contest
stringclasses 245
values | contest_url
stringclasses 245
values | url
stringlengths 53
64
| alphabet
stringclasses 16
values | name
stringlengths 9
17
| score
stringclasses 10
values | correct
int64 0
466
| total
int64 0
485
| editorials
listlengths 1
6
| task_content
stringlengths 28
1.49k
|
---|---|---|---|---|---|---|---|---|---|
OMC028 (ãšããæ°åŠã®ã³ã³ãã¹ã) | https://onlinemathcontest.com/contests/omc028 | https://onlinemathcontest.com/contests/omc028/tasks/204 | E | OMC028(E) | 600 | 51 | 159 | [
{
"content": "ã$a\\geq b$ ã®ç¯å²ã§èããã°ãã. æ¡ä»¶ã§å®ãŸãæå°ã® $c$ ã $f(a,b)$ ãšããããšã, 以äžãæãç«ã€ããšã瀺ã.\r\n$$\r\nf(a,b)=\\begin{cases}\r\n\\mathrm{LCM}(a,b)-a-b &(b\\nmid a) \\\\\\\\\r\na-b &(a\\neq b\\ \\text{ãã€}\\ b\\mid a) \\\\\\\\\r\na &(a=b) \r\n\\end{cases}\r\n$$\r\nã$b\\mid a$ ã®å Žåã¯æããã§ãããã, $b\\nmid a$ ã®å Žåã確èªãã. ããã§, $\\dfrac{a+c}{b},\\dfrac{b+c}{a}$ ããšãã«æŽæ°ã«ãªãããšã¯ $\\dfrac{a+b+c}{\\mathrm{LCM}(a,b)}$ ãæŽæ°ã«ãªãããšãšåå€ã§ãããã, $f(a,b)\\geq\\mathrm{LCM}(a,b)-a-b$ ã§ãã. ããã« $g=\\mathrm{gcd}(a,b)$ ã«ã€ã㊠$a=ga^{\\prime},b=gb^{\\prime}$ ãšããã°, $a^\\prime\\gt b^\\prime\\geq2$ ã§ãããã,\r\n$$\\mathrm{LCM}(a,b)-a-b=ga^\\prime b^\\prime-a-b=g(a^\\prime-1)(b^\\prime-1)-g\\gt0$$\r\nã以äžãã $f(a,b)$ ã®å€ãç¹å®ã§ããã®ã§, ä»¥äž $f(a,b)=80000$ ãšãªãæ¡ä»¶ãèãã.\r\n\r\n(i) $b\\nmid a$ ã®ãšã, äžã§çšããæåãåŒãç¶ã, $h=80000\\/g$ ãšããã° $(a^\\prime-1)(b^\\prime-1)=h+1$ ã§ãã. ãã㧠$a^\\prime$ ãš $b^\\prime$ ãäºãã«çŽ ã§ããããšãã $h$ ã¯å¥æ°ã§ãããã, ç¹ã« $5$ ã¹ãã§ãã, 以äžã®ããã«åæã§ãã.\r\n\r\n- $h=5^4$ ã®ãšã, $(a^\\prime-1)(b^\\prime-1)=626=2\\times313$ ãã $(a^\\prime,b^\\prime)=(627,2),(314,3)$.\r\n- $h=5^3$ ã®ãšã, $(a^\\prime-1)(b^\\prime-1)=126=2\\times3^2\\times7$ ãã $$(a^\\prime,b^\\prime)=(127,2),(64,3),(43,4),(22,7),(19,8)$$\r\n- $h=5^2$ ã®ãšã, $(a^\\prime-1)(b^\\prime-1)=26=2\\times13$ ãã $(a^\\prime,b^\\prime)=(27,2),(14,3)$.\r\n- $h=5^1$ ã®ãšã, $(a^\\prime-1)(b^\\prime-1)=6=2\\times3$ ãã $(a^\\prime,b^\\prime)=(7,2),(4,3)$.\r\n- $h=5^0$ ã®ãšã, $(a^\\prime-1)(b^\\prime-1)=2$ ãã $(a^\\prime,b^\\prime)=(3,2)$.\r\n\r\n(ii) $a\\neq b$ ã〠$b\\mid a$ ã®ãšã, $f(a,b)=\\left(\\dfrac{a}{b}-1\\right)b$ ãã $b$ 㯠$80000$ ã®çŽæ°ã§ãã. éã« $b$ ã $8000$ ã®çŽæ°ã®ãšã, $a=80000+b$ ãšããã°ãããã, çµ $(a,b)$ ã®åæ°ã¯ $80000$ ã®æ£ã®çŽæ°ã®åæ° $40$ ã«äžèŽãã.\r\n\r\n(iii) $a=b$ ã®ãšã, æããã« $a=b=80000$ ã®ã¿ã§ãã.\r\n\r\nã以äžãã, $a\\lt b$ ã®å Žåãèæ
®ããã°, æ±ããçã㯠$2\\times(12+40)+1=\\textbf{105}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc028/editorial/204"
}
] | ã以äžã®æ¡ä»¶ãã¿ããæ£æŽæ°ã®çµ $(a,b)$ ã¯ããã€ãããŸããïŒ
- æ¡ä»¶ïŒ$\dfrac{a+c}{b}$ ãš $\dfrac{b+c}{a}$ ããšãã«æŽæ°ãšãªããããªæå°ã®æ£æŽæ° $c$ 㯠$80000$ ã§ãã. |
OMC028 (ãšããæ°åŠã®ã³ã³ãã¹ã) | https://onlinemathcontest.com/contests/omc028 | https://onlinemathcontest.com/contests/omc028/tasks/205 | F | OMC028(F) | 700 | 23 | 65 | [
{
"content": "ããŸãäºã€ç®ã®æ¡ä»¶, ããªãã¡ä»¥äžãã¿ããçµã«ã€ããŠèãã.\r\n$$\\lbrace x_1\\rbrace=\\dfrac{1}{x_2},\\ \\lbrace x_2\\rbrace=\\dfrac{1}{x_3},\\ \\lbrace x_3\\rbrace=\\dfrac{1}{x_4},\\ \\lbrace x_4\\rbrace=\\dfrac{1}{x_5},\\ \\lbrace x_5\\rbrace=\\dfrac{1}{x_1}$$\r\næããã« $x_i$ ãã¯æŽæ°ã§ãªã, ã〠$1$ ãã倧ãã. $a_i,b_i$ ããããã $x_i$ ã®æŽæ°éšå, å°æ°éšåãšããã° \r\n$$\r\nb_i=\\dfrac{1}{a_{i+1}+b_{i+1}}=\\cfrac{1}{a_{i+1}+\\cfrac{1}{a_{i+2}+b_{i+2}}}=\\cdots=\\cfrac{1}{a_{i+1}+\\cfrac{1}{a_{i+2}+\\cfrac{1}{a_{i+3}+\\cfrac{1}{a_{i+4}+\\cfrac{1}{a_{i}+b_i}}}}}\r\n$$\r\nã§ãã(ãã ã, $a_{i+5}=a_i$ ãªã©ãšãã. 以äžåæ§).\\\r\nãããã§, æå³èŸºã $b_i$ ã®é¢æ° $f(b_i)$ ãšã¿ãªãã°, ããã¯ããæ£æŽæ° $A,B,C,D$ ãçšããŠ\r\n$$\\dfrac{Ab_i+B}{Cb_i+D}$$\r\nã®åœ¢ã§è¡šããã. ãã®ãšã, $f$ ã®é£ç¶æ§ããã³ $f(0)\\gt0,f(1)\\lt 1\\/a_{i+1}\\leq 1$ ãã, æ¹çšåŒ $b_i=f(b_i)$ 㯠$0\\lt b_i\\lt1$ ã«ãããŠå°ãªããšãäžã€ã®è§£ããã€. ããã§, æ¹çšåŒ $b_i=f(b_i)$ ã¯\r\n$$Cb_i^2+(D-A)b_i-B=0$$\r\nãšè¡šçŸã§ããããšãã (æããã« $f$ ã¯å®æ°ã§ãªããã, $Cb_i+D\\neq 0$ ã§èããŠãã), 解ãšä¿æ°ã®é¢ä¿ãã $0\\lt b_i\\lt1$ ã«ããã解ã¯ã¡ããã©äžã€ã§ããããšãããã. 以äžãã, $(a_1,\\cdots,a_5)$ ãå®ãŸãã° $(b_1,\\cdots,b_5)$ ã¯ãã äžã€ã«æ±ºãŸã, ãã®ãšã $(x_1,\\cdots,x_5)$ ããã äžã€ã«æ±ºãŸãããšãããã.\\\r\nããããã£ãŠ, ããšã¯äžã€ç®ã®æ¡ä»¶ã«ã€ããŠèããã°ãã. $x_1\\lt\\cdots\\lt x_5$ ãã $a_1\\leq \\cdots\\leq a_5$ ã§ãã. ããã« $1\\/x_2\\gt1\\/x_3\\gt1\\/x_4\\gt1\\/x_5$ ãã $b_1\\gt b_2\\gt b_3\\gt b_4$ ã§ãããã, ç¹ã« $a_1\\lt a_2\\lt a_3\\lt a_4$ ãåŸã.\\\r\nã$a_1\\lt a_2\\lt a_3\\lt a_4\\lt a_5$ ã®ãšãæããã«è¯ã, ãã®ãããªçµã¯ $\\_{99}\\mathrm{C}\\_5$ åã§ãã.\\\r\nã$a_1\\lt a_2\\lt a_3\\lt a_4=a_5$ ã®ãšã, $x_1\\lt x_2\\lt x_3\\lt x_4$ ã§ãã, ããã«\r\n$$b_4=\\cfrac{1}{a_5+\\cfrac{1}{\\ddots}}\\lt\\cfrac{1}{a_5}\\lt\\cfrac{1}{a_{1}+\\cfrac{1}{\\ddots}}=b_5$$\r\nãã $x_4=a_4+b_4\\lt a_5+b_5=x_5$ ãã¿ãã. ãã®ãããªçµã¯ $\\_{99}\\mathrm{C}\\_4$ åã§ãã.\\\r\nã以äžãã, æ±ããåæ°ã¯ ${}\\_{99}\\mathrm{C}\\_5+{}\\_{99}\\mathrm{C}\\_4=\\textbf{75287520}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc028/editorial/205"
}
] | ã以äžã®æ¡ä»¶ããšãã«ã¿ããå®æ°ã®çµ $(x_1,x_2,x_3,x_4,x_5)$ ã¯ããã€ãããŸããïŒ
- $0\lt x_1\lt x_2\lt x_3\lt x_4\lt x_5\lt100$
- $\lbrace x_1\rbrace x_2=\lbrace x_2\rbrace x_3=\lbrace x_3\rbrace x_4=\lbrace x_4\rbrace x_5=\lbrace x_5\rbrace x_1=1$
ãã ã, æ£ã®å®æ° $x$ ã«å¯Ÿã, $\lbrace x\rbrace$ 㧠$x$ ã®å°æ°éšåãè¡šããŸã. |
OMC027 (for beginners) | https://onlinemathcontest.com/contests/omc027 | https://onlinemathcontest.com/contests/omc027/tasks/4 | A | OMC027(A) | 100 | 233 | 237 | [
{
"content": "ã$A, B, E, F$ ã«ã¯åèš $880\\text{ml}$ ã®ã³ãŒããŒãå
¥ã£ãŠããããšãš, $B, E, F$ ã«ã¯åèš $624\\text{ml}$ ã®ã³ãŒããŒãå
¥ã£ãŠããããšãã, $A$ ã«ã¯ $256\\text{ml}$ ã®ã³ãŒããŒãå
¥ã£ãŠããããšãããã. ãŸã, $A, C, F$ ã«ã¯åèš $630\\text{ml}$ ã®ã³ãŒããŒãå
¥ã£ãŠããããš, $A, B, D, E$ ã«ã¯åèš $636\\text{ml}$ ã®ã³ãŒããŒãå
¥ã£ãŠããããš, $A$ ã«ã¯ $256\\text{ml}$ ã®ã³ãŒããŒãå
¥ã£ãŠããããšãã, $A, B, C, D, E, F$ å
šäœã§ã¯ $\\textbf{1010}\\text{ml}$ ã³ãŒããŒãããããšãããã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc027/editorial/4"
}
] | ã$A, B, C, D, E, F$ ã® $6$ ã€ã®ã³ãŒããŒã«ããããããŸã. $A, B, E, F$ ã«ã¯å¹³å $220\text{ml}$ ã®ã³ãŒããŒã, $A, C, F$ ã«ã¯å¹³å $210\text{ml}$ ã®ã³ãŒããŒã, $B, E, F$ ã«ã¯å¹³å $208\text{ml}$ ã®ã³ãŒããŒã, $A, B, D, E$ ã«ã¯å¹³å $159\text{ml}$ ã®ã³ãŒããŒãå
¥ã£ãŠããŸã. ãã®ãšã, $A, B, C, D, E, F$ å
šäœã§ã¯ $x\text{ml}$ ã®ã³ãŒããŒããããŸã. $x$ ã解çããŠãã ãã. |
OMC027 (for beginners) | https://onlinemathcontest.com/contests/omc027 | https://onlinemathcontest.com/contests/omc027/tasks/3 | B | OMC027(B) | 200 | 199 | 230 | [
{
"content": "ããã¹ã«æžã蟌ãŸããæ°ãå·Šäžããé ã« $A,B,C;D,E,F;G,H,I$ ãšãã.\\\r\nã$9$ 㯠$1,2$ ãšããé£ãåããªãããšã«çæããŠ, 察称æ§ãã $(A,B,D)=(9,1,2)$ ãšããŠãã. ããã« $8$ 㯠$1,2,3$ ãšããé£ãåããªãããšã«çæããŠ, 察称æ§ãã $(C,F)=(8,3)$ ãšããŠãã. æ®ãã® $4,5,6,7$ ã«ã€ããŠã¯, $H=4$ ãšããã»ããªã, ãã®ãšãæ®ã $3$ æ°ã®æžã蟌ã¿æ¹ã¯ä»»æã§ãã. 以äžãã $M=4\\times2\\times2\\times3!=\\textbf{96}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc027/editorial/3"
}
] | ã$3\times 3$ ã®ãã¹ç®ã« $1$ ä»¥äž $9$ 以äžã®æŽæ°ã $1$ åãã€æžã蟌ã¿ãŸã. ãã®ãšã, ã©ã®é£ãåã $2$ ãã¹ã«ã€ããŠã, æ°ã®åã $11$ 以äžãšãªããããªæžã蟌ã¿æ¹ã¯ $M$ éããããŸã. $M$ ã解çããŠãã ãã.\
ããã ã, å転ãå転ã§äžèŽãããã®ãåºå¥ãããã®ãšããŸã. |
OMC027 (for beginners) | https://onlinemathcontest.com/contests/omc027 | https://onlinemathcontest.com/contests/omc027/tasks/6 | C | OMC027(C) | 300 | 63 | 111 | [
{
"content": "ã$AD_{i},BE_{j},CF_{k}$ ãäžç¹ã§äº€ããæ¡ä»¶ã¯, Cevaã®å®çãã\r\n$$\\begin{aligned}\r\n\\frac{BD_{i}}{D_{i}C}\\times\\frac{CE_{j}}{E_{j}A}\\times\\frac{AF_{k}}{F_{k}B}=1 &\\iff \\frac{ijk}{(2p-i)(2p-j)(2p-k)}=1 \\\\\\\\\r\n&\\iff p[4p^2-2(i+j+k)p+(ij+jk+ki)]=ijk\r\n\\end{aligned}$$\r\nãããã $i,j,k$ ã®å°ãªããšãäžã€ã¯ $p$ ã§ãã. äŸãã° $k=p$ ã§ãããšã, äžåŒãæŽçã㊠$i+j=2p$ ãåŸããã, çµ $(p,p,p)$ ã®éè€ã«çæããã° $1033=3\\times(2p-1)-2$ ãåŸã. ãã£ãŠ $p=\\textbf{173}$ ã§ãã, ããã¯é©ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc027/editorial/6"
}
] | ã$p$ ãçŽ æ°ãšããŸã. äžè§åœ¢ $ABC$ ã«ãããŠ, 蟺 $BC,CA,AB$ ã $i:2p-i$ ã«å
åããç¹ããããã $D_{i},E_{i},F_{i}\ (i=1,\cdots,2p-1)$ ãšãããšã, $3$ çŽç· $AD_{i},BE_{j},CF_{k}$ ãäžç¹ã§äº€ãããããªçµ $(i,j,k)$ ã $1033$ åååšããŸãã. $p$ ãšããŠããåŸãå€ãã¹ãŠã«ã€ããŠ, ãããã®ç·åãæ±ããŠãã ãã. |
OMC027 (for beginners) | https://onlinemathcontest.com/contests/omc027 | https://onlinemathcontest.com/contests/omc027/tasks/5 | D | OMC027(D) | 400 | 44 | 114 | [
{
"content": "ãäžè¬ã« $234$ ã $m$ ãšãã. $Q(x)=1-xP(x)$ ãšãããš, å æ°å®çãããã㯠$(x-1)(x-2)\\cdots(x-m)$ ã§å²ãåã, $Q(0)=1$ ãšåãã㊠$Q(x)=\\dfrac{(-1)^m}{m!}(x-1)\\cdots(x-m)$ ã§ãã.\r\n\r\nãããã§, $(x-1)\\cdots(x-m)$ ã® $m-2$ 次ã®ä¿æ°ã¯\r\n$$\\begin{aligned}\r\n\\sum_{1\\leq i\\lt j\\leq m} ij\r\n&=\\frac12\\left(\\sum_{i=1}^{m}\\sum_{j=1}^{m}ij-\\sum_{i=1}^{m}i^2\\right)\\\\\\\\\r\n&=\\frac12\\left(\\left(\\frac{m\\left(m+1\\right)}2\\right)^2-\\frac{m\\left(m+1\\right)\\left(2m+1\\right)}6\\right)\\\\\\\\\r\n&=\\frac{1}{24}\\left[m(m+1)\\left(3m\\left(m+1\\right)-2\\left(2m+1\\right)\\right)\\right]\\\\\\\\\r\n&=\\frac{1}{24}\\left[(m-1)m(m+1)\\left(3m+2\\right)\\right]\r\n\\end{aligned}$$\r\nããããã, $P(x)$ ã® $m-3$ 次ã®ä¿æ°ã¯\r\n$$(-1)^{m+1}\\dfrac{(m+1)\\left(3m+2\\right)}{24\\cdot (m-2)!}=-\\dfrac{235\\times11\\times2^3}{3\\times232!}$$\r\nã§, æ±ããå€ã¯Legendreã®å®çãã $228-3=\\textbf{225}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc027/editorial/5"
}
] | ã$233$ 次ã®å€é
åŒ $P(x)$ ã¯, ä»»æã® $n=1,2,\cdots,234$ ã«ã€ã㊠$P(n)=\dfrac{1}{n}$ ãã¿ãããŸã. ãã®ãšã $P(x)$ ã® $231$ 次ã®ä¿æ°ã¯, äºãã«çŽ ãªæ£æŽæ° $a,b$ ãçšã㊠$-\dfrac{a}{b}$ ãšè¡šããŸã. $b$ ã $2$ ã§å²ãåããåæ°ãæ±ããŠãã ãã. |
OMC026 | https://onlinemathcontest.com/contests/omc026 | https://onlinemathcontest.com/contests/omc026/tasks/154 | A | OMC026(A) | 100 | 306 | 306 | [
{
"content": "ã$10S+8(20-S)=174$ ã解ãããšã§ $S=\\textbf{7}$ ãåŸã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc026/editorial/154"
}
] | ãã€ã«ãšã¿ã³ãåãã㊠$20$ å¹ããŸã. 足ã®æ¬æ°ãåèšã§ $174$ æ¬ã§ãããšã, ã€ã«ã¯ $S$ å¹ã§ã.\
ã$S$ ã解çããŠãã ãã. ãã ã, ã€ã«ãšã¿ã³ã¯ãããã足ã $10$ æ¬, $8$ æ¬ãã€ãã®ãšããŸã. |
OMC026 | https://onlinemathcontest.com/contests/omc026 | https://onlinemathcontest.com/contests/omc026/tasks/155 | B | OMC026(B) | 300 | 274 | 288 | [
{
"content": "ã解ãšä¿æ°ã®é¢ä¿ãã $a+b=4,ab=8$ ã§ãããã, ç¹ã« $a^2+b^2=0$ ã§ãã. ããã§\r\n$$\\begin{aligned}\r\nf(x) &\\coloneqq x^4+px^3+qx^2+rx+s \\\\\\\\\r\n&= (x-(a+2b))(x-(2a+b))\\left(x-\\frac{a}{b}\\right)\\left(x-\\frac{b}{a}\\right) \\\\\\\\\r\n&= (x^2-3(a+b)x+2(a^2+b^2)+5ab)\\left(x^2-\\frac{a^2+b^2}{ab}x+1\\right) \\\\\\\\\r\n&= (x^2-12x+40)(x^2+1)\r\n\\end{aligned}$$\r\nããã£ãŠ $p+q+r+s=f(1)-1=29\\times 2-1=\\textbf{57}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc026/editorial/155"
}
] | ãäºæ¬¡æ¹çšåŒ $x^2-4x+8=0$ ã® $2$ 解ã $x=a,b$ ãšãããšã, å次æ¹çšåŒ $x^4+px^3+qx^2+rx+s=0$ 㯠$x=a+2b,2a+b,\dfrac{a}{b},\dfrac{b}{a}$ ã $4$ 解ã«æã¡ãŸãã. $p+q+r+s$ ã®å€ãæ±ããŠãã ãã. |
OMC026 | https://onlinemathcontest.com/contests/omc026 | https://onlinemathcontest.com/contests/omc026/tasks/156 | C | OMC026(C) | 300 | 268 | 285 | [
{
"content": "ãæ£ã®çŽæ°ãå¥æ°åã§ããããšã¯å¹³æ¹æ°ã§ããããšãšåå€ã§ãããã,\r\n$$n^4+24n^3=n^2(n^2+24n)$$\r\nãã $n^2+24n$ ã¯å¹³æ¹æ°ã§ãã. æ£æŽæ° $a$ ã«ãã£ãŠããã $a^2$ ãšãããš,\r\n$$(n+12)^2-144=a^2 \\iff (n+a+12)(n-a+12)=144$$\r\nã$n\\pm a+12$ ã®å¶å¥ãäžèŽããããšã«çæããã°, çµ $(n,a)$ ã®åè£ã以äžã®ããã«åæã§ãã.\r\n$$(n,a)=(25,35),(8,16),(3,9),(1,5)$$\r\nãã®ãã¡ $n^4+24n^3=(an)^2$ ãæ£ã®çŽæ°ã $21$ åãã€ã®ã¯ $(n,a)=(25,35)$ ã®ã¿ã§ãã, æ±ããå€ã¯ $\\textbf{25}$.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc026/editorial/156"
}
] | ã$n^4+24n^3$ ãæ£ã®çŽæ°ãã¡ããã© $21$ åãã€ãããª, æ£æŽæ° $n$ ãšããŠããåŸãå€ã®ç·åãæ±ããŠãã ãã. |
OMC026 | https://onlinemathcontest.com/contests/omc026 | https://onlinemathcontest.com/contests/omc026/tasks/157 | D | OMC026(D) | 500 | 149 | 199 | [
{
"content": "ã$AD$ ã®äžç¹ã $M$ ãšããã° $AB:AM=5:3=DM:CD$ ã§ãã, $\\angle BAD=\\angle ADC$ ãšåãããŠäžè§åœ¢ $ABM$ ãš $DMC$ ã¯çžäŒŒã§ãã. ããã«ãã®ãšã, $BM:CM=5:3$ ã§ãã,\r\n$$\\angle BMC=180^\\circ-\\angle AMB-\\angle CMD=180^\\circ-\\angle AMB-\\angle ABM=\\angle BAM$$\r\nããäžè§åœ¢ $MBC$ ãåããçžäŒŒã§ãã.\\\r\nããããã£ãŠ, $AB:BM=BM:BC$ ãã $BM=10\\sqrt{13}$ ã§ãã, äœåŒŠå®çãã $\\cos A=-3\\/5$ ãšèšç®ã§ãã. ãã£ãŠäžè§åœ¢ $ABM$ ã®é¢ç©ã¯ $150$ ã§ãã, çžäŒŒããå
šäœã®é¢ç©ã¯ $150+312+54=\\textbf{516}$ ãšèšç®ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc026/editorial/157"
}
] | ãåžåè§åœ¢ $ABCD$ ã以äžã®æ¡ä»¶ãã¿ãããšã, ãã®é¢ç©ãæ±ããŠãã ãã.
$$AB=25,\ BC=52,\ CD=9,\ DA=30,\ \angle{BAD}=\angle{ADC}$$
ããã ã, $XY$ ã§ç·å $XY$ ã®é·ããè¡šããã®ãšããŸã. |
OMC026 | https://onlinemathcontest.com/contests/omc026 | https://onlinemathcontest.com/contests/omc026/tasks/158 | E | OMC026(E) | 600 | 72 | 137 | [
{
"content": "ãäžè¬ã« $10^7$ ã $n$ ãšãã. $[i,j]$ 㧠$i$ è¡ç® $j$ åç®ã®ãã¹ãè¡šã, $s(a,b,j)$ 㧠$[a,j]$ ãš $[b,j+1]$ ã®äžå¿ãçµã¶ç·åãè¡šã. ãã®åœ¢åŒã§è¡šãããç·åã®å
šäœã $T$ ãšã, åå $f:T\\to \\lbrace 0,1\\rbrace$ ã以äžã§å®ãã.\r\n$$f(t)= \\begin{cases} 1 & (t\\text{ãš}\\ell\\ \\text{ãå
±æç¹ãæã€ãšã})\\\\\\\\ 0 & (\\text{otherwise}) \\end{cases}$$\r\nãã®ãšã, æ±ããå€ã¯ä»¥äžã§äžãããã. ããªãã¡ $T$ ã®å
$n^3$ åã®ãã¡, $f(t)=0$ ãªããã®ãæ°ããã°ãã.\r\n$$\\frac{1}{n^{n+1}}\\left(n^{n-1}\\times\\sum_{t\\in T}f(t)\\right)=\\frac{1}{n^2}\\sum_{t\\in T}f(t)$$\r\nãããã« $[i,j]$ ã®äžå¿ã $\\ell$ ã®äžåŽã«ãããã㪠$i=1,2,\\cdots,n$ ã®åæ°ã $g(j)$ ãšããã°, $f(t)=0$ ãªã $t$ ã®åæ°ã¯å¯Ÿç§°æ§ãã以äžã§äžããããããšãããã.\r\n$$2\\sum_{j=1}^{n}g(j)g(j+1)$$\r\nãããã§é©åœã«åº§æšãèšå®ããã°, $\\ell$ ã®åŒã $nx-(n+1)y=0$ ã§, ãã®äž¡ç«¯ç¹ã $(0,0),(n+1,n)$ ã§ãããšããŠãã. ãã®ãšã $[i,j]$ ã®äžå¿ã¯ $(j-1\\/2,i-1\\/2)$ ã§ãããã, $g(j)$ ã¯å€©äºèšå·ã«ãã£ãŠä»¥äžã§è¡šããã.\r\n$$g(j)=\\left\\lceil\\frac{n}{n+1}\\left(j-\\frac{1}{2}\\right)+\\frac{1}{2}\\right\\rceil-1$$\r\næããã« $g(j+1)\\leq g(j)+1$ ãã, $g(1)=0,g(n+1)=n$ ãšäœµã㊠$g(j)=j-1$ ãããã. ãããã£ãŠ\r\n$$2\\sum_{j=1}^{n}g(j)g(j+1) = 2\\sum_{j=1}^{n}j(j-1) = \\frac{2}{3}(n-1)n(n+1)$$\r\nãã£ãŠæ±ããå¹³åå€ã¯ä»¥äžã§äžããã, ç¹ã« $n=10^7$ ã®ãšã解çãã¹ãå€ã¯ $\\textbf{16666671666667}$ ã§ãã.\r\n$$\\frac{1}{n^2}\\left(n^3-\\frac{2}{3}(n-1)n(n+1)\\right)=\\frac{n^2+2}{3n}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc026/editorial/158"
}
] | ã$10^7$ è¡ $10^7+1$ åã®ãã¹ç®ããã, æãå·Šäžã®é ç¹ãšæãå³äžã®é ç¹ãçµã¶çŽç·ã
$\ell$ ãšããŸã. ããŸ, ååã«ã€ããŠã¡ããã© $1$ ãã¹ãé»ãå¡ã, é£ãåãåã®é»ããã¹ã®äžå¿ãç·åã§çµã¶ããšã§æãç· $\ell^{\prime}$ ãäœããŸã. ãã®ãšã, ãã¹ãŠã®é»ãã¹ã®å¡ãæ¹ $10^{7(10^7+1)}$ éãã«ã€ããŠ, $\ell$ ãš $\ell^{\prime}$ ã®å
±æç¹ã®åæ°ã®å¹³åãæ±ããŠãã ãã.\
ããã ã, çãã¯äºãã«çŽ ãªæ£æŽæ° $p,q$ ã«ãã£ãŠ $\dfrac{p}{q}$ ãšè¡šããã®ã§, $p+q$ ã解çããŠãã ãã.\
ãããã§, ãã¹ã¯ãã¹ãŠæ£æ¹åœ¢ãšã, åãã¹ã®**äžå¿**ãæ£æ¹åœ¢ã®å¯Ÿè§ç·ã®äº€ç¹ãšããŠå®ããŸã. |
OMC026 | https://onlinemathcontest.com/contests/omc026 | https://onlinemathcontest.com/contests/omc026/tasks/159 | F | OMC026(F) | 600 | 17 | 67 | [
{
"content": "ã$AD,BC$ ã®äžç¹ããããã $M,N$ ãšããã°, äžç·å®çãã $BM=CM=\\sqrt{113}$ ã§ãããã, $MN$ 㯠$BC$ ã«åçŽã§, $MN=10$ ã§ãã. ãã㧠$BC$ ãå«ã¿ $MN$ ã«åçŽãªå¹³é¢ã $U$ ãšã, ããã« $A,D$ ããããããåç·ã®è¶³ããããã $A^\\prime,D^\\prime$ ãšããã°, $N$ 㯠$A^\\prime D^\\prime$ ã®äžç¹ã§ããããã $A^\\prime BD^\\prime C$ ã¯å¹³è¡å蟺圢ã§ãã. ããã«åè§é $M-A^\\prime BD^\\prime C$ ã®äœç©ã¯åé¢äœ $ABCD$ ãšçãã $40$ ã§ãããã, $A^\\prime BD^\\prime C$ ã®é¢ç©ã¯ $12$ ã§ãã.\\\r\nããã®ãšã $A^\\prime$ ãã(ããªãã¡ $A$ ãã) $BC$ ã«ããããåç·ã®è¶³ã $H$ ãšããã°, $AH=33\\/\\sqrt{13},A^\\prime H=6\\/\\sqrt{13}$ ãã $AA^\\prime=9$ ã§ãã. ãã£ãŠ $DD^\\prime=11$ ã§, $D^\\prime H=6\\/\\sqrt{13}$ ãšäœµããŠäžè§åœ¢ $BCD$ ã®é¢ç©ã¯ $\\sqrt{\\textbf{1609}}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc026/editorial/159"
}
] | ã$AD=2\sqrt{5},BC=2\sqrt{13}$ ãªãåé¢äœ $ABCD$ ã¯, äœç©ã $40$ ã§, ããã«ä»¥äžã®æ¡ä»¶ãã¿ãããŸã.
$$AB^2+BD^2=AC^2+CD^2=236$$
ãäžè§åœ¢ $ABC$ ã®é¢ç©ã $33$ ã§ãããšã, äžè§åœ¢ $BCD$ ã®é¢ç©ã¯æ£æŽæ° $S$ ã«ãã£ãŠ $\sqrt{S}$ ãšè¡šãããŸã.\
ã$S$ ã解çããŠãã ãã. ãã ã, $XY$ ã§èŸº $XY$ ã®é·ããè¡šããã®ãšããŸã. |
OMC025 (for beginners) | https://onlinemathcontest.com/contests/omc025 | https://onlinemathcontest.com/contests/omc025/tasks/150 | A | OMC025(A) | 100 | 278 | 298 | [
{
"content": "ã$\\lbrace 0,1,4,9\\rbrace$ ãèããã° $n\\leq 9$ ã§, ããã« $\\lbrace 1,4,9,16\\rbrace$ ãèããããšã§ $n=9$ ã¯äžé©ã§ãã.\\\r\nãéã«, å¹³æ¹æ°ã $8$ ã§å²ã£ãäœã㯠$0,1,4$ ã®ããããã§ãããã, æ±ããæ倧å€ã¯ $\\textbf{8}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc025/editorial/150"
}
] | ã次ã®æ¡ä»¶ãã¿ããæ£æŽæ° $n$ ã®æ倧å€ãæ±ããŠãã ããïŒ
- çžç°ãªã $4$ ã€ã®å¹³æ¹æ°ãä»»æã«ãšã£ããšã, $n$ ã§å²ã£ãäœããçãã $2$ ã€ãå¿
ãååšãã.
