "ã$3\\times 3$ ã®ãã¹ç®ã®åãã¹ã« $0$ ãš $1$ ãæžã蟌ãã ãšã, åè¡ããã³ååã«ãªãã¶æ°åã®åãã©ããå¶æ°ãšãªããããªæžã蟌ã¿æ¹ãèãããš, ãã㯠$2^4$ éããã. ãã®ãã¡, $1$ ãç»å Žããåæ°ã $0$ åã®ãã®ã $1$ éã, $4$ åã®ãã®ã $9$ éã, $6$ åã®ãã®ã $6$ éãã§ãã. $0$ ã®å Žæã $1$ ä»¥äž $18$ 以äžã®å¶æ°, $1$ ã®å Žæã $1$ ä»¥äž $18$ 以äžã®å¥æ°ã«çœ®ãæããããšãèããã°, 解çãã¹ãå€ã«ã€ããŠ\r\n$$\\dfrac{M}{9!}=\\dfrac{{}\\_9\\mathrm{P}\\_9+9\\cdot{}\\_9\\mathrm{P}\\_4\\cdot{}\\_9\\mathrm{P}\\_5+6\\cdot{}\\_9\\mathrm{P}\\_6\\cdot{}\\_9\\mathrm{P}_3}{9!}=1+9\\cdot{}\\_9\\mathrm{C}\\_4+6\\cdot{}\\_9\\mathrm{C}\\_3=\\textbf{1639}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc028/editorial/228"
}
] | ã$3\times 3$ ã®ãã¹ç®ã®åãã¹ã« $1$ ä»¥äž $18$ 以äžã®æŽæ°ã**éè€ãªã**æžã蟌ã¿ãŸã. ãã®ãšã, åè¡ããã³ååã«ãªãã¶æŽæ°ã®åãã©ããå¶æ°ãšãªããããªæžã蟌ã¿æ¹ã¯ $M$ éããããŸã. $\displaystyle \frac{M}{9!}$ ãæ±ããŠãã ãã.\
ããã ã, å転ãå転ã«ãã£ãŠäžèŽãããã®ãåºå¥ããŠæ°ãããã®ãšããŸã. |
OMC028 (ãšããæ°åŠã®ã³ã³ãã¹ã) | https://onlinemathcontest.com/contests/omc028 | https://onlinemathcontest.com/contests/omc028/tasks/225 | D | OMC028(D) | 500 | 82 | 152 | [
{
"content": "ããŸã $\\angle BDC=\\angle BOC=2\\angle BAC$ ãã $AD=CD$ ãåŸã, åæ§ã« $AE=BE$ ã§ãã. ãŸã, äžè§åœ¢ $ABC$ ãšäžè§åœ¢ $AED$ ã¯çžäŒŒã§ããããšã«çæãã.\\\r\nããã㧠$BC=x$ ãšãã. ãã®ãšãäžè§åœ¢ $ABC$ ãšäžè§åœ¢ $AED$ ã®çžäŒŒæ¯ã¯ $2:x$ ã§ãããã,\r\n$$AD=CD=\\frac{10}{x},\\ \\ AE=BE=\\frac{8}{x}$$\r\nãæãç«ã¡, åè§åœ¢ $BCED$ ã«Ptolemyã®å®çãé©çšããããšã§\r\n$$2x+\\left(4-\\frac{10}{x}\\right)\\left(5-\\frac{8}{x}\\right)=\\frac{10}{x}\\times\\frac{8}{x}$$\r\nãåŸã. ããã解ãã° $x\\gt 0$ ãã $x=-5+\\sqrt{66}$ ãšãªã, ç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{61}$ ã§ãã. \\\r\nããªã $\\cos \\angle BAC$ ã2éãã«è¡šçŸããŠæ¯èŒããŠã解ãããšãã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc028/editorial/225"
}
] | ã$AB=4$, $AC=5$ ãªãäžè§åœ¢ $ABC$ ã«ãããŠ, å€å¿ã $O$ ãšãããš, äžè§åœ¢ $OBC$ ã®å€æ¥åã¯ç·å $AB$ ãš $B$ ã§ãªãç¹ $D$ ã§, ç·å $AC$ ãš $C$ ã§ãªãç¹ $E$ ã§äº€ãã, $DE=2$ ãæãç«ã¡ãŸãã. ãã®ãšã $BC$ ã®é·ããæ±ããŠãã ãã. ãã ã, çãã¯æŽæ° $a, b$ ãçšã㊠$a+\sqrt{b}$ ãšè¡šãããã®ã§ $a+b$ ã解çããŠãã ãã. |