Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 11,863 Bytes
0e4d757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe8663f
0e4d757
 
 
 
 
 
 
 
 
 
 
 
 
5ffc72f
 
 
 
 
 
 
0e4d757
 
5ffc72f
0e4d757
 
 
 
3fe19b3
fe8663f
89aebf9
 
 
5ffc72f
 
89aebf9
fe8663f
 
 
5ffc72f
fe8663f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ffc72f
fe8663f
5ffc72f
fe8663f
89aebf9
 
fe8663f
5ffc72f
 
fe8663f
89aebf9
 
fe8663f
 
89aebf9
 
 
 
 
 
 
5ffc72f
fe8663f
5ffc72f
fe8663f
89aebf9
 
fe8663f
5ffc72f
 
fe8663f
89aebf9
 
fe8663f
5ffc72f
 
fe8663f
 
 
 
5ffc72f
 
fe8663f
89aebf9
 
fe8663f
5ffc72f
 
fe8663f
89aebf9
 
fe8663f
5ffc72f
 
fe8663f
89aebf9
 
 
5ffc72f
 
89aebf9
 
 
fe8663f
5ffc72f
 
fe8663f
 
74e4c32
3fe19b3
0e4d757
 
edbfbc6
3fe19b3
0e4d757
a3d1272
74e4c32
fe8663f
 
 
 
 
 
 
 
 
0e4d757
 
a3d1272
 
fe8663f
3fe19b3
74e4c32
 
fe8663f
89aebf9
74e4c32
 
 
 
 
0e4d757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59de89d
0e4d757
fe8663f
 
 
 
 
 
0e4d757
 
 
fe8663f
0e4d757
fe8663f
0e4d757
 
 
fe8663f
 
edbfbc6
0e4d757
fe8663f
dceab29
 
 
 
 
0e4d757
74e4c32
dceab29
 
d465d0f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import csv
import json
import os
from pathlib import Path

import datasets

# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""

_DESCRIPTION = """Large pre-trained language models have shown promise for few-shot learning, completing text-based tasks given only a few task-specific examples. Will models soon solve classification tasks that have so far been reserved for human research assistants? 

[RAFT](https://raft.elicit.org) is a few-shot classification benchmark that tests language models:

- across multiple domains (lit review, tweets, customer interaction, etc.)
- on economically valuable classification tasks (someone inherently cares about the task)
- in a setting that mirrors deployment (50 examples per task, info retrieval allowed, hidden test set)
"""

_HOMEPAGE = "https://raft.elicit.org"

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""