ããã ã, ããã§**å¹³æ¹æ°**ãšã¯, ããæŽæ°ã® $2$ ä¹ã«ãã£ãŠè¡šãããæŽæ°ã®ããšãæããã®ãšããŸã. |
OMC025 (for beginners) | https://onlinemathcontest.com/contests/omc025 | https://onlinemathcontest.com/contests/omc025/tasks/151 | B | OMC025(B) | 200 | 181 | 247 | [
{
"content": "ãäžè§åœ¢ $AEH$ ãš $BDH$ ã®çžäŒŒãã $DH:EH=BH:AH=4:3$ ã§ãã. åæ§ã«ããŠ,\r\n$$DH:EH:FH=4\\times5:3\\times5:3\\times4=20:15:12$$\r\nã§ãããã, æ±ããå€ã¯ $20+15+12=\\textbf{47}$ ã§ãã.\\\r\nããªã, ãã®ãããªéè§äžè§åœ¢ $ABC$ ã®ååšã¯èšŒæã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc025/editorial/151"
}
] | ãåå¿ã $H$ ãšããéè§äžè§åœ¢ $ABC$ ã«ãããŠ, ç¹ $A,B,C$ ãã察蟺ã«ããããåç·ã®è¶³ããããã $D,E,F$ ãšãããŸã. $AH:BH:CH=3:4:5$ ã®ãšã, æ倧å
¬çŽæ°ã $1$ ã§ããæ£æŽæ° $p,q,r$ ãååšã㊠$DH:EH:FH=p:q:r$ ãšè¡šããŸã. $p+q+r$ ã解çããŠãã ãã. |
OMC025 (for beginners) | https://onlinemathcontest.com/contests/omc025 | https://onlinemathcontest.com/contests/omc025/tasks/152 | C | OMC025(C) | 300 | 67 | 128 | [
{
"content": "ã$3000$ åã®ããŒã«ããã, $1000$ åãã€ãåãè²ã§å¡ãããŠããç¶æ³ãèãã. ãã®ãã¡ $1500$ åãéžã¶æ¹æ³ã¯ $\\_{3000}\\mathrm{C}\\_{1500}$ éããã. äžæ¹ã§, åè²ããšã«ç¬ç«ããŠèããããšã§, ãã㯠$M$ éãã«ãçããããšãããããã, æ±ããå€ã¯Legendreã®å®çãã $2999\\times 2^{2993-2\\times1493}=\\mathbf{383872}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc025/editorial/152"
},
{
"content": "ã $(1+x)^{1000}(1+x)^{1000}(1+x)^{1000}=(1+x)^{3000}$ ã® $x^{1500}$ ã®ä¿æ°ãèããŠïŒ $M={}\\_{3000}\\mathrm{C}\\_{1500}$ ãšãããïŒ\\\r\n $M$ ã®ãã€æ倧ã®çŽ å æ°ã¯ $2999$ ã§ããïŒãŸãïŒ $M=\\dfrac{3000!}{1500!1500!}$ ã® $2$ ã§å²ãåããåæ°ã«ã€ããŠã¯ïŒOMC039(D)ã®è§£èª¬ã«ããè£é¡ãçšããããšã§ïŒ $1500,3000$ ã $2$ é²æ³ã§è¡šããæã® $1$ ã®åæ°ã $7$ ã§ããããšããïŒ $3000-7-(1500-7)-(1500-7)=7$ ãšãªãïŒ\\\r\n 以äžããïŒè§£çãã¹ãæ°å€ã¯ $2999\\cdot2^{7}=\\textbf{383872}$",
"text": "å€é
åŒã®å©çš",
"url": "https://onlinemathcontest.com/contests/omc025/editorial/152/118"
}
] | ã$i+j+k=1500$ ã〠$i,j,k\leq 1000$ ãªãéè² æŽæ°ã®é åºä»ããçµ $(i,j,k)$ ãã¹ãŠã«ã€ããŠ,
$$\_{1000}{\mathrm{C}}\_{i}\times{}\_{1000}{\mathrm{C}}\_{j}\times{}\_{1000}{\mathrm{C}}\_{k}$$
ã®ç·åã $M$ ãšããŸã. $M$ ãå²ãåãæ倧ã®çŽ æ°ãš, $M$ ãå²ãåãæ倧㮠$2$ ã¹ãã®**ç©**ãæ±ããŠãã ãã.\
ãäŸãã° $M=3080=2^3\times5\times7\times11$ ã§ãã£ããªãã°, 解çãã¹ãå€ã¯ $2^3\times11=88$ ã§ã.\
ããªã, [**ãã¡ã**](https:\/\/www.mathsisfun.com\/numbers\/prime-numbers-to-10k.html)ã®çŽ æ°è¡šãçšããŠãæ§ããŸãã. |
OMC025 (for beginners) | https://onlinemathcontest.com/contests/omc025 | https://onlinemathcontest.com/contests/omc025/tasks/153 | D | OMC025(D) | 400 | 67 | 107 | [
{
"content": "ã$3$ ã€ã®æ£æŽæ°è§£ã $m\\leq n\\leq l$ ãšãããš, 解ãšä¿æ°ã®é¢ä¿ãã\r\n$$\\begin{aligned}(m+n)^2+(m+l)^2+(n+l)^2&=2[(m+n+l)^2-(mn+nl+lm)]\\\\\\\\\r\n&=2[(a+14)^2-(a^2+28a-1)]=394\\end{aligned}$$\r\nãããã®æ£æŽæ°è§£ãèã㊠$(m+n,m+l,n+l)=(5,12,15),(9,12,13)$ ãã\r\nãã$$(m,n,l)=(1,4,11),(4,5,8)$$\r\nãåŸããã, æ±ããç·åã¯åã³è§£ãšä¿æ°ã®é¢ä¿ãã $1\\times4\\times11+4\\times5\\times8=\\textbf{204}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc025/editorial/153"
}
] | ãå®æ° $a,b$ ã«ã€ããŠ, $x$ ã®äžæ¬¡æ¹çšåŒ
$$x^3+(a+14)x^2+(a^2+28a-1)x=b$$
ã®è§£ããã¹ãŠæ£æŽæ°ã§ãããšã, $b$ ãšããŠããåŸãå€ã®ç·åãæ±ããŠãã ãã.\
ããã ã, æ±ããç·åã¯éè² æŽæ°å€ã«ãªãããšã蚌æã§ããŸã. |
OMC024 (for experts) | https://onlinemathcontest.com/contests/omc024 | https://onlinemathcontest.com/contests/omc024/tasks/144 | A | OMC024(A) | 200 | 239 | 290 | [
{
"content": "**解ç1.**ãåå³ã®åé
ãç¬ç«ã«èããã°ãã. ããå³ã®é£Žã«ã€ããŠ, A,Båã«äžã€ãåé
ããªãæ¹æ³ããããã $51$ éããããã, ãããã«ãåé
ããªãæ¹æ³ã®éè€ãèããã° $M=(2\\times 51-1)^7=101^7$ ãåŸã.\r\n\r\n**解ç2.**ã倩äžãçã ã, 以äžã®ãåé¡ããèããã. å
ã®åé¡ã¯ $k=7,a_1=\\cdots=a_7=50$ ã®å Žåã«ç䟡ã§ãã.\r\n\r\n**åé¡.**ãæ£æŽæ° $n$ ã $p_1^{a_1}p_2^{a_2}\\cdots p_k^{a_k}$ ãšçŽ å æ°å解ããããšãã. çžç°ãªããšã¯éããªãäºã€ã® $n$ ã®æ£ã®çŽæ°ã®é åºä»ããçµã§ãã£ãŠ, ããããäºãã«çŽ ã§ãããã®ã¯ããã€ãããïŒ\r\n\r\nãæ¡ä»¶ãã¿ããçµ $(d,e)$ ã«å¯Ÿã $M=de$ ãšãã, ããã«å $i$ ã«ã€ã㊠$d$ ã $p_i$ ã§å²ãåãããšã $M$ ã« $p_i^{a_i}$ ãæããããšãèãããš, æ¡ä»¶ãã¿ããçµ $(d,e)$ ãš $n^2$ ã®æ£ã®çŽæ° $M$ ãäžå¯Ÿäžã«å¯Ÿå¿ããããšã容æã«ããã. å
·äœçã«ã¯, æ±ããå Žåã®æ°ã¯ $(2a_1+1)(2a_2+1)\\cdots(2a_k+1)$ éãã§ãã, å
ã®åé¡ã§ã $M=101^7$ ãåŸã.\\\r\nãå
·äœçèšç®ã¯äºé
å®çãçšããããšã§ $\\textbf{107213535210701}$ ãšå®¹æãå®è¡ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc024/editorial/144"
}
] | ã$7$ çš®é¡ã®å³ã®é£Žããããã $50$ åãã€ãããŸã. åãå³ã®é£Žãåºå¥**ããªã**ãšã, ããã $350$ åã®é£ŽãããããAå, Bå, Cåã®ããããã«**ãã¹ãŠ**åé
ããæ¹æ³ã§ãã£ãŠ, AåãšBåãåãå³ã®é£Žãå
±æããªããã®ã¯ $M$ éããããŸã.\
ã$M$ ã解çããŠãã ãã. ãã ã, äžã€ã风ãããããªã人ãååšããããšãèš±ããã®ãšããŸã. |
OMC024 (for experts) | https://onlinemathcontest.com/contests/omc024 | https://onlinemathcontest.com/contests/omc024/tasks/145 | B | OMC024(B) | 400 | 140 | 250 | [
{
"content": "ã$f(0)\\neq 0$ ã®ãšã, $b=0$ ããä»»æã® $a$ ã«ã€ã㊠$f(a)=1$ ã§ãããã, ä»¥äž $f(0)=0$ ãšãã. ããã« $f(1)\\neq 1$ ã®ãšã, $b=1$ ããä»»æã® $a$ ã«ã€ã㊠$f(a)=0$ ã§ãããã, ä»¥äž $f(1)=1$ ãšãã.\\\r\nã$f(2)^3=f(8)$ ããã³ $f(3)^2=f(9)$ ããããã $S$ ã«å±ããããšãã, $f(2)\\leq 2$ ããã³ $f(3)\\leq 3$ ãåŸã. ç¹ã« $f(2)=2$ ã®ãšã $f(5)$ 㯠$6$ 以äžã§ãã. éã«ãã®ãšã, $f(4),f(6),f(8),f(9),f(10),f(12)$ ã®å€ã¯äžæã«å®ãŸã, $f(7),f(11)$ ã®å€ã¯ä»»æã§ãã. 以äžãã, $M=2+(13+13+7)\\times 4\\times 13^2=\\textbf{22310}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc024/editorial/145"
}
] | ãéå $\lbrace 0,1,2,\cdots,12\rbrace$ ã $S$ ãšãããŸã.\
ãé¢æ° $f:S\to S$ ã§ãã£ãŠ, $ab\leq 12$ ãªã $a,b\in S$ (çãããŠãè¯ã)ã«å¯ŸããŠ
$$f(ab)=f(a)f(b)$$
ãã¿ãããã®ã¯ $M$ åååšããŸã. $M$ ã解çããŠãã ãã. |
OMC024 (for experts) | https://onlinemathcontest.com/contests/omc024 | https://onlinemathcontest.com/contests/omc024/tasks/146 | C | OMC024(C) | 500 | 19 | 79 | [
{
"content": "ãäžè§åœ¢ã®äžç·ãšçè§å
±åœ¹ã®é¢ä¿ã«ããçŽç· (ãã®åé¡ã§ã¯ $ABC$ ã«ãããçŽç· $AO$) 㯠$\\textit{symmedian}$ (æ¬äŒŒäžç·) ãšåŒã°ã, æ§ã
ãªæ§è³ªãç¥ãããŠãã. ãã®è£é¡ã¯, ãããã®åºçºç¹ãšãèšãã¹ã, ç¹ã«äž»ãããã®ã§ãã.\r\n\r\n**è£é¡.**ãäžè§åœ¢ $ABC$ ã®å€æ¥åã $\\Omega$ ãšã, $B,C$ ã§ã® $\\Omega$ ã®æ¥ç·ã®äº€ç¹ã $X$ ãšãããš, $\\angle BAX=\\angle CAM$.\r\n\r\n**蚌æ.**ã蟺 $BC$ äžã§ $\\angle BAX=\\angle CAM^\\prime$ ãªãç¹ $M^\\prime$ ããšã£ããšã, $BM^\\prime=CM^\\prime$ ã瀺ãã°ãã. æ£åŒŠå®çãã\r\n$$BM^\\prime=AM\\times\\dfrac{\\sin\\angle BAM^\\prime}{\\sin B},\\ \\ CM^\\prime=AM\\times\\dfrac{\\sin\\angle CAM^\\prime}{\\sin C}$$\r\nãäžæ¹, æ¥åŒŠå®çãã $\\angle ABX=180^\\circ-\\angle C$ ãªã©ã§ãããã, åã³æ£åŒŠå®çãã\r\n$$AX\\times\\dfrac{\\sin\\angle BAX}{\\sin\\angle C}=BO=CO=AX\\times\\dfrac{\\sin\\angle CAX}{\\sin\\angle B}$$\r\n以äžãã, $M^\\prime$ ã®ãšãæ¹ãèæ
®ããã° $BM^\\prime=CM^\\prime$ ã瀺ããã.\r\n\r\nãè£é¡ãã $O$ 㯠$BC$ ã®åçŽäºçåç·ãšçŽç· $AX$ ã®äº€ç¹ã§ãããã, ããã¯ããªãã¡ $X$ ã§ãã.\\\r\nãããã§åçŽç· $OA$ äžã® $OA\\times OA^\\prime=20^2$ ãªãç¹ $A^\\prime$ ãèãã°, ãã㯠$B,C$ ã«ãããªãå®ç¹ã§ãã, æ¹ã¹ãã®å®çããåžžã« $\\Omega$ äžã«ãã. ãã£ãŠæ±ããçŽç· $\\ell$ ã¯ç·å $AA^\\prime$ ã®åçŽäºçåç·ã§ãããã, ç¹ã«ãããš $O$ ãšã®è·é¢ã¯ $(21+20^2\\/21)\\/2=841\\/42$ ã§ãã, æ±ããå€ã¯ $\\textbf{883}$ ã§ãã.\\\r\nããªãå¥è§£ãšããŠ, $\\Gamma$ ã«ããå転ãèããŠããã. äžã®äºå®ãããã®å転㧠$\\Omega$ ã¯äžå€ã§ãããã, $A$ ã移ãå
$A^\\prime$ (åãå®ç¹)ã¯åžžã« $\\Omega$ äžã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc024/editorial/146"
}
] | ãç¹ $O$ ãäžå¿ãšããååŸ $20$ ã®å®å $\Gamma$ ããã³ $OA=21$ ãªãå®ç¹ $A$ ããããŸã. $AB\neq AC$ ãªã $\Gamma$ äžã®ç¹ $B,C$ ã«ã€ããŠ, ç·å $BC$ ã®äžç¹ã $M$ ãšãããš, åçŽç· $AO$ 㯠$\angle BAC$ ã®å
åŽã«ãã, ã〠$\angle BAO=\angle CAM$ ãæç«ããŸãã. ãã®ãšã, $B,C$ ã®ãšãæ¹ã«ããã, äžè§åœ¢ $ABC$ ã®å€å¿ã¯åžžã«ããçŽç· $\ell$ äžã«ããããšã蚌æã§ããŸã.\
ã$O$ ãš $\ell$ ã®è·é¢ãæ±ããŠãã ãã. ãã ã, çãã¯äºãã«çŽ ãªæ£æŽæ° $x,y$ ã«ãã£ãŠ $\dfrac{x}{y}$ ãšè¡šãããã®ã§, $x+y$ ã解çããŠãã ãã. |
OMC024 (for experts) | https://onlinemathcontest.com/contests/omc024 | https://onlinemathcontest.com/contests/omc024/tasks/147 | D | OMC024(D) | 600 | 65 | 197 | [
{
"content": "ãäžè¬ã« $10^6$ ã $2n$ ãšããã°, $M$ ã¯å€é
åŒ $(x+y+z+w+v+u)^{2n}$ ã«ãããŠåæåããã¹ãŠå¶æ°ã¹ãã§ãããããªé
ã®ä¿æ°ã®åã«çããããšã«çæãã. ããã«\r\nãã$$\\displaystyle f(x,y,z,w,v,u)=\\frac{1}{2^6}\\sum_{\\lbrace1,-1\\rbrace^6} (ix+jy+kz+lw+mv+nu)^{2n}$$\r\nãšããã°, $M$ 㯠$f$ ã®åé
ã®ä¿æ°ã®åã«çãã, ããã¯ããªãã¡ $f(1,1,1,1,1,1)$ ã§äžãããã. ãããã£ãŠ,\r\nãã$$\\begin{aligned} M&=\\frac{1}{64}\\sum_{\\lbrace1,-1\\rbrace^6} (i+j+k+l+m+n)^{2n}\\\\\\\\\r\nãã&=\\frac{1}{64}\\left(\\binom{6}{6}6^{2n}+\\binom{6}{5}4^{2n}+\\binom{6}{4}2^{2n}+\\cdots+\\binom{6}{0}(-6)^{2n}\\right)\\\\\\\\\r\nãã&=\\frac{1}{32}\\left(\\binom{6}{6}6^{2n}+\\binom{6}{5}4^{2n}+\\binom{6}{4}2^{2n}\\right)\\\\\\\\\r\nãã&=\\frac{1}{32}\\left(6^{2n}+6\\times 4^{2n}+15\\times 2^{2n}\\right)\\end{aligned}$$\r\nãç¹ã« $2n=10^6$ ã«ãã㊠$M$ ã $1000$ ã§å²ã£ãäœãã¯, Eulerã®å®çãªã©ãã $\\textbf{696}$ ãšèšç®ã§ãã. å
·äœçã«ã¯, æããã« $M$ 㯠$8$ ã®åæ°ã§ãããã, ããšã¯ $M\\equiv(1+6+15)\\/32=11\\/16\\pmod{125}$ ãèšç®ããã°ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc024/editorial/147"
}
] | ã$13$ 以äžã®**çŽ æ°** $10^6$ åãããªã**é åºä»ãã**çµ $(a_{1},a_{2},\cdots,a_{10^6})$ ã§ãã£ãŠ, ããããã¹ãŠã®ç©ãå¹³æ¹æ°ã§ãããã®ã¯ $M$ åååšããŸã. $M$ ã $1000$ ã§å²ã£ãäœããæ±ããŠãã ãã. |
OMC024 (for experts) | https://onlinemathcontest.com/contests/omc024 | https://onlinemathcontest.com/contests/omc024/tasks/148 | E | OMC024(E) | 700 | 41 | 73 | [
{
"content": "ç»å ŽããåŒã¯ãã¹ãŠæ次åŒã§ãããã, ãã¹ãŠã®å€æ°ã $10$ ã§å²ã£ãŠèããŠãè¯ã. ãã®ãšãæ¡ä»¶ã¯\r\nãã$$|P-Q|\\geq 1, \\quad |Q-R|\\geq 1, \\quad |R-P|\\geq 1$$\r\nãã®ãšã, æ±ããæå°å€ã¯ $4\\/3$ ã§ããããšã瀺ã. \r\n**解ç1.**ã$(a,b,c,x,y,z)$ ãããããå®æ° $k,l$ ã«ãã£ãŠ\r\n$$(a+k,b+k,c+k,x+l,y+l,z+l)$$\r\nã«çœ®ãæããŠã $|P-Q|,|Q-R|,|R-P|$ ã¯ããããäžå€ã§ãã. ããã«çæããŠ, äžåŒãæå°ãšãªããã $k,l$ ãåããããšãèããã°, åçŽãªäºæ¬¡é¢æ°ã®è°è«ã«ãã£ãŠ $a+b+c=x+y+z=0$ ãšããŠããããšãããã.\\\r\nããã㧠$3$ 次å
空éå
ã«ãããŠ, åŒ $x+y+z=0$ ã§è¡šãããå¹³é¢äžã®ãã¯ãã«\r\nãã$$\\overrightarrow{A}=(a,b,c),\\quad \\overrightarrow{B}=(b,c,a),\\quad \\overrightarrow{C}=(c,a,b), \\quad \\overrightarrow{X}=(x-y,y-z,z-x)$$\r\nãèãããš, æ¡ä»¶ $|P-Q|\\geq 1$ ã $|\\overrightarrow{A}\\cdot \\overrightarrow{X}|\\geq 1$ ãšããèŠé ã§èšãæãããã. ãŸã, $x+y+z=0$ ãã\r\nãã$$x^2+y^2+z^2=\\dfrac{1}{3}\\bigl[(x-y)^2+(y-z)^2+(z-x)^2\\bigr]$$\r\nã§ãããã, æå°åãã¹ãå€ã¯ä»¥äžã®ããã«è¡šçŸã§ãã.\r\nãã$$(a^2+b^2+c^2)(x^2+y^2+z^2)=\\dfrac{1}{3}\\lvert\\overrightarrow{A}\\rvert^2\\lvert\\overrightarrow{X}\\rvert^2=\\dfrac{1}{3}\\lvert\\overrightarrow{B}\\rvert^2\\lvert\\overrightarrow{X}\\rvert^2=\\dfrac{1}{3}\\lvert\\overrightarrow{C}\\rvert^2\\lvert\\overrightarrow{X}\\rvert^2$$\r\nããã㧠$\\overrightarrow{A},\\overrightarrow{B},\\overrightarrow{C}$ ã¯ã©ã®äºã€ããªãè§ã $120^\\circ$ ã§ãããã, ãããã®ãã¡ãããã㯠$\\overrightarrow{X}$ ãšãªãè§ã $60^\\circ$ ä»¥äž $120^\\circ$ 以äžã§ãã. äŸãã°ããã $\\overrightarrow{A}$ ã®ãšã, $\\lvert\\overrightarrow{A}\\rvert\\lvert\\overrightarrow{X}\\rvert\\geq 2|\\overrightarrow{A}\\cdot \\overrightarrow{X}|\\geq 2$ ããææã®çµè«ãåŸã. ä»ã®å Žåãåæ§ã§ãã. ãŸã, ãã¹ãŠã®çå·ãæç«ãããããããšãåãã.\\\r\nããå
ã®åé¡ã«æ»ãã°, æ±ããæå°å€ã¯ $40000\\/3$ ã§ãããã, 解çãã¹ãå€ã¯ $\\textbf{40003}$ ã§ãã. \r\n\r\n----\r\n**解説.**ãäžã®è§£çã¯äžèŠãããšçªæåããªãã, äžåŒãçŽæ¥çã«\r\n$$\r\n\\lvert a(x-y)+b(y-z)+c(z-x) \\rvert\r\n$$\r\nãªã©ãšè¡šçŸããã°, $x,y,z$ ã®éã®å·®ã®ã¿ãä¿ããããšã¯æããã«ãªã, ããã«ãã¯ãã«ã®å
ç©ãšããŠã®è¡šçŸãèŠãããããªã. ããããªãã, 以äžã®ããã«å€©äžãçãªããããçŽæªãªè§£æ³ãååšãã.\r\n\r\n----\r\n**解ç2.**ã解ç1ãšåæ§ã®åž°çãè¡ã. 次ã®çåŒã«çæãã.\r\nãã$$(a^2+b^2+c^2)(x^2+y^2+z^2)=(ax+by+cz)^2+(ay-bx)^2+(bz-cy)^2+(cx-az)^2 $$\r\nããã«Cauchy-Schwarzã®äžçåŒãã, 以äžãæç«ãã.\r\nãã$$(ay-bx)^2+(bz-cy)^2+(cx-az)^2 \\geq \\frac{1}{3}(ay-bx+bz-cy+cx-az)^2$$\r\nãããã£ãŠ, 次ã®äžçåŒãæç«ãã.\r\nãã$$(a^2+b^2+c^2)(x^2+y^2+z^2)\\geq P^2+\\dfrac{1}{3}(Q-R)^2\\geq P^2+\\dfrac{1}{3}$$\r\nãåæ§ã«ããŠ, äžåŒã¯ $Q^2+1\\/3$ ããã³ $R^2+1\\/3$ ã«ãã£ãŠäžããæãããã. ããã§, å·®ã®æ¡ä»¶ãã $P^2,Q^2,R^2$ ã®ãããã㯠$1$ 以äžã§ããããšã容æã«ããããã, äžåŒã $4\\/3$ 以äžã§ããããšã瀺ããã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc024/editorial/148"
}
] | ãå®æ° $a,b,c,x,y,z$ ã«å¯Ÿã,
$$P=ax+by+cz,\quad Q=ay+bz+cx,\quad R=az+bx+cy$$
ã§å®ãŸã $3$ æ°ã
ãã$$|P-Q|\geq 100, \quad |Q-R|\geq 100, \quad |R-P|\geq 100$$
ãã¿ãããšã, 以äžã®åãåŸãæå°å€ãæ±ããŠãã ãã.
$$(a^2+b^2+c^2)(x^2+y^2+z^2)$$
ããã ã, çãã¯äºãã«çŽ ãªæ£æŽæ° $m,n$ ã«ãã£ãŠ $\dfrac{m}{n}$ ãšè¡šãããã®ã§, $m+n$ ã解çããŠãã ãã. |
OMC024 (for experts) | https://onlinemathcontest.com/contests/omc024 | https://onlinemathcontest.com/contests/omc024/tasks/149 | F | OMC024(F) | 800 | 4 | 18 | [
{
"content": "ãæ¡ä»¶ $AP=22$ ã¯å®ã¯äžèŠã§ãã. 以äžããã解é€ã, $P$ ã¯çŽç· $AI$ äžãä»»æã«åããšãã.\r\n\r\n**è£é¡1.**ã$I$ ã¯äžè§åœ¢ $PQR$ ã®åå¿ã§ãã.\r\n\r\n**蚌æ.**ã$\\angle IPQ=\\angle APQ=\\angle ABQ=\\angle ABI=\\angle ABC\\/2$ ãªã©ããåŸã.\r\n\r\nããŸãäžã®èšŒæãã, äžè§åœ¢ $PQR$ 㯠$P$ ã®äœçœ®ã«ãããåžžã«çžäŒŒã§ãã.\r\n\r\n**è£é¡2.**ãäžè§åœ¢ $ABC$ ã®å€å¿ã $O$ ãšãããšã, äžè§åœ¢ $PQR$ ã®ãªã€ã©ãŒç·ã¯çŽç· $IO$ ã«äžèŽãã.\r\n\r\n**蚌æ** (moving points)**.**ã$P$ ã $AI$ ãšå $ABC$ ã®äº€ç¹(ã®ãã¡ $A$ ã§ãªãæ¹)ã«äžèŽãããšã, $PQR$ ã®å€å¿ $O'$ 㯠$O$ ã«äžèŽãã. ããã§äžã®æ³šæãã, $P$ ãç·åœ¢ã«åããã° $Q,R$ ãç·åœ¢ã«åã, ãããã $I$ ãäžå¿ãšããçžäŒŒæ¡å€§ã®é¢ä¿ã«ããããšã«çæããã°, $O'$ ã $IO$ äžãç·åœ¢ã«åã. ç¹ã«è£é¡1ãšäœµããŠè£é¡ã¯ç€ºããã. \r\n\r\nã以äž, $AB=c$ ãªã©ãšããã° $a(b+c)=b^2+c^2$ ãæç«ããããšã瀺ãã. ããããæ±ããå€ã¯ $\\textbf{882}$ ã§ãã.\\\r\nãå
æ¥åãšèŸº $BC$ ã®æ¥ç¹ã $D$, $BC$ ã®äžç¹ã $M$, $BC,EF,IO$ ã®å
±ç¹ã $X$ ãšãã. \r\n\r\n**蚌æ1.**ã$ABC$ ã®å
æ¥åã«ãããŠ, $A$ ã«å¯Ÿãã極ç·ã¯çŽç· $EF$, $D$ ã«å¯Ÿãã極ç·ã¯çŽç· $BC$ ã§ãããã, $X$ ã«å¯Ÿãã極ç·ã¯çŽç· $AD$ ã§ãã. ãããã£ãŠ $IX$ 㯠$AD$ ã«åçŽã§ãã, ç¹ã« $OI$ ã $AD$ ã«åçŽã§ãã. ãããš,\r\n$$AF^2=AI^2-IF^2=AI^2-ID^2=AO^2-OD^2=BO^2-OD^2=BM^2-DM^2$$\r\nãåŸããã, ãããæŽçããããšã§ææã®åŒãåŸã.\r\n\r\n**蚌æ2.**ãCevianã®å
±ç¹ã«ãã調åç¹åãã $BD:DC=BX:XC$ ã«çæããã°, 以äžã®ããã«èšç®ã§ãã.\r\nãã$$XB=\\dfrac{a(a-b+c)}{2(b-c)},\\quad XC=\\dfrac{a(a+b-c)}{2(b-c)}$$\r\nããããã, ããã«ä»¥äžã®ããã«èšç®ã§ãã.\r\nãã$$XD=XB+BD=\\dfrac{(a-b+c)(a+b-c)}{2(b-c)},\\quad XM=XB+BM=\\dfrac{a^2}{2(b-c)}$$\r\näžæ¹, $DI$ ã¯å
æ¥åã®ååŸã§ããããšã«çæããã°, äžè§åœ¢ $ABC$ ã®é¢ç©ã $S$ ãšãããš\r\nãã$$DI=\\dfrac{2S}{a+b+c}=\\dfrac{bc\\sin A}{a+b+c},\\quad MO=BO\\cos A=\\dfrac{a}{2\\sin A}\\times\\cos A$$\r\nãã£ãŠ, äœåŒŠå®çã«ãã£ãŠ $XD:XM=DI:MO$ ãæŽçããããšã§ææã®åŒãåŸã.\r\n\r\n**蚌æ3** (éå¿åº§æš)**.**ã$s=(a+b+c)\\/2$ ãšããã° $E(s-c:0:s-a)$ ãªã©ãšè¡šããããã, çŽç· $EF$ ã®åŒã¯\r\nãã$$(s-a)x-(s-b)y-(s-c)z=0$$\r\nãŸãwell-known factãšã㊠$I(a:b:c)$ ããã³\r\nãã$$O(a^2(-a^2+b^2+c^2):b^2(a^2-b^2+c^2):c^2(a^2+b^2-c^2))$$\r\nã§ãããã, çŽç· $OI$ ã®åŒã¯\r\nãã$$bc(b-c)(s-a)x+ac(c-a)(s-b)y+ab(a-b)(s-c)z=0$$\r\nããã«çŽç· $BC$ ã®åŒã¯ $x=0$ ã§ãããã, ããããå
±ç¹ã§ããæ¡ä»¶ã¯è¡ååŒã«ãã£ãŠä»¥äžã®ããã«æžãã.\r\nãã$$\\begin{vmatrix} s-a & s-b & s-c \\\\\\\\ bc(b-c)(s-a) & ac(c-a)(s-b) & ab(a-b)(s-c) \\\\\\\\ 1 & 0 & 0 \\end{vmatrix}=0$$\r\nã$s\\neq b,c$ ã«çæããŠãããå±éããããšã§, ææã®åŒãåŸã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc024/editorial/149"
}
] | ã$AB=20,AC=21$ ãªãäžè§åœ¢ $ABC$ ã«ãããŠ, å
å¿ã $I$ ãšã, å
æ¥åãšèŸº $AB,AC$ ã®æ¥ç¹ããããã $F,E$ ãšããŸã. çŽç· $AI$ äžã® $I$ ã«ã€ã㊠$A$ ãšå察åŽã« $AP=22$ ãªãç¹ $P$ ããšã, äžè§åœ¢ $ABP$ ã®å€æ¥åãšçŽç· $BI$ ã®äº€ç¹ã $Q(\neq B)$, äžè§åœ¢ $ACP$ ã®å€æ¥åãšçŽç· $CI$ ã®äº€ç¹ã $R(\neq C)$ ãšããŸã.\
ãçŽç· $BC,EF$ ããã³äžè§åœ¢ $PQR$ ã®ãªã€ã©ãŒç·ãäžç¹ã§äº€ãããšã, $BC$ ã®é·ããæ±ããŠãã ãã. ãã ã, çãã¯äºãã«çŽ ãªæ£æŽæ° $x,y$ ã«ãã£ãŠ $\dfrac{x}{y}$ ãšè¡šããã®ã§, $x+y$ ã解çããŠäžãã.\
ãããã§, äžè§åœ¢ã«ããã**ãªã€ã©ãŒç·**ãšã¯, ãã®å€å¿ã»éå¿ã»åå¿ããã¹ãŠéãçŽç·ã§ã. |
OMC023 (for beginners) | https://onlinemathcontest.com/contests/omc023 | https://onlinemathcontest.com/contests/omc023/tasks/140 | A | OMC023(A) | 100 | 308 | 308 | [
{
"content": "ãæããã«äž¡è
ã®åã€ç¢ºçã¯çãã. ãããã£ãŠ, åŒãåããšãªã確ç㯠$\\dfrac{6}{6^2}$ ã§ããããšã«çæããã°, toriiåãåã€ç¢ºç㯠$\\dfrac{1}{2}\\times\\left(1-\\dfrac{6}{6^2}\\right)=\\dfrac{5}{12}$ ã§ãã, æ±ããå€ã¯ $a+b=\\textbf{17}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc023/editorial/140"
}
] | ãtoriiåãštorioåããµã€ã³ãã§åè² ãããŸã. å
·äœçã«ã¯, $1$ ãã $6$ ã®ç®ãç確çã§åºããµã€ã³ãããããã $1$ åãã€æ¯ã, 倧ããç®ãåºããæ¹ãåã¡ãšããŸã. ãã ã, åãç®ãåºãå Žåã¯åŒãåããšãªã, åè² ã¯ã€ããŸãã.\
ããã®ãšã, toriiåãåã€ç¢ºçãæ±ããŠäžãã.\
ããã ã, çãã¯æ倧å
¬çŽæ°ã $1$ ã§ããæ£æŽæ° $a,b$ ãçšã㊠$\dfrac{a}{b}$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC023 (for beginners) | https://onlinemathcontest.com/contests/omc023 | https://onlinemathcontest.com/contests/omc023/tasks/141 | B | OMC023(B) | 200 | 306 | 308 | [
{
"content": "ãçžå ã»çžä¹å¹³åã®é¢ä¿ãã $a+b+c\\geq3\\sqrt[3]{abc}\\gt20$ ã§ãã.\\\r\nãéã« $(a,b,c)=(5,6,10)$ ã®ãšã $abc=300$ ã〠$a+b+c=21$ ãã¿ãããã, æ±ããæå°å€ã¯ $\\textbf{21}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc023/editorial/141"
}
] | ãæ£ã®æŽæ° $a,b,c$ ã $abc=300$ ãã¿ãããšã, $a+b+c$ ã®ãšãåŸãæå°å€ãæ±ããŠãã ãã. |
OMC023 (for beginners) | https://onlinemathcontest.com/contests/omc023 | https://onlinemathcontest.com/contests/omc023/tasks/142 | C | OMC023(C) | 300 | 253 | 281 | [
{
"content": "ã$\\dfrac{a_{1}}{1},\\dfrac{a_{2}}{2},\\cdots,\\dfrac{a_{n}}{n}$ ã®äžã§ã®æå°å€ã $m$ ãšãããš, å $k=1,2,\\cdots,n$ ã«ã€ã㊠$\\dfrac{a_k}{k}\\geq m$ ãã\r\nãã$$2021=a_1+a_2+\\cdots+a_n\\geq (1+2+\\cdots +n)m=\\dfrac{n(n+1)}{2}m$$\r\nããªãã¡ $m\\leq\\dfrac{4042}{n(n+1)}$ ãåŸã. çå·ã¯å $k=1,\\cdots,n$ ã«ã€ã㊠$a_k=\\dfrac{4042k}{n(n+1)}$ ã®ãšãæç«ãããã, çµå±\r\nãã$$M(n)=\\dfrac{4042}{n(n+1)}$$\r\nã§ãã. ãã£ãŠ $\\dfrac{4042}{n(n+1)}\\leq 1$ ãªãæå°ã® $n$ ãæ±ããã°ãã, ãã㯠$\\textbf{64}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc023/editorial/142"
}
] | ãç·åã $2021$ ã§ãããããªæ£ã®å®æ° $a_1,\dots,a_n$ ã«ã€ããŠ, $\dfrac{a_{1}}{1},\dfrac{a_{2}}{2},\dots,\dfrac{a_{n}}{n}$ ã®äžã§ã®æå°å€ãšããŠããåŸãæ倧å€ã $M(n)$ ãšãããŸã. $M(n)\leq 1$ ãªãæå°ã®æ£æŽæ° $n$ ãæ±ããŠãã ãã. |
OMC023 (for beginners) | https://onlinemathcontest.com/contests/omc023 | https://onlinemathcontest.com/contests/omc023/tasks/143 | D | OMC023(D) | 400 | 93 | 189 | [
{
"content": "ã$C_1$ ãš $C_2$ ã® $A$ 以å€ã®äº€ç¹ã $X$ ãšã, $A$ ãéã $AX$ ã«åçŽãªçŽç·ã $\\ell^\\prime$ ãšãã.\r\n\r\nã**è£é¡.**ãç·å $PQ$ ã®é·ããæ倧ãšãªãã®ã¯ $\\ell=\\ell^\\prime$ ã®ãšãã§ãã.\r\n\r\nã**蚌æ.**ã$\\ell^\\prime$ ãš$O_1,O_2$ ã®äº€ç¹ã§ãã£ãŠ $A$ ã§ãªãæ¹ããããã $P^\\prime,Q^\\prime$ ãšãããš, ååšè§ã®å®çãã $XPQ$ ãš $XP^\\prime Q^\\prime$ ã®çžäŒŒã容æã«ããã. ããã« $X$ ãã $PQ$ ã«ããããåç·ã®è¶³ã $H$ ãšããã° $\\angle AHX=90^\\circ$ ãã $AX\\geq HX$ ãåŸããã, å
ã®çžäŒŒãšåãã㊠$P^\\prime Q^\\prime\\geq PQ$ ã§ãã, ç¹ã«è£é¡ã¯ç€ºããã.\r\n\r\nã$P^\\prime X,Q^\\prime X$ ã¯ãããã $O_1,O_2$ ã®çŽåŸã§ãããã, è£é¡ããæ±ããæ倧å€ã¯ $O_1$ ãš $O_2$ ã®äžå¿éè·é¢ã® $2$ åã«çãã. äœåŒŠå®çãã $\\cos\\angle ABC=3\\sqrt{6}\\/8$ ã§ãããã, æ¥åŒŠå®çããã³æ£åŒŠå®çãã, $O_1$ ã®ååŸ $R_1$ ã«ã€ããŠ\r\nãã$$R_1=\\dfrac{AB}{2\\sin\\angle{ABC}}=\\dfrac{4}{5}\\sqrt{10}$$\r\nåæ§ã« $O_2$ ã®ååŸã¯ $R_2=\\sqrt{10}\\/5$ ã§ãããã, äžå¿éè·é¢ã¯ $\\sqrt{(R_1-R_2)^2+BC^2}=4\\sqrt{15}\\/5$ ã§ãã.\\\r\nã以äžãã $PQ$ ã®æ倧å€ã¯ $8\\sqrt{15}\\/5$ ã§ãã, æ±ããå€ã¯ $8+15+5=\\textbf{28}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc023/editorial/143"
}
] | ã$AB=2,BC=\sqrt{6},CA=1$ ãªãäžè§åœ¢ $ABC$ ã«ãããŠ, ç¹ $A,B$ ãéã蟺 $BC$ ã«æ¥ããåã $O_1$, ç¹ $A,C$ ãéã蟺 $BC$ ã«æ¥ããåã $O_2$ ãšããŸã. çŽç· $\ell$ ãç¹ $A$ ãéããªããåã, ãã® $O_1,O_2$ ãšã®äº€ç¹ã®ãã¡ $A$ ã§ãªãæ¹ããããã $P,Q$ ãšãããšã, ç·å $PQ$ ã®é·ããšããŠããåŸãæ倧å€ãæ±ããŠãã ãã.\
ããã ã, çãã¯æ倧å
¬çŽæ°ã $1$ ã§ããæ£ã®æŽæ° $a,c$ ãš, $1$ ãã倧ããå¹³æ¹æ°ã§å²ãåããªãæ£ã®æŽæ° $b$ ãçšã㊠$\dfrac{a\sqrt{b}}{c}$ ãšè¡šãããã®ã§, $a+b+c$ ã解çããŠãã ãã. |
OMC022 | https://onlinemathcontest.com/contests/omc022 | https://onlinemathcontest.com/contests/omc022/tasks/134 | A | OMC022(A) | 200 | 339 | 355 | [
{
"content": "ã$S(n)=\\dfrac{n(n+1)}{2}$ ã«çæããã°, äžåŒã¯ä»¥äžã®ããã«è¡šããã.\r\nãã$$S(1)\\times S(2)\\times \\cdots \\times S(100)=\\dfrac{1\\times2}{2}\\times\\dfrac{2\\times3}{2}\\times\\cdots\\times\\dfrac{100\\times101}{2}=\\dfrac{100!\\times101!}{2^{100}}$$\r\nLegendreã®å®çãã以äžãæãç«ã€ãã, æ±ããåæ°ã¯ $97\\times2-100=\\textbf{94}$ ã§ãã.\r\nãã$$v_2(101!)=v_2(100!)=50+25+12+6+3+1=97$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc022/editorial/134"
}
] | ã$S(n)$ 㧠$1$ ä»¥äž $n$ 以äžã®æŽæ°ã®ç·åãè¡šããšãïŒ$S(1)\times S(2)\times \cdots \times S(100)$ 㯠$2$ 㧠$x$ åå²ãåããŸãïŒ$x$ ãšããŠããããæ倧ã®æŽæ°å€ã解çããŠãã ãã. |
OMC022 | https://onlinemathcontest.com/contests/omc022 | https://onlinemathcontest.com/contests/omc022/tasks/135 | B | OMC022(B) | 300 | 269 | 329 | [
{
"content": "**解ç1.**ãå°çã®ååŸã $r$ ãšãã. ãŸã, ç¥ç¶ã®å®¶ã®ããå°ç¹ã $A$, èµ€éäžã®è¥¿çµ $165$ 床ã®å°ç¹ã $B$, OMCåã®èªå®
ã®ããå°ç¹ã $C$ ãšãã. å°çã®äžå¿ $O$ ãåç¹ãšã, $O$ ãã $A$ ã«åããæ¹ã $x$ 軞ã®æ£ã®åã, $O$ ãã $B$ ã«åããæ¹ã $y$ 軞ã®æ£ã®åã, $O$ ããå極ã«åããæ¹ã $z$ 軞ã®æ£ã®åããšãã $3$ 次å
çŽäº€åº§æšãèãã.\\\r\nããã®åº§æšã«ãã㊠$A$ 㯠$(r,0,0)$ ã§ãã. ãŸã, èµ€éäžã®æ±çµ $150$ 床ã®å°ç¹ã $\\left(\\dfrac{r}{\\sqrt{2}},\\dfrac{r}{\\sqrt{2}}, 0\\right)$ ã§ããããšãèžãŸãããš, $C$ ã®åº§æšã¯ $\\left(\\dfrac{r}{2},\\dfrac{r}{2},\\dfrac{r}{\\sqrt{2}}\\right)$ ãšãªã. ãããã, $AC$ éã®çŽç·è·é¢ãæ±ãããš\r\nãã$$\\sqrt{\\left(r-\\dfrac{r}{2}\\right)^{2}+\\left(0-\\dfrac{r}{2}\\right)^{2}+\\left(0-\\dfrac{r}{\\sqrt{2}}\\right)^{2}}=r$$\r\nã§ãããã, äžè§åœ¢ $OAC$ ã¯æ£äžè§åœ¢ã§ããããšãããã.\\\r\nããããã£ãŠ, $A$ ãš $C$ ãçµã¶å€§åã®å£åŒ§ã®äžå¿è§ã¯ $60^\\circ$ ã§ãã, ç¹ã«çãã¯\r\n$\\dfrac{40000}{6}\\approx \\textbf{6700}$ ã§ãã.\r\n\r\n**解ç2.**ãè«žèšå·ã¯è§£ç1ã«åã. $C$ ããèµ€éé¢ã«ããããåç·ã®è¶³ã $H$ ãšãããš, $\\triangle OHC$ ã¯çŽè§äºç蟺äžè§åœ¢ã§ãããã, $\\triangle AOH$ ãçŽè§äºç蟺äžè§åœ¢ã§ãã, ããã« $\\triangle AHC$ ã«ã€ããŠãçŽè§äžè§åœ¢ã§ãããã, 以äžããç¹ã« $AC=r$ ãåŸã. æ®ãã¯è§£ç1ãšåæ§ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc022/editorial/135"
}
] | ãOMCåã¯, ææ島ã«ããèªå®
ããã·ã³ã¬ããŒã«ã«ããç¥ç¶ã®å®¶ãŸã§, ãã©ã€ããŒããžã§ããã䜿ã£ãŠè¡ãããšã«ããŸãã. OMCåã®èªå®
ãåç·¯ $45$ 床, æ±çµ $150$ 床ã®å°ç¹ã«ãã, ç¥ç¶ã®å®¶ãèµ€éäžã®æ±çµ $105$ 床ã®å°ç¹ã«ãããšã, $x$ kmã®è·é¢ãé£ã¶å¿
èŠããããŸã. $x$ ã解çããŠãã ãã.\
ããã ã, å°çãå®å
šãªçäœãšã¿ãªã, èµ€é $1$ åšã®é·ãã¯ã¡ããã© $40000$ kmã§ãããšããŸã. ãŸã, OMCåã¯å°çã®è¡šé¢äžãæçè·é¢(倧åã³ãŒã¹)ã§é²ããã®ãšã, 解çã¯**åã®äœãåæšäºå
¥ããŠçŸã®äœãŸã§ã®æŠæ°ã§**è¡ã£ãŠãã ãã. äŸãã°çãã $9876.5$ kmã§ãããšã, $9900$ ãšè§£çããŠãã ãã. |
OMC022 | https://onlinemathcontest.com/contests/omc022 | https://onlinemathcontest.com/contests/omc022/tasks/136 | C | OMC022(C) | 400 | 156 | 273 | [
{
"content": "ã空ç©ã $1$ ãšã¿ãªãããšã§, ããŸç©ºã®ç®±ãååšããããšãèš±ããŠèãã. ãŸã $2,4,6,8,10$ ã«æ³šç®ãããš, ãããã®åé
ã®å¿
èŠååæ¡ä»¶ã¯\r\n$2$ ã€ä»¥äžã®ç®±ãçšããããšã§ãããã, $3\\times 2^5-3=93$ éãã§ãã. ç¶ã㊠$3,6,9$ ãããããå¥ã®ç®±ã«å
¥ããŠã¯ãªããªãããšã«çæããã°, $3,9$ ã®å
¥ãæ¹ã¯ $7$ éãã§ãã. $1,5,7$ ã¯ã©ã®ããã«åé
ããŠããããã, 以äžãã空ã®ç®±ãèš±ããŠã®å Žåã®æ°ã¯ $93\\times 7\\times 3^3=17577$ éãã§ãã.\\\r\nããã£ãŠ, 空ã®ç®±ãé€å€ããå Žåã¯, å
é€åçãã $17577-3\\times 2^{10}+3=\\textbf{14508}$ éãã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc022/editorial/136"
}
] | ã$1$ ãã $10$ ã®æŽæ°ã $1$ ã€ãã€æžãããããŒã« $10$ åã, $3$ ã€ã®åºå¥ã§ããç®± $A,B,C$ ã®ããããã«, 以äžã® $2$ æ¡ä»¶ãæºããããã«å
¥ããæ¹æ³ã¯äœéããããŸããïŒ
- $3$ ã€ã®ç®±ããããã«, å°ãªããšã $1$ ã€ã®ããŒã«ãå
¥ã£ãŠãã.
- $A,B,C$ ã«å
¥ããããŒã«ã«æžãããæ°ã®ç·ç©ããããã $a, b, c$ ãšãããšã, ããã $3$ æ°ã®æ倧å
¬çŽæ°ã¯ $1$ ã§ãã. |
OMC022 | https://onlinemathcontest.com/contests/omc022 | https://onlinemathcontest.com/contests/omc022/tasks/137 | D | OMC022(D) | 400 | 141 | 194 | [
{
"content": "ã$l_n$ 㯠$y=nx-n^2+n$ ãšè¡šããããã, $l_a$ ãš $l_b$ ã®äº€ç¹ã¯ $(a+b-1, ab)$ ã§ãã. ãã£ãŠ $3$ ç¹\r\nãã$$(a+b-1, ab), (b+c-1, bc), (c+a-1,ca)$$\r\nãé ç¹ãšããäžè§åœ¢ã®é¢ç©ãæ±ããã°ãã, ãã®å€ã $S$ ãšããã°, 以äžã®ããã«èšç®ã§ãã.\r\nãã$$S=\\dfrac{1}{2}|(a-b)(b-c)(c-a)|$$\r\nãäžè¬æ§ã倱ãã $a\\gt b\\gt c$ ãšããŠãã, $X=a-b, Y=b-c$ ãšããã° $S=\\dfrac{1}{2}XY(X+Y)$ ã§ãã. ãããã£ãŠä»¥äž, æ£æŽæ°ã®çµ $(X,Y)$ ã«ã€ããŠèå¯ããã°ãã, 察称æ§ããç¹ã« $X\\leq Y$ ãšããŠãã.\\\r\nããã㧠$X\\geq 4$ ãšãããš, $S\\geq (4\\times 4\\times 8)\\/2\\gt50$ ããäžé©ã§ãããã, $X=1,2,3$ ã§ãã.\r\n\r\n- $X=1$ ã®ãšã $S=1,3,6,10,15,21,28,36,45$ ãåãåŸã.\r\n- $X=2$ ã®ãšã $S=8,15,24,35,48$ ãåãåŸã.\r\n- $X=3$ ã®ãšã $S=27,42$ ãåãåŸã.\r\n\r\nã以äžãã, æ±ããåæ°ã¯ $\\textbf{15}$ ã§ãã. ãã ã, $S=15$ ãéè€ããŠçŸããŠããããšã«æ³šæãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc022/editorial/137"
}
] | ã$xy$ å¹³é¢ã«ãããŠ, ç¹ $(n, n)$ ãéãåŸã $n$ ã®çŽç·ã $l_n$ ã§è¡šããŸã. äŸãã° $l_3$ 㯠$y=3x-6$ ã§ã.\
ãçžç°ãªãæŽæ°ã®çµ $(a,b,c)$ ã«ã€ããŠ, $l_a, l_b, l_c$ ããªãäžè§åœ¢ã®é¢ç©ãšããŠããåŸãå®æ°å€ã®ãã¡, $50$ 以äžã§ãããã®ã¯ $M$ åãããŸã.\
ã$M$ ã解çããŠãã ãã. ãã ã, ãã®ãããªå€ã¯æéåã§ããããšã蚌æã§ããŸã. |
OMC022 | https://onlinemathcontest.com/contests/omc022 | https://onlinemathcontest.com/contests/omc022/tasks/138 | E | OMC022(E) | 600 | 128 | 166 | [
{
"content": "**解ç1.**ãç¹ $C$ ãäžå¿ãšã, ç¹ $B$ ã $A$ ã«ç§»ãããã« $\\triangle{ABC}$ ã $60^\\circ$ å転移åãã, ç¹ $P$ ã«å¯Ÿå¿ããç¹ $Q$ ãåãïŒãã®ãšã $AQ^2+PQ^2=BP^2+CP^2=AP^2$ ãã $\\angle AQP=90^\\circ$ ã§ããïŒãããã£ãŠ $\\angle BPC=\\angle AQC=90^\\circ+60^\\circ=150^\\circ$ ã§ããïŒãã㧠$\\triangle{ABC}$ ã®äžèŸºã®é·ãã $l$ ãšãããš, äœåŒŠå®çãªã©ãã\r\nãã$$AP^2+BP^2=l^2,\\ \\ BP^2+CP^2=AP^2,\\ \\ BP^2+CP^2-\\sqrt{3}BP\\times CP=l^2$$\r\nãåŸã, ããããã $\\displaystyle AP=\\frac{2}{\\sqrt{7}}l,\\ BP=\\frac{\\sqrt{3}}{\\sqrt{7}}l,\\ CP=\\frac{1}{\\sqrt{7}}l$ ãåŸã. $\\displaystyle S=\\frac{\\sqrt{3}}{4}l^2$ ã§ãããã,\r\nãã$$\\begin{aligned}\\triangle PAB&=\\dfrac{1}{2}AP\\times BP=\\dfrac{\\sqrt{3}}{7}=\\dfrac{4}{7}S\\\\\\\\\r\nãã\\triangle PBC&=\\dfrac{1}{2}BP\\times CP\\times \\sin150^\\circ=\\dfrac{\\sqrt{3}}{28}=\\dfrac{1}{7}S\\\\\\\\\r\nãã\\triangle PCA&=\\frac{1}{2}CP\\times AP\\times \\sin120^\\circ= \\dfrac{\\sqrt{3}}{14}=\\dfrac{2}{7}S\\end{aligned}$$\r\nããã£ãŠ $a\\times b\\times c\\times d\\times e\\times f=4\\times7\\times1\\times7\\times2\\times7=\\textbf{2744}$ ã§ãã.\r\n\r\n**解ç2.**ã$BC, CA, AB$ ã«å¯Ÿã㊠$P$ ãšå¯Ÿç§°ãªç¹ããããã $X, Y, Z$ ãšãããš, äžè§åœ¢ $AYZ$ ã«æ³šç®ããã° $AY=AZ, \\angle{YAZ}=120^\\circ$ ãã $YZ=\\sqrt{3}AP$ ã§ãã. åæ§ã« $ZX=\\sqrt{3}BP, XY=\\sqrt{3}CP$ ã§ãããã, $BP^2+CP^2=AP^2$ ãã $ZX^2+XY^2=YZ^2$ ã§, ç¹ã« $\\angle{YXZ}=90^\\circ$ ãåŸã. ããã«\r\nãã$$\\angle{YZX}=\\angle{AZB}-\\angle{AZY}-\\angle{BZX}=30^\\circ$$\r\nã§ãããã $XY:YZ:ZX=1:2:\\sqrt{3}$ ãããã, $AP:BP:CP=2:\\sqrt{3}:1$ ã§ãã. ãŸã\r\nãã$$\\angle{BPC}=\\angle{BXC}=\\angle{BXZ}+\\angle{ZXY}+\\angle{YXC}=150^\\circ$$\r\nãããã, ãããã $\\angle{CPA}=120^\\circ$ ãåŸããã, 以äžããäžè§åœ¢ $APB, BPC, CPA$ ã®é¢ç©æ¯ã¯\r\nãã$$PA\\times PB:PB\\times PC\\times \\sin\\angle{BPC}:PC\\times PA\\times \\sin\\angle{CPA}=4:1:2$$\r\nã§äžãããã. ãã£ãŠ, ç¹ã«æ±ããå€ã¯äžãšåæ§ã« $\\textbf{2744}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc022/editorial/138"
}
] | ãé¢ç© $S$ ã®æ£äžè§åœ¢ $ABC$ ã«ãããŠ, ãã®å
éšã®ç¹ $P$ ã以äžã®çåŒãã¿ãããŸãã.
$$AP^2+BP^2=AB^2,\ \ BP^2+CP^2=AP^2$$
ããã®ãšã, äžè§åœ¢ $PAB, PBC, PCA$ ã®é¢ç©ã¯ãããã $\dfrac{a}{b}S, \dfrac{c}{d}S, \dfrac{e}{f}S$ ãšè¡šããŸã. ãã ã $a,b,c,d,e,f$ ã¯æ£æŽæ°ã§ãã, $a$ ãš $b$, $c$ ãš $d$, $e$ ãš $f$ ã¯ããããäºãã«çŽ ã§ã. $abcdef$ ($6$ æ°ã®ç©)ã解çããŠãã ãã. |
OMC022 | https://onlinemathcontest.com/contests/omc022 | https://onlinemathcontest.com/contests/omc022/tasks/139 | F | OMC022(F) | 600 | 14 | 75 | [
{
"content": "ã$n=2021$ ãšããããšãïŒä»¥äžã®å€åœ¢ã«çæããïŒ\r\nãã$$\\begin{aligned}x^2+4xy+8y^2=10^{n}&\\iff 4xy = 10^{n}-x^2-8y^2\\\\\\\\\r\nãã&\\implies (4xy)^2=(10^{n}-x^2-8y^2)^2\\\\\\\\\r\nãã&\\iff(x^2-10^{n})^2+(8y^2-10^{n})^2=10^{2n}\\end{aligned}$$\r\nãããã«ïŒ$(a-10^{n})^2+(8b-10^{n})^2=10^{2n}$ ã®æŽæ°è§£ $(a,b)$ ã«å¯ŸããŠïŒé¡æãã¿ããçµ $(x,y)$ ã $2$ ã€ãã€å¯Ÿå¿ããããïŒä»¥äžãã®ãã㪠$(a,b)$ ã«ã€ããŠèããã°ããïŒ$a$ 㯠$8$ ã§å²ãåããããïŒ$8a^\\prime=a$ ãšçœ®ããªããã°\r\nãã$$(a^\\prime-2^{2018}\\times 5^{2021})^2+(b-2^{2018}\\times 5^{2021})^2=2^{4036}\\times 5^{4042}.$$\r\nãããã¯æŽæ°è§£ã $4\\times(4042+1)=16172$ åæã€ããïŒæ±ããå Žåã®æ°ã¯ $2\\times 16172=\\textbf{32344}$ ã§ããïŒ\r\n\r\n#### $x^2+y^2=2^m5^n$ ã®æŽæ°è§£ $(x,y)$ ã®åæ°ã«ã€ããŠ\r\n\r\nãããã $4(n+1)$ åã§ããããšã瀺ãïŒ$m\\geq 2$ ã®ãšã ${\\rm mod}\\ 4$ ãèããããšã§ $x,y$ ã¯ãšãã«å¶æ°ã§ããããïŒ$m=0,1$ ã«åž°çãããïŒä»å㯠$m=0$ ãšãªãã®ã§ããã§è¯ããïŒ$m=1$ ã®å ŽåãïŒäžè¬ã«å¥æ° $s$ ã«å¯Ÿã $x^2+y^2=s$ ãš $x^2+y^2=2s$ ã§æŽæ°è§£ $(x,y)$ ã®åæ°ãçããããšãç¥ãããŠããïŒæŒç¿ïŒãªãïŒïŒïŒ\\\r\nãããã« $x,y$ ãããããæ倧å
¬çŽæ° $d$ ã§å²ã£ãŠèããããšã§ïŒ$d=1$ ã®ãšãïŒé åºãšç¬Šå·ãç¡èŠããŠïŒã¡ããã© $1$ éãã§ããããšã瀺ãã°ååã§ããïŒæŒç¿ïŒãªãïŒïŒïŒãŸãïŒä»¥äžã®æçåŒïŒè€å·åé ïŒ\r\nãã$$(a^2+b^2)(c^2+d^2)=(ac\\pm bd)^2+(ad\\mp bc)^2$$\r\nã«çæããã°ïŒ$5=2^2+1^2$ ãšåãããŠå°ãªããšã $1$ éãååšããããšãããã«ãããïŒ\\\r\nãéã«, æ£æŽæ° $a\\geq b,c\\geq d$ ã«ã€ã㊠$5^n=a^2+b^2=c^2+d^2$ïŒãã ã $a$ ãš $b$, $c$ ãš $d$ ã¯ããããäºãã«çŽ ïŒã§ãããšãããšïŒ\r\nãã$$(ac+bd)(ac-bd)=(5^n-b^2)(5^n-d^2)-b^2d^2=5^n(5^n-b^2-d^2)$$\r\nããã§äºãã«çŽ ã®ä»®å®ãã $ac\\pm bd$ ãåæã« $5$ ã®åæ°ã«ã¯ãªãåŸãªãããšã«çæããã°ïŒãã®ãããã㯠$5^n$ ã§å²ãåããïŒ$ac+bd$ ã $5^n$ ã§å²ãåãããšãïŒç¹ã« $ac+bd\\geq 5^n$ ã§ããããåã³äžã®æçåŒãã $ac-bd=0$ ãšãªãã»ããªããïŒãã®ãšã $(a,b)=(c,d)$ ãåŸãïŒ$ac-bd$ ã $5^n$ ã§å²ãåããå Žåãåæ§ã«è§£æ±ºããïŒ\r\n---\r\nãåèã2ã€ã®ãæŒç¿ãã®è§£çäŸïŒmasa_kasaããã®[ãŠãŒã¶ãŒè§£èª¬](https:\\/\\/onlinemathcontest.com\\/contests\\/omc022\\/editorial\\/139\\/106)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc022/editorial/139"
},
{
"content": "ã[å
¬åŒè§£èª¬](https:\\/\\/onlinemathcontest.com\\/contests\\/omc022\\/editorial\\/139) äžã®ïŒæŒç¿ïŒãªãïŒïŒã«å¯Ÿãã蚌æã§ã. æŒç¿ãããæ¹ã¯ãã©ãŠã¶ããã¯ããããšããå§ãããŸã. \r\n\r\nã2024\\/01\\/13 22:56 è¿œèšã蚌æã«é©åãªèšèãè£ãåãããããããŸãã. \r\n***\r\n\r\n**æŒç¿1.** ãå¥æ° $s$ ã«å¯Ÿã, $x^2+y^2= s$ ãš $x^2+y^2=2s$ ã§æŽæ°è§£ $(x,y)$ ã®åæ°ãçããããšã瀺ã. \r\n\r\n**蚌æ1.** ã$x^2+y^2=2s$ ã« $x=a+b$ , $y=a-b$ ã代å
¥ããã° $a^2+b^2=s$ ãšãªã. $2s\\equiv 2 \\pmod{4}$ã§ãããã, $a,b$ ã¯å¿
ãæŽæ°ã«ãªãããšã瀺ããã(æŒç¿ïŒãªãïŒ).\r\n\r\nã2022\\/08\\/02 22:04 è¿œèšã[locker_kunã®ãŠãŒã¶ãŒè§£èª¬](https:\\/\\/onlinemathcontest.com\\/contests\\/omc022\\/editorial\\/139\\/107)ïŒäžèšã®(æŒç¿ïŒãªãïŒ)ã®è§£èª¬ã§ã. \r\n***\r\n\r\n**æŒç¿2.**ã $x^2+y^2=2^m5^n$ ã®æŽæ°è§£ $(x,y)$ ã®ãã¡ $(x,y)$ ãäºãã«çŽ ãªçµã(é åºãšç¬Šåãç¡èŠããŠ)ã¡ããã© $1$ åã®ãšã, æŽæ°è§£ $(x,y)$ ã®çµã¯ $4(n+1)$ åããããšã瀺ã. ãã ã $m,n$ ã¯å¶æ°ãšãã. \r\n\r\n**蚌æ2.** ã$(x,y)$ ã®æ倧å
¬çŽæ°ã $d$ ãšãã. æ£æŽæ°è§£ $(x,y)$ ã®åæ°ãæ±ããã. å
¬åŒè§£èª¬äžã«èª¬æãããéã, $m$ ã«è§£ã®åæ°ã¯äŸåãã, $m=0$ ã«å€ããŠãæŽæ°è§£ $(x,y)$ ã®çµã®åæ°ã¯å€ãããªããã, $m=0$ ãšãã. äžåŒã®äž¡èŸºã $d^2$ ã§å²ããš\r\n$$\\left(\\frac{x}{d}\\right)^2+\\left(\\frac{y}{d}\\right)^2=\\frac{2^{m}5^{n}}{d^2} = \\frac{5^n}{d^2}$$\r\nã å¶å¥æ§ãã $x=y$ ã¯ããåŸãªã. $x,y$ ãæ£æŽæ°ãšããã°, $\\gcd(x\\/d,y\\/d)=1$ ããåºå®ããã$5^{n\\/2}$ 以å€ã® $d$ ã«å¯Ÿã㊠$(x\\/d, y\\/d)$ ã®çµã®åæ°ã¯é åºãç¡èŠã㊠$1$ åãã. ããã¯å
¬åŒè§£èª¬äžã§ç€ºãããŠãã. $d$ ãšããŠãããã $d=5^{n\\/2}$ 以å€ã®æŽæ°ã¯ $n\\/2$ åãããã, æ¡ä»¶ãã¿ããæ£æŽæ°ã®çµ $(x,y)$ ã®çµã®åæ°ã¯é åºãç¡èŠã㊠$n\\/2$ åã§ãã. $d=5^{n\\/2}$ ã®ãšã, æ£æŽæ°ã®çµ $(x,y)$ ã¯ååšããªã. \r\n æŽæ° $x,y$ ã®ã©ã¡ããã $0$ ãšãªãçµã¯ã¡ããã© $4$ çµãã. ãããã£ãŠ, æ¡ä»¶ãã¿ããæŽæ° $(x,y)$ ã®çµã®åæ°ã¯\r\n$$\\frac{n}{2} \\cdot 2^2 \\cdot 2 +4 = 4(n+1)$$\r\nãåã§ãã.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc022/editorial/139/106"
},
{
"content": "ã[masa_kasa ã®ãŠãŒã¶ãŒè§£èª¬](https:\\/\\/onlinemathcontest.com\\/contests\\/omc022\\/editorial\\/139\\/106)äžã® (æŒç¿ïŒãªãïŒ) ã®éšåã®è§£èª¬ã§ãïŒéèŠã¯ãããŸããïŒ\r\n\r\n---\r\n**æŒç¿.**ãæŽæ° $x,y$ ã«ã€ããŠïŒ$x^2+y^2$ ã ( $4$ ã§å²ã£ãŠ $2$ äœã) å¶æ°ã§ãããšãïŒ$x=a+b$ , $y=a-b$ ãªã $a,b$ ã¯æŽæ°ãšãªãïŒ\r\n\r\n**蚌æ.**ãæ¡ä»¶ãã $x^2+y^2\\pm 2xy = (x\\pm y)^2$ ã¯å¶æ°ã ãã $x+y,x-y$ ãå¶æ°ãšãªãïŒãããã\r\n$$a=\\frac{x+y}{2},ãb=\\frac{x-y}{2}$$\r\nã¯ããããæŽæ°ã§ããïŒ(蚌æçµ)",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc022/editorial/139/107"
}
] | ã$x^2+4xy+8y^2=10^{2021}$ ãã€ïŒ$x^2, y^2$ ããšãã«æŽæ°ã§ãããããªïŒè€çŽ æ°ã®çµ $(x,y)$ 㯠$M$ åãããŸãïŒ$M$ ã解çããŠãã ããïŒ\
ããã ãïŒãã®ãããªçµã¯æéåã§ããããšã蚌æã§ããŸãïŒ |
OMC021 (for beginners) | https://onlinemathcontest.com/contests/omc021 | https://onlinemathcontest.com/contests/omc021/tasks/130 | A | OMC021(A) | 100 | 403 | 417 | [
{
"content": "ã$x^{4}+y^{4}\\gt0$ ã«çæããã°,\r\nãã$$x^{4}+y^{4}=\\sqrt{(x^{4}-y^{4})^{2}+4(xy)^{4}}=\\sqrt{68}=2\\sqrt{17}$$\r\nãã $x^{4}=\\dfrac{1}{2}\\left[(x^{4}-y^{4})+(x^{4}+y^{4})\\right]=1+\\sqrt{17}$ ããã ã¡ã«ããã. ãããã£ãŠ, æ±ããå€ã¯ $\\textbf{18}$ ã§ãã.\\\r\nããªã $x^4y^4=16$ ãšå©çšããããšã«æ°ä»ãã°, äºæ¬¡æ¹çšåŒã解ããŠããã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc021/editorial/130"
}
] | ãå®æ° $x,y$ ã以äžãã¿ãããŠããŸã.
$$x^{4}-y^{4}=xy=2$$
ãã®ãšã, $x^{4}$ ã¯æ£ã®æŽæ° $a,b$ ãçšã㊠$a+\sqrt{b}$ ãšè¡šãããŸã. $a+b$ ã解çããŠãã ãã. |
OMC021 (for beginners) | https://onlinemathcontest.com/contests/omc021 | https://onlinemathcontest.com/contests/omc021/tasks/131 | B | OMC021(B) | 200 | 319 | 407 | [
{
"content": "ã$a,b$ 㯠$10^{10}$ ã®çŽæ°ã§ããããšãã, 以äžã®ããã«è¡šãã.\r\nãã$$a=2^p5^q,\\ b=2^r5^s\\ (0\\leq p,q,r,s\\leq10)$$\r\nããã®ãšã, æå°å
¬åæ°ã®æ¡ä»¶ã¯\r\nãã$$\\max\\lbrace p,r\\rbrace=\\max\\lbrace q,s\\rbrace=10$$\r\nãšè¡šçŸã§ã, $a\\leq b$ ãç¡èŠããã°ãã®ãã㪠$(p,q,r,s)$ ã®çµã¯ $(11\\times 2-1)^2=441$ éããã. ãã®ãã¡ $a=b$ ãªãçµã¯ã¡ããã©äžã€ååšããããšã«çæããã°, æ±ããå Žåã®æ°ã¯ $(441+1)\\/2=\\textbf{221}$ éãã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc021/editorial/131"
}
] | ã$a\leq b$ ãªãæ£æŽæ°ã®çµ $(a,b)$ ã§ãã£ãŠ, $a$ ãš $b$ ã®æå°å
¬åæ°ã $10^{10}$ ãšãªããã®ã¯ããã€ãããŸããïŒ |
OMC021 (for beginners) | https://onlinemathcontest.com/contests/omc021 | https://onlinemathcontest.com/contests/omc021/tasks/132 | C | OMC021(C) | 300 | 295 | 373 | [
{
"content": "ã$x$ ãŸã㯠$y$ ã $n$ æå䞊ã¹ãæ¹æ³ã§ãã£ãŠ, åãæåã $3$ ã€é£ç¶ããªããããªãã®ãèãã. ããã«æ«ç«¯ã® $2$ æåãåãã§ãããã®ã®ç·æ°ã $a_n$ ãšãã, ããã§ãªããã®ã®ç·æ°ã $b_n$ ãšãããš, $a_2=b_2=2$ ã§ãã, æŽæ° $n\\geq 3$ ã«å¯ŸããŠä»¥äžã®æŒžååŒãæç«ããããšã容æã«ããã.\r\nãã$$a_n=b_{n-1},\\ \\ b_n=a_{n-1}+b_{n-1}$$\r\nããã®ãšã, æ±ãã確ç㯠$\\dfrac{a_{10}+b_{10}}{2^{10}}$ ã§äžãããããã, ãã㯠$\\dfrac{178}{1024}=\\dfrac{89}{512}$ ã§ãã, æ±ããå€ã¯ $\\textbf{601}$ ã§ãã.\\\r\nãã¡ãªã¿ã«, ããæèãé²ããã° $c_n=a_n+b_n$ ã«ã€ã㊠$c_n=c_{n-1}+c_{n-2}$ ãæç«ããããšãããããã, æ±å€ããã容æã«è¡ãããšãåºæ¥ã. ç¹ã«, $c_n$ ã¯åå¢ãããFibonacciæ°åã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc021/editorial/132"
},
{
"content": "ãçŽåã«åºãé¢ãšåãé¢ãåºããšã㯠$0$ ãšæžãïŒéãé¢ãåºããšã㯠$1$ ãšæžãããšã«ããïŒ\\\r\n ãããšïŒæ±ãã確ç㯠$0,1$ ãã©ã³ãã ã« $9$ ã€äžŠã¹ããšãã« $0$ ãé£ãåããªã確çã«å¯Ÿå¿ããïŒ\\\r\n äžè¬ã«ïŒ $0,1$ ãèš $n$ å䞊ã¹ãŠã§ããæåå $2^n$ éãã®ãã¡ $0$ ãé£ãåããªããã®ã $a_n$ éããšãããšïŒ $a_{n+2}=a_{n+1}+a_{n}$ ãšãªãããšã容æã«ãããã®ã§ïŒ $a_1=2,a_2=3$ ãå å³ã㊠$a_n$ 㯠$n+2$ çªç®ã®ãã£ããããæ°ã§ããïŒ\\\r\n 以äžããæ±ãã確ç㯠$\\dfrac{a_{9}}{2^9}=\\dfrac{89}{512}$ ã§ããïŒè§£çãã¹ãæ°å€ã¯ $89+512=\\textbf{601}$",
"text": "çãã«ãã£ããããæ°ãçŸããããšã®çŽæ¥çãªèª¬æ",
"url": "https://onlinemathcontest.com/contests/omc021/editorial/132/117"
}
] | ãè¡šãšè£ãç確çã«åºãã³ã€ã³ã $10$ åæã, äžåºŠãè¡šãŸãã¯è£ã $3$ å以äžé£ç¶ããŠåºãªã確çãæ±ããŠãã ãã.\
ããã ã, çãã¯æ倧å
¬çŽæ°ã $1$ ã§ããæ£æŽæ° $a,b$ ãçšã㊠$\displaystyle\frac{a}{b}$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC021 (for beginners) | https://onlinemathcontest.com/contests/omc021 | https://onlinemathcontest.com/contests/omc021/tasks/133 | D | OMC021(D) | 400 | 11 | 133 | [
{
"content": "ãäžè§åœ¢ $ABC$ ã® $\\angle A$ å
ã®åå¿ã $J$ ãšããã°, $\\angle IBJ=90^{\\circ}=\\angle ICJ$ ãã $4$ ç¹ $I,B,J,C$ ã¯å
±åã§ãã. ãã®ãšã, æ¹ã¹ãã®å®çãã以äžãæãç«ã€.\r\nãã$$ID\\times DJ=BD\\times DC=XD\\times YD$$\r\næ¡ä»¶ãã $ID=DX$ ã§ãããã $DJ=DY$ ãåŸã, ç¹ã« $IJ=XY=11$ ã§ãã. ããã«æ£åŒŠå®çãã\r\nãã$$\\sin\\angle BIC=\\dfrac{BC}{IJ}=\\dfrac{10}{11}$$\r\nã§ãããã, ç°¡åãªè§åºŠèšç®ã«ãã£ãŠ $\\angle A=2\\angle BIC-180^{\\circ}$ ã®æç«ã«çæããã°, ç¹ã« $\\angle BIC$ ã¯éè§ã§ãã,\r\nãã$$\\displaystyle\\sin\\angle A=-\\sin(2\\angle BIC)=-2\\sin\\angle BIC\\cos\\angle BIC=-2\\times \\frac{10}{11}\\times\\left(-\\frac{\\sqrt{21}}{11}\\right)=\\frac{20}{121}\\sqrt{21}$$\r\nãšèšç®ã§ãã. ãã£ãŠ, å $ABC$ ã®ååŸã¯ $\\displaystyle\\frac{BC}{2\\sin\\angle A}=\\sqrt{\\frac{14641}{336}}$ ã§ãã, æ±ããå€ã¯ $\\textbf{14977}$ ã§ãã.\\\r\nããªã $IX=5$ ã¯æ±å€ã«ããã£ãŠã¯éå°ã§ããã, äžæ¡ä»¶ããã¹ãŠã¿ããé
眮ã¯å®éã«ååšãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc021/editorial/133"
}
] | ãå
å¿ã $I$ ãšããäžè§åœ¢ $ABC$ ã«ãããŠ, çŽç· $AI$ ãšèŸº $BC$ ã®äº€ç¹ã $D$ ãšããã°, äžè§åœ¢ $ABC$ ã®å€æ¥åäžã®ç¹ $X$ ã $IDïŒDX$ ãã¿ãããŸãã. ãã®ãšã, çŽç· $DX$ ãšäžè§åœ¢ $ABC$ ã®å€æ¥åã®äº€ç¹ã®ãã¡ $X$ ã§ãªãæ¹ã $Y$ ãšããã°, 以äžãæãç«ã¡ãŸãã.
$$IXïŒ5,\ BCïŒ10,\ XYïŒ11$$
ããã®ãšã, äžè§åœ¢ $ABC$ ã®å€æ¥åã®ååŸã¯æ倧å
¬çŽæ°ã $1$ ã§ããæ£æŽæ° $a,b$ ãçšã㊠$\displaystyle\sqrt{\frac{a}{b}}$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC020 (ãšããæ°åŠã®ã³ã³ãã¹ã) | https://onlinemathcontest.com/contests/omc020 | https://onlinemathcontest.com/contests/omc020/tasks/124 | A | OMC020(A) | 100 | 450 | 459 | [
{
"content": "**解ç1.**ãäžåŒãå€åœ¢ããã° $0=4a^4-4a^2+1=(2a^2-1)^2$ ãåŸããã, ç¹ã« $a=\\dfrac{1}{\\sqrt{2}}$ ã§ãã. ãã£ãŠ\r\nãã$$M=\\left(8a^3+\\dfrac{1}{a^3}\\right)^2=\\left(\\dfrac{8}{(\\sqrt{2})^3}+(\\sqrt{2})^3\\right)^2=\\textbf{32}$$\r\n**解ç2.**ã$\\displaystyle S=2a+\\frac{1}{a}$ ãšããã°, $\\displaystyle 4=4a^2+\\frac{1}{a^2}=S^2-4$ ãã $S=2\\sqrt{2}$ ã§ãã. ãã£ãŠ $M=(S^3-6S)^2=\\textbf{32}$.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc020/editorial/124"
}
] | ãæ£ã®å®æ° $a$ ã $4a^2+\dfrac{1}{a^2}=4$ ãã¿ãããšã, $M=\left(8a^3+\dfrac{1}{a^3}\right)^2$ ã¯æŽæ°å€ã§ã. $M$ ã解çããŠãã ãã. |
OMC020 (ãšããæ°åŠã®ã³ã³ãã¹ã) | https://onlinemathcontest.com/contests/omc020 | https://onlinemathcontest.com/contests/omc020/tasks/125 | B | OMC020(B) | 200 | 322 | 434 | [
{
"content": "ãäžè¬ã« $2020$ ã $N$ ã«çœ®ãæããŠèãã. ãã®ãšã, åã«å
æ¥ããæ£ $N+1$ è§åœ¢ã«å¯Ÿã, æèšåãã« $x$ åé£ã®é ç¹ãé ã«çµãã§ãã£ããã®ãå
ç·ã®çµè·¯ãšããŠåŸããã. ãã ã, $x$ 㯠$N+1$ 以äžã§ $N+1$ ãšäºãã«çŽ ãªæ£æŽæ°ã§ãã. ããã«å $x$ ã«å¯Ÿã, $x$ ã $N+1-x$ ãšçœ®ãæãããã®ã¯åäžã®æš¡æ§ãšãªãããšã«çæããã°, çã㯠$\\varphi$ ããªã€ã©ãŒã®ããŒã·ã§ã³ããšããã° $\\varphi(N+1)\\/2$ ã§ãã, ç¹ã« $N=2020$ ã®ãšã $\\textbf{966}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc020/editorial/125"
}
] | ãååšäžã®äžç¹ããå
éšã«åãã£ãŠå
ç·ãçºãããšãã, å
ç·ã¯ååšã§ $2020$ ååå°ããŠ, **åããŠ**å
ã®äœçœ®ã«æ»ã£ãŠããŸãã. å
ç·ã®çµè·¯ãã€ããæš¡æ§ãšããŠããåŸããã®ã¯ $M$ éããããŸã. $M$ ã解çããŠãã ãã.\
ããã ãå転ããŠäžèŽãããã®ã¯åäžèŠããŸã.\
ãäŸãšããŠ, æäžã® $2020$ ã $4$ ã«çœ®ãæããå Žå, ããåŸãæš¡æ§ã¯ä»¥äžã® $2$ éãã§ã.