DATA_DIR = "data/"
TASKS = {
    "ade_corpus_v2": {
        "name": "ade_corpus_v2",
        "description": "",
        "data_columns": ["Sentence", "ID"],
        "label_columns": {"Label": ["ADE-related", "not ADE-related"]},
    },
    "banking_77": {
        "name": "banking_77",
        "description": "",
        "data_columns": ["Query", "ID"],
        "label_columns": {
            "Label": [
                "Refund_not_showing_up",
                "activate_my_card",
                "age_limit",
                "apple_pay_or_google_pay",
                "atm_support",
                "automatic_top_up",
                "balance_not_updated_after_bank_transfer",
                "balance_not_updated_after_cheque_or_cash_deposit",
                "beneficiary_not_allowed",
                "cancel_transfer",
                "card_about_to_expire",
                "card_acceptance",
                "card_arrival",
                "card_delivery_estimate",
                "card_linking",
                "card_not_working",
                "card_payment_fee_charged",
                "card_payment_not_recognised",
                "card_payment_wrong_exchange_rate",
                "card_swallowed",
                "cash_withdrawal_charge",
                "cash_withdrawal_not_recognised",
                "change_pin",
                "compromised_card",
                "contactless_not_working",
                "country_support",
                "declined_card_payment",
                "declined_cash_withdrawal",
                "declined_transfer",
                "direct_debit_payment_not_recognised",
                "disposable_card_limits",
                "edit_personal_details",
                "exchange_charge",
                "exchange_rate",
                "exchange_via_app",
                "extra_charge_on_statement",
                "failed_transfer",
                "fiat_currency_support",
                "get_disposable_virtual_card",
                "get_physical_card",
                "getting_spare_card",
                "getting_virtual_card",
                "lost_or_stolen_card",
                "lost_or_stolen_phone",
                "order_physical_card",
                "passcode_forgotten",
                "pending_card_payment",
                "pending_cash_withdrawal",
                "pending_top_up",
                "pending_transfer",
                "pin_blocked",
                "receiving_money",
                "request_refund",
                "reverted_card_payment?",
                "supported_cards_and_currencies",
                "terminate_account",
                "top_up_by_bank_transfer_charge",
                "top_up_by_card_charge",
                "top_up_by_cash_or_cheque",
                "top_up_failed",
                "top_up_limits",
                "top_up_reverted",
                "topping_up_by_card",
                "transaction_charged_twice",
                "transfer_fee_charged",
                "transfer_into_account",
                "transfer_not_received_by_recipient",
                "transfer_timing",
                "unable_to_verify_identity",
                "verify_my_identity",
                "verify_source_of_funds",
                "verify_top_up",
                "virtual_card_not_working",
                "visa_or_mastercard",
                "why_verify_identity",
                "wrong_amount_of_cash_received",
                "wrong_exchange_rate_for_cash_withdrawal",
            ]
        },
    },
    "terms_of_service": {
        "name": "terms_of_service",
        "description": "",
        "data_columns": ["Sentence", "ID"],
        "label_columns": {"Label": ["not potentially unfair", "potentially unfair"]},
    },
    "tai_safety_research": {
        "name": "tai_safety_research",
        "description": "",
        "data_columns": [
            "Title",
            "Abstract Note",
            "Url",
            "Publication Year",
            "Item Type",
            "Author",
            "Publication Title",
            "ID",
        ],
        "label_columns": {"Label": ["TAI safety research", "not TAI safety research"]},
    },
    "neurips_impact_statement_risks": {
        "name": "neurips_impact_statement_risks",
        "description": "",
        "data_columns": ["Paper title", "Paper link", "Impact statement", "ID"],
        "label_columns": {"Label": ["doesn't mention a harmful application", "mentions a harmful application"]},
    },
    "overruling": {
        "name": "overruling",
        "description": "",
        "data_columns": ["Sentence", "ID"],
        "label_columns": {"Label": ["not overruling", "overruling"]},
    },
    "systematic_review_inclusion": {
        "name": "systematic_review_inclusion",
        "description": "",
        "data_columns": ["Title", "Abstract", "Authors", "Journal", "ID"],
        "label_columns": {"Label": ["included", "not included"]},
    },
    "one_stop_english": {
        "name": "one_stop_english",
        "description": "",
        "data_columns": ["Article", "ID"],
        "label_columns": {"Label": ["advanced", "elementary", "intermediate"]},
    },
    "tweet_eval_hate": {
        "name": "tweet_eval_hate",
        "description": "",
        "data_columns": ["Tweet", "ID"],
        "label_columns": {"Label": ["hate speech", "not hate speech"]},
    },
    "twitter_complaints": {
        "name": "twitter_complaints",
        "description": "",
        "data_columns": ["Tweet text", "ID"],
        "label_columns": {"Label": ["complaint", "no complaint"]},
    },
    "semiconductor_org_types": {
        "name": "semiconductor_org_types",
        "description": "",
        "data_columns": ["Paper title", "Organization name", "ID"],
        "label_columns": {"Label": ["company", "research institute", "university"]},
    },
}

_URLs = {s: {"train": f"{DATA_DIR}{s}/train.csv", "test": f"{DATA_DIR}{s}/test_unlabeled.csv"} for s in TASKS}


class Raft(datasets.GeneratorBasedBuilder):
    """RAFT Dataset"""
    VERSION = datasets.Version("1.1.0")
    BUILDER_CONFIGS = []

    for key in TASKS:
        td = TASKS[key]
        name = td["name"]
        description = td["description"]
        BUILDER_CONFIGS.append(datasets.BuilderConfig(name=name, version=VERSION, description=description))

    DEFAULT_CONFIG_NAME = (
        "tai_safety_research"  # It's not mandatory to have a default configuration. Just use one if it make sense.
    )

    def _info(self):
        DEFAULT_LABEL_NAME = "Unlabeled"

        task = TASKS[self.config.name]
        data_columns = {col_name: (datasets.Value("string") if col_name != "ID" else datasets.Value("int32")) for col_name in task["data_columns"]}

        label_columns = {}
        for label_name in task["label_columns"]:
            labels = [DEFAULT_LABEL_NAME] + task["label_columns"][label_name]
            label_columns[label_name] = datasets.ClassLabel(len(labels), labels)

        # Merge dicts
        features = datasets.Features(**data_columns, **label_columns)

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        data_dir = dl_manager.download_and_extract(_URLs)
        dataset = self.config.name
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir[dataset]["train"], "split": "train"}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST, gen_kwargs={"filepath": data_dir[dataset]["test"], "split": "test"}
            ),
        ]

    def _generate_examples(
        self, filepath, split  # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    ):
        """Yields examples as (key, example) tuples."""
        # This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        # The `key` is here for legacy reason (tfds) and is not important in itself.

        task = TASKS[self.config.name]
        labels = list(task["label_columns"])

        with open(filepath, encoding="utf-8") as f:
            csv_reader = csv.reader(f, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True)
            column_names = next(csv_reader)
            # Test csvs don't have any label columns.
            if split == "test":
                column_names += labels

            for id_, row in enumerate(csv_reader):
                if split == "test":
                    row += ["Unlabeled"] * len(labels)
                # dicts don't have inherent ordering in python, right??
                yield id_, {name: value for name, value in zip(column_names, row)}