![figure 1](\/images\/vsoDhQc9IqwUXeL7cXyuqXH2Nda6dg5w9KBIVXLL) |
OMC020 (ãšããæ°åŠã®ã³ã³ãã¹ã) | https://onlinemathcontest.com/contests/omc020 | https://onlinemathcontest.com/contests/omc020/tasks/126 | C | OMC020(C) | 300 | 181 | 338 | [
{
"content": "ã$a_N\\leq7$ ã§ããè¯ãæ°ã¯é«ã
$14$ æ¡ã§ãããã, $15$ æ¡ã®è¯ãæ°ã«ã€ã㊠$a_N=8$ ãŸã㯠$9$ ã§ãã.\r\n\r\n(i) $a_N=9$ ã®ãšã\r\n\r\nã$123456789876543210$ ãã $9$ 以å€ã® $3$ ã€ã®æ°åãæ¶ãããšãèããã°ãã. ããã®æ¡å㯠$81$ ã§ãããã, $3$ ã®åæ°ãåŸãã«ã¯, æ¶ã $3$ ã€ã®æ°åã®åã $3$ ã®åæ°ã§ããå¿
èŠããã. ããªãã¡, æ¶ãæ°åã $3$ ã§å²ã£ãäœãã\r\nãã$$\\lbrace0,0,0\\rbrace,\\lbrace1,1,1\\rbrace,\\lbrace2,2,2\\rbrace,\\lbrace0,1,2\\rbrace$$\r\nãšãªãã°ãã. $9$ ãé€ãæ¡ã®ãã¡, ãã®æ°åã$3$ ã§å²ã£ãäœãã $0,1,2$ ã§ããã®ã¯ãããã $5,6,6$ åã§ãããã, æ±ããéžã³æ¹ã¯ ${}_5\\mathrm{C}_3+{}_6\\mathrm{C}_3+{}_6\\mathrm{C}_3+5\\times6\\times6=230$éããã.\r\n\r\n(ii) $a_N=8$ ã®ãšã, (i)ãšåæ§ã«, $1234567876543210$ ãã $8$ 以å€ã® $1$ ã€ã®æ°åãæ¶ãã°, $6$ éãã§ãã.\r\n\r\nã以äžãã, æ±ããç·æ°ã¯ $\\textbf{236}$ éãã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc020/editorial/126"
}
] | ãæ£ã®æŽæ° $n$ ã $k$ æ¡ã®**è¯ãæ°**ã§ãããšã¯, 次ã®æ¡ä»¶ãã¿ããããšãæããŸã.
- $n$ ã $10$ é²æ³è¡šèšã§ $\overline{a_1a_2\cdots a_{k-1}a_k}$ ãšè¡šãããšã, ããæŽæ° $N(1\lt N\lt k)$ ãååšããŠä»¥äžãæç«ãã.
$$a_1\lt a_2\lt \cdots\lt a_{N-1}\lt a_N\gt a_{N+1}\gt\cdots\gt a_{k-1}\gt a_k$$
ãã ãå $i=1,\cdots,k$ ã«ã€ã㊠$0\leq a_i\leq 9$ ã§ãã, ç¹ã« $a_1\neq 0$ ã§ãã.
ãäŸãã° $12321$ ã $1357986420$ ã¯è¯ãæ°ã§ãã, $123321$ ã $12345$ ã¯è¯ãæ°ã§ã¯ãããŸãã.\
ã$10$ é²æ³è¡šèšã§ $15$ æ¡ã®è¯ãæ°ã§ãã£ãŠ, $3$ ã®åæ°ã§ãããã®ã¯ $M$ åãããŸã. $M$ ã解çããŠãã ãã. |
OMC020 (ãšããæ°åŠã®ã³ã³ãã¹ã) | https://onlinemathcontest.com/contests/omc020 | https://onlinemathcontest.com/contests/omc020/tasks/127 | D | OMC020(D) | 400 | 87 | 237 | [
{
"content": "ãã$$N=\\displaystyle \\sum_{k=a}^bk=\\frac{1}{2}\\{b(b+1)-(a-1)a\\}$$\r\nããæ¡ä»¶ã¯ $(b+a)(b-a+1)=2N$ ãšè¡šçŸã§ããïŒãã㧠$b+a$ ãš $b-a+1 $ã®å¶å¥ã¯ç°ãªãïŒã〠$b+a\\gt b-a+1\\gt1$ ã§ããããïŒä»¥äžã®æ¡ä»¶\r\nãã$$\\begin{cases}\\alpha\\ \\text{ã¯æ£ã®å¶æ°} \\\\\\\\ \\beta\\ \\text{㯠3 以äžã®å¥æ°} \\\\\\\\ \\alpha\\beta=2N \\\\\\\\ \\end{cases}$$\r\nãã¿ããçµ $(\\alpha,\\beta)$ ãš $(b+a)(b-a+1)=2N$ ãªã $(a,b)$ ã®çµã¯äžå¯Ÿäžã«å¯Ÿå¿ãã.\\\r\nã$N$ ã®çŽ å æ°å解ã $2^ap_1^{a_1}p_2^{a_2}p_3^{a_3}\\cdots p_n^{a_n}$ ãšãã. ãã®ãšã $xy=p_1^{a_1}p_2^{a_2}p_3^{a_3}\\cdots p_n^{a_n}$ ãªãæ£æŽæ° $(x,y)$ ã®çµã¯ $(a_1+1)(a_2+1)(a_3+1)\\cdots(a_n+1)$ éãããïŒ$(p_1^{a_1}p_2^{a_2}p_3^{a_3}\\cdots p_n^{a_n},1)$ 以å€ã®ããããã«å¯Ÿã, \r\nãã$$(\\alpha,\\beta)=(2^{a+1}x,y)$$\r\nãšããããšã§äžå¯Ÿäžã®å¯Ÿå¿ãæ§æã§ããïŒããã«ïŒ$N$ã®æºããã¹ãæ¡ä»¶ã¯\r\nãã$$(a_1+1)(a_2+1)(a_3+1)\\cdots(a_n+1)=2022$$\r\nã$2022=2\\times3\\times337$ ã§ããããšãèžãŸãããšïŒ$N$ã®åœ¢ãšããŠããåŸããã®ã¯\r\nãã$$2^ap_1^{2021}ïŒ2^ap_1^{1010}p_2ïŒ2^ap_1^{673}p_2^2ïŒ2^ap_1^{336}p_2^5ïŒ2^ap_1^{336}p_2^2p_3$$\r\nã§äžããã, ãã®ãããª$N$ã¯å°ããé ã«\r\nãã$$ 3^{336}5^27^1ïŒ3^{336}5^17^2ïŒ3^{336}5^211^1ïŒ3^{336}5^213^1ïŒ2^13^{336}5^27^1ïŒ3^{336}5^217^1,\\cdots$$\r\nã§ãããã, ç¹ã« $M=2^13^{336}5^27^1$ ã§ãã. ããšã¯ããã $1000$ ã§å²ã£ãäœããæ±ããã°ãã.\\\r\nã$3^4\\equiv1 \\pmod{20}$ ãã $3^{336}=3^{4\\times84}\\equiv1 \\pmod{20}$ ã§ãããã, ããæ£æŽæ° $n$ ã«ãã£ãŠ $3^{336}=20n+1$ ãšè¡šãã°, $M=2^13^{336}5^27^1=350(20n+1)=7n\\times1000+350$ïŒãã£ãŠæ±ããäœã㯠$\\textbf{350}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc020/editorial/127"
}
] | ã次ã®æ¡ä»¶ãæºããæ£æŽæ° $N$ ã®ãã¡ïŒ$5$ çªç®ã«å°ãããã®ã $1000$ ã§å²ã£ãäœããæ±ããŠãã ããïŒ
- $a\lt b$ ã〠$\displaystyle \sum_{k=a}^bk=N$ ãªãçžç°ãªãæ£æŽæ°ã®çµ $(a,b)$ ã, ã¡ããã© $2021$ çµååšããïŒ |
OMC020 (ãšããæ°åŠã®ã³ã³ãã¹ã) | https://onlinemathcontest.com/contests/omc020 | https://onlinemathcontest.com/contests/omc020/tasks/128 | E | OMC020(E) | 500 | 4 | 38 | [
{
"content": "ã$B_{i+2}B_{i+3}$ ã®äžç¹ã $M_{i}$ ãšããã° $A_{i}M_{i}$ ã¯ãã¹ãŠäžç¹ $X$ ã§äº€ãã, $XA_{i}:XM_{i}=4:1$ ã§ãã. ãŸã, \r\nãã$$A_{1}C_{1}+A_{2}C_{2}:A_{3}C_{3}+A_{4}C_{4}+A_{5}C_{5}=7:18$$\r\nãã以äžãæç«ããããšã«çæãã.\r\nãã$$\\triangle XB_{3}B_{4}+\\triangle XB_{4}B_{5}:\\triangle XB_{5}B_{1}+\\triangle XB_{1}B_{2}+\\triangle XB_{2}B_{3}=7:18$$\r\nãããã§, æ£äºè§åœ¢ $B_{1}B_{2}B_{3}B_{4}B_{5}$ ã®é¢ç©ã $B$ ãšããã°åè§åœ¢ $XB_{3}B_{4}B_{5}$ ã®é¢ç©ã¯ $\\displaystyle\\frac{7}{25}B$ ã§ãã, åè§åœ¢ $XM_{1}B_{4}M_{2}$ ã®é¢ç©ã¯ãã®ååã® $\\displaystyle\\frac{7}{50}B$ ã§ãã. ãããã£ãŠåè§åœ¢ $XA_{1}B_{4}A_{2}$ ã®é¢ç©ã¯ $\\displaystyle\\frac{14}{25}B$ ã§ãã. ãŸã, $\\triangle B_{4}M_{1}M_{2}=\\displaystyle\\frac{1}{5}\\left(B-\\frac{1}{16}\\right)$ ãã$\\triangle XM_{1}M_{2}=\\displaystyle\\frac{1}{80}-\\frac{3}{50}B$ ã§ãã, ãããã$\\triangle XA_{1}A_{2}=\\displaystyle\\frac{1}{5}-\\frac{24}{25}B$ ã§ãã.\\\r\nã以äžãã, $B=\\displaystyle\\frac{3-\\sqrt{5}}{8}$ ã«çæããã°\r\nãã$$\\triangle A_{1}A_{2}B_{4}=\\displaystyle{\\frac{1}{5}-\\frac{24}{25}B-\\displaystyle\\frac{14}{25}B=\\frac{1}{5}-\\frac{38}{25}B=\\displaystyle\\frac{19\\sqrt{5}-37}{100}}$$\r\nãšãªãã®ã§, æ±ããã¹ãå€ã¯ $19+5+37+100=\\textbf{161}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc020/editorial/128"
}
] | ãé¢ç©ã $1$ ã®æ£äºè§åœ¢ $A_{1}A_{2}A_{3}A_{4}A_{5}$ ã®å
éšã«æ£äºè§åœ¢ $B_{1}B_{2}B_{3}B_{4}B_{5}$ ããã, $i=1,2,3,4,5$ ã«ã€ããŠèŸº $A_{i}A_{i+1}$ ãš $B_{i}B_{i+1}$ ã¯å¹³è¡ã§ã. ãŸã, $A_{1}$ ã¯çŽç· $B_{2}B_{5}$ ã«é¢ã㊠$B_{1}$ ã®å察åŽã«ãããã®ãšããŸã.\
ã$i=1,2,3,4,5$ ã«ã€ããŠçŽç· $A_{i}A_{i+1}$ ãšçŽç· $B_{i+2}B_{i+3}$ ã®äº€ç¹ã $C_{i}$ ãšããã°, 以äžãæãç«ã¡ãŸãã.
$$A_{1}A_{2}:B_{1}B_{3}=2:1,\ A_{1}C_{1}+A_{2}C_{2}:A_{3}C_{3}+A_{4}C_{4}+A_{5}C_{5}=7:18$$
ããã®ãšãäžè§åœ¢ $A_{1}A_{2}B_{4}$ ã®é¢ç©ã¯, æ倧å
¬çŽæ°ã $1$ ã§ããæ£æŽæ° $a,c,d$ ãš, $1$ ãã倧ããªå¹³æ¹æ°ã§å²ããããªãæ£æŽæ° $b$ ãçšã㊠$\displaystyle\frac{a\sqrt{b}-c}{d}$ ãšè¡šãããã®ã§, $a+b+c+d$ ã解çããŠãã ãã.\
ããªã, ããã§ä»»æã®æŽæ° $i$ ã«ã€ã㊠$A_{i+5}=A_{i}$ ãªã©ãšããŸã. |
OMC020 (ãšããæ°åŠã®ã³ã³ãã¹ã) | https://onlinemathcontest.com/contests/omc020 | https://onlinemathcontest.com/contests/omc020/tasks/129 | F | OMC020(F) | 600 | 0 | 0 | [
{
"content": "ãäžåŒãé©åã«å€åœ¢ããããšã§ä»¥äžãåŸã.\r\nãã$$\\dfrac{(1-x^2)(1-y^2)+2x\\times 2y}{(1+x^2)(1+y^2)}\\gt 2m-1$$\r\nããã㧠$t=\\tan(\\theta\\/2)$ ã«å¯ŸããŠ\r\nãã$$\\cos\\theta=\\dfrac{1-t^2}{1+t^2},\\ \\ \\sin\\theta=\\dfrac{2t}{1+t^2}$$\r\nã§ããããšã«çæããã°, $x=\\tan(\\alpha\\/2),\\ y=\\tan(\\beta\\/2)$ ãšããã°ä»¥äžãæç«ãã.\r\nãã$$\\cos(\\alpha-\\beta)=\\cos\\alpha\\cos\\beta+\\sin\\alpha\\sin\\beta\\gt 2m-1$$\r\nããã㧠$x,y\\geq 100$ ãã, $\\tan(\\theta\\/2)=100$ ãªã $0\\lt\\theta\\lt\\pi$ ã«ã€ã㊠$\\theta\\leq\\alpha,\\beta\\lt\\pi$ ãšããŠãã, ãã®ãšã\r\nãã$$2M-1=\\cos\\left(\\dfrac{\\pi-\\theta}{3}\\right)$$\r\nã§ããããšã容æã«ããã. ããã« $\\theta^\\prime=\\pi-\\theta$ ãšããã°\r\nãã$$\\cos\\theta^\\prime=-\\cos\\theta=-\\left(\\dfrac{1-100^2}{1+100^2}\\right)=\\dfrac{9999}{10001}$$\r\nã§ãã, äžæ¹ $M^\\prime=2M-1$ ãšããã° $\\cos\\theta^\\prime=4(M^\\prime)^3-3M^\\prime$ ã§ãããã, ãããæŽçããããšã§\r\nãã$$160016 M^3 - 240024 M^2 + 90009 M - 10000 = 0$$\r\nããã£ãŠæ±ããå€ã¯ $160016+240024+90009+10000=\\textbf{500049}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc020/editorial/129"
}
] | ãçžç°ãªã $100$ 以äžã®å®æ° $4$ ã€ãããªãä»»æã®éåã«ã€ããŠ, é©åã« $2$ å
$x,y$ ãéžã¶ããšã§ä»¥äžã®äžçåŒãæç«ãããããª, å®æ° $m$ ãšããŠããåŸãæå€§å€ $M$ ãèããŸã.
$$(xy+1)^2\gt m(x^2+1)(y^2+1)$$
ããã®ãšã, $aM^3+bM^2+cM+d=0$ ãã¿ãããããªäºãã«çŽ ãªæŽæ° $a,b,c,d$ (ãã ã $a\gt 0$) ãäžæã«ååšããããšã蚌æã§ããã®ã§, $|a|+|b|+|c|+|d|$ ãæ±ããŠãã ãã. |
OMC019 | https://onlinemathcontest.com/contests/omc019 | https://onlinemathcontest.com/contests/omc019/tasks/118 | A | OMC019(A) | 100 | 216 | 220 | [
{
"content": "ãæ¡ä»¶ã¯ $N(N+1)$ ã $2048=2^{11}$ ã®åæ°ã§ããããšãšåå€ã§ãã. ãã®ãšã, $N$ ãš $N+1$ ãäºãã«çŽ ã§ããããšãã, $N$ ãŸã㯠$N+1$ ã $2048$ ã®åæ°ã§ããããšãå¿
èŠååæ¡ä»¶ã§, ç¹ã«æ±ããæå°å€ã¯ $\\textbf{2047}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc019/editorial/118"
}
] | ã$1$ ä»¥äž $N$ 以äžã®æŽæ°ã®ç·åã $1024$ ã®åæ°ãšãªããããªæå°ã®æ£ã®æŽæ° $N$ ãæ±ããŠãã ãã. |
OMC019 | https://onlinemathcontest.com/contests/omc019 | https://onlinemathcontest.com/contests/omc019/tasks/119 | B | OMC019(B) | 200 | 173 | 211 | [
{
"content": "**解ç1.**ããŸã $1$ ç¹ãåºå®ã, ä»ã® $2$ é ç¹ãéžã¶æ¹æ³ã¯ ${}\\_{299}{\\rm C}\\_2$ éãã§ãã. ããã§, æ£äžè§åœ¢ã¯ $1$ å, æ£äžè§åœ¢ã§ãªãäºç蟺äžè§åœ¢ã¯ $3$ å, äžç蟺äžè§åœ¢ã¯ $6$ åæ°ããããŠããããšãèæ
®ãã. æ£äžè§åœ¢ã¯ $1$ å, æ£äžè§åœ¢ã§ãªãäºç蟺äžè§åœ¢ã¯ $148$ åã§ãããã, 以äžã®ããã«èšç®ã§ãã.\r\nãã$$N=\\dfrac{{}\\_{299}{\\rm C}\\_2 + 1\\times 5 + 148\\times 3}{6} = \\textbf{7500}$$\r\n**解ç2.**ã$x+y+z=300$ ã〠$x\\leq y\\leq z$ ãªãæ£æŽæ°ã®çµ $(x,y,z)$ ã®åæ°ãæ±ããã°ãã. $x\\leq 100$ ãåºå®ã㊠$(y^\\prime,z^\\prime)=(y-x,z-x)$ ãšããã°, $y^\\prime+z^\\prime=300-3x$ ã〠$y^\\prime\\leq z^\\prime$ ãã¿ããéè² æŽæ°ã®çµ $(y^\\prime,z^\\prime)$ ã®åæ°ãæ±ããã°ãã, ãã㯠$[(300-3x)\\/2]+1$ ã§ãã. ãã£ãŠ, $N$ ã¯ä»¥äžã®ããã«èšç®ã§ãã.\r\nãã$$\\displaystyle N=\\sum_{x=1}^{100}\\left(\\left[\\dfrac{300-3x}{2}\\right]+1\\right)=(149+148)+(146+145)+\\cdots+(2+1)=\\textbf{7500}$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc019/editorial/119"
}
] | ãæ£ $300$ è§åœ¢ããçžç°ãªã $3$ é ç¹ãéžãã§ã§ããäžè§åœ¢ã¯, å転ã»è£è¿ãããŠäžèŽãããã®ã¯**åããã®**ãšããŠæ°ãããšã, $N$ åã§ã. $N$ ã解çããŠãã ãã. |
OMC019 | https://onlinemathcontest.com/contests/omc019 | https://onlinemathcontest.com/contests/omc019/tasks/120 | C | OMC019(C) | 300 | 113 | 137 | [
{
"content": "ã$P$ ã®åº§æšã $(p,q)$, $C$ ã®ååŸã $r$ ãšããã°, $C$ ã®åŒã¯ $(x-p)^2+(y-q)^2=r^2$ ãšè¡šããã. ããã«, $A_1, A_2$ ã® $x$ 座æšããããã $a_1, a_2$ãšããã°, $a_1, a_2$ 㯠$x$ ã«ã€ããŠã®äºæ¬¡æ¹çšåŒ $(x-p)^2+q^2=r^2$ ã® $2$ 解ã§ãããã, $a_1+a_2=2p$ ãåŸã. åæ§ã« $B_1, B_2$ ã® $y$ 座æšããããã $b_1, b_2$ ãšããã° $b_1+b_2=2q$ ã§ãã.\\\r\nããã㧠$a_2, b_2$ ã $0$ 以äžã§ããããšã«æ³šæããã°, 以äžã®äžçåŒãæç«ã, çå·ã¯ $p=\\sqrt[3]{8\\/5}$ ã§æãç«ã€.\r\nãã$$\\begin{aligned}\\triangle OA_1B_1-\\triangle OB_1A_2-\\triangle OB_2A_1+\\triangle OA_2B_2&=\\dfrac{1}{2}(a_1b_1+a_2b_2+a_1b_2+a_2b_1)\\\\\\\\\r\nãã&=\\dfrac12(a_1+a_2)(b_1+b_2)=2pq\\\\\\\\\r\nãã&=2p\\left(5+\\dfrac{4}{p^3}\\right)\\\\\\\\\r\nãã&=5p+5p+\\dfrac{8}{p^2}\\\\\\\\\r\nãã&\\geq 3\\cdot \\sqrt[3]{5p\\cdot 5p\\cdot \\dfrac{8}{p^2}}=3\\cdot \\sqrt[3]{200}\\end{aligned}$$\r\nããããã£ãŠ, æ±ããå€ã¯ $m^3=(3\\cdot \\sqrt[3]{200})^3=\\textbf{5400}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc019/editorial/120"
}
] | ã$xy$ å¹³é¢ã«ãããŠ, ã°ã©ã $y=5+\dfrac{4}{x^3}\ (x\gt 0)$ äžã®ç¹ $P$ ãäžå¿ãšã, åç¹ $O$ ãå
éš(åšäžã¯å«ãŸãªã)ã«å«ãå $C$ ãèããŸã. $C$ ãš $x$ 軞ãšã®äº€ç¹ã $x$ 座æšã倧ããé ã« $A_1, A_2$ ãšã, $C$ ãš $y$ 軞ãšã®äº€ç¹ã $y$ 座æšã倧ããé ã« $B_1, B_2$ ãšãããšã, ç¹ $P$ ããã³ å $C$ ãåãããŠä»¥äžã®åŒããšãåŸãæå°å€ã $m$ ãšããŸã.
$$\triangle OA_1B_1-\triangle OA_1B_2-\triangle OA_2B_1+\triangle OA_2B_2$$
ãã®ãšã $m^3$ ã¯æŽæ°å€ããšãããšã蚌æã§ããã®ã§, ãããæ±ããŠãã ãã.\
ããã ã, $\triangle XYZ$ ã§äžè§åœ¢ $XYZ$ ã®é¢ç©ãè¡šããŸã.
![figure 1](\/images\/SICfPpjo7K3jC5mGt0UWHRPWuBtuFwh2vzegFbL2) |
OMC019 | https://onlinemathcontest.com/contests/omc019 | https://onlinemathcontest.com/contests/omc019/tasks/121 | D | OMC019(D) | 400 | 42 | 68 | [
{
"content": "ã$AB$ ã«é¢ã㊠$H$ ãšå¯Ÿç§°ãªç¹ã $H^\\prime$ ãšãããš,\r\nãã$$\\angle ACB+\\angle AH^\\prime B=\\angle ACB+\\angle AHB=180^\\circ$$\r\nã§ãããã, $H^\\prime$ 㯠$\\triangle ABC$ ã®å€æ¥åäžã«ãã. ãã®ãšã\r\nãã$$AH^\\prime=AH=AO=OH^\\prime$$\r\nãã, ç¹ã« $\\triangle AH^\\prime O$ ã¯æ£äžè§åœ¢ã§ãããã, \r\nãã$$\\angle H^\\prime AB=\\angle HAB=90^\\circ-\\angle ABC=\\angle CAO $$\r\nãã $\\angle BAC=\\angle H^\\prime AO=60^\\circ$ãšãªã. ããã«\r\nãã$$\\angle BHC=180^\\circ-\\angle BAC=120^\\circ=2\\angle BAC=\\angle BOC$$\r\nãã $4$ ç¹ $B, C, O, H$ ã¯åäžååšäžã«ãã. ãã㧠$\\triangle ABC$ ã¯éè§äžè§åœ¢ã§ãããã, ååšäžã§ $B, C, O, H$ ã $B, C, H, O$ ã®é ã§åæèšåãã«äžŠã³, ãã¬ããŒã®å®çãã以äžã®ãããããæãç«ã€.\r\nãã$$OH\\times BC+BH\\times CO=CH\\times BO,\\ \\ \\ OH\\times BC+CH\\times BO=BH\\times CO $$\r\nãããŸæ£åŒŠå®çãã\r\nãã$$AO=BO=CO=\\dfrac{BC}{2\\sin\\angle BAC}=\\dfrac{BC}{\\sqrt{3}}$$\r\nã§ãããã, ããã代å
¥ããã°ä»¥äžãã $|BH-CH|=12\\sqrt{3}$ ãåŸã.\r\nãã$$|BH-CH|\\times\\dfrac{BC}{\\sqrt{3}}=OH\\times BC$$\r\nããã㧠$BH=5\\lt 12\\sqrt{3}$ ãã $CH=12\\sqrt{3}+5$ ã§ãããã, æ±ããå€ã¯ $12^2\\times 3+5=\\textbf{437}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc019/editorial/121"
}
] | ãéè§äžè§åœ¢ $ABC$ ã«ã€ããŠïŒãã®åå¿ã $H$ , å€å¿ã $O$ ãšããŸãïŒ
$$AH=AO, \quad OH=12, \quad BH=5$$
ã§ãããšãïŒç·å $CH$ ã®é·ãã¯æŽæ° $a,b,c$ ãçšã㊠$a\sqrt{b}+c$ ãšè¡šãããŸãïŒ$a^2b+c$ ã解çããŠãã ããïŒ |
OMC019 | https://onlinemathcontest.com/contests/omc019 | https://onlinemathcontest.com/contests/omc019/tasks/122 | E | OMC019(E) | 500 | 15 | 39 | [
{
"content": "ããŸãåœã $2$ ã€ããç¡ãã£ããšã, åœ $1,2$ ããããã $a,b$ åã®å³¶ãä¿æããå Žåãèãã. ãã®ãšã, ååœã®å³¶ã®éã«ã¯æ©ãæ¶ããªããšããå¶çŽã課ããŠ, æ¡ä»¶ãã¿ããæ©ã®æ¶ãæ¹ã®ç·æ° $f(a,b)$ ãæ±ããã. \r\n\r\n**解ç1.**ãåœ $1$ ã®å³¶ $a$ ãšæ¥ç¶ããæ©ãååšããªããšã $f(a-1,b)$ éãã§, åœ $1$ ã®å³¶ $a$ ãšåœ $2$ ã®å³¶ $i$ ãçµã¶æ©ãååšãããšã $f(a-1,i-1)+1$ éãã§ãããã, 以äžã®æŒžååŒãæç«ãã.\r\nãã$$f(a,b)=f(a-1,b)+f(a-1,b-1)+\\cdots+f(a-1,1)+f(a-1,0)+b$$\r\nããããã $f(a,b)=f(a-1,b)+f(a,b-1)+1$ ã§ãããã, $f(a,0)=f(0,b)=0$ ãšåãããŠåž°çŽçã« $f(a,b)={}\\_{a+b}\\mathrm{C}\\_{a}-1$ ãæç«ããããšãããã.\r\n\r\n**解ç2.**ã$f(a,b)+1$ ã¯, åœ $1,2$ ããããããåæ°ãã€åœãéžã¶å Žåã®æ°ã«çãã. ãªããªã, ããã§éžã°ãã島ã«ã€ããŠããããæ©ã§çµã¶ãšã, ããããã®çªå·ãå°ããæ¹ããé ã«å³¶ãæ©ã§çµãã§ãããããªãããã§ãã. ãªã, 島ã $0$ åãã€éžã¶å Žåãèæ
®ããããã« $+1$ ãè¡ã£ã. ãã®ãšã, åœ $1$ ããéžã°ããªãã£ã島ã®æ°ãš, åœ $2$ ããéžã°ãã島ã®æ°ã®å㯠$a$ ã§ãã. éã«, åœ $1,2$ ã®å³¶ $a+b$ åã®äžããä»»æã« $a$ åã®å³¶ãéžã¶ããšã§, ããã«å¯Ÿå¿ããåæ°ãã€å³¶ãéžã¶æ¹æ³ãåŸããã. ãããã£ãŠ $f(a,b)={}\\_{a+b}\\mathrm{C}\\_{a}-1$ ãæç«ãã.\r\n\r\nããããã, å
ã®åé¡ã«ãããŠ, \r\nãã$$\\displaystyle P=\\prod_{K=1}^{2020} \\left(\\left(f(999,999)+1\\right)^{K}-1\\right)=\\prod_{K=1}^{2020} \\left({}\\_{1998}\\mathrm{C}\\_{999}^{K}-1\\right)$$\r\nã§ããããšã容æã«ç¢ºèªã§ãã. ãŸã, ${}\\_{1998}\\mathrm{C}\\_{999}=2\\cdot{}\\_{1997}\\mathrm{C}\\_{998}$ ã¯å¶æ°ã§ãããã, $S=0$ ã§ãã.\\\r\nã以äž, $T$ ãæ±ããã°ããã, ${}\\_{1998}\\mathrm{C}\\_{999}\\equiv 5\\pmod{81}$ ã§ãããã, LTEã®è£é¡ãã\r\nãã$$\\begin{aligned}T&=v_{3}\\left(\\prod_{K=1}^{1010} \\left(\\left({}\\_{1998}\\mathrm{C}\\_{999}^{2}\\right)^{K}-1\\right)\\right)\\\\\\\\\r\nãã&=\\sum_{K=1}^{1010}\\left(v_{3}\\left({}\\_{1998}\\mathrm{C}\\_{999}^{2}-1\\right)+v_{3}(K)\\right)\\\\\\\\\r\nãã&=\\sum_{K=1}^{1010}\\left(1+v_{3}(K)\\right)\\\\\\\\\r\nãã&=\\sum_{i=0}^{\\infty} \\left\\lfloor\\dfrac{1010}{3^i}\\right\\rfloor=1512\\end{aligned}$$\r\nãã ã $v_p(n)$ 㧠$n$ ã $p$ ã§å²ãåããåæ°ãè¡šã. 以äžãã $S+T=\\textbf{1512}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc019/editorial/122"
}
] | ã$2021\times 999$ åã®å³¶ããã, åœ $1$, åœ $2$, $\cdots$, åœ $2021$ ããããã $999$ åãã€å³¶ãä¿æããŠããŸã. ååœãä¿æãã島ã«ã¯ãããã $1$ ãã $999$ ãŸã§ã®çªå·ãæ¯ãããŠããŸã. ãããã®éã«, 以äžã®æ¡ä»¶ãã¿ããããã«æ©ãäœæ¬ãæ¶ããŸã.
- ã©ã®æ©ã, **çžç°ãªã**åœãä¿æãã $2$ åã®å³¶ãçŽæ¥çµã¶.
- ã©ã® $2$ åã®å³¶ã«ã€ããŠã, ãããã®éãçŽæ¥çµã¶æ©ã¯é«ã
$1$ æ¬ã§ãã.
- ä»»æã® $2$ ä»¥äž $2021$ 以äžã®æŽæ° $K$ ã«ã€ããŠ, ããæ£ã®æŽæ° $K^{\prime}\lt K$ ãååšã, åœ $K^{\prime}$ ãä¿æãã島ãšåœ $K$ ãä¿æãã島ãçŽæ¥çµã¶æ©ãååšãã.
- ä»»æã®çžç°ãªãåœã®çµ $(A,B)$ ã«ãããŠ, åœ $A$ ãä¿æãã $2$ 島 $X\lt Y$ ããã³åœ $B$ ãä¿æãã**çžç°ãªããšã¯éããªã** $2$ 島 $Z,W$ ã«ã€ããŠ, $X$ ãš $Z$, $Y$ ãš $W$ ãããããæ©ã§çŽæ¥çµã°ããŠãããªãã° $Z\lt W$ ã§ãã.
ããã®ãããªæ©ã®æ¶ãæ¹ãšããŠããåŸããã®ã¯ $P$ éããããŸã. $P$ ã $2,3$ ã§å²ãåããåæ°ããããã $S,T$ ãšãããšã, $S+T$ ãæ±ããŠãã ãã.\
ããã ã, ${}\_{1997}{\rm C}_{998}\equiv 43 \pmod{81}$ ãä¿èšŒãããŸã. |
OMC019 | https://onlinemathcontest.com/contests/omc019 | https://onlinemathcontest.com/contests/omc019/tasks/123 | F | OMC019(F) | 600 | 7 | 22 | [
{
"content": "ã圢åŒçã¹ãçŽæ°ãçšãããš, $f(A)$ ã¯ä»¥äžã«ããã $x^{A}$ ã®ä¿æ°ã«çããããšã容æã«ç¢ºèªããã.\r\nãã$$\\displaystyle \\prod_{i=1}^{2021}(1-x+x^{2^i}-x^{2^i+1}+x^{2\\times 2^i}-x^{2\\times 2^i+1}+\\cdots)=\\prod_{i=1}^{2021}\\frac{1-x}{1-x^{2^i}}$$\r\nãããã«, $A$ ã $2022$ åã®éè² æŽæ°ã®åãšããŠè¡šã(é åºãèæ
®ãã)æ¹æ³ã¯ ${}\\_{A+2021}\\mathrm{C}\\_{2021}$ éãã§ãããã, ä»»æã®éè² æŽæ°ãæžã蟌ã, ã³ã¹ãã«åœ±é¿ãåãŒããªãã«ãŒãã $2022$ æè¿œå ãããšã¿ãªãã°, $k(A)$ ã¯ä»¥äžã«ããã $x^{A}$ ã®ä¿æ°ã«çããããšã容æã«ç¢ºèªããã.\r\nãã$$\\begin{aligned}&\\ \\left(1+x+x^2+\\cdots\\right)^{2022}\\prod_{i=1}^{2021}(1-x+x^{2^i}-x^{2^i+1}+\\cdots)\\\\\\\\\r\nãã&=\\left(\\dfrac{1}{1-x}\\right)^{2022}\\times\\prod_{i=1}^{2021}\\frac{1-x}{1-x^{2^i}}\\\\\\\\\r\nãã& =\\prod_{i=0}^{2021} \\frac{1}{1-x^{2^i}}\\\\\\\\\r\nãã&=\\prod_{i=0}^{2021} (1+x^{2^i}+x^{2\\times2^{i}}+\\cdots)\\end{aligned}$$\r\nããããã£ãŠ $k(A)$ ã¯, $2^0,2^1,\\cdots,2^{2021}$ ãããããéè² æŽæ°åéžãã§, ãã®åã $A$ ã«ããæ¹æ³ã®å Žåã®æ°ã«çãã. ããã§, $2^0$ ãçšããåæ°ã決ãæã€ããšã§, $A\\geq 1$ ã«å¯ŸããŠä»¥äžã®æŒžååŒãåŸã(ãã ã $k(0)=1$).\r\nãã$$\\displaystyle k(A)=\\sum_{i=0}^{\\lfloor A\\/2\\rfloor} k(i)$$\r\nããã£ãŠ, $k(2022)-k(2021)=k(1011)=k(1010)$ ã§ãã, å調æ§ãããããã§å°œããããŠããããšã容æã«ããã. 以äžãã, æ±ããå€ã¯ $1011\\times 1010=\\textbf{1021110}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc019/editorial/123"
}
] | ã$2021$ æã®ã«ãŒãããã, $i$ çªç®ã®ã«ãŒã($i=1,2,\cdots,2021$)ã«ã¯ $2^i$ ã§å²ã£ãŠ $0$ ãŸã㯠$1$ äœãéè² æŽæ°ãäžã€ãã€æžã蟌ã¿ãŸã. ããã§, å¥æ°ãæžãããã«ãŒãã $S$ æååšãããšã, **ã³ã¹ã**ã $(-1)^S$ ã§å®ããŸã.\
ãéè² æŽæ° $A$ ã«ã€ããŠ, $2021$ åã®æ°ã®åã $A$ ãšãªããããªæžã蟌ã¿æ¹ãšããŠããåŸããã®ãã¹ãŠã«ã€ããŠã³ã¹ãã®ç·åã $f(A)$ ãšã, ããã« $k(A)$ ã以äžã§å®ããŸã.
$$\displaystyle k(A)=\sum_{i=0}^{A}f(i)\times{}\_{A-i+2021}\mathrm{C}\_{2021}$$
ã$k(2022)=k(2021)+k(Q)$ ãã¿ããéè² æŽæ° $Q$ ãšããŠããåŸããã®ãã¹ãŠã®**ç·ç©**ãæ±ããŠãã ãã. |
OMC018 | https://onlinemathcontest.com/contests/omc018 | https://onlinemathcontest.com/contests/omc018/tasks/112 | A | OMC018(A) | 100 | 231 | 245 | [
{
"content": "ã$f(n)$ ã以äžã§å®ãããš, $n^2-8n+17=(n-4)^2+1\\gt 0$ ããããã¯åžžã«æ£ã§ãããã, $a_n$ ãåžžã«æ£ã§ãã.\r\nãã$$\\displaystyle f(n)=\\frac{9n+1}{n^2-8n+17}\\ \\ (n=1,2,\\cdots)$$\r\nããã®ãšã, $f(n)$ ãš $1$ ã®å€§å°ãæ¯èŒããããšã§å®¹æã«ä»¥äžãåŸããã, ç¹ã«æ±ããå€ã¯ $33$ ã§ãã.\r\nãã$$a_1=a_2\\lt a_3\\lt a_4\\lt \\cdots\\lt a_{16}=a_{17}\\gt a_{18}\\gt a_{19}\\gt\\cdots$$",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc018/editorial/112"
}
] | ã以äžãã¿ããæ°å $ \\{a_{n}\\}\_{n=1,2,\cdots} $ ã«ãããŠ, $a_n$ ãæ倧å€ããšããããªæ£ã®æŽæ° $n$ ã®ç·åãæ±ããŠãã ãã.
$$a_{1} =1,\quad a\_{n+1}=\dfrac{9n+1}{n^{2} -8n+17} a_{n}\ \ (n=1,2,\cdots)$$ |
OMC018 | https://onlinemathcontest.com/contests/omc018 | https://onlinemathcontest.com/contests/omc018/tasks/113 | B | OMC018(B) | 200 | 165 | 219 | [
{
"content": "ãæ±ããé åã¯ä»¥äžã§è¡šããã. ãã ã $D$ 㯠$A$ ãã $BC$ ã«ããããåç·ã®è¶³ã§ãã. ãã®é¢ç©ã¯é©åœãªæ圢ãšäžè§åœ¢ã®çµã¿åããã«ãã£ãŠå®¹æã«èšç®ã§ãã. å
·äœçã«ã¯ $\\displaystyle \\frac{35}{12}\\pi - \\sqrt{3}$ ã§ãã, æ±ããå€ã¯ $\\textbf{50}$ ã§ãã.\r\n![figure 1](\\/images\\/1UPGGUO9tBaLSDalVLw3vQjOEq7CefiR9tFItT1r)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc018/editorial/113"
}
] | ã$AB=2,AC=2\sqrt{3},BC=4$ ãªãäžè§åœ¢ $ABC$ ã, ç¹ $A$ ãäžå¿ã«å¹³é¢äžã§ $90^\circ$ å転ããããšã, 蟺 $BC$ ã®ééããé åã®é¢ç©ã¯ $\displaystyle\frac{a}{b}\pi - \sqrt{c}$ ãšè¡šããŸã. ãã ã $a,b$ ã¯æ倧å
¬çŽæ°ã $1$ ã®æ£ã®æŽæ°, $c$ ã¯æ£ã®æŽæ°ã§ã.\
ããã®ãšã, $a+b+c$ ã解çããŠãã ãã. |
OMC018 | https://onlinemathcontest.com/contests/omc018 | https://onlinemathcontest.com/contests/omc018/tasks/114 | C | OMC018(C) | 300 | 166 | 210 | [
{
"content": "ãäžè¬ã«æ Œåç¹ã $n\\times n$ ã§ããå Žåã«ã€ããŠèãã.\\\r\nãå蟺ã軞ãšå¹³è¡ã§ãããããªæ£æ¹åœ¢ã«ã€ããŠ, äžèŸºã®é·ãã $k\\leq n-1$ ã§ãããããªãã®ã¯ $(n-k)^2$ åååšãããã, ãã®ãããªãã®ã®ç·æ°ã¯ä»¥äžã§äžãããã.\r\nãã$$ \\displaystyle \\sum _{k=1}^{n-1}(n-k)^2$$\r\nããã以å€ã®æ£æ¹åœ¢ã«ã€ããŠ, $a+b\\leq n-1$ ã§ãããšã, ããäžèŸºã®åŸãã $b\\/a$ ã§, é·ãã $\\sqrt{a^2+b^2}$ ã§ãããããªæ£æ¹åœ¢ã¯ $(n-a-b)^2$ åååšãã. $a+b=k$ ãªãæ£æŽæ°ã®çµ $(a,b)$ 㯠$k-1$ åååšãããã, ãã®ãããªãã®ã®ç·æ°ã¯ä»¥äžã§äžãããã.\r\nãã$$ \\displaystyle \\sum _{k=2}^{n-1}(k-1)(n-k)^2=\\sum _{k=1}^{n-1}(k-1)(n-k)^2$$\r\nã以äžãç·æ¬ããã°, æ±ããå€ã¯ä»¥äžã§äžãããã. ç¹ã« $n=100$ ã®ãšã $\\textbf{8332500}$ ã§ãã.\r\nãã$$ \\displaystyle \\sum _{k=1}^{n-1}k(n-k)^2=\\sum _{k=1}^{n-1}k^2(n-k)=\\sum _{k=1}^{n}k^2(n-k)=\\frac{1}{12}n^2(n^2-1)$$\r\nãå®éã¯å蟺ã軞ã«å¹³è¡ãªå Žå㯠$(a,b)=(0,k)$ ãšã¿ãªãã°è¯ãã£ãããšã«ãªã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc018/editorial/114"
}
] | ã$100\times100$ ã®æ Œåç¹ã®äžããããçžç°ãªã $4$ ç¹ãéžã¶æ¹æ³ã§ãã£ãŠïŒããããé ç¹ãšããåè§åœ¢ãæ£æ¹åœ¢ãšãªããããªãã®ã¯ $M$ éããããŸã. $M$ ã解çããŠãã ãã.\
ããã ã, å転ãå転ã«ãã£ãŠäžèŽãããã®ãåºå¥ããŸã.\
ã以äžã®å³ã¯ $5\times 5$ ã®æ Œåç¹, ããã³ãããããªãæ£æ¹åœ¢ã®äŸã§ã.
![figure 1](\/images\/pgGvbwbFIaY0mgXYqX74ZphQY8vEBpweBgNltFm3) |
OMC018 | https://onlinemathcontest.com/contests/omc018 | https://onlinemathcontest.com/contests/omc018/tasks/115 | D | OMC018(D) | 400 | 120 | 157 | [
{
"content": "ã$n$ ã¯çŽ æ° $p$ ã«ãã£ãŠ $n=p^2$ ãšè¡šããã. ãã ã $n\\gt 15$ ã§ããããšãã $p\\geq 5$ ã§ãã. ãã®ãšã, $m$ ã¯çžç°ãªãçŽ æ° $a,b$ ã«ãã£ãŠ $a^{p^2-1}$ ãŸã㯠$(ab)^{p-1}$ ãšè¡šãã, äœãã®æ¡ä»¶ãã $a,b$ 㯠$p$ ã§ã¯ãªã. ãããã®å Žåã, Fermatã®å°å®çãã $m\\equiv 1\\pmod p$ ã§ãããã, $15\\equiv 1\\pmod p$ ãã $p=7$ ãšãªãã»ããªã.\\\r\nãéã« $2^{48}\\equiv 15\\pmod{49}$ ã§ãããã, $n=\\textbf{49}$ ãé©ããå¯äžã®ãã®ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc018/editorial/115"
}
] | ãæ£ã®æŽæ° $m,n$ ã«ã€ããŠïŒããããã®çžç°ãªãæ£ã®çŽæ°ã¯ $n$ åïŒ$3$ åååšããŸããïŒ\
ãããã«ïŒ$m$ ã $n$ ã§å²ã£ãäœãã $15$ ã§ãããšãïŒ$n$ ãšããŠãããããã®ã®ç·åãæ±ããŠãã ããïŒ |
OMC018 | https://onlinemathcontest.com/contests/omc018 | https://onlinemathcontest.com/contests/omc018/tasks/116 | E | OMC018(E) | 500 | 26 | 91 | [
{
"content": "ã$\\angle A=2a$ ãªã©ãšãããš, $a+b+c=90^\\circ$ ã§ãã. $\\angle A$ ã®äºçåç·ãšèŸº $BC$ ã®äº€ç¹ã $F$ ãšãããš,\r\nãã$$\\angle FIC=\\angle IAC+\\angle ACI=a+c=90^\\circ-b$$\r\nãã®äžæ¹ã§\r\nãã$$\\angle EIC=\\angle AEI-\\angle ACI=(180^\\circ-a-2b)-c=90^\\circ-b$$\r\nãæãç«ã€ãã $\\angle FIC=\\angle EIC$ ã§ãã, $\\angle ICE=\\angle ICF$ ãšåãããŠäžè§åœ¢ $ICE$ ãš $ICF$ ã¯ååã§ãã. ããªãã¡, $CE=CF$ ã§ãã, åæ§ã«ã㊠$BD=BF$ ãåŸã.\\\r\nããšããã§è§ã®äºçåç·å®çãã $AB:AC=BF:BC$ ã§ãããã, $AD:AE=BF:BC$, ããªãã¡ $BC$ ãš $DE$ ã¯å¹³è¡ã§ãã. ããã« $AD=12=CE=CF$ ãã $AB=BC$ ã§ãããã, $DE=AD=12$ ã§ãã.\\\r\nããã㧠$AE$ ã®äžç¹ã $M$ ãšããã°, çŽè§äžè§åœ¢ã®çžäŒŒãã $CD:CM=CE:CD\\/2=24:17$ ã§ãããã $AE=1\\/12$ ã§ãã. ãã£ãŠ $AE:AC=DE:BC$ ãã $BC=\\textbf{1740}$ ãåŸã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc018/editorial/116"
}
] | ãå
å¿ã $I$ ãšããäžè§åœ¢ $ABC$ ã«ãããŠ, ãããã蟺 $AB,AC$ äžã«ããç¹ $D,E$ ã以äžãã¿ãããŸãã.
$$\angle{AID}=\angle{ACB},\ \ \angle{AIE}=\angle{ABC}$$
ã$AD=12,CD=17,CE=12$ ã§ãããšã, $BC$ ã®é·ããæ±ããŠãã ãã.\
ããã ã, çãã¯æ£ã®æŽæ°ã«ãªãããšã蚌æã§ããŸã. |
OMC018 | https://onlinemathcontest.com/contests/omc018 | https://onlinemathcontest.com/contests/omc018/tasks/117 | F | OMC018(F) | 600 | 35 | 70 | [
{
"content": "ã$y\\gt 0$ ã®ãšã, çžå ã»çžä¹å¹³åã®é¢ä¿ãã $x=y=1$ ãšãªãã»ããªã, ããã¯äžé©ã§ãã. ãããã£ãŠä»¥äž $y\\lt 0$ ãšããŠãã, $y$ ã $-y$ ãšçœ®ãçŽããŠèãã. ãŸã $y$ ãæ¢çŽåæ°ã§ $c\\/d$ ãšè¡šã. ãã ã $a,b,c,d\\gt 0$ ãšãã.\\\r\nãäžåŒã«ä»£å
¥ããŠæŽçããããšã§ $cd(a^2+b^2)-ab(c^2+d^2)=4abcd$ ã§ããã, $a^2+b^2$ ãš $ab$ ã¯äºãã«çŽ ã§ããããšã«çæããã° $cd$ 㯠$ab$ ã§å²ãåãã. éã« $ab$ 㯠$cd$ ã§å²ãåãããã, çµå± $ab=cd$ ã§ãã. ããªãã¡\r\nãã$$a^2-6ab+b^2=(c^2+d^2)-2ab=(c-d)^2 $$\r\nãããã§æçæ° $t$ ã«ãã£ãŠ $c-d=at+b$ ãšããã°, æããã« $t^2\\neq 1$ ã§ãããã\r\nãã$$\\dfrac{a}{b}=\\dfrac{2t+6}{1-t^2}$$\r\nãããã, äºãã«çŽ ãªæŽæ° $m,n$ ã«ãã£ãŠ $t=\\dfrac{m-n}{m+n}$ ãšããã°, 以äžãåŸã.\r\nãã$$x=\\dfrac{a}{b}=\\dfrac{(2m+n)(m+n)}{mn}$$\r\nç¹ã«æå³èŸºã¯æ¢çŽåæ°ã§ãã. éã« $x$ ããã®ããã«è¡šãããšã, 以äžã®ããã« $y$ ããšãã°äžåŒãã¿ãã.\r\nãã$$y=\\dfrac{m(2m+n)}{n(m+n)}$$\r\nããªãã¡, 以äžã®æ¡ä»¶ã«ãããŠ, $(2m+n)(m+n)$ ã®æ倧å€ãæ±ããã°ããããšãããã.\r\nãã$$m^2+(m+n)^2=(2m+n)(m+n)-mn=10^{10}+41421^{2}$$\r\nããã㧠$N=10^{10}+41421^2$ ãšãã, $(m,m+n)=(\\sqrt{N}\\cos\\theta,\\sqrt{N}\\sin\\theta)$ ãšããã°,\r\nãã$$(2m+n)(m+n)=N\\sin\\theta(\\cos\\theta+\\sin\\theta)=\\dfrac{N}{2}(\\sin2\\theta+(1-\\cos2\\theta))\\leq\\dfrac{N}{2}(1+\\sqrt{2})$$\r\nããã« $\\delta=\\sqrt{2}-1.41421\\lt 0.4\\times10^{-5}$ ãšãããš, $N=(1+(\\sqrt{2}-1-\\delta)^2)10^{10}$ ã«çæããŠèšç®ããã°\r\nãã$$\\displaystyle\\frac{N}{2}(1+\\sqrt{2})=10^{10}\\left(\\sqrt{2}-\\delta+\\frac{1+\\sqrt{2}}{2}\\delta^2\\right)\\lt 14142100001$$\r\nãããã£ãŠ, æŽæ°å€ã§ããããšãã $(2m+n)(m+n)\\leq 14142100000$ ãåŸã.\\\r\nãéã« $(m,m+n)=(41421,10^5)$ ã®ãšãçå·ãæç«ãããã, $\\textbf{14142100000}$ ãæ±ããæ倧å€ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc018/editorial/117"
}
] | ããããã $0$ ã§ã¯ãªãæçæ° $x,y$ ã¯, $x\gt 0$ ãã€ä»¥äžãã¿ãããŸã.
$$x+\dfrac{1}{x}+y+\dfrac{1}{y}=4$$
ããã« $x$ ãäºãã«çŽ ãªæ£ã®æŽæ° $a,b$ ã«ãã£ãŠ $\displaystyle\frac{a}{b}$ ãšè¡šãããšã, $a$ ãš $b$ ã®å·®ã¯ $10^{10}+41421^2$ ã§ãã.\
ã$a$ ãšããŠããåŸãæ倧å€ãæ±ããŠãã ãã. |
OMC017 | https://onlinemathcontest.com/contests/omc017 | https://onlinemathcontest.com/contests/omc017/tasks/106 | A | OMC017(A) | 100 | 262 | 263 | [
{
"content": "ãåé²æ³ãçµç±ãã, çŽæ¥äžãã $3$ æ¡ããšã«å€æããã®ãæãç°¡åã§ããã. æ±ããçã㯠$\\textbf{47532}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc017/editorial/106"
}
] | ãäºé²æ³ã§ $100111101011010$ ãšè¡šèšãããæŽæ°ãïŒå
«é²æ³ã§è¡šèšãããã®ã解çããŠãã ããïŒ\
ããã ãïŒæé«äœã®æ°å㯠$0$ ã«ããªãã§ãã ããïŒ |
OMC017 | https://onlinemathcontest.com/contests/omc017 | https://onlinemathcontest.com/contests/omc017/tasks/107 | B | OMC017(B) | 200 | 251 | 257 | [
{
"content": "ã$B$ ã®å£ãçªãæãããšãã®ããŒã«ã®éãã¯æ£ã®æŽæ° $n$ ã«ãã£ãŠç§é $2^n {\\rm cm}$ ãšããããã, æ±ããæéã¯\r\nãã$$\\displaystyle t=\\sum_{k=0}^n \\frac{1000}{2^k}+\\frac{1000}{2^n}=1000\\left(2-\\frac{1}{2^n}\\right)+\\frac{1000}{2^n}=\\textbf{2000}(\\text{ç§})$$\r\nã§ãã. åäœã«æ³šæãã. ãªãå®éã«ã¯ $n=18$ ã§ããã, ãããå
·äœçã«æ±ããå¿
èŠã¯ç¡ã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc017/editorial/107"
}
] | ãçŽç·ç¶ã®ã³ãŒã¹ã« $3$ ç¹ $A,B,C$ ããã®é ã§äžŠãã§ãã, $A$ ãš $B$, $B$ ãš $C$ ã®éã®è·é¢ã¯ãããã $10{\rm m}$ ã§ã. ãŸã, $A$ ãš $B$ ã«ã¯ããããäžæè°ãªå£ãç«ã£ãŠããŸã. ã³ãŒã¹ãé²ãã§ããããŒã«ããããã®å£ã«åœãããšããŒã«ã¯è·³ãè¿ã, éæ¹åã«åãã£ãŠçŽåã® $2$ åã®éãã§é²ã¿ãŸã. \
ãããã§, $A$ ã®å£ã¯éåžžã«é äžãªã®ã§æ±ºããŠå£ããŸããã, $B$ ç¹ã®å£ã¯æé $5000{\rm km}$ 以äžã§ããŒã«ãåœãããšå£ããŠããŸã, ããŒã«ã¯ãã®ãŸãŸã®éãã§å£ãçªãæããŸã. \
ãç§é $1{\rm cm}$ 㧠$A$ ãã $B$ ã«åãã£ãŠæŸãããããŒã«ã, åã㊠$C$ ã«å°çããã®ã¯åºçºãã $t$ ç§åŸã§ã. $t$ ã解çããŠãã ãã.\
ããã ã, æ©æŠã空æ°æµæã«ããããŒã«ã®æžé, ãããã¯çžå¯Ÿè«çãªå¹æãªã©ã¯èããªããã®ãšããŸã. |
OMC017 | https://onlinemathcontest.com/contests/omc017 | https://onlinemathcontest.com/contests/omc017/tasks/108 | C | OMC017(C) | 300 | 130 | 173 | [
{
"content": "ã$P$ ãè¡šãåŒã $y=kx^2$ ãšã ($k\\gt 0$), $A,B,C$ ã® $x$ 座æšã $a\\lt b\\lt c$ ãšãã. ãã®ãšã, $A,B$ ã«ãããæ¥ç·ãš $P$ ã§å²ãŸããéšåã®é¢ç©ã $S_{AB}$, çŽç· $AB$ ãš $P$ ã§å²ãŸããéšåã®é¢ç©ã $T_{AB}$ ãªã©ãšããã°, æåäºå®ãšããŠ\r\nãã$$ S_{AB}=\\dfrac{1}{12}k(b-a)^3,\\ \\ T_{AB}=\\dfrac{1}{6}k(b-a)^3 $$\r\nãæç«ãã(æçŽã«ç©åãå®è¡ããã°ç¢ºèªã§ãã). ããªãã¡, ç¹ã« $2S_{AB}=T_{AB}$ ã§ãããã, 以äžãåŸã.\r\nãã$$S=S_{AC}-S_{AB}-S_{BC}=\\dfrac{1}{2}(T_{AC}-T_{AB}-T_{BC})=\\dfrac{1}{2}\\times 24=12$$\r\nããã£ãŠ, åžžã« $S=12$ ã§ãããã, æ±ããå€ã¯ $\\textbf{144}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc017/editorial/108"
}
] | ãé¢ç©ã $24$ ã§ããäžè§åœ¢ã«ã€ããŠ, $3$ é ç¹ããã¹ãŠéãæŸç©ç· $P$ ãèã, ããããã®é ç¹ã«ããã $3$ æ¥ç·ã®ãªãäžè§åœ¢ã®é¢ç©ã $S$ ãšãããŸã.\
ããã®ãšã, $S$ ãšããŠããåŸãæ倧å€ãšæå°å€ã®**ç©**㯠$M$ ãšãªããŸã. $M$ ã解çããŠãã ãã. |
OMC017 | https://onlinemathcontest.com/contests/omc017 | https://onlinemathcontest.com/contests/omc017/tasks/109 | D | OMC017(D) | 400 | 108 | 142 | [
{
"content": "ã$BC$ ã®äžç¹ã $M$ ãšã, $C$ ãã $AB$ ã«ããããåç·ã®è¶³ã $H$ ãšãã.\r\n\r\n**解ç1.**ãã¡ãã©ãŠã¹ã®å®çãã $AH=HP$ ãããã. ããã $x$ ãšããã°, äžè§åœ¢ $BCH$ ã«ãããŠ\r\nãã$$ 8x^2=(2\\sqrt{2}x)^2=(2AP)^2=BC^2=BH^2+CH^2=(\\sqrt{3}-x)^2+(x+\\sqrt{3})^2=2x^2+6$$\r\nãã $x=1$ ã§ãã. ãã®ãšã, äžè§åœ¢ $BHP$ ã«ãããŠ\r\nãã$$BP^2=BH^2+PH^2=(\\sqrt{3}-1)^2+1^2=5-2\\sqrt{3}$$\r\nãæãç«ã€ãã, ç¹ã«æ±ããå€ã¯ $\\textbf{37}$ ã§ãã.\r\n\r\n**解ç2.**ã$M$ ã«ã€ã㊠$P$ ãšå¯Ÿç§°ãªç¹ã $P^\\prime$ ãšãããš, $\\angle ABP^\\prime$ ã¯çŽè§ã§, $AB=CP=BP^\\prime$ ã§ãããã, $ABP^\\prime$ ã¯çŽè§äºç蟺äžè§åœ¢ã§ãã. ããã§ããã« $AM$ ã«ã€ã㊠$B$ ãšå¯Ÿç§°ãªç¹ã $B^\\prime$ ãšãããš, $AB^\\prime$ ãš $CP$ ã¯ãšãã« $AB$ ã«åçŽã§, ã〠$AB^\\prime=AB=CP$ ã§ãããã, $AB^\\prime CP$ ã¯å¹³è¡å蟺圢ã§ãã. ãããã£ãŠ,\r\nãã$$B^\\prime C=AP=CM=BM=B^\\prime M$$\r\nãã $B^\\prime CM$ ã¯æ£äžè§åœ¢ã§ãã, $\\angle AMB=60^{\\circ}$ ãåŸããã,\r\nãã$$\\angle ABC=180^{\\circ}-\\angle BAM-\\angle AMB=180^{\\circ}-45^{\\circ}-60^{\\circ}=75^{\\circ}$$\r\nããã®ãšã, äžè§åœ¢ $BPP^\\prime$ ã«ãããŠäžç·å®çãé©çšããããšã§, åæ§ã« $BP^2=5-2\\sqrt{3}$ ãåŸã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc017/editorial/109"
}
] | ãäžè§åœ¢ $ABC$ ã«ãããŠ, $A$ ãã察蟺ãžãããã**äžç·**ãš, $C$ ãã察蟺ãžãããã**åç·**ã®äº€ç¹ã $P$ ãšããŸã.
$$2AP=BC,\ \ AB=CP=\sqrt{3}$$
ã§ãããšã, æŽæ° $a,b,c$ ãçšããŠ, $BP^2=a+b\sqrt{c}$ ãšè¡šãããŸã. $a^2+b^2c$ ã解çããŠãã ãã.\
ããã ã, $XY$ ã§ç·å $XY$ ã®é·ããè¡šããã®ãšããŸã. |
OMC017 | https://onlinemathcontest.com/contests/omc017 | https://onlinemathcontest.com/contests/omc017/tasks/110 | E | OMC017(E) | 500 | 38 | 147 | [
{
"content": "ãçµè«ããè¿°ã¹ããš, $N$ ãå¶æ°ã®ãšã $f(N)=N^3\\/4$ ã§ãã, $N$ ãå¥æ°ã®ãšã $f(N)=(N^3-N)\\/4$ ã§ãã. ãã®ãšã, æ±ããç·å㯠$\\textbf{26364}$ ã§ãã. å¶æ°ã®ãšãæããã§ãããã, ä»¥äž $N$ ãå¥æ°ã§ããå Žåãèãã.\\\r\nããŸã, å¶æ°æ®µç®ã¯å·Šã®ããã«, å¥æ°æ®µç®ã¯å³ã®ããã«ç¹å®ã®ãã¹ã«å°ãã€ãããš, åŠäœãªãé
眮ã«ã€ããŠãåãããã¯ã¯ã¡ããã©äžã€å°ã®ã€ãããã¹ãå«ããã, ãã®å°ãæ°ããããšã§ $f(N)\\leq (N^3-N)\\/4$ ãããã.\r\n\r\n![figure 1](\\/images\\/wDJ6oHoGFHymL8NXMjkdvfXI5hKZtjjwn3XvQ346)\r\n\r\nãéã«, äœå¯Ÿè§ç·äžã® $N$ ãã¹ã®ã¿ãæ¬ ããããªå
å¡«ãåžžã«ååšãã. å
·äœçã«ã¯, $N-2$ ã®å Žåãš $3$ ã®å Žåãçµã¿åãããã°, æ®ã㯠$(n-2)\\times(n-2)\\times 2$ ãã $2$ ãã¹ãæ¬ ãããã®ãš, $2\\times 2\\times (n-3)$ ããããã $3$ ã€ãã€ã§ãããã, ããã¯é©åœã«åãããã. å®ã¯å
šäœãšããŠ, å·ŠåŽã®ãããã¯ã®ã¿ãçšããŠå¯èœã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc017/editorial/110"
}
] | ã$N\times N\times N$ ã®ãã¹ç®ç¶ãããç«æ¹äœã®ç®±ãäžã€ãš, 以äžã® $2$ çš®é¡ã®ãããã¯ãããããç¡æ°ã«ãããŸã. ããã§, ããããã®ãããã¯ã¯ $4$ ãã¹åãå ãããã®ãšããŸã.
![figure 1](\/images\/0xluEqdpCN8B3k8XAdHlPt10sWkyrJBjDgyY08RF)
ãsiosioåã¯ãã¹ç®ã«æ²¿ã£ãŠç®±ã«ãããã¯ãåºæ¥ãã ãããããå
¥ãããã§ã. ããã§, äžæ¹ã®ãããã¯ã®ã¿ãçšããŠãæ§ããŸãã. siosioåãçšãããããã¯ã®åæ°ãšããŠããåŸãæ倧å€ã $f(N)$ ãšãããšã,
$$f(2)+f(3)+\cdots+f(25)$$
ã解çããŠãã ãã. |
OMC017 | https://onlinemathcontest.com/contests/omc017 | https://onlinemathcontest.com/contests/omc017/tasks/111 | F | OMC017(F) | 600 | 39 | 86 | [
{
"content": "ãåé¡ã¯æ¬¡ã®ããã«æžãæããããïŒ\r\n\r\n- ä»»æã® $n$ ã«ã€ã㊠$\\varphi(a_n)=a_{n-1}$ ãæç«ããç¡éæ°å $\\\\{a_n\\\\}$ ãååšããåé
$a_1$ ããã¹ãŠæ±ãã.\r\n\r\n\r\n ã$\\varphi$ ã®è¿ãåŸãå€ã¯ $1$ ãŸãã¯å¶æ°ã§ããããšã«çæãã. æããã«ãã¹ãŠã® $2$ ã¹ãã¯æ¡ä»¶ãã¿ãã. $a_n$ ã $2$ ã¹ãã§ãããšã, ãã以åã®é
ã¯ãã¹ãŠ $2$ ã¹ãã§ãããã, 以äžãã $x$ ã«ã€ã㊠$a_x$ ã $2$ ã¹ãã§ãªããšãã.\\\r\nããã®ãšã, $n\\geq x$ ã«ãããŠ, $a_n$ ã¯åžžã« $2$ ã¹ãã§ãªã, ããã« $a_n$ ãå²ãåãæ倧㮠$2$ ã¹ãã¯(åºçŸ©)å調æžå°ã§ãã. ãããã£ãŠ, ãã $N$ ãååšããŠ, $n\\geq N$ ã«ãã㊠$a_n$ ãå²ãåãæ倧㮠$2$ ã¹ãã¯äžå®ã§ãã. ããã $2^a$ ãšãã(äžã®æ³šæãã $a\\geq 1$ ã§ãã). ãã®ãšã, $a_{N+1}$ ãå²ãåãæ倧㮠$2$ ã¹ãã $2^a$ ã§ããããšã«çæããã°, 以äžã®ããããã§ãã.\r\n\r\n- ããæ£æŽæ° $b$ ãååšããŠ, $a_N=2^a 3^b$\r\n- $p\\equiv 3\\pmod 4$ ãªãçŽ æ° $p\\neq 3$ ãååšããŠ, $a_N=2^a p$ \r\n\r\nãããã§åŸè
ã®å Žå, æ°å㯠$2^a p,2^a(2p+1),2^a(4p+3),\\cdots$ ãšç¶ãã»ããªã, ããã« $p,2p+1,4p+3,\\cdots$ ã¯ãã¹ãŠçŽ æ°ã§ãã. ããã, $2^{p-1}p+2^{p-1}-1$ 㯠$p$ ã§å²ãåãããã, ããã¯äžé©ã§ãã.\r\n\r\nãåè
ã®å Žå, æ°åã«ç»å Žããæ°ã¯ãã¹ãŠ $2,3$ 以å€ã®çŽ å æ°ãæããªã. éã«, æ£æŽæ° $a,b$ ã«ãã£ãŠ $a_1=2^a 3^b$ ã®ãšã, $a_n=2^a 3^{b+n-1}$ ãšããã°æ¡ä»¶ãã¿ãã. 以äžã®æ¡ä»¶ãã¿ããæ°ã $m\\leq 300$ ã®ç¯å²ã§æ±ãããš,\r\nãã$$1,2^1,2^2,\\cdots,2^8,2^13^1,2^23^1,\\cdots,2^63^1,2^13^2,2^23^2,\\cdots,2^53^2,2^13^3,2^23^3,2^33^3,2^13^4$$\r\nã® $24$ åã§ãã, ãããã®ç·ç©ã¯ $M=2^{79}3^{29}$ ã§ãããã, æ±ããå€ã¯ $\\textbf{2400}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc017/editorial/111"
}
] | ãæ£ã®æŽæ° $n$ ã«å¯ŸãïŒ$n$ ãšäºãã«çŽ 㪠$n$ 以äžã®æ£ã®æŽæ°ã®åæ°ã $\varphi(n)$ ã§è¡šããŸãïŒä»»æã®æ£ã®æŽæ° $k$ ã«å¯ŸããŠ, ããæ£ã®æŽæ° $n_k$ ãååšããŠä»¥äžãæç«ãããããªïŒæ£ã®æŽæ°ã®å®æ° $m\leq 300$ ãèããŸã.
$$ \underbrace{\varphi( \varphi( \dots \varphi}_{kå}(n_k) \dots ))=m $$
ãã®ãã㪠$m$ ãã¹ãŠã«ã€ããŠïŒç·ç©ã¯ $M$ ãšãªããŸãïŒ$M$ ããã€æ£ã®çŽæ°ã®åæ°ãæ±ããŠãã ããïŒ |
OMC016 | https://onlinemathcontest.com/contests/omc016 | https://onlinemathcontest.com/contests/omc016/tasks/100 | A | OMC016(A) | 100 | 179 | 245 | [
{
"content": "ãäºãã«çŽ ãªæ£æŽæ° $m\\gt n$ ãçšã㊠$a=m\\/n$ ãšè¡šãããšãã. ãã®ãšã, æ¡ä»¶ãã $1000m\\/n$ ãš $1000n\\/m$ ã¯ãšãã«æŽæ°ã§ãã, $100m\\/n$ ãš $100n\\/m$ ã¯ãšãã«æŽæ°ã§ãªã.\r\nãã㧠$m$ ãš $n$ ãäºãã«çŽ ã§ããããšãã, $m,n$ ã¯ãšãã« $1000$ ã®çŽæ°ã§ãã, $100$ ã®çŽæ°ã§ãªã.\\\r\nããããã£ãŠ $(m,n)=(125,8)$ ãšãªãã»ããªã, æ±ããå€ã¯ $125+8=\\textbf{133}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc016/editorial/100"
}
] | ã$a$ ãš $\displaystyle \frac{1}{a}$ ãããããå°æ°ç¬¬ $3$ äœãŸã§ã®æéå°æ°ãšããŠè¡šããããã㪠$1$ 以äžã®æçæ° $a$ ã®ç·åãæ±ããŠãã ãã.\
ããã ã, çãã¯æ倧å
¬çŽæ°ã $1$ ã§ãããããªæ£æŽæ° $b,c$ ãçšã㊠$\displaystyle \frac{b}{c}$ ãšè¡šãããã®ã§, $b+c$ ã解çããŠãã ãã.\
ãããã§, $N$ ãå°æ°ç¬¬ $n$ äœãŸã§ã®æéå°æ°ã§ãããšã¯, $N$ ãåé²æ°ã®å°æ°ãšããŠè¡šãããšãå°æ°ç¬¬ $n$ äœã $0$ ã§ãªã, ãã€ä»»æã®æ£æŽæ° $k$ ã«ã€ããŠå°æ°ç¬¬ $n+k$ äœã $0$ ã§ããããšãæããŸã. |
OMC016 | https://onlinemathcontest.com/contests/omc016 | https://onlinemathcontest.com/contests/omc016/tasks/101 | B | OMC016(B) | 200 | 136 | 234 | [
{
"content": "ãæççµè·¯ã蟿ãã°ã¡ããã© $8$ åºéæ©ãããšã«ãªããã, toriiåã¯ã¡ããã© $1$ åºéã ãå·ŠãŸãã¯äžã«åããããšãåããïŒå¯Ÿç§°æ§ãã, ãããå·Šã§ããå Žåã®ã¿èããã°ååã§ãã. ããªãã¡, $\\rightarrow$ ã« $5$ åïŒ$\\leftarrow$ ã« $1$åïŒ$\\uparrow$ ã« $4$ ååããããšã«ãªããã, ãããã®ç¢å°ãäžåã«äžŠã¹ã䞊ã¹æ¹ã®ç·æ°ãèããã°ãããïŒä»¥äžã®ãããªå Žåãé€å€ããªããã°ãªããªãããšã«çæãã.\r\n\r\n- $\\rightarrow$ ãš $\\leftarrow$ ã®ã¿ãåãåºãããšãïŒãã®é çªã $\\leftarrow\\rightarrow\\rightarrow\\rightarrow\\rightarrow\\rightarrow$ ãŸã㯠$\\rightarrow\\rightarrow\\rightarrow\\rightarrow\\rightarrow\\leftarrow$ ãšãªããã®\r\n- $8$ åºéæ©ãããšããã§ã« $B$ ã«ãããããªäžŠã¹æ¹ïŒããªãã¡ïŒå $8$ ã€ã®ç¢å°ã $\\rightarrow4$ åïŒ$\\uparrow4$ åãšãªããã®\r\n\r\nããããã¯äºé
ä¿æ°ãçšããŠå®¹æã«èšç®ã§ãã. å
·äœçã«ã¯, $M=2\\times(4\\times {}\\_{10}\\mathrm{C}\\_6-{}\\_{8}\\mathrm{C}\\_4)=\\textbf{1540}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc016/editorial/101"
}
] | ãäžå³ã®ãããªç¢ç€ã®ç®ç¶ã®éããããŸã. å³ã§ç€ºããã40åºéãé€ããŠéã¯ååšããŸãã. \
ãtoriiåã¯å°ç¹ $A$ ããå°ç¹ $B$ ãŸã§æ©ããŠè¡ãããšã«ãªããŸããã, éäžã§è¿·åã«ãªã£ãŠããŸã, åã㊠$B$ å°ç¹ã«å°éãããŸã§ã¡ããã© $10$ åºéæ©ããŸãã. toriiåãæ©ããçµè·¯ãšããŠèãããããã®ã $M$ éãã§ãããšã, $M$ ã解çããŠãã ãã.\
ããã ã, toriiåã¯çŽåã«éã£ãåºéãéåãã«åŒãè¿ããŠãè¯ãã§ãã, åºéã®äžéã§ã¯åŒãè¿ããŸãã.
![figure 1](\/images\/jSkQwraspwFBmk5FF9G8wXWHp68TSWjsjmOBqUYd) |
OMC016 | https://onlinemathcontest.com/contests/omc016 | https://onlinemathcontest.com/contests/omc016/tasks/102 | C | OMC016(C) | 300 | 117 | 138 | [
{
"content": "ã$\\angle ABC=\\angle FDE=2\\angle FBD$ ãã, $BF$ 㯠$\\angle ABC$ ãäºçåãã. åæ§ã« $CF$ 㯠$\\angle ACB$ ãäºçåãããã, $F$ ã¯äžè§åœ¢ $ABC$ ã®å
å¿ã§ããããšãããã. $AF$ ãš $BC$ ã®äº€ç¹ã $G$ ãšãããš, äœåŒŠå®çãã\r\nãã$$ \\dfrac{AB^2+AG^2-BG^2}{2\\times AB\\times AG}=\\dfrac{AC^2+AG^2-CG^2}{2\\times AC\\times AG} $$\r\nãããã«è§ã®äºçåç·å®çãã $BG:GC=1:2$ ã〠$AF:FG=AB:BG$ ã§ãããã, 以äžãé£ç«ãããŠè§£ãããšã§ $BC=9\\/2$ ãåŸã. ããªãã¡, æ±ããå€ã¯ $9+2=\\textbf{11}$ ã§ãã.\\\r\nããªãäœåŒŠå®çã®ä»£ããã«, $CG$ ã®äžç¹ã $M$ ãšã, äžè§åœ¢ $ABM$ ããã³ $ACG$ ã«ãããŠããããäžç·å®çãé©çšããããšã«ãã£ãŠã解ãããšãã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc016/editorial/102"
},
{
"content": "$F$ ãå
å¿ãŸã§ã®éšåã¯å
¬åŒè§£èª¬ãšåæ§ã§ã. 以äžïŒå
¬åŒè§£èª¬ã§ã¯èšç®ãé¢åã§ããïŒ[ãã®æ§å³](https:\\/\\/twitter.com\\/Geometry_bot_\\/status\\/1581546433110429696?s=20&t=M1-lOs8gtrGzAF1_HEqFGg) ã䜿ãããšã§èšç®ã楜ã«ãªããŸã. \r\n\r\n---\r\näžè§åœ¢ $ABC$ ã®å€æ¥åãš $AF$ ã®äº€ç¹ã $M(\\neq A)$ ãšãããšïŒ[ãã®æ§å³](https:\\/\\/twitter.com\\/Geometry_bot_\\/status\\/1581546433110429696?s=20&t=M1-lOs8gtrGzAF1_HEqFGg) ãã\r\n$ABÃAC=AM^2-BM^2$ ã§ããïŒããã« $AM-BM=AF=\\sqrt 6$ïŒ$ABÃAC=18$ ã代å
¥ããããšã§ $AM=2\\sqrt 6ïŒBM=\\sqrt 6$ ãšãªã. ãããã£ãŠïŒPtolemy ã®å®çããïŒ$\\sqrt 6(AB+AC)=2\\sqrt 6\\cdot BC$ ãã $BC=\\dfrac{9}{2}$ ãšãªãïŒãããã£ãŠè§£çãã¹ãå€ã¯ $\\textbf{11}$.",
"text": "ãŠãŒã¶ãŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc016/editorial/102/175"
}
] | ãäžè§åœ¢ $ABC$ ã«ãããŠ, 蟺 $BC$ äžã®ç¹ $D,E$ ã«ã€ã㊠$B,D,E,C$ ã¯ãã®é ã«äžŠãã§ãã, $D$ ãéã $AB$ ã«å¹³è¡ãªçŽç·ãš $E$ ãéã $AC$ ã«å¹³è¡ãªçŽç·ã®äº€ç¹ã $F$ ãšããŸã. 以äžãæç«ãããšã, $BC$ ã®é·ããæ±ããŠãã ãã.
$$BD=DF,\ CE=EF,\ AB=3,\ AC=6,\ AF=\sqrt{6}$$
ããã ã, çãã¯æ倧å
¬çŽæ°ã $1$ ã§ãããããªæ£æŽæ° $a,b$ ãçšã㊠$\displaystyle \frac{a}{b}$ ãšè¡šããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC016 | https://onlinemathcontest.com/contests/omc016 | https://onlinemathcontest.com/contests/omc016/tasks/103 | D | OMC016(D) | 400 | 108 | 134 | [
{
"content": "ã$f$ ã®æ¬¡æ°ã $d$ ãšãããš, æ¡ä»¶ããæããã« $d\\geq 4$ ã§ãã, ãã®ãšãäžåŒã®äž¡èŸºã®æ¬¡æ°ãæ¯èŒããããšã§\r\nãã$$d+(d-1)+(d-2)+(d-3)=10$$\r\nãã $d=4$ ãåŸã. ããã«, $4$ 次ã®ä¿æ°ã $a\\gt 0$ ãšãããš, æé«æ¬¡ã®ä¿æ°ãæ¯èŒããŠ\r\nãã$$a\\times 4a\\times 12a\\times 24a=1152$$\r\nãã $a=1$ ãåŸã.\\\r\nã$f$ ã $x+4$ ã§å²ãåããªããšã, $f^{\\prime}(x)f^{\\prime\\prime}(x)f^{\\prime\\prime\\prime}(x)$ 㯠$x+4$ 㧠$6$ åå²ãåãããã, 次æ°ãèæ
®ããã° $f^{\\prime}(x)=4(x+4)^3$ ãšãªãã»ããªã. ããã, ãã®ãšã $f$ 㯠$x+4$ ã§å²ãåããããäžé©.\\\r\nããããã£ãŠ, ä»¥äž $f$ 㯠$x+4$ ã§å²ãåãããšããŠãã. ãã®ãšã, $f$ 㯠$x+4$ ã§ã¡ããã© $3$ åå²ãåããããšãããããã, $f(x)=(x+4)^3(x+m)$ ãšãããš, $f^{\\prime}(x)=(x+4)^2(4x+3m+4)$ ãã $m=0$ ãå¿
èŠã§ãã.\\\r\nãéã«ããã¯äžåŒãã¿ãããã, æ±ããå€ã¯ $1\\times12\\times48\\times64=\\textbf{36864}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc016/editorial/103"
}
] | ãå®æ°ãä¿æ°ãšã, æé«æ¬¡ã®ä¿æ°ã¯æ£ã§ããå€é
åŒ $f(x)$ ã, 以äžãã¿ãããŸã.
$$f(x)f^{\prime}(x)f^{\prime\prime}(x)f^{\prime\prime\prime}(x)=1152x(x+1)(x+2)(x+3)(x+4)^6$$
ãã®ãããªãã®ããã¹ãŠæ±ã, ããããã«ã€ã㊠$0$ ã§ãªãä¿æ°ã®ç·ç©ã®ç·åãæ±ããŠãã ãã. \
ãäŸãã°, $f(x)=2x^2-3,3x^3+5x$ ã§ãããšã, æ±ããå€ã¯ $2\times(-3) + 3\times 5=9$ ã§ã. |
OMC016 | https://onlinemathcontest.com/contests/omc016 | https://onlinemathcontest.com/contests/omc016/tasks/104 | E | OMC016(E) | 500 | 52 | 60 | [
{
"content": "ãé»æ¿ã«çŸããæ° $x$ ããããã $1\\/(x-1)$ ã«çœ®ãæãããšïŒåãã«ã¯ $1\\/(k^2-1)\\ (k=2,3,...,10000)$ ãæžãããŠããïŒåé¡æã®æäœã«ãã£ãŠ $1\\/(a-1)$ ãš $1\\/(b-1)$ ãæ¶ããŠæžã足ãæ°ã¯\r\nãã$$\\displaystyle \\frac{1}{\\frac{ab-1}{a+b-2}-1}=\\frac{a+b-2}{ab-a-b+1}=\\frac{1}{a-1}+\\frac{1}{b-1}$$\r\nã§ãããã, æäœã®æ¹æ³ã«ãããé»æ¿ã«æžãããæ°ã®ç·åã¯äžå®ã§ãã, ç¹ã«æåŸã«æ®ãæ°ã$S$ãšãããš\r\nãã$$\\begin{aligned}\\frac{1}{S-1}&=\\sum_{k=2}^{10000}\\frac{1}{k^2-1}\\\\\\\\\r\nãã&=\\sum_{k=2}^{10000}\\frac{1}{2}\\left(\\frac{1}{k-1}+\\frac{1}{k+1}\\right)\\\\\\\\\r\nãã&=\\frac{1}{2} \\left(\\left(\\frac{1}{1}-\\frac{1}{3}\\right)+\\left(\\frac{1}{2}-\\frac{1}{4}\\right)+\\left(\\frac{1}{3}-\\frac{1}{5}\\right)+\\cdots+\\left(\\frac{1}{9998}-\\frac{1}{10000}\\right)+\\left(\\frac{1}{9999}-\\frac{1}{10001}\\right)\\right)\\\\\\\\\r\nãã&=\\frac{1}{2}\\left(\\frac{1}{1}+\\frac{1}{2}-\\frac{1}{10000}-\\frac{1}{10001}\\right)=\\frac{149994999}{200020000}\\end{aligned}$$\r\nããã£ãŠä»¥äžãåŸã.\r\nãã$$S=\\displaystyle\\frac{200020000}{149994999}+1=\\frac{350014999}{149994999}$$\r\nããã¯æ¢çŽåæ°ã§ãããã, æ±ããå€ã¯ $350014999+149994999=\\textbf{500009998}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc016/editorial/104"
}
] | ãé»æ¿ã« $9999$ åã®æŽæ° $2^2,3^2,4^2,...,10000^{2}$ ãããããäžã€ãã€æžãããŠããŸã. ããã§, é»æ¿ã«æžãããŠããæ°ãã¡ããã© $1$ ã€ã«ãªããŸã§, 次ã®æäœãç¹°ãè¿ãè¡ããšã, æåŸã«é»æ¿ã«æ®ãæ°ãšããŠããåŸããã®ã®ç·åãæ±ããŠãã ãã.
- æäœïŒé»æ¿ãã $2$ ã€ã®æ° $a,b$ ãéžãã§æ¶ã, æ°ãã« $\displaystyle \frac{ab-1}{a+b-2}$ ãæžã足ãïŒ
ããã ã, çãã¯æ倧å
¬çŽæ°ã $1$ ã§ãããããªæ£æŽæ° $a,b$ ãçšã㊠$\displaystyle \frac{a}{b}$ ãšè¡šããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC016 | https://onlinemathcontest.com/contests/omc016 | https://onlinemathcontest.com/contests/omc016/tasks/105 | F | OMC016(F) | 600 | 15 | 44 | [
{
"content": "ãåé¡æã«ãããŠ, ç®æ¡æžãã§ç€ºããã $3$ æ¡ä»¶ãããããæ¡ä»¶ $1$, æ¡ä»¶ $2$, æ¡ä»¶ $3$ ãšåŒã¶.\\\r\nããŸãå·Šäžã®ãã¹ã« $1$ ãå
¥ããå Žåã®ã¿ãèã, äžè¬ã« $8$ ã $n$ ãšãããšã, é¡æãã¿ããæ°ã®æžã蟌ã¿æ¹ã $2^{n-1}-n$ éãã§ããããšãæ°åŠçåž°çŽæ³ã«ãã£ãŠç€ºã. $n=1,2$ ã®ãšãæããã« $0$ éãã§ãã.\\\r\nããã $k\\geq 2$ ã«ã€ã㊠$n\\leq k$ ã§æç«ãä»®å®ãã. $xy$ å¹³é¢äžã«ãããŠ, $0\\leq x\\leq k$ ã〠$-1\\leq y\\leq 0$ ãªãæ Œåç¹å
šäœãé ç¹éåãšã, è·é¢ã $1$ ãŸã㯠$\\sqrt{2}$ ã§ãã $2$ ç¹ã®éã«ãã¹ãŠèŸºã匵ã£ãã°ã©ãã $V$ ãšãã. ãã®ã°ã©ãã«ãããåç¹ $(0,0)$ ãå§ç¹ãšããããã«ãã³è·¯ã¯, æ¡ä»¶ $1$ ãã¿ããæ°åã®æžã蟌ã¿æ¹ãšäžå¯Ÿäžã«å¯Ÿå¿ãã. ãããã£ãŠ, ãã®ãããªããã«ãã³è·¯ã§ãã£ãŠ, æ¡ä»¶ $2$ ããã³æ¡ä»¶ $3$ ãã¿ãããã®ã®æ°ãæ°ããã°ãã\\\r\nã$2$ çªç®ã®é ç¹ã $(0,-1)$ ã§ãããšã, 次ã®é ç¹ã¯ $(1,-1)$ ã§ãªããã°ãªãã, ãã®ãšã $n=k$ ã®å Žåã«åž°çããã. $2$ çªç®ã®é ç¹ã $(1,0)$ ãŸã㯠$(1,-1)$ ã§ãããšã, $x=k-1$ ãªãç¹ã«å°éãããŸã§ã¯ $x$ 座æšã $1$ ãã€å¢ããç¶ãããããªä»»æã®çµè·¯ããšã, æ®ãã®é ç¹ã«ã€ããŠã¯æ¡ä»¶ $1$ ããã³ $3$ ãã¿ããããã«ãã³è·¯ãäžæã«å®ãŸã. ããã§, æ¡ä»¶ $2$ ãã¿ãããªããã®ãã¡ããã© $1$ éãååšããã®ã§, ãããé€å€ãã. 以äžãã, æ±ããããã«ãã³è·¯ã®æ°ã¯\r\nãã$$(2^{k-1}-k)+(2^{k-1}-1)=2^k-(k+1)$$\r\néãã§ãããã, $n=k+1$ ã§ãæç«ãã.\\\r\nãåæ§ã«ããŠ, $(0,0)$ ãå§ç¹ãšã, ãã€æ¡ä»¶ $2$ ãç¡èŠãããã®ã¯ $2^{n-1}$ éãããããšãããã.\\\r\nã以äž, ã°ã©ã $V$ ãçšããè¡šçŸãåŒãç¶ãçšãã. ãã®ãšã, 察称æ§ãã $m=1,2,3$ ã«ã€ã㊠$(m,0)$ ãå§ç¹ãšãããã®ãæ°ããã°ååã§ãã. $0\\leq x\\lt m$, $m\\lt x\\leq 7$ ãªãé ç¹å
šäœããããã**å·Šé å**, **å³é å**ãšåŒã¶.\\\r\nããŸãå·Šé åã蟿ããšã, ãã®ç¯å²ã§ã¯æ¡ä»¶ $2$ ãç¡èŠããã°äžãšåæ§ã« $2^{m-1}$ éãã§ãã, ç¹ã«æ¡ä»¶ $2$ ãã¿ãããªããã®ã¯ $1$ éãã§ãã. ç¶ããŠ, $(m,-1)$ ãã $(m+1,0)$ ãšé²ãå Žå, æ®ãã¯äžãšåæ§ã« $2^{5-m}$ éãã§ãã. $(m+1,-1)$ ãšé²ãå Žåã¯, æ¡ä»¶ $2$ ãç¡èŠããã° $2^{6-m}$ éãã§ãã, ç¹ã«æ¡ä»¶ $2$ ãã¿ãããªããã®ã¯ $7-m$ éãã§ãã. 以äžãã, ãŸãå·Šé åãéã, ãã€ãã¹ãŠã®æ¡ä»¶ãã¿ãããã®ã®åæ°ã¯, 以äžã§äžãããã.\r\nãã$$2^{m-1}\\times(2^{5-m}+2^{6-m})-1\\times(7-m)=41+m$$\r\nãåæ§ã«, å³é åãå
ã«éãå Žåã $48-m$ éãã ã, $m=1$ ã®å Žåã®ã¿ $31$ éãã§ããããšã«çæãã.\\\r\nã以äžãã, æ±ããå Žåã®æ°ã¯ $M=4\\times(120+73+2\\times89)=\\textbf{1484}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc016/editorial/105"
}
] | ã$2\times 8$ ã®ãã¹ç®ã®åãã¹ã«, $1$ ä»¥äž $16$ 以äžã®æŽæ°ããããã $1$ ã€ãã€, 以äžã®æ¡ä»¶ãã¿ããããã«éè€ãªãæžã蟌ã¿ãŸã.
- $1$ ä»¥äž $15$ 以äžã®ä»»æã®æŽæ° $k$ ã«ã€ããŠ, ãã¹ $k$ ãšãã¹ $k+1$ ã¯é ç¹ãå
±æãã.
- $1$ ä»¥äž $15$ 以äžã®ããæŽæ° $l$ ãååšã, ãã¹ $l$ ãšãã¹ $l+1$ ã¯é ç¹ã®ã¿ãå
±æãã.
- $1$ ä»¥äž $14$ 以äžã®ä»»æã®æŽæ° $m$ ã«ã€ããŠ, ãã¹ $m$ ãšãã¹ $m+2$ ã¯èŸºãå
±æããªã.
ããã®ãšã, æ°ã®æžã蟌ã¿æ¹ã¯ $M$ éããããŸã. $M$ ã解çããŠãã ãã.
ããã ã, ãã㧠$X$ ã®å
¥ã£ããã¹ããã¹ $X$ ãšåŒã³, æ°åãæžã蟌ãåãã¯èãã, å転ãããè£è¿ãããããŠäžèŽããæžã蟌ã¿æ¹ãç°ãªããã®ãšããŠèãããã®ãšããŸã. |
OMC015 | https://onlinemathcontest.com/contests/omc015 | https://onlinemathcontest.com/contests/omc015/tasks/94 | A | OMC015(A) | 100 | 252 | 252 | [
{
"content": "ã2人ã®å¹Žéœ¢å·®ã¯ $3$ æ³ã§äžå®ã§ããããšã«çæããã°, æ¡ä»¶ãã¿ããã®ã¯ $C$ ããã $3$ æ³, $Y$ ããã $6$ æ³ã®ãšãã§ãã, ãã㯠$\\textbf{12}$ 幎åã§ãã.\\\r\nããªã, æ¹çšåŒ $2(15-M)=18-M$ ã解ããŠããã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc015/editorial/94"
}
] | ãã㟠$C$ ãã㯠$15$ æ³, $Y$ ãã㯠$18$ æ³ã§ã. $C$ ããã®å¹Žéœ¢ã $Y$ ããã®å¹Žéœ¢ã®ååã ã£ãã®ã¯ $M$ 幎åã§ã.\
ãäºäººã®èªçæ¥ãåãã§ãããšã, $M$ ãšããŠé©ããæ£æŽæ°ã解çããŠãã ãã. |
OMC015 | https://onlinemathcontest.com/contests/omc015 | https://onlinemathcontest.com/contests/omc015/tasks/95 | B | OMC015(B) | 200 | 204 | 236 | [
{
"content": "**解ç1.**ã$3$ æ¬ã®å¯Ÿè§ç·ãäºãã«ç«¯ç¹ä»¥å€ã§äº€ç¹ãæã¡, ã〠$1$ ç¹ã§äº€ãããªãããšãå¿
èŠååæ¡ä»¶ã§ãã. ããã§, åè
ã®æ¡ä»¶ã®ã¿ãã¿ããéžã³æ¹ã¯, æ£å
«è§åœ¢ã®é ç¹ãã $6$ ã€ãéžã¶æ¹æ³ $28$ éããšäžå¯Ÿäžã«å¯Ÿå¿ãã. ããã«, æ£å
«è§åœ¢å
㧠$3$ æ¬ä»¥äžã®å¯Ÿè§ç·ã亀ããåŸãç¹ã¯ $9$ åãã, ãã®ãã¡äžå¿ã®ã¿ $4$ æ¬ã®å¯Ÿè§ç·ãéããã, åè
ãã¿ããåŸè
ãã¿ãããªããã®ã¯ $12$ éãã§ãã. 以äžãã, æ±ããå Žåã®æ°ã¯ $\\textbf{16}$ éãã§ãã.\r\n\r\n**解ç2.**ã$3$ æ¬ã®å¯Ÿè§ç·ãçŽçã $7$ ã€ã«åãã€ãšã, äžå¿ã«ã¯å¿
ãäžè§åœ¢ã®é åãçãŸãã. éã«å¯Ÿè§ç·ã®ãã¹ãŠæžã蟌ãŸããæ£å
«è§åœ¢ã«ãããŠ, é ç¹ãæ£å
«è§åœ¢ãšå
±æããªããããªå°äžè§åœ¢ãããããã, æ¡ä»¶ãã¿ãã察è§ç· $3$ æ¬ã®éžã³æ¹ã埩å
ã§ãã. ãã£ãŠ, ãã®ãããªå°äžè§åœ¢ã®æ°ãæ°ããã°ãã, ãã㯠$\\textbf{16}$ åã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc015/editorial/95"
}
] | ãæ£å
«è§åœ¢ã®çŽçããããŸã. $3$ æ¬ã®å¯Ÿè§ç·ã®éžã³æ¹ã§ãã£ãŠ, ãããã«æ²¿ã£ãŠçŽçãåããš $7$ æã«åããããããªãã®ã¯ $M$ éããããŸã.\
ã$M$ ã解çããŠãã ãã. ãã ã, $8$ ã€ã®é ç¹ã¯åºå¥ãããã®ãšããŸã. |
OMC015 | https://onlinemathcontest.com/contests/omc015 | https://onlinemathcontest.com/contests/omc015/tasks/96 | C | OMC015(C) | 300 | 37 | 85 | [
{
"content": "ãç¹ $A$ ãäžå¿ãšããŠç¹ $D,E$ ãéãå, ç¹ $B$ ãäžå¿ãšããŠç¹ $D$ ãéãå, ç¹ $C$ ãäžå¿ãšããŠç¹ $E$ ãéãåãããããèãããš, $F$ ã¯ããã $3$ åã®æ ¹å¿ã§ãããã, 以äžã®çåŒãæç«ããããšãããã.\r\n$$BP^2-BD^2=BF^2-BD^2-FP^2=CF^2-CE^2-FP^2=CP^2-CE^2$$\r\næ¡ä»¶ãçšããŠããã解ãããšã§ $BP=\\sqrt{\\dfrac{49}{8}}$ ãåŸããã, ($a,b$ ã®ãšãæ¹ã«äŸãã)æ±ããå€ã¯ $\\textbf{392}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc015/editorial/96"
}
] | ã$BC=5\sqrt{2}$ ãªãäžè§åœ¢ $ABC$ ã«ãããŠ, å
éšã®ç¹ $D,E$ ããšããš
$$AD=AE, \quad BD=3,\quad CE=2\sqrt{6},\quad DE=3$$
ãæãç«ã¡ãŸãã. $D$ ãéã $AB$ ã«åçŽãªçŽç·ãš $E$ ãéã $AC$ ã«åçŽãªçŽç·ã®äº€ç¹ã $F$ ãšã, $F$ ãã $BC$ ã«ããããåç·ã®è¶³ã $P$ ãšãããšã, $BP$ ã®é·ã㯠$ab$ ãš $c$ ã®æ倧å
¬çŽæ°ã $1$ ã§ãããããªæ£ã®æŽæ° $a,b,c$ ãçšã㊠$\displaystyle a\sqrt{\frac{b}{c}}$ ãšè¡šãããŸã. $a^{2} bc$ ã解çããŠãã ãã. |
OMC015 | https://onlinemathcontest.com/contests/omc015 | https://onlinemathcontest.com/contests/omc015/tasks/97 | D | OMC015(D) | 400 | 20 | 100 | [
{
"content": "ãäžåŒãæå°å€ãåããšã, $a_2,\\cdots,a_{2020}$ ã $0$ ä»¥äž $1$ 以äžã§ããããšã¯æããã§ãã. ãã®ãšã, $xy$ å¹³é¢äžã«ãããŠ, 以äžã®ç¹ãé ã«ç¹ãã æãç·ãèãããš, äžåŒã¯ããå
šäœã®é·ãã«çããïŒ\r\n$$(0,0),(1,1-a_2),(2-a_3,1),(2,2-a_4),(3-a_5,2),\\cdots,(1010,1010-a_{2020}),(1011,1010)$$\r\nãã£ãŠ, æããã«ãããäžçŽç·ãšãªãå Žåã®ã¿ãæå°å€ããšã, ãã®ãšã $a_{1000}=500\\/1011$ ãšèšç®ã§ãããã, æ±ããå€ã¯ $\\textbf{505500}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc015/editorial/97"
}
] | ãå®æ°ãããªãæ°å $a_{1} ,a_{2} ,\ldots,a_{2021}$ 㯠$a_{1} =1, a_{2021} =2$ ãæºãããšããŸã.
$$\displaystyle \sum_{k=1}^{2020} \sqrt{a_{k}^{2}+(a_{k+1}-1)^{2}}$$
ãã®ãšã, äžåŒã«ã¯æå°å€ãååšããããšã蚌æã§ããŸã. äžåŒãæå°å€ãåããšã, $a_{1000}$ ãšããŠããåŸãå€ã®ç·åãæ±ããŠãã ãã. ãã ã, æ±ããç·åã¯æ倧å
¬çŽæ°ã $1$ ã§ãããããªæ£æŽæ° $a,b$ ãçšã㊠$\displaystyle \frac{a}{b}$ ãšè¡šãããã®ã§, $ab$ ã解çããŠãã ãã. |
OMC015 | https://onlinemathcontest.com/contests/omc015 | https://onlinemathcontest.com/contests/omc015/tasks/98 | E | OMC015(E) | 500 | 10 | 49 | [
{
"content": "ãäŸãã° $\\\\lbrace 2,3,5,1,1,4\\rbrace$ ã $0011100000101111$ ãšããèŠé ã§, æ°åããã€ããªåã«å€æãã. ãã®ãšã, æäœã¯ãé£ãåã $0$ ãš $1$ ãå
¥ãæ¿ãã(䞡端ãé€ã)ããšè¡šçŸã§ãã. æäœãçµäºããã®ã¯ $0$ ããã¹ãŠå·ŠåŽã«, $1$ ããã¹ãŠå³åŽã«å¯ã£ãç¶æ
ã§ãããã, $M$ ã¯åæã®ãã€ããªåã®è»¢åæ°ã«çãã, ãã㯠$\\textbf{376}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc015/editorial/98"
}
] | ãæ£ã®æŽæ°ãããªãæéå $X$ ããããŸã. $X$ ã«å¯ŸããŠ, 以äžã®æé ãããªãæäœãç¹°ãè¿ãè¡ããŸã.
- ãŸã, é£ãåã $2$ æ°ãéžæãã. ãã ã, 䞡端ã«äœçœ®ããæ°ãå«ãã§ã¯ãªããªã.
- é£ãåã $2$ æ°ããšãã« $2$ 以äžã®ãšã, éžæãã $2$ æ°ããããã $1$ æžãã, éã« $1$ ã $2$ ã€æ¿å
¥ãã.
- é£ãåã $2$ æ°ããšãã« $1$ ã®ãšã, ãããã®äž¡é£ã«äœçœ®ãã $2$ æ°ããããã $1$ å¢ãã, éžæãã $2$ æ°ãåé€ãã.
- é£ãåã $2$ æ°ã®äžæ¹ã®ã¿ã $1$ ã®ãšã, $1$ ã§ãªãæ¹ã $1$ æžãã, $1$ ã§ããæ¹ã«é£ãåã£ãŠãããã€éžæãããŠããªãæ°ã $1$ å¢ãã.
ãäŸãã°, 以äžã®ããã«æäœãé²ã¿ãŸãïŒ
$$\lbrace 2,(3,7),8,1,4\rbrace\rightarrow \lbrace 2,2,(1,1),6,8,1,4\rbrace\rightarrow \lbrace 2,3,7,(8,1),4\rbrace\rightarrow \lbrace 2,3,7,7,1,5\rbrace$$
ã$X$ ã®é·ãã $3$ 以äžã«ãªã£ãæç¹ã§æäœãçµäºããŸã. æäœã¯å¿
ãæéåã§çµäºã§ããããšã蚌æã§ããŸã.
$$X=\lbrace 3,4,4,2,1,4,4,1,1,2,2,1,3,1,1,3,4,2,3,2,4,1\rbrace$$
$X$ ãäžã®ããã«å®ãããšã, æäœãæå°ã§ $M$ åç¹°ãè¿ãã°çµäºããŸã. $M$ ã解çããŠãã ãã. |
OMC015 | https://onlinemathcontest.com/contests/omc015 | https://onlinemathcontest.com/contests/omc015/tasks/99 | F | OMC015(F) | 600 | 2 | 25 | [
{
"content": "ã$AB$ ã®é·ãã $171.4x$ ãšãã. ãŸã, äžåŒã®å·ŠèŸºã $f(P)$ ãšãã.\\\r\nã$\\triangle ABC-P$ ãæŽæ°ãšãªãç¹ $P$ ãååšãããã㪠$171$ é¢ã§æ£åé¢äœãåå²ãã. åæ§ã«, ä» $3$ é¢ã«æ²¿ã£ãŠããã«åå²ãããš, $P$ ãåãé åã«ããã° $f(P)$ ã¯äžå®ã§ãã, é¢ãè·šãã°å€ãã¡ããã© $1$ å€åãã.\\\r\nãäžäŸãšããŠ, 以äžã« $\\triangle ABC-P$ ããããã $167+\\delta,168-\\delta$ ã§ãããããªé¢ã§ã®æé¢ãæ瀺ãã. ç¹ $P$ ãèµ€, é, é», ç·ã®é åã«ãããšã, ãããã $f(P)$ ã®å€ã¯ $171,170,169,168$ ã§ãã. ç¹ã«é»è²ã®åé åã¯, äžèŸº $1.6x$ ã®æ£åé¢äœããäžèŸº $0.6x$ ã®æ£åé¢äœ $4$ ã€ãåãé€ããç«äœã§ãã, äœç©ã¯ $404\\/3672245$ ã§ãã. \r\n![figure 1](\\/images\\/34GbDD0G9QDH1vVab0H2mOibe8XiEs0w7T3FicyI)\r\nãããã $\\_{172}{\\rm C}\\_{3}=833340$ åååšãããã, é»è²å
šäœã§ã®äœç©ã¯ $\\dfrac{67333872}{734449}$ ã§, æ±ããå€ã¯ $\\textbf{68068321}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc015/editorial/99"
}
] | ãæ£åé¢äœ $ABC-D$ ããã, ãã®äœç©ã¯ $171.4$ ã§ã.\
ã$\triangle WXY-Z$ ã§åé¢äœ $WXY-Z$ ã®äœç©ãè¡šã, $\lfloor x\rfloor$ 㧠$x$ ãè¶
ããªãæ倧ã®æŽæ°ãè¡šããšã,
$$\lfloor \triangle ABC-P\rfloor +\lfloor \triangle ABD-P\rfloor +\lfloor \triangle ACD-P\rfloor +\lfloor \triangle BCD-P\rfloor =169$$
ãªãæ£åé¢äœã®å
éšã®ç¹ $P$ ãååšãåŸãé åã®äœç©ãæ±ããŠãã ãã.\
ããã ã, æ±ããäœç©ã¯æ倧å
¬çŽæ°ã $1$ ã§ããæ£ã®æŽæ° $a,b$ ãçšã㊠$\displaystyle \frac{a}{b}$ ãšè¡šããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC014 | https://onlinemathcontest.com/contests/omc014 | https://onlinemathcontest.com/contests/omc014/tasks/88 | A | OMC014(A) | 100 | 230 | 230 | [
{
"content": "ãç®ã®åºãé çªãèæ
®ãããšãç®ã®åºæ¹ã¯å
šéšã§ $6\\times6\\times6=216$ éããã, ãã®ãã¡ $6$ ãäžåºŠãåºãŠããªããããªãã®ã¯ $5\\times5\\times5=125$ éããã. ãã£ãŠ, äžåºŠã§ã $6$ ãåºããããªç®ã®åºæ¹ã¯ $216-125=91$ éããªã®ã§çã㯠$\\dfrac{91}{216}$ ã§ãã, ããã¯æ¢çŽåæ°ã§ããããæ±ããå€ã¯ $a+b=216+91=\\textbf{307}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc014/editorial/88"
}
] | ã$1,2,3,4,5,6$ ã®ç®ãç確çã«åºãããããã $3$ åæ¯ããšã, $6$ ã®ç®ãå°ãªããšã $1$ ååºã確çãæ±ããŠãã ãã. ãã ã, çãã¯æ倧å
¬çŽæ°ã $1$ ã§ããæ£ã®æŽæ° $a,b$ ãçšã㊠$\frac{b}{a}$ ãšè¡šãããã®ã§, $a+b$ ã解çããŠãã ãã. |
OMC014 | https://onlinemathcontest.com/contests/omc014 | https://onlinemathcontest.com/contests/omc014/tasks/89 | B | OMC014(B) | 200 | 202 | 206 | [
{
"content": "ãäžã€ç®ã®æ¡ä»¶ãã¿ãã $4$ æ¡ã®æ£æŽæ°ã¯ïŒ$2$ æ¡ã®æ£æŽæ° $n$ ãçšã㊠$100n+(n+1)=101n+1$ ãšè¡šããïŒããã«, ãããäºã€ç®ã®æ¡ä»¶ãã¿ãããšãïŒããæ£æŽæ° $m$ ãçšããŠ\r\nãã$$101n+1=(m+2)(m-2)=m^2-4$$\r\nãšæžããïŒ$101\\times20+1=45^2-4(=2021)$ ã蟺ã
åŒãããšã§\r\nãã$$101(n-20)=m^2-45^2=(m+45)(m-45)$$\r\nããã㧠$101$ ã¯çŽ æ°ã§ãããã, $m+45,m-45$ ã®å°ãªããšãäžæ¹ã¯ $101$ ã®åæ°ã§ããïŒããªãã¡, $m$ 㯠$99$ 以äžã§ããããšãšããã㊠$m=45,56$ ãå¿
èŠã§ããïŒ$m=45$ ã®ãšã $m^2-4=2021$ïŒ$m=56$ ã®ãšã $m^2-4=3132$ ã§ãã, ãã®ãã¡ $3132$ ãæ¡ä»¶ãã¿ãããã, æ±ããç·å㯠$\\textbf{3132}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc014/editorial/89"
}
] | ã$2021$ ã¯æ¬¡ã® $2$ ã€ã®æ§è³ªãæ〠$4$ æ¡ã®æ£æŽæ°ã§ãïŒ
- $100$ ã§å²ã£ãäœã㯠$100$ ã§å²ã£ãåãã $1$ 倧ãã
- $2021=43\times47$ ã®ããã«ïŒå·®ã $4$ ã§ãã $2$ ã€ã®æ£æŽæ°ã®ç©ã§è¡šãããšãã§ãã
ãã® $2$ ã€ã®æ§è³ªãæ〠$4$ æ¡ã®æ£æŽæ°ã¯ $2021$ 以å€ã«ãååšããŸãïŒãã®ãããªãã®ã®ç·åãæ±ããŠãã ãã.\
ããã ã, $2021$ ã¯æ±ããç·åã«å«ããªããã®ãšããŸã. |
OMC014 | https://onlinemathcontest.com/contests/omc014 | https://onlinemathcontest.com/contests/omc014/tasks/90 | C | OMC014(C) | 300 | 127 | 154 | [
{
"content": "ãäžè§åœ¢ $PCD$ ã®å€æ¥åãšçŽç· $AB$ ã®æ¥ç¹ã $Q$ ãšãã. ãã®ãšãæ¹ã¹ãã®å®çãã\r\nãã$$AQ^2=AP\\times AC=64,\\ \\ BQ^2=BP\\times BD=36$$\r\nãšãªããã,\r\nãã$$AB=AQ-BQ=8-6=2$$\r\nããããšäžå¹³æ¹ã®å®çãã, äžè§åœ¢ $PAB$ ã®é¢ç©ã¯\r\nãã$$\\dfrac{1}{2}\\times 2\\times \\sqrt{4^2-1^2}=\\sqrt{15}$$\r\nã§äžãããããã, é¢ç©æ¯ãèããããšã§äžè§åœ¢ $PCD$ ã®é¢ç©ã¯\r\nãã$$\\sqrt{15}\\times \\dfrac{5}{4}\\times \\dfrac{12}{4}=\\dfrac{15\\sqrt{15}}{4}$$\r\nã§ãã. ãã£ãŠæ±ããå€ã¯ $15+15+4=\\textbf{34}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc014/editorial/90"
}
] | ãç·å $AC$ ãšç·å $BD$ ãç¹ $P$ ã§äº€ãã£ãŠããŸã. ãŸã, äžè§åœ¢ $PCD$ ã®å€æ¥åãšçŽç· $AB$ ã¯æ¥ããŠããŸã. \
$$PA=PB=4,\ PC=12,\ PD=5$$
ã®ãšã, äžè§åœ¢ $PCD$ ã®é¢ç©ãæ±ããŠãã ãã. ãã ã, çãã¯æ倧å
¬çŽæ°ã $1$ ã§ããæ£ã®æŽæ° $a, c$ ãš, $1$ ãã倧ããå¹³æ¹æ°ã§å²ãåããªãæ£ã®æŽæ° $b$ ãçšã㊠$\dfrac{a\sqrt{b}}{c}$ ãšè¡šããã®ã§, $a+b+c$ ã解çããŠãã ãã. |
OMC014 | https://onlinemathcontest.com/contests/omc014 | https://onlinemathcontest.com/contests/omc014/tasks/91 | D | OMC014(D) | 400 | 72 | 149 | [
{
"content": "ãæ¡ä»¶ãæºãã $n$ ã®éåã $S$ ãšããïŒäžè¬æ§ã倱ãã $p\\leq q$ ãšããïŒãã®ãšã $\\gcd(p-1,q)=1$ ã§ãã.\r\n\r\n(i) $2\\lt p\\lt q$ ã〠$\\gcd(p,q-1)=1$ ã®ãšã\r\n\r\nã$p-1,q-1$ ããšãã«å¶æ°ã§ããããšã«çæãããš, Fermatã®å°å®çãã\r\nãã$$\\begin{aligned}\r\nãã(p-1)^{q-1}+(q-1)^{p-1}\\equiv(-1)^{q-1}+1\\equiv2 \\pmod p \\\\\\\\\r\nãã(p-1)^{q-1}+(q-1)^{p-1}\\equiv1+(-1)^{p-1}\\equiv2 \\pmod q \\end{aligned}$$\r\nãã£ãŠäžåœå°äœå®çãã $(p-1)^{q-1}+(q-1)^{p-1}\\equiv2 \\pmod {pq}$ ãåãã, ç¹ã« $2\\in S$ ã§ãã.\r\n\r\n(ii) $2\\lt p\\lt q$ ã〠$\\gcd(p,q-1)\\neq1$ ã®ãšã\r\n\r\nã$p-1,q-1$ ããšãã«å¶æ°ã§ããããšã«çæãããšïŒFermatã®å°å®çãã\r\nãã$$\\begin{aligned}\r\nãã(p-1)^{q-1}+(q-1)^{p-1}\\equiv(-1)^{q-1}\\equiv1\\equiv-q+2 \\pmod p \\\\\\\\\r\nãã(p-1)^{q-1}+(q-1)^{p-1}\\equiv1+(-1)^{p-1}\\equiv2 \\pmod q \\end{aligned}$$\r\nãã£ãŠäžåœå°äœå®çãã $(p-1)^{q-1}+(q-1)^{p-1}\\equiv pq-q+2 \\pmod{pq}$ ãåãã.\r\n\r\nã$2\\lt p\\lt q$ ã〠$\\gcd(p,q-1)\\neq1$ ãã¿ããçµ $(p,q)$ ã§ãã£ãŠ, $pq-q+2$ ã $100$ 以äžãšãªãã®ã¯æ¬¡ã®éãã§ããïŒãã㧠$p\\lt q$ ã«çæããã° $p^2-2p+2\\leq 100$ ãã, $p=3,5,7$ ã®ã¿èããã°è¯ãããšã«çæãã.\r\n\r\n- $(p,q)=(3,7)$ ã®ãšã $pq-q+2=16$\r\n- $(p,q)=(3,13)$ ã®ãšã $pq-q+2=28$\r\n- $(p,q)=(3,19)$ ã®ãšã $pq-q+2=40$\r\n- $(p,q)=(3,31)$ ã®ãšã $pq-q+2=64$\r\n- $(p,q)=(3,37)$ ã®ãšã $pq-q+2=76$\r\n- $(p,q)=(3,43)$ ã®ãšã $pq-q+2=88$\r\n- $(p,q)=(5,11)$ ã®ãšã $pq-q+2=46$\r\n\r\nããã« $16,28,40,46,64,76,88\\in S$ ã§ããïŒ\r\n\r\n(iii) $p=q\\gt 2$ ã®ãšã\r\n\r\nãäºé
å®çãçšããã°\r\nãã$$2(p-1)^{p-1}\\equiv2(p+1)\\pmod{p^2}$$\r\nã$3$ 以äžã®çŽ æ° $p$ ãçšã㊠$2(p+1)$ ãšè¡šããã $100$ 以äžã®æ£æŽæ°ã¯\r\nãã$$8,12,16,24,28,36,40,48,60,64,76,84,88,96$$\r\nã§ãã, ããã㯠$S$ ã«å±ãã.\r\n\r\n(iv)ã$p=2$ ã®ãšã\r\n\r\nã以äžã®åŒãåžžã«æç«ããããšã«çæãããš, $n=q$ ãšãªãã»ããªã.\r\nãã$$(p-1)^{q-1}+(q-1)^{p-1}\\equiv q \\pmod {pq}$$\r\nãã®ãšã $n$ ãå¶æ°ã§ããããšãã $n=2$ ãå¿
èŠã§, ç¹ã« $2\\in S$ ã§ãã.\r\n\r\nã以äžãã\r\nãã$$S=\\lbrace 2,8,12,16,24,28,36,40,46,48,60,64,76,84,88,96\\rbrace$$\r\nã§ãã, æ±ãããããã®ç·å㯠$\\textbf{728}$ ã§ããïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc014/editorial/91"
}
] | ã次ã®æ¡ä»¶ãã¿ãã $100$ 以äžã®æ£ã®å¶æ° $n$ ã®ç·åãæ±ããŠãã ãã.
- æ¡ä»¶ïŒ$n\lt pq$ ã〠$(p-1)^{q-1}+(q-1)^{p-1}\equiv n \pmod{pq}$ ãã¿ããçŽ æ°ã®çµ $(p,q)$ ãååšãã. |
OMC014 | https://onlinemathcontest.com/contests/omc014 | https://onlinemathcontest.com/contests/omc014/tasks/92 | E | OMC014(E) | 500 | 20 | 61 | [
{
"content": "ãéæ³é£ã®äžå¿ã«å
¥ãæ£æŽæ°ã $n$ ãšãããš, æåäºå®ãšããŠéæ³é£ã®åè¡,åå,å察è§ç·äžã«ãã $3$ ã€ã®æ°ã®å㯠$3n$ ã§ãã. ãããã£ãŠ, 以äžã®ããã«èšç®ã§ãã.\r\n![figure 1](\\/images\\/odtYISZJRJ5VZUgmP0huELaCqjcgNfcKnxqSaFUH)\r\nããã®ãšã, $b$ ãåºå®ã, ãã¹ã«å
¥ããã¹ãŠã®æ°ãæ£ãšãªãæ¡ä»¶ã $an$ å¹³é¢ã«å³ç€ºãããš, 以äžã®ããã«ãªã(å¢çç·äžãå«ãŸãªã).\r\n\r\n![figure 1](\\/images\\/XP1nbA5UtDwnbGt1WlYqYNa5Zw5OS92oTe5aFIXF)\r\n\r\nããããã£ãŠ, $a,b$ ã«ã€ããŠä»¥äžã®æ¹çšåŒãèããã°ãã.\r\nãã$$\\displaystyle \\left\\lceil a+\\frac{b}{2}\\right\\rceil -\\left\\lfloor \\max\\left(\\frac{b}{2},\\frac{2a+b}{4}\\right)\\right\\rfloor-1=2021$$\r\n(i) $2a\\leq b$ ã®ãšã\r\n\r\nã以äžã®çåŒã«çæãã.\r\nãã$$\\begin{aligned} \\left\\lceil a+\\frac{b}{2}\\right\\rceil -\\left\\lfloor \\max\\left(\\frac{b}{2},\\frac{2a+b}{4}\\right)\\right\\rfloor&=\\left\\lceil a+\\frac{b}{2}\\right\\rceil-\\left\\lfloor \\frac{b}{2}\\right\\rfloor\\\\\\\\&=\\begin{cases}\\displaystyle \\left(a+\\frac{b+1}{2}\\right)-\\left(\\frac{b-1}{2}\\right)=a+1&(b\\text{ãå¥æ°ã®ãšã}) \\\\\\\\\\displaystyle \\left(a+\\frac{b}{2}\\right)-\\frac{b}{2}=a&(b\\text{ãå¶æ°ã®ãšã})\\end{cases}\\end{aligned}$$\r\nãããã£ãŠ, äžã®æ¹çšåŒã«ã€ããŠ, 以äžã®çµè«ãåŸã.\r\n\r\n- $a=2021$ ã®ãšã, $b$ 㯠$4043$ 以äžã®å¥æ°ãã¹ãŠãé©ãã.\r\n- $a=2022$ ã®ãšã, $b$ 㯠$4044$ 以äžã®å¶æ°ãã¹ãŠãé©ãã.\r\n\r\nç¹ã« $a,b\\leq 10^6$ ã®ç¯å²ã§ã¯ $10^6-4042=995958$ åã§ãã.\r\n\r\n(ii) $2a\\gt b$ ã®ãšã\r\n\r\nããŸã, 以äžã®çåŒã«çæãã.\r\nãã$$\\displaystyle\\left\\lceil a+\\frac{b}{2}\\right\\rceil -\\left\\lfloor \\max\\left(\\frac{b}{2},\\frac{2a+b}{4}\\right)\\right\\rfloor= \\left\\lceil a+\\frac{b}{2}\\right\\rceil-\\left\\lfloor \\frac{2a+b}{4}\\right\\rfloor$$\r\nã$b$ ã $4$ ã§å²ãåãããšã, 以äžãæç«ãã.\r\nãã$$\\displaystyle \\left\\lceil a+\\frac{b}{2}\\right\\rceil-\\left\\lfloor \\frac{2a+b}{4}\\right\\rfloor =\\left(a+\\frac{b}{2}\\right)-\\left(\\left\\lfloor\\frac{a}{2}\\right\\rfloor+\\frac{b}{4}\\right)=\\begin{cases}\\displaystyle \\frac{a+1}{2}+\\frac{b}{4}&(a\\text{ãå¥æ°ã®ãšã}) \\\\\\\\ \\displaystyle \\frac{a}{2}+\\frac{b}{4}&(a\\text{ãå¶æ°ã®ãšã})\\end{cases} $$\r\nãããã£ãŠ $\\displaystyle a=4043-\\frac{b}{2},4044-\\frac{b}{2}$ ã§ãããã, å $b=4,8,\\cdots,4040$ ã«å¯Ÿãé©ãã $a$ ãäºã€ãã€ååšãã.\\\r\nãåæ§ã« $b$ ã $4$ ã§å²ã£ãäœãããšã«èããããšã§, ä»»æã® $b\\leq 4042$ ã«å¯Ÿãé©ãã $a$ ãäºã€ãã€ååšããããšãããã. ãããã¯ãã¹ãŠ $a,b\\leq 10^6$ ã®ç¯å²ã§ãã, ãã®åèšã¯ $2\\times 4042=8084$ åã§ãã.\r\n\r\nã以äžãã, æ±ãã $M$ ã®å€ã¯ $995958+8084=\\textbf{1004042}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc014/editorial/92"
}
] | ã$3\times 3$ ã®ãã¹ç®ã®åãã¹ã«ïŒæ£æŽæ°ãå
¥ããŠããããšãèããŸãïŒããŸïŒå³ã®ããã« $2$ ã€ã®æ£æŽæ° $a$ ãš $b$ ãæ¢ã«åãŸã£ãŠããŸãïŒãã®ãšã, ä»ã® $7$ ãã¹ã«ã€ããŠïŒæ¬¡ã®æ¡ä»¶ãæºããæ£æŽæ°ã®å
¥ãæ¹ãã¡ããã© $2021$ éãååšããŸãã.
- æ¡ä»¶ïŒ$3\times 3$ ã®ãã¹ç®ãéæ³é£ãšãªãïŒããªãã¡ïŒåè¡ïŒååïŒå察è§ç·äžã«ãã $3$ ã€ã®æ°ã®åã¯å
šãŠçãããªãïŒ
ã$a,b\leq 10^6$ ã®ç¯å²ã§, ãã®ãããªæ£æŽæ°ã®çµ $(a,b)$ 㯠$M$ åãããŸã. $M$ ã解çããŠãã ãã.
![figure 1](\/images\/XPqZifO8OU2w8FYAGEnZsiAJL70Q3y73j8LchgzI) |
OMC014 | https://onlinemathcontest.com/contests/omc014 | https://onlinemathcontest.com/contests/omc014/tasks/93 | F | OMC014(F) | 600 | 45 | 98 | [
{
"content": "ã$a$ ã $b$ ã§å²ã£ãããŸãã $a\\\\%b$ ã§è¡šãããšãšãã. \\\r\nãåé¡ã®æäœã®ãéãã«ãããæäœ $B$ ãèãã. ããªãã¡, äžååãå¶æ°çªç®ã«ãã®é ã«äžŠã¹, äžååãå¥æ°çªç®ã«éé ã«äžŠã¹ãæäœã $B$ ãšãã. ããã $20210106$ åç¹°ãè¿ãããšã, $1$ ãšæžãããã«ãŒããäžããäœçªç®ã«ããããèããã°ãã. \\\r\nãããã§, $2n$ æã®ã«ãŒããçšæã, äžååãå¶æ°çªç®ã«ãã®é ã«, äžååãå¥æ°çªç®ã«ãã®é ã«äžŠã¹ããšããæäœ $B^\\prime$ ãèãã. ãããš, äžãã $k$ æç®ã®ã«ãŒãã¯æäœ $B^\\prime$ åŸäžãã $(2k)\\\\%(2n+1)$ æç®ã«ç§»åããããšãããã. ãã£ãŠ, $m$ åã®æäœ $B^\\prime$ ã«ãã£ãŠäžçªäžã®ã«ãŒã㯠$2^m\\\\%(2n+1)$ æç®ã«ç§»åãã. ãŸã, æäœ $B$ ã¯, $2n$ æã®ã«ãŒãã®ãã¡ $k$ æç®ãš $2n+1-k$ æç®ã®ã«ãŒããåäžèŠãããã®ã§ããããšã確èªã§ãããã, $m$ åã®æäœ $B$ ã«ãã£ãŠäžçªäžã®ã«ãŒãã¯, $d=2^m\\\\%(2n+1)$ ãšããã° $d\\leq n$ ã®ãšã $d$ æç®ã«, $d\\gt n$ ã®ãšã $2n+1-d$ æç®ã«ç§»åããããšãããã. $2n+1=2^{10105051}+5$ ã§ãããã\r\nãã$$2^{20210106}=(2^{10105051})^2\\times 2^4\\equiv (-5)^2\\times 2^4=400 \\pmod{2n+1}$$\r\nã§ãã, æ±ããçã㯠$\\textbf{400}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc014/editorial/93"
}
] | ã$n$ æã®ã«ãŒããç©ãŸããŠãã, äžããé ã« $1,2,\dots,n$ ãæžãããŠããŸã. ããã§, 次ã®ãæäœããèããŸãïŒ
- (æäœ)ïŒãŸãäžããå¥æ°çªç®ã®ã«ãŒãããã¹ãŠåãåºã, éé ã«ããŠéãã. ãã®äžã«æ®ãã®ã«ãŒãããã®ãŸãŸéãã.
ãäŸãã° $n=6$ ã®å Žå, åãã«ãŒãã«ã¯äžããé ã« $1,2,3,4,5,6$ ãæžãããŠããŸãã, æäœã $1$ åè¡ããšäžããé ã« $2,4,6,5,3,1$ ãšãªããŸã. ããã« $1$ åæäœãè¡ããš $4,5,1,3,6,2$ ãšãªããŸã. \
ã$n=2^{10105050}+2$ ã®å Žåã«ãããŠ, æäœã $20210106$ åç¹°ãè¿ãããšã, äžçªäžã«çœ®ãããŠããã«ãŒãã«æžãããæ°ãæ±ããŠãã ãã. |
OMC013 (ChristMATHContest 2020) | https://onlinemathcontest.com/contests/omc013 | https://onlinemathcontest.com/contests/omc013/tasks/82 | A | OMC013(A) | 100 | 255 | 266 | [
{
"content": "ãäžã®äœã $1$ ã§ãããã®ã¯æããã« $6!=720$ åã§ãã.\\\r\nãäžã®äœã $3$ ã®å Žåã¯, ãŸã $1$ ãåºå¥ããŠããèããããšã§ $6!\\/2=360$ åãšããã.\\\r\nãäžã®äœã $5$ ã®å Žåãåæ§ã« $360$ åã§ãããã, ç·æ°ã¯ $720+360+360=\\textbf{1440}$ åã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc013/editorial/82"
}
] | ã$1, 1, 2, 3, 4, 5, 6$ ã䞊ã¹æ¿ããŠã§ãã $7$ æ¡ã®å¥æ°ã¯ $x$ åãããŸã. $x$ ã解çããŠãã ãã. |
OMC013 (ChristMATHContest 2020) | https://onlinemathcontest.com/contests/omc013 | https://onlinemathcontest.com/contests/omc013/tasks/83 | B | OMC013(B) | 200 | 226 | 237 | [
{
"content": "ãäžå³ã®ããã«ç¹ãåããš, åè§åœ¢ $AEOF$ ã¯äžèŸºã®é·ãã $5$ ã®æ£æ¹åœ¢ã§, $\\triangle GPO$ ãš $\\triangle HOQ$ ã¯ååã§ãã. äžå¹³æ¹ã®å®çãã $HQ=GO=\\sqrt{21}$ ã ãã $AD=5+\\sqrt{21}$ ã§, ç¹ã«æ±ããå€ã¯ $5+21=\\textbf{26}$ ã§ãã. \r\n![figure 1](\\/images\\/o5TkaalrK1aIVE1qQWPTViuLG8xYPHb4VTaQ93Ct)",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc013/editorial/83"
}
] | ![figure 1](\/images\/mbwGy7umPgVGrk6Xt86egb91X3JzKyUJ5X9aFpAa)
ãå³ã®ããã«, é·æ¹åœ¢ $ABCD$ ã®å
éšã«ååŸ $5$ ã®ååãå
æ¥ããŠããŸã. $AB=7$ ã®ãšã, 蟺 $AD$ ã®é·ãã¯æ£æŽæ° $a, b$ ãçšã㊠$a+\sqrt{b}$ ãšè¡šããŸã. $a+b$ ã解çããŠãã ãã. |
OMC013 (ChristMATHContest 2020) | https://onlinemathcontest.com/contests/omc013 | https://onlinemathcontest.com/contests/omc013/tasks/84 | C | OMC013(C) | 300 | 172 | 206 | [
{
"content": "ãæ¹çšåŒã® $2$ 解ã $\\alpha\\geq\\beta$ ãšãããš, 解ãšä¿æ°ã®é¢ä¿ãã $\\alpha+\\beta=2m-960$ ããã³ $\\alpha\\beta=4m+97$ ãæç«ãã. ããããã $m$ ãæ¶å»ãããš $\\alpha\\beta=2(\\alpha+\\beta)+2\\times960+97$ ããªãã¡\r\nãã$$(\\alpha-2)(\\beta-2)=2021=47\\times43$$\r\nãããã $(\\alpha, \\beta)$ ãšããŠããåŸãçµã¯ $(2023, 3)$ ããã³ $(49, 45)$ ãšããã. ããã $\\alpha+\\beta=2m-960$ ã«ä»£å
¥ããããšã§ãããã $m=1493, 527$ ãåŸããã, æ±ããå€ã¯ $1493+527=\\textbf{2020}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc013/editorial/84"
}
] | ãè€çŽ æ° $x$ ã«ã€ããŠã®æ¹çšåŒ $x^{2}-2(m-480)x+(4m+97)=0$ ã, æ£æŽæ°è§£ã®ã¿ããã€ãããªæŽæ° $m$ ã«ã€ããŠ, ãã®ç·å㯠$M$ ãšãªããŸã. $M$ ã解çããŠãã ãã. |
OMC013 (ChristMATHContest 2020) | https://onlinemathcontest.com/contests/omc013 | https://onlinemathcontest.com/contests/omc013/tasks/85 | D | OMC013(D) | 400 | 91 | 154 | [
{
"content": "ã$n+3$ ã®äœçœ®ãé£ã³è¶ããšã, ãã㯠$n+2$ ã®äœçœ®ããè·é¢ $2$ 以äžãžã£ã³ãããã, $n+1$ ã®äœçœ®ããè·é¢ $3$ 以äžãžã£ã³ãããã, $n$ ã®äœçœ®ããè·é¢ $4$ ãžã£ã³ããããã®ããããã§ãããã, 以äžã®æŒžååŒãåŸã.\r\nãã$$\\displaystyle p_{n+3}=1-\\left(\\frac{3}{4}p_{n+2}+\\frac{2}{4}p_{n+1}+\\frac{1}{4}p_{n}\\right)$$\r\nããããæŽçã㊠$4p_{n+3}+3p_{n+2}+2p_{n+1}+p_n-4=0$ ã§ãããã, æ±ããå€ã¯ $\\textbf{43206}$ ã§ãã.\\\r\nããªã, ãã®è¡šçŸã®äžææ§ã¯èšŒæã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc013/editorial/85"
}
] | ãæ°çŽç·äžã«ã«ãšã«ããã, åãã«ãšã«ã¯ $0$ ã®äœçœ®ã«ããŸã. ã«ãšã«ã¯æ¬¡ã®æäœãç¡éã«ç¹°ãè¿ããŸãïŒ
- æäœïŒ$1$ ä»¥äž $4$ 以äžã®æŽæ° $m$ ãç確çã«éžã³, æ£ã®æ¹åã« $m$ ã ããžã£ã³ããã.
ããã®ãšã, æ£ã®æŽæ° $n$ ã«ã€ããŠ, $n$ ã®äœçœ®ã«çå°ããããšã®ãã確çã $p_n$ ãšãããš, ä»»æã®æ£ã®æŽæ° $n$ ã«ã€ããŠ
$$ap_{n+3}+bp_{n+2}+cp_{n+1}+dp_n+e=0$$
ãäžæã«æãç«ã¡ãŸã (ãã ã $a, b, c, d, e$ ã¯æ倧å
¬çŽæ°ã $1$ ã®æŽæ°ã§, $a$ ã¯æ£ãšãã, ). \
ã$10000a+1000b+100c+10d+e$ ãæ±ããŠãã ãã. |
OMC013 (ChristMATHContest 2020) | https://onlinemathcontest.com/contests/omc013 | https://onlinemathcontest.com/contests/omc013/tasks/86 | E | OMC013(E) | 500 | 62 | 170 | [
{
"content": "ãé£ãåã $2$ åŒãããããæ¯èŒããããšã§ä»¥äžãåŸã.\r\nãã$$x_1^2-x_1=x_2^2-x_2=\\cdots=x_{15}^2-x_{15}$$\r\nç¹ã«, $x_1,x_2,\\cdots,x_{15}$ ã«å«ãŸããæ°ã¯é«ã
$2$ çš®é¡ã§ãã. æ¹çšåŒ $x^2+14x=1$ ã¯å®æ°è§£ã $2$ ã€ãã€ãã, ããã $1$ çš®é¡ã§ãããããªãã®ã¯ $2$ åååšãã. 以äžã¡ããã© $2$ çš®é¡ã§ããå Žåãèãã.\\\r\nã$\\alpha$ ã $n$ å, $\\beta$ ã $15-n$ åã§ãããšã, äžè¬æ§ã倱ãã $n\\leq 7$ ã§ãããšãã. 解ãšä¿æ°ã®é¢ä¿ãã $\\alpha+\\beta=1$ ã§ããããšã«çæããã°, äžåŒã¯ä»¥äžã®äžæ¬ã®æ¹çšåŒã«éçŽãããããšã容æã«ããã.\r\nãã$$\\alpha^2+2(n-8)\\alpha+(14-n)=0$$\r\n巊蟺ã $\\alpha$ ã®äºæ¬¡åŒãšã¿ãªãã°, ãã®å€å¥åŒã¯ $D\\/4=(n-5)(n-10)$ ã§ããããšã«çæãã. ç¹ã« $n\\leq 5$ ã§ãã.\\\r\nã$n=5$ ã®ãšã, $D=0$ ããå®æ° $\\alpha$ ãäžæã«ååšã, ãã® $x_1,\\cdots,x_{15}$ ãžã®åé
ãèã㊠$\\_{15}\\mathrm{C}\\_{5}$ éãã§ãã.\\\r\nã$n=1,2,3,4$ ã®ãšããåæ§ã«, å®æ° $\\alpha$ ãäºã€ãã€ååšããããšã«çæããã°, å
šäœã§ã¯ä»¥äžã®ããã«æ±ãããã.\r\nãã$$x=2+2\\times(\\_{15}\\mathrm{C}\\_{1}+\\_{15}\\mathrm{C}\\_{2}+\\_{15}\\mathrm{C}\\_{3}+\\_{15}\\mathrm{C}\\_{4})+\\_{15}\\mathrm{C}\\_{5}=\\textbf{6885}$$\r\nããªãå³å¯ã«ã¯ $\\beta=1-\\alpha$ ã $\\alpha$ ãšåãé¢ä¿åŒãã¿ãããªãããšã確èªããå¿
èŠãããã, ããã¯å®¹æã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc013/editorial/86"
}
] | ã以äžã® $15$ åã®åŒããã¹ãŠã¿ããå®æ°ã®çµ $(x_{1}, x_{2}, \cdots, x_{15})$ ã¯ããã€ãããŸããïŒ
$$\begin{cases}x^{2}\_{1}+x\_{2}+x\_{3}+\cdots+x\_{15}=1 \\\ x\_{1}+x^{2}\_{2}+x\_{3}+\cdots+x\_{15}=1 \\\ x\_{1}+x\_{2}+x^{2}\_{3}+\cdots+x\_{15}=1 \\\ \quad \vdots \\\ x\_{1}+x\_{2}+x\_{3}+\cdots+x^{2}\_{15}=1\end{cases}$$ |
OMC013 (ChristMATHContest 2020) | https://onlinemathcontest.com/contests/omc013 | https://onlinemathcontest.com/contests/omc013/tasks/87 | F | OMC013(F) | 600 | 15 | 59 | [
{
"content": "ã$AC=AF$ ãªã $BC$ äžã® $C$ ã§ãªãç¹ $F$ ããšããš $CB=BF$ ããã³ $\\angle CDF=90^\\circ$ ã§ãã, $\\angle ADF=180^\\circ-\\angle ACB$ ãããã. ãŸã, $\\triangle ABC$ ã®å€éšã« $\\triangle APC\\equiv\\triangle ADF$ ãã¿ããç¹ $P$ ããšããš, $\\angle PAD=\\angle CAF$ ãš $AP=AD$ ãã $\\angle ADP=\\angle ACB$ ãªã®ã§, $P, D, F$ ã¯å
±ç·ã§ãã. \\\r\nãããã§, $BE$ ãš $DF$ ã®äº€ç¹ã $M$ ãšãããš, $\\angle MBA=\\angle MFA$ ã確èªã§ããã®ã§ $A, B, F, M$ ã¯å
±åã§ãã. ãã£ãŠ $\\angle AMF=90^\\circ$ ã§ãã, $AD=AP$ ãã $DM=PM$ ãåŸã. ãŸã, åè§åœ¢ $CDFQ$ ãé·æ¹åœ¢ãšãªããããªç¹ $Q$ ããšããš, $BD=BQ$ ãªã®ã§ $BM\\parallel PQ$ ãšãªã, $PQ$ ãš $CD$ ã®äº€ç¹ã $R$ ãšãããš $DE=ER=1$ ããã³ $RC=7$. \r\nããã« $Q$ ã®ãšãæ¹ãã $DP\\parallel CQ$ ã§ãã, $CQ=FD=CP$ ãã\r\nãã$$DP:CP=DR:CR=2:7$$\r\nãåŸã. ãããš $\\angle CDP=90^\\circ$ ãã\r\nãã$$CP=FD=\\dfrac{7}{\\sqrt{7^{2}-2^{2}}}\\cdot CD=\\dfrac{21\\sqrt{5}}{5}$$\r\nããã£ãŠ, ãã®ãšã\r\nãã$$\\displaystyle BC=\\frac{1}{2}CF=\\frac{1}{2}\\sqrt{9^{2}+\\left(\\frac{21\\sqrt{5}}{5}\\right)^{2}}=\\frac{3\\sqrt{470}}{10}$$\r\nã§ãããã, æ±ããå€ã¯ $3+470+10=\\textbf{483}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc013/editorial/87"
}
] | ã$\angle B=90^\circ$ ãªãçŽè§äžè§åœ¢ $ABC$ ã®å
éšã«ç¹ $D$ ããã,
$$BC=BD,\quad\angle BAC+\angle ADC=180^\circ$$
ãã¿ãããŠããŸã. ç·å $CD$ äžã« $\angle BEC=\angle ACB$ ãªãç¹ $E$ ããšã£ããšãã,
$$CE=8,\quad ED=1$$
ãæç«ããŸãã. ãã®ãšã, 蟺 $BC$ ã®é·ãã¯, æ倧å
¬çŽæ°ã $1$ ã§ããæ£æŽæ° $a, c$ ãš, $1$ ãã倧ããå¹³æ¹æ°ã§å²ãåããªãæ£æŽæ° $b$ ãçšã㊠$\displaystyle \frac{a\sqrt{b}}{c}$ ãšè¡šããŸã. $a+b+c$ ã解çããŠãã ãã. |
OMC012 | https://onlinemathcontest.com/contests/omc012 | https://onlinemathcontest.com/contests/omc012/tasks/76 | A | OMC012(A) | 100 | 210 | 214 | [
{
"content": "ã$10$ å硬貚ãç¡èŠããã°, æ¯æããéé¡ã¯ $0$ åãã $1700$ åã® $18$ éãã§ãã. ããããã«ã€ã㊠$10$ å硬貚ã®åºãæ¹ $0$ æãã $4$ æã§ç°ãªãéé¡ãåŸããããã, $x=18\\times 5-1=\\textbf{89}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc012/editorial/76"
}
] | ã$10$ å硬貚 $4$ æ, $100$ å硬貚 $7$ æ, $500$ å硬貚 $2$ æã®å
šéšãŸãã¯äžéšãçšããŠã¡ããã©æ¯æãããšãã§ããéé¡ã¯ $x$ éããããŸã. $x$ ãæ±ããŠãã ãã.\
ããã ã, å°ãªããšã $1$ æã¯ç¡¬è²šãçšããããšãšããŸã. |
OMC012 | https://onlinemathcontest.com/contests/omc012 | https://onlinemathcontest.com/contests/omc012/tasks/77 | B | OMC012(B) | 200 | 206 | 209 | [
{
"content": "ã$x=\\dfrac{n}{126}$ ãšããã°, $10x=d.333\\cdots$, $100x=d3.333\\cdots$ ãã $90x=9d+3$ ã§ãã, ããªãã¡\r\nãã$$\\displaystyle n=126x=\\frac{21}{5}(3d+1)}$$\r\nããããæŽæ°ãšãªãã®ã¯ $d=3,8$ ã®ãšãã§, ãããã $n=42,105$ ã§ãããã, æ±ããå€ã¯ $\\textbf{147}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc012/editorial/77"
}
] | ã$\displaystyle\frac{n}{126}$ ã $10$ é²æ³ã®å°æ°ã§è¡šãããšãã« $0.d333...$ ãšãªããããªæ£ã®æŽæ° $n$ ã®å€ãšããŠ, ããåŸããã®ã®ç·åãæ±ããŠãã ãã. ãã ã, $d$ 㯠$0$ ä»¥äž $9$ 以äžã®æŽæ°ãšããŸã. |
OMC012 | https://onlinemathcontest.com/contests/omc012 | https://onlinemathcontest.com/contests/omc012/tasks/78 | C | OMC012(C) | 300 | 191 | 207 | [
{
"content": "ã$p,q,r$ ã $0$ ãšãªãããšãèš±ãã°, æ±ããç·å㯠$3^{10}=59040$ ã§ãã. ãã®ãã¡, $p,q,r$ ã®ãã¡ $2$ ã€ã $0$ ã§ãããããªãã®ã®ç·å㯠$3$ ã§ãã, ã¡ããã© $1$ ã€ã $0$ ã§ãããããªãã®ã®ç·å㯠$3\\times(2^{10}-2)=3066$ ã§ãããã, 以äžããæ±ããå€ã¯ $59049-3-3066=\\textbf{55980}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc012/editorial/78"
}
] | ã$p+q+r=10$ ãæºããæ£æŽæ°ã®çµ $(p,q,r)$ ãã¹ãŠã«å¯Ÿã, $\displaystyle\frac{10!}{p!q!r!}$ ã®ç·åãæ±ããŠãã ãã. |
OMC012 | https://onlinemathcontest.com/contests/omc012 | https://onlinemathcontest.com/contests/omc012/tasks/79 | D | OMC012(D) | 400 | 70 | 172 | [
{
"content": "ããŸã, $n$ åã®ååšã«ãã£ãŠçé¢ã¯æ倧㧠$n^2-n+2$ åã«åå²ã§ããããšã瀺ã. åå²ã®æ倧æ°ãå®çŸããã«ã¯, ã©ã® $2$ åãäºã€ã®äº€ç¹ããã¡, ãã€ã©ã® $3$ åãäžç¹ã§äº€ãããªããã°ãã, ãã®ãããªé
眮ã¯å¯èœã§ãã. ãã®ãšã, çé¢ã $a_n$ åã«åå²ããããšãããš, 挞ååŒ $a_{n+1}=a_{n}+2n$ ãæç«ãããã, $a_{1}=2$ ãšåãã㊠$a_{n}=n^2-n+2$ ã®æç«ãããã.\\\r\nã以äž, $n$ åã®çé¢ã«ãã£ãŠç©ºéã¯æ倧㧠$\\dfrac{n(n^2-3n+8)}{3}$ åã«åå²ã§ããããšã瀺ã. åå²ã®æ倧æ°ãå®çŸããã«ã¯, ã©ã®çé¢ã«ã€ããŠãä»ã®ãã¹ãŠã®çé¢ãšäº€ãã, ãã€ãã®äº€åãäžã§ç€ºããæ倧ã®åå²æ°ãã¿ããã°ãã, ãã®ãããªé
眮ã¯å¯èœã§ãã. ãã®ãšã, çé¢ã $b_n$ åã«åå²ããããšãããš, 挞ååŒ $b_{n+1}=b_{n}+a_{n}$ ãæç«ãããã, $b_{1}=2$ ãšåãã㊠$b_{n}=\\dfrac{n(n^2-3n+8)}{3}$ ã®æç«ãããã.\\\r\nãç¹ã«æ±ããå€ã¯ $b_{10}=\\textbf{260}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc012/editorial/79"
}
] | ã$10$ åã®çé¢ã«ãã£ãŠç©ºéãåå²ãããšã, 空éã¯æ倧 $x$ åã«åå²ã§ããŸã. $x$ ãæ±ããŠãã ãã.\
ããã ã, çé¢ã®ååŸã«å¶çŽã¯ãªã, ããçé¢ã¯ä»ã®çé¢ãšäº€ããããšãåºæ¥ãŸã. |
OMC012 | https://onlinemathcontest.com/contests/omc012 | https://onlinemathcontest.com/contests/omc012/tasks/80 | E | OMC012(E) | 500 | 75 | 105 | [
{
"content": "**è£é¡.**ãäžå³ã§ $AB=AC$ ã®ãšã, $BQ:QC=PQ:QR$ ã§ãã.\r\n\r\n**蚌æ.**ãçŽç· $AC$ äžã« $QR=QR^\\prime$ ãªã $R$ ã§ãªãç¹ $R^\\prime$ ããšããš, $\\angle BPQ=\\angle ARQ=\\angle CR^\\prime Q$ ãæç«ãã. ãããš $\\angle B=\\angle C$ãã $\\triangle BPQ$ ãš $\\triangle CR^\\prime Q$ ã¯çžäŒŒã§ãããã, $BQ:QC=PQ:QR^\\prime=PQ:QR$.\r\n![figure 1](\\/images\\/FqhyfvdsIsWbI3JGY3SRlibmU6Po3LoTHhbgK3pp)\r\nãè£é¡ãšãã¬ããŒã®å®çãã\r\nãã$$DE\\times FG+5\\sqrt{39}=3DE\\times 2FG$$\r\nãåŸããã, $DE\\times FG=\\sqrt{39}$ ã§ãã. $\\angle DEG=\\angle DFG$ ã«çæããã°, $DE=x$ ãšããã°äœåŒŠå®çãã\r\nãã$$\\displaystyle \\frac{x^2+(3x)^2-39}{2\\times x \\times 3x}=\\displaystyle \\frac{(\\frac{\\sqrt{39}}{x})^2+(\\frac{2\\sqrt{39}}{x})^2-39}{2\\times \\frac{\\sqrt{39}}{x} \\times \\frac{2\\sqrt{39}}{x}}$$\r\nã解ãã°ãã. ãããæŽçãããš, $x^4+5x^2-78=0$ ãšãªã, $x=\\displaystyle \\frac{\\sqrt{39}}{3}$ ãåŸã. ãã£ãŠ $DE=\\displaystyle \\frac{\\sqrt{39}}{3}, FG=3, EG=\\sqrt{39}$ ãåãã, äœåŒŠå®çãã\r\nãã$$\\cos \\angle EDG=\\displaystyle \\frac{(\\frac{\\sqrt{39}}{3})^2+39-39}{2\\times \\frac{\\sqrt{39}}{3}\\times \\sqrt{39}}=\\frac{1}{6}$$\r\nãŸã $\\angle EDG=\\angle GFC$ãã,\r\nãã$$CG=\\sqrt{3^2+4^2-2\\times 3\\times4\\times\\displaystyle\\frac{1}{6}}=\\sqrt{21}$$\r\nãšãªã. æ¹ã¹ãã®å®çãã\r\nãã$$4\\times(4+5)=\\sqrt{21}\\times CA$$\r\nã§ãããã, $CA=\\displaystyle \\frac{36}{\\sqrt{21}}=12\\sqrt{\\displaystyle \\frac{3}{7}}$ ã§, ç¹ã«æ±ããå€ã¯ $12^2\\times 3 \\times 7=\\textbf{3024}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc012/editorial/80"
},
{
"content": "ã$AB = AC = 12\\sqrt x$ ãšããïŒãã®ãšãïŒæ¹ã¹ãã®å®çãã\r\n$$ 12\\sqrt x\\times BD = BA \\times BF = 24 \\implies AD = 12\\sqrt x - \\frac2{\\sqrt x}=\\frac{12x-2}{\\sqrt x} $$\r\nãåããïŒåæ§ã« $AG = \\dfrac{12x - 3}{\\sqrt x}$ ãåããïŒãŸã $\\alpha = \\angle BAC$ ãšããŠ\r\n$$ \\sin\\frac\\alpha2 = \\frac1{12\\sqrt x} \\times \\frac{BC}2=\\frac1{2\\sqrt x} \\implies \\cos\\alpha = 1 - 2\\left(\\frac1{2\\sqrt x}\\right)^2 = 1 - \\frac1{2x} = \\frac{2x-1}{2x} $$\r\nã§ããããïŒäœåŒŠå®çãã\r\n$$\\begin{aligned}\r\n&DG^2 = AD^2 + AG^2 - 2 AD \\times AG\\cos\\alpha\\\\\\\\\r\n&\\mskip-5mu\\Longrightarrow\\\\;39 = \\frac{(12x-2)^2+(12x-3)^2}x - \\frac{\\mathinner{(12x-2)}\\mathinner{(12x-3)}}x \\times \\frac{2x-1}x \\\\\\\\\r\n&\\mskip-5mu\\Longrightarrow\\\\;39x^2 = x\\left((12x-2)^2 - 2\\mathinner{(12x-2)}\\mathinner{(12x-3)} + (12x-3)^2\\right) + \\mathinner{(12x-2)}\\mathinner{(12x-3)}\\\\\\\\\r\n&\\mskip-5mu\\Longrightarrow\\\\;39x^2 = x\\mathinner{((12x-2)-(12x-3))^2} + \\left(144 x^2 - 60x + 6\\right) \\\\\\\\\r\n&\\mskip-5mu\\Longrightarrow\\\\;105x^2 - 59x + 6 = 0 \\\\;\\Longrightarrow\\\\; \\mathinner{(7x-3)}\\mathinner{(15x-2)} = 0.\r\n\\end{aligned}$$\r\n$24\\sqrt x = AB + AC \\gt BC = 12$ ãã $x \\gt \\dfrac14$ ã§ãããã $x = \\dfrac37$ ãåããïŒæ±ããå€ã¯ $12^2 \\times 3 \\times 7 = \\mathbf{3024}$ïŒ",
"text": "ä»ã®èšç®è§£æ³",
"url": "https://onlinemathcontest.com/contests/omc012/editorial/80/6"
}
] | ãäžå³ã«ãããŠ, $AB=AC, BE=3, EF=5, FC=4, DG=\sqrt{39}$ ã®ãšã, $AC$ ã®é·ãã¯æ£ã®æŽæ° $a, b, c$ ãçšã㊠$a\sqrt{\displaystyle \frac{b}{c}}$ ãšè¡šãããŸã(ãã ã, $ab$ ãš$c$ ã®æ倧å
¬çŽæ°ã¯ $1$ ã§ãããšããŸã). $a^2bc$ ãæ±ããŠãã ãã.
![figure 1](\/images\/89r7iVi3WpkTOF4XWYpTVpPY4Po2bwn7YbvlWsNL) |
OMC012 | https://onlinemathcontest.com/contests/omc012 | https://onlinemathcontest.com/contests/omc012/tasks/81 | F | OMC012(F) | 600 | 0 | 0 | [
{
"content": "ãæ£æŽæ° $n$ ã«å¯Ÿã $n$ 次ã®çœ®æ $\\sigma$ ã§ãã£ãŠ $\\sigma(i)\\neq i\\~(i=1,\\dots,n)$ ãã¿ãããã®ã $n$ **次ã®è¯ã眮æ** ãšåŒã¶ããšã«ããïŒ$n$ 次ã®è¯ã眮æã®åæ°ïŒ**ã¢ã³ã¢ãŒã«æ°**ïŒã $a_n$ ãšããã°ïŒç°¡åãªè°è«ã«ãã£ãŠ $N=2048!\\times(a_{2047}+a_{2048})$ ãåŸãããïŒ\r\n\r\nããã㧠$a_n$ ã®äžè¬é
ã¯æ¬¡ã®åœ¢ã«è¡šãããããšãç¥ãããŠããïŒ\r\n$$a_n=\\sum_{k=0}^{n}\\frac{(-1)^kn!}{k!}$$\r\n\r\n<details>\r\n<summary>挞ååŒã«ãã蚌æ<\\/summary>\r\nã$n$ 次ã®è¯ã眮æ $\\sigma$ ãèããïŒ\r\n\r\n- $\\sigma(\\sigma(n))=n$ ã§ãããšãïŒ$\\sigma$ 㯠$\\\\{1,\\dots,\\sigma(n)-1,\\sigma(n)+1,\\dots,n-1\\\\}$ ã®çœ®æãšèªç¶ã«èŠãªãããšãã§ãïŒãã㯠$n-2$ 次ã®è¯ã眮æã«èªç¶ã«å¯Ÿå¿ããïŒ\r\n- $\\sigma(\\sigma(n))\\neq n$ ã§ãããšãïŒæ¬¡ã§å®çŸ©ããã $n-1$ 次ã®çœ®æ $\\tau$ ã¯è¯ã眮æã§ããïŒ\r\n$$\\tau(i)=\\begin{cases}\r\n\\sigma(i)&(i\\neq \\sigma^{-1}(n))\\\\\\\\\r\n\\sigma(n)&(i=\\sigma^{-1}(n))\r\n\\end{cases}$$\r\n\r\nãéã« $n-2,n-1$ 次ã®è¯ã眮æã«å¯ŸãïŒå¯Ÿå¿ãã $n$ 次ã®è¯ã眮æ㯠$n-1$ åååšããïŒãã£ãŠ $a_n$ ã¯æ¬¡ã®æŒžååŒãã¿ããïŒ\r\n$$a_1=0,\\quad a_2=1,\\quad a_{n+2}=(n+1)(a_{n+1}+a_n)\\quad(n\\geq 1)$$\r\nãã®ãšãä»»æã® $n\\geq 1$ ã«ã€ããŠ\r\n$$a_{n+1}-(n+1)a_n=-(a_n-na_{n-1})=\\cdots=(-1)^{n-1}(a_2-2a_1)=(-1)^{n+1}$$\r\nãæãç«ã¡ïŒãã®äž¡èŸºã $(n+1)!$ ã§å²ã£ãåŒãèããã°æ±ããåŒã¯å®¹æã«åŸãããïŒ\r\n<\\/details>\r\n<details>\r\n<summary>å
é€åçã«ãã蚌æ<\\/summary>\r\nã$S:=\\\\{1,\\dots,n\\\\}$ ã®éšåéå $T$ ã«å¯ŸããŠïŒ$n$ 次ã®çœ®æ $\\sigma$ ã§ãã£ãŠä»»æã® $i\\in T$ ã«å¯Ÿã $\\sigma(i)=i$ ãã¿ãããã®ã¯ $(n-|T|)!$ åååšããïŒãŸã $|T|=k\\~(0\\leq k\\leq n)$ ãªã $T\\subset S$ 㯠${}\\_{n}\\mathrm{C}\\_{k}$ åååšããããïŒå
é€åçãã\r\n$$\r\na_n\r\n=\\sum_{T\\subset S}(-1)^{|T|}(n-|T|)!\r\n=\\sum_{k=0}^{n}(-1)^{k}{}\\_{n}\\mathrm{C}\\_{k}(n-k)!\r\n=\\sum_{k=0}^{n}\\frac{(-1)^kn!}{k!}.\r\n$$\r\n<\\/details>\r\n\r\nãããã次ãåŸãããïŒ\r\n$$\\begin{aligned}\r\nN\r\n&=2048!\\times\\left(2049\\times\\sum_{k=0}^{2047}\\frac{(-1)^k\\times 2047!}{k!}+1\\right)\\\\\\\\\r\n&=2048!\\times\\left(\\underbrace{2049\\times2046\\times\\left(2047\\times\\sum_{k=0}^{2045}\\frac{(-1)^k\\times 2045!}{k!}+1\\right)}_{6ã®åæ°}+1\\right)\r\n\\end{aligned}$$\r\nãã£ãŠ $a,b$ 㯠$2048!$ ã $2,3$ ã§å²ãåããåæ°ãšããããäžèŽããããšããããïŒããã¯Legendreã®å
¬åŒãã $a=2047,b=1019$ ãšèšç®ã§ãïŒç¹ã«è§£çãã¹ãå€ã¯ ${\\bf 2085893}$ïŒ",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc012/editorial/81"
},
{
"content": "â»ãã€ãŠ[å
¬åŒè§£èª¬](.\\/)ãååšããªãã£ããšãã®ãã®ã§ã\r\n\r\n---\r\n\r\nã$2047$ ãäžè¬ã« $n \\ge 1$ ãšããïŒä»®å®ã®çœ®ãæ¹ã $a\\_n$ éããšããŠïŒãããæ±ããïŒ \r\n* ç³ã®ãªãåãååšãããšãïŒ \r\nãé»ç³ãåºå®ãããšãïŒçœç³ã®äžŠã¹æ¹ã®ç·æ°ã¯æªä¹±é åãšåã$%n!\\sum\\limits_{k=0}^n\\dfrac{\\left(-1\\right)^k}{k!}$ïŒãã£ãŠïŒæ±ããå Žåã®æ°ã¯\r\n$$ \\left(n+1\\right)! \\times n!\\sum_{k=0}^n\\frac{\\left(-1\\right)^k}{k!}. $$\r\n* å
šãŠã®åã«å°ãªããšãäžæ¹ã®ç³ããããšãïŒ \r\nã$n = 1$ ã§ã¯ $2$ éãïŒ$n \\ge 2$ ã®å ŽåïŒçœç³ã®ã¿ã®åã®çœç³ãåºå®ãããšïŒæ®ãã®ç³ã®äžŠã¹æ¹ã®ç·æ°ã¯ $n - 1$ ã®å Žåãšåã\\*ïŒãã£ãŠ $a_0 = 1$ ãšããã°ïŒæ±ããå Žåã®æ°ã¯ $n \\left(n + 1\\right) a_{n-1}$ éãïŒ\r\n\r\nããããã£ãŠ\r\n$$ a_n = n \\left(n + 1\\right) a_{n-1} + \\left(n+1\\right)! \\times n!\\sum_{k=0}^n\\frac{\\left(-1\\right)^k}{k!} $$\r\nã§ããïŒåž°çŽçã«\r\n$$ a_n = n! \\left(n + 1\\right)! \\sum_{k=0}^n\\frac{\\left(n - k + 1\\right)\\left(-1\\right)^k}{k!} $$\r\nãåŸãïŒãã£ãŠ $S = 2045!\\sum\\limits_{k=0}^{2045}\\dfrac{\\left(2048 - k\\right)\\left(-1\\right)^k}{k!}$ ãšãããš\r\n$$ N = a\\_{2047} = 2047! \\times 2048! \\left(\\frac S{2045!} + \\frac2{2046!} - \\frac1{2047!}\\right) = 2048! \\times \\left(2047 \\times 341 \\times 6S + 4093\\right)\\mathclose{}. $$\r\n$S$ ã¯æŽæ°ã§ããããïŒLegendre ã®å®çãã $a = 2047,\\\\, b = 1019$ ãåŸããïŒæ±ããæ°å€ã¯ $ab = \\mathbf{2085893}$ïŒ\r\n---\r\n\\*ãçœç³ã®ã¿ã®åããã³ãã®åã®çœç³ã®ããè¡ãèãïŒãã®è¡ãšå以å€ã®ç³ã䞊ã¹ãŠããïŒæ®ãã®é»ç³ $1$ ã€ãé©åãªå Žæã«ããã°ããïŒ",
"text": "ã¢ãŒã«ã€ã",
"url": "https://onlinemathcontest.com/contests/omc012/editorial/81/27"
}
] | ã$2047$ è¡ $2048$ åã®ãã¹ç®ããã, ããã«é»ç³ãšçœç³ã $2047$ åãã€çœ®ããŸã. ãã ã, åããã¹ã«è€æ°ã®ç³ã眮ãããšã¯ã§ããŸãã. åè¡ã«çœ®ãããç³ãçœé»ããããé«ã
$1$ å, ååã«çœ®ãããç³ãçœé»ããããé«ã
$1$ åãšãªããããªç³ã®çœ®ãæ¹ã¯ $N$ éããããŸã.\
ã$N$ ã $2$ ã§å²ãåããåæ°ã $a$, $N$ ã $3$ ã§å²ãåããåæ°ã $b$ ãšãããšã, $ab$ ãæ±ããŠãã ãã.\
ãããã§, å転ãè£è¿ãã§åäžãšãªããã®ãç°ãªããã®ãšããŠæ°ããããšãšããŸã. |
OMC011 | https://onlinemathcontest.com/contests/omc011 | https://onlinemathcontest.com/contests/omc011/tasks/70 | A | OMC011(A) | 100 | 199 | 228 | [
{
"content": "ãæšå¹Žã®äººå£ã¯äžæšå¹Žã® $27\\/25$ å, ä»å¹Žã® $24\\/25$ åã§ããããšãã, $\\mathrm{lcm}(27,24)=216$ ã®åæ°ã§ãã. 倧å°ã®æ¡ä»¶ãã $216\\times 8=1728$ ã $216\\times 9=1944$ ãšãªãã»ããªã, ãã®ãã¡ä»ã®2幎ãåæ¡ä»¶ãã¿ããã®ã¯ $\\textbf{1728}$ ã®ãšãã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc011/editorial/70"
}
] | ãTKGçºã®äººå£ãèããŸã. äžæšå¹Žã®äººå£ãããšã«ãããšæšå¹Žã®äººå£ã¯ã¡ããã© $8\\%$ å€ã, ä»å¹Žã®äººå£ãããšã«ãããšæšå¹Žã®äººå£ã¯ã¡ããã© $4\\%$ å°ãªãã§ã. ãããã®å¹Žã®äººå£ã $1550$ äººä»¥äž $1950$ 人以äžã§ãããšã, æšå¹Žã®äººå£ãšããŠèãããããã®ã®åèšã解çããŠãã ãã. |
OMC011 | https://onlinemathcontest.com/contests/omc011 | https://onlinemathcontest.com/contests/omc011/tasks/71 | B | OMC011(B) | 200 | 198 | 207 | [
{
"content": "ã$3^6\\equiv3^2\\pmod{720}$ ãã, æå
ã«ããã©ã ãç¶ã®æ¬æ° $N$ ã«ã€ããŠåŒãæããè¡ã£ãŠã $3^{N}$ ã $720$ ã§å²ã£ãäœãã¯äžå€ã§ãã. ãã£ãŠ $3^n\\equiv 3^4\\equiv\\textbf{81}\\pmod{720}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc011/editorial/71"
}
] | ãããé§èåå±ã§ã¯, $\displaystyle 1$ æ¬ $\displaystyle 100$ åïŒçšèŸŒïŒã®ã©ã ãã売ãããŠããŸã. ãŸãããã§ã¯, 飲ã¿çµãã£ãã©ã ãã®ç¶ã $\displaystyle 6$ æ¬æã£ãŠãããš, ãããšåŒãæãã«æ°ãã«ã©ã ãã $\displaystyle 2$ æ¬ããã, ãã®ã©ã ãããŸãåŒãæãã«äœ¿ãããšãã§ããŸã.\
ãã㟠$\displaystyle 100n$ åæã£ãŠããŸã($n$ ã¯æ£æŽæ°). ãã®ãéã䜿ã£ãŠ, ã§ããã ãå€ãã®ã©ã ãã飲ãã ãšãã, æå
ã«ã¯ã©ã ãã®ç¶ã $\displaystyle 4$ æ¬æ®ããŸãã. ãã®ãšã, $\displaystyle 3^{n}$ ã $\displaystyle 720$ ã§å²ã£ãäœããšããŠèãããããã®ããã¹ãŠæ±ã, ãã®ç·åã解çããŠãã ãã.\
ããã ã, éäžã§ç¶ã®åŠåã¯è¡ãããªããã®ãšããŸã. |
OMC011 | https://onlinemathcontest.com/contests/omc011 | https://onlinemathcontest.com/contests/omc011/tasks/72 | C | OMC011(C) | 300 | 137 | 198 | [
{
"content": "ãäžåŒã $k$ ãšããã°, 以äžã®ããã«å€åœ¢ã§ãã.\r\nãã$$(k+a)(k-a)=2^83^{10}5^{12}$$\r\nããã㧠$k\\pm a$ ã®å¶å¥ã¯äžèŽãããã, ç¹ã«ããããå¶æ°ã§ãã. ããªãã¡, 以äžãã¿ããæ£æŽæ°ã®çµ $x\\geq y$ ã®æ°ãæ±ããããšã«åž°çããã.\r\nãã$$xy=2^63^{10}5^{12}$$\r\nããšãã㧠$2^63^{10}5^{12}$ ã¯æ£ã®çŽæ°ã $(6+1)(10+1)(12+1)=1001$ åãã€ã, å¹³æ¹æ°ã§ããããšãã $x=y$ ãªãçµãäžã€ååšããããšã«çæããã°, æ±ããå€ã¯ $\\textbf{501}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc011/editorial/72"
}
] | ã$\displaystyle \sqrt{a^{2} +2^{8} 3^{10} 5^{12}}$ ãæŽæ°ãšãªããããªéè² æŽæ° $\displaystyle a$ ãšããŠããåŸãå€ã¯ããã€ãããæ±ããŠãã ãã. |
OMC011 | https://onlinemathcontest.com/contests/omc011 | https://onlinemathcontest.com/contests/omc011/tasks/73 | D | OMC011(D) | 400 | 87 | 121 | [
{
"content": "ãäžå³ã®ããã«åº§æšãèšå®ã, $ABC$ ããã³ãããšååãªäžè§åœ¢ãã¡ãåã蟌ã.\r\n![figure 1](\\/images\\/DfmQG4YXHay9B3FLGnT9Sm9AVysPsLjQ3Gt1Z1Tk)\r\nããã®ãšã, $A^\\prime B^\\prime C^\\prime$ ã®å
å¿ã $I^{\\prime}$ ãšããã°, æ±ããæå°å€ã¯ç·å $II^\\prime$ ã®é·ãã«çããããšãããã. ãªãå³å¯ã«ã¯ãããç·å $BC^\\prime$ ããã³ $A^\\prime C^\\prime$ ãšäº€ããããšã瀺ãå¿
èŠãããã, ããã¯èªè
ãžã®æŒç¿ãšãã.\\\r\nãç¹ $I$ 㯠$\\angle B$ ã®äºçåç· $y=-\\sqrt{3}x+1$ ããã³ $\\angle C$ ã®äºçåç· $y=x$ ã®äº€ç¹ã§ãããã, ãã®åº§æšã¯\r\nãã$$I:\\left(\\dfrac{\\sqrt{3}-1}{2},\\dfrac{\\sqrt{3}-1}{2}\\right)$$\r\nã§ãã. åæ§ã« $I^\\prime$ ã®åº§æšã¯ $(2,1)$ ã§ãã. ãã£ãŠ\r\nãã$$I^{\\prime}I^2=\\left(\\dfrac{\\sqrt{3}-1}{2}-1\\right)^2+\\left(\\dfrac{\\sqrt{3}-1}{2}-2\\right)^2=10-4\\sqrt{3}$$\r\nã§ãããã, æ±ããå€ã¯ $10+4^2\\times 3=\\textbf{58}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc011/editorial/73"
}
] | ã$AB=2,BC=1,CA=\sqrt{3}$ ã§ããäžè§åœ¢ $ABC$ ã®å
å¿ã $I$ ãšããŸã. ç¹ $P$ ã蟺 $AB$ äžã, ç¹ $Q$ ã蟺 $BC$ äžã, ç¹ $R$ ã蟺 $CA$ äžãããããåããšã, $IP+PQ+QR+RI$ ã®ãšãåŸãæå°å€ã¯æ£ã®æŽæ° $a, b, c$ ãçšã㊠$\sqrt{a-b\sqrt{c}}$ ãšè¡šãããŸã. $a+b^{2} c$ ãæ±ããŠãã ãã. |
OMC011 | https://onlinemathcontest.com/contests/omc011 | https://onlinemathcontest.com/contests/omc011/tasks/74 | E | OMC011(E) | 500 | 75 | 105 | [
{
"content": "ããŸã $f(2n)=f(n)$ ã§ããããšã瀺ã.\\\r\nã$(1+x)^{2n}=[(1+x)^n]^2$ ã®äž¡èŸºã® $x^{2m}$ ã®ä¿æ°ãèããããšã§\r\nãã$$\\_{2n}\\mathrm{C}\\_{2m}=(\\_{n}\\mathrm{C}\\_{m})^2+2\\_{2n}\\mathrm{C}\\_{m+1}\\cdot\\_{2n}\\mathrm{C}\\_{m-1}+\\cdots$$\r\nããªãã¡ $\\_{2n}\\mathrm{C}\\_{2m}$ ãš $\\_{n}\\mathrm{C}\\_{m}$ ã®å¶å¥ã¯äžèŽãã. åæ§ã«, åãåŒã® $x^{2m+1}$ ã®ä¿æ°ãèããããšã§ $\\_{2n}\\mathrm{C}\\_{2m+1}$ ã¯åžžã«å¶æ°ã§ãããã, 以äžãã $f(2n)=f(n)$ ã§ããããšã瀺ããã.\\\r\nã次㫠$f(2n+1)=2f(n)$ ã§ããããšã瀺ã. 以äžã®çåŒã«çæãã.\r\nãã$$\\_{2n+1}\\mathrm{C}\\_{m+1}=\\_{2n}\\mathrm{C}\\_{m}+\\_{2n}\\mathrm{C}\\_{m+1}$$\r\nããã§äžã®èå¯ãã $\\_{2n}\\mathrm{C}\\_{m}$ ãš $\\_{2n}\\mathrm{C}\\_{m+1}$ ã®å¶å¥ã¯ç°ãªããã, $\\_{2n}\\mathrm{C}\\_{m}$ ãå¥æ°ãªãã° $\\_{2n+1}\\mathrm{C}\\_{m}$ ããã³ $\\_{2n+1}\\mathrm{C}\\_{m+1}$ ã¯ãšãã«å¥æ°ã§ãã ($m=2n$ ã§ãæ£ãã). ãããã $f(2n+1)=2f(n)$ ã瀺ããã.\\\r\nãããã§æºåã¯æŽã£ãã®ã§, èšç®ãå¯èœã§ãã. $5^{16}\\equiv 1\\pmod{16}$ ã«çæããã°,\r\nãã$$f(10^{16}-2^{16})=f(5^{16}-1)=f\\left(\\dfrac{5^{16}-1}{16}\\right)$$\r\näžæ¹ã§, $f(2n+1)=2f(n)$ ãç¹°ãè¿ãçšããã°,\r\nãã$$f(10^{16}+7\\cdot2^{17})=f(5^{16}+14)=2f\\left(\\dfrac{5^{16}+13}{2}\\right)=\\cdots=16f\\left(\\dfrac{5^{16}-1}{16}\\right)$$\r\n以äžãã, æ±ããå㯠$\\textbf{16}$ ã§ãã,",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc011/editorial/74"
},
{
"content": "å
¬åŒè§£èª¬ã§ã¯äºé
ä¿æ°ã®çåŒãšãã¹ã«ã«ã®äžè§åœ¢ã§ã®çåŒãããšã«æŒžååŒãæ§ç¯ããŠãããïŒKummer's theoremã«ããïŒ$f(n)$ ãçŽã¡ã«æ±ãŸãïŒOMCã§ã¯æ¯èŒçããåãããã®ã§ïŒç¥ã£ãŠãããšããïŒ \r\n**Kummer's theorem** \r\n ã$p$ ãçŽ æ°ãšããïŒ${}\\_{m}\\mathrm{C}\\_{n}$ ã $p$ ã§å²ãåããæ倧ã®åæ°ã¯ $p$ é²æ°ã®è¡šç€ºã§ $(m-n) + n$ ãèšç®ãããšãã®ç¹°ãäžããã®åæ°ãšçããïŒ \r\n**蚌æ** \r\nã[ãã¡ã](https:\\/\\/en.wikipedia.org\\/wiki\\/Kummer%27s_theorem)ã[ãã¡ã](https:\\/\\/manabitimes.jp\\/math\\/1330)ãåç
§ã®ããšïŒ\r\nã«ãžã£ã³ãã«ã®å®çã«ãã£ãŠ $n!$ ã® $p$ ã§å²ããåæ°ãïŒïŒ$p$ é²æ°è¡šç€ºã§ã®åæ¡ã®åã®é¢æ°ãå®ããŠããã°ïŒå
·äœçã«æžããããïŒ ${}\\_{m}\\mathrm{C}\\_{n}$ ã $p$ ã§å²ããåæ°ããã®è¡šç€ºãè¡ãããšãã§ãïŒãã®è¡šç€ºãš $p$ é²æ°è¡šç€ºã§ã®åèšç®ã®ç¹°ãäžããã®å¯Ÿå¿ä»ããèŠããããªèšŒæãšãªã£ãŠããïŒ\r\n\r\nãã®å®çã $p=2$ ã§çšããããšã§ïŒ${}\\_{n}\\mathrm{C}\\_{k}$ ãå¥æ°ã§ããããšãšïŒ $n-k$ ãš $k$ ã®2é²è¡šç€ºã§ã®åã®èšç®ã§ç¹°ãäžãããçºçããªãããšãåå€ã§ããããšããããïŒãã㯠$n-k$ ãš $k$ ã®2é²è¡šç€ºã«ãããŠïŒåãæ¡ã« $1$ ãååšããªãããšãšåå€ã§ããïŒåã§ãã $n$ ã®2é²è¡šç€ºã§ $0$ ãšãªãæ¡ã«å¯ŸããŠã¯ $n-k$ ããã³ $k$ ã®2é²è¡šç€ºã®åãæ¡ã§ã $0$ ãšãªãïŒ$1$ ãšãªãæ¡ã«å¯ŸããŠã¯ $k$ ã®åãæ¡ã§ã®2é²è¡šç€ºã¯ $1,0$ ã®2éãã®è¡šç€ºãããããïŒä»¥äžã®è°è«ããŸãšãããšïŒ$n$ ã®2é²è¡šç€ºã§ã® $1$ ã®åæ°ã $\\mathrm{popcount}(n)$ ãšæžãããšã«ãããšïŒ$f(n) = 2^{\\mathrm{popcount}(n)}$ ã§ããããšããããïŒ\r\n\r\nããšã¯å
¬åŒè§£èª¬ãšã»ãŒåæ§ã ãïŒ2é²è¡šç€ºãè¿œããšå°ãéãèšç®ã§ããïŒ$5^{16} \\equiv 1 \\pmod {16}$ ããïŒ$5^{16}-1$ ã¯2é²è¡šç€ºã§äž4æ¡ããã¹ãŠ $0$ ã§ïŒ$5^{16}+14=(5^{16}-1)+ 15$ ã¯2é²è¡šç€ºã§ $5^{16}-1$ ã®2é²è¡šç€ºã®äž4æ¡ããã¹ãŠ $1$ ã«å€ãããã®ãšäžèŽãïŒäžããããäºæ°ã® $\\mathrm{popcount}$ ã®å·®ã¯ $4$ ã«ãªãããïŒæ±ããå€ã¯ $2^4 = \\mathbf{16}$ ãšãªãïŒ",
"text": "Kummer's theorem",
"url": "https://onlinemathcontest.com/contests/omc011/editorial/74/400"
}
] | ãæ£æŽæ° $n$ ã«å¯ŸããŠ, ${}\_{n}\mathrm{C}\_{k}$ ãå¥æ°ã§ãããããªæŽæ° $0\leq k\leq n$ ã®åæ°ã $f(n)$ ã§è¡šããŸã. äŸãã°,
$${}\_{3}\mathrm{C}\_{0} =1,\quad {}\_{3}\mathrm{C}\_{1} =3,\quad {}\_{3}\mathrm{C}\_{2} =3,\quad {}\_{3}\mathrm{C}\_{3} =1$$
ãªã®ã§, $f(3) =4$ ã§ã. ãã®ãšã, $\displaystyle \frac{f\left( 10^{16} +7\times 2^{17}\right)}{f\left( 10^{16} -2^{16}\right)}$ ãæ±ããŠãã ãã. |
OMC011 | https://onlinemathcontest.com/contests/omc011 | https://onlinemathcontest.com/contests/omc011/tasks/75 | F | OMC011(F) | 600 | 44 | 74 | [
{
"content": "ã$AEGF$ ãé·æ¹åœ¢ãšãªããããªç¹ $G$ ããšããš, æ±ããé¢ç©ã®å·® $S$ ã¯åè§åœ¢ $BCDG$ ã®é¢ç©ã«çããããšã容æã«ããã. ããã«, $B$ ã«ã€ã㊠$E$ ãšå¯Ÿç§°ãªç¹ $P$ ããã³ $D$ ã«ã€ã㊠$F$ ãšå¯Ÿç§°ãªç¹ $Q$ ããšããš, $F,E,P,Q$ 㯠$C$ ãäžå¿ãšããååŸ $5$ ã®ååšäžã«ãã, å
è§åœ¢ $EPRQFG$ ã®é¢ç©ã¯ $4S$ ã«çããããšãããã. ãã ã $R$ 㯠$APRQ$ ãé·æ¹åœ¢ãšãªããããªç¹ã§ãã. ããã§æ¹ã¹ãã®å®çãã\r\nãã$$AE\\times AP=AC^2-5^2=AF\\times AQ$$\r\nããªãã¡ $AE\\times AF\\times AP\\times AQ=11^2$ ã§ãã, äžæ¹ã§ $AE\\times AF=2\\triangle AEF=3$ ã§ãããã\r\nãã$$4S=AP\\times AQ-AE\\times AF=\\dfrac{11^2}{3}-3=\\dfrac{112}{3}$$\r\nãã£ãŠ $S=\\dfrac{28}{3}$ ã§ãã, æ±ããå€ã¯ $\\textbf{31}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc011/editorial/75"
}
] | ã察è§ç·ã®é·ãã $6$ ã§ããé·æ¹åœ¢ $ABCD$ ããããŸã. 蟺 $AB$ äžã« $CE=5$ ãªãç¹ $E$ ã, 蟺 $AD$ äžã« $CF=5$ ãªãç¹ $F$ ãåã£ããšãã, äžè§åœ¢ $AEF$ ã®é¢ç©ã¯ $\displaystyle\frac{3}{2}$ ãšãªããŸãã.\
ã$EF$ ã®äžç¹ã $M$ ãšãããšã, åè§åœ¢ $ABMD\\,(=\triangle ABM+\triangle ADM)$ ãšåè§åœ¢ $BCDM$ ã®é¢ç©ã®å·®ã¯, æ倧å
¬çŽæ°ã $1$ ã§ãããããªæ£æŽæ° $m, n$ ãçšããŠ, $\displaystyle \frac{m}{n}$ ãšè¡šããŸã. $m+n$ã解çããŠãã ãã. |
OMC010 | https://onlinemathcontest.com/contests/omc010 | https://onlinemathcontest.com/contests/omc010/tasks/64 | A | OMC010(A) | 100 | 168 | 169 | [
{
"content": "ãã¯ããã® $12$ ç§éã®ãã¡ $A,B$ ããšãã«å
ã£ãŠããã®ã¯ $6$ ç§éã§ãã. 以éã¯ãã® $12$ ç§éã®å
ãæ¹ãåšæãšããŠç¹°ãè¿ããã, æ±ããå€ã¯ $\\textbf{60}$ ç§éã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc010/editorial/64"
}
] | ã$A, B$ ã® $2$ ã€ã®é»çããããŸã. ã¹ã€ãããå
¥ãããš $2$ ã€ã®é»çã¯åæã«å
ãã¯ãã, $A$ ã®é»ç㯠$2$ ç§éå
ã£ãŠã¯æ¬¡ã® $1$ ç§éæ¶ãããšããããšãç¹°ãè¿ã, $B$ ã®é»ç㯠$3$ ç§éå
ã£ãŠã¯æ¬¡ã® $1$ ç§éã¯æ¶ãããšããããšãç¹°ãè¿ããŸã.\
ãã¹ã€ãããå
¥ããŠãã $120$ ç§éã§, $A, B$ äž¡æ¹ã®é»çãå
ã£ãŠããã®ã¯åèš $x$ ç§éã§ã. $x$ ã解çããŠãã ãã. |
OMC010 | https://onlinemathcontest.com/contests/omc010 | https://onlinemathcontest.com/contests/omc010/tasks/65 | B | OMC010(B) | 200 | 162 | 163 | [
{
"content": "ãäœåŒŠå®çãããã $2$ ã€ã®è§ã®äœåŒŠã«ã€ã㊠$-\\dfrac{1}{\\sqrt{2}},\\dfrac{\\sqrt{3}}{2}$ ãšèšç®ã§ãã. ãã£ãŠæ®ãã®è§ã®å€§ãã㯠$180^\\circ-135^\\circ-30^\\circ=\\textbf{15}^\\circ$ ã§ãã, ãããæå°ã§ãããã解çãã¹ããã®ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc010/editorial/65"
}
] | ãäžèŸºã®é·ãã $\displaystyle 3, \frac{3 \sqrt{2}}{2}, \frac{-3+3 \sqrt{3}}{2}$ ã®äžè§åœ¢ã«ãããŠ, æãå°ããè§ã¯ $x$ 床ã§ã. $x$ ã解çããŠãã ãã. |
OMC010 | https://onlinemathcontest.com/contests/omc010 | https://onlinemathcontest.com/contests/omc010/tasks/66 | C | OMC010(C) | 300 | 88 | 108 | [
{
"content": "ãé«æšããã®èãã«åŸããããªé²ã¿æ¹ã**çµè·¯**ãšåŒã¶ããšã«ãã.\\\r\nã$n$ åã®è¡ãéããããªããçµè·¯ãåºå®ãããšã, ãã®çµè·¯ã«ã¯ $n-1$ æ¬ã®éãå«ãŸããããšãã, ãããå®çŸã§ãã確ç㯠$\\left(\\dfrac{6}{7}\\right)^{n-1}$ ã§ãã. ãŸã $n$ åã®è¡ãéããããªçµè·¯ã¯ $\\_{98}\\mathrm{C}\\_{n-2}$ éãååšãããã, æ±ããæåŸ
å€ã¯\r\n$$\\sum_{n=2}^{100}{}\\_{98}\\mathrm{C}\\_{n-2}\\left(\\frac{6}{7}\\right)^{n-1}=\\frac{6}{7}\\sum_{n=0}^{98}{}\\_{98}\\mathrm{C}\\_{n}\\left(\\frac{6}{7}\\right)^{n}=\\frac{6}{7}\\left(1+\\frac{6}{7}\\right)^{98}=2\\times 3\\times 7^{-99} \\times 13^{98}$$\r\nãã ãéäžã§äºé
å®çãçšãã. ç¹ã«è§£çãã¹ãå€ã¯ $\\textbf{586}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc010/editorial/66"
}
] | ãããåœã«ã¯ $100$ åã®è¡ããã, è¡ $1$ ããè¡ $100$ ãŸã§ã®çªå·ãä»ããããŠããŸã.
ãŸã, ãããã®ãã¡ã¡ããã© $2$ ã€ã®éãçŽæ¥ç¹ããããªéã $0$ æ¬ä»¥äžäœãããŠããŸã.\
ãè¡ $1$ ã«äœãé«æšããã¯è¡ $100$ ãžæ
è¡ã«è¡ãããã§ãã, ãã®è¡ãæ¹ã«ã€ããŠãè¡ã®çªå·ãå°ãããªã£ãŠããŸãããã«ç§»åããããã£ãšé åãã«ãªã£ãŠããŸããã, è¡ã®çªå·ã倧ãããªã£ãŠããããã«éãé²ãã§ãããããšèããŠããŸã. é«æšããã®èããæ£ãããã©ããããããŸããã, ãããä¿¡ããŠèãã®éãã«é²ããšã, è¡ $1$ ããè¡ $100$ ãŸã§è¡ãæ¹æ³ãäœéãããããç¥ãããã§ã(ãã®ãããªæ¹æ³ãååšããªãããšããããŸã).\
ãä»»æã® $2$ ã€ã®è¡ã«å¯ŸããŠ, ãã®éãçŽæ¥ç¹ãéã $\displaystyle \frac{6}{7}$ ã®ç¢ºçã§ååšãããšã, ãã®ãããªæ¹æ³ã®åæ°ã®æåŸ
å€ã¯ããæ¢çŽåæ°ã§è¡šãããšãã§ããŸã. ããããã€ããããã®çŽ å æ°ã«ã€ããŠ, ãããšãã®ææ°ã®ç©ã®ç·åã®çµ¶å¯Ÿå€ã解çããŠãã ãã.\
ãäŸãã°, $\displaystyle \frac{45}{8}=2^{-3}\times3^{2}\times5$ ãçãã«ãªã£ããšãã¯, $|2\times(-3)+3\times2+5|=5$ ãšè§£çããŠãã ãã. |
OMC010 | https://onlinemathcontest.com/contests/omc010 | https://onlinemathcontest.com/contests/omc010/tasks/67 | D | OMC010(D) | 400 | 96 | 128 | [
{
"content": "ãéå $A$ ã® $n$ çªç®ã®èŠçŽ ã $b_n$ ãšãã, $A$ ã®èŠçŽ ã®æå°å€ã $m$ ãšãã.\\\r\nããŸã, 以äžã®äžçåŒãã $m\\leq8000$ ãããã.\r\n$$500m\\leq\\displaystyle\\sum_{n=1}^{500}b_{n}=\\left(\\sum_{n=1}^{500}a_n\\right)^2\\leq4000000$$\r\nãéã« $a_{n}=\\sqrt{8000}(\\sqrt{n}-\\sqrt{n-1})$ ãšããã°, $a_{1}+\\cdots+a_{500}=2000$ ã§ãã, ãã€ä»»æã® $n$ ã«ã€ã㊠$b_{n}=8000$ ã§ãããã, æ±ããæ倧å€ã¯ $\\textbf{8000}$ ã§ãã.",
"text": "å
¬åŒè§£èª¬",
"url": "https://onlinemathcontest.com/contests/omc010/editorial/67"
}
] | ãæ£ã®å®æ°ãããªãæ°å $a_{1}, a_{2}, \cdots , a_{500}$ 㯠$a_{1}+a_{2}+...+a_{500}\leq2000$ ãæºãããšããŸã. ãã®ãšã,
$$A=\lbrace a_{1}^{2}, a_{2}^{2}+2a_{2}a_{1}, a_{3}^{2}+2a_{3}(a_{1}+a_{2}), \cdots , a_{500}^{2}+2a_{500}(a_{1}+a_{2}+...+a_{499})\rbrace$$
ã«å«ãŸããæ°ã®æå°å€ãšããŠããåŸã, æ倧ã®å€ãæ±ããŠãã ãã.\
ã圢åŒçã«ã¯, éå $A$ ã«ãã㊠$n$ çªç®ã®èŠçŽ ã¯, $a_{0}=0$ ãšã㊠$a_{n}^{2}+2a_{n}\displaystyle \sum^{n-1}_{k=0}a_k$ ã®ããã«è¡šãããŸã. |