Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
multi-class-classification
Languages:
English
Size:
10K - 100K
ArXiv:
License:
File size: 12,770 Bytes
0e4d757 fe8663f 0e4d757 5ffc72f 0e4d757 5ffc72f 0e4d757 5ffc72f fe8663f 89aebf9 5ffc72f 89aebf9 fe8663f 5ffc72f fe8663f 5ffc72f fe8663f 5ffc72f fe8663f 89aebf9 fe8663f 5ffc72f fe8663f 89aebf9 fe8663f 89aebf9 5ffc72f fe8663f 5ffc72f fe8663f 89aebf9 fe8663f 5ffc72f fe8663f 89aebf9 fe8663f 5ffc72f fe8663f 5ffc72f fe8663f 89aebf9 fe8663f 5ffc72f fe8663f 89aebf9 fe8663f 5ffc72f fe8663f 89aebf9 5ffc72f 89aebf9 fe8663f 5ffc72f fe8663f 74e4c32 fe8663f 0e4d757 edbfbc6 0e4d757 a3d1272 74e4c32 fe8663f 0e4d757 59de89d a3d1272 fe8663f 0e4d757 fe8663f 74e4c32 fe8663f 89aebf9 74e4c32 0e4d757 59de89d 0e4d757 fe8663f 0e4d757 fe8663f 0e4d757 fe8663f 0e4d757 fe8663f edbfbc6 0e4d757 fe8663f dceab29 0e4d757 74e4c32 dceab29 d465d0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import csv
import json
import os
from pathlib import Path
import datasets
# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""
_DESCRIPTION = """Large pre-trained language models have shown promise for few-shot learning, completing text-based tasks given only a few task-specific examples. Will models soon solve classification tasks that have so far been reserved for human research assistants?
[RAFT](https://raft.elicit.org) is a few-shot classification benchmark that tests language models:
- across multiple domains (lit review, tweets, customer interaction, etc.)
- on economically valuable classification tasks (someone inherently cares about the task)
- in a setting that mirrors deployment (50 examples per task, info retrieval allowed, hidden test set)
"""
_HOMEPAGE = "https://raft.elicit.org"
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
DATA_DIR_URL = "data/"
TASKS = {
"ade_corpus_v2": {
"name": "ade_corpus_v2",
"description": "",
"data_columns": ["Sentence", "ID"],
"label_columns": {"Label": ["ADE-related", "not ADE-related"]},
},
"banking_77": {
"name": "banking_77",
"description": "",
"data_columns": ["Query", "ID"],
"label_columns": {
"Label": [
"Refund_not_showing_up",
"activate_my_card",
"age_limit",
"apple_pay_or_google_pay",
"atm_support",
"automatic_top_up",
"balance_not_updated_after_bank_transfer",
"balance_not_updated_after_cheque_or_cash_deposit",
"beneficiary_not_allowed",
"cancel_transfer",
"card_about_to_expire",
"card_acceptance",
"card_arrival",
"card_delivery_estimate",
"card_linking",
"card_not_working",
"card_payment_fee_charged",
"card_payment_not_recognised",
"card_payment_wrong_exchange_rate",
"card_swallowed",
"cash_withdrawal_charge",
"cash_withdrawal_not_recognised",
"change_pin",
"compromised_card",
"contactless_not_working",
"country_support",
"declined_card_payment",
"declined_cash_withdrawal",
"declined_transfer",
"direct_debit_payment_not_recognised",
"disposable_card_limits",
"edit_personal_details",
"exchange_charge",
"exchange_rate",
"exchange_via_app",
"extra_charge_on_statement",
"failed_transfer",
"fiat_currency_support",
"get_disposable_virtual_card",
"get_physical_card",
"getting_spare_card",
"getting_virtual_card",
"lost_or_stolen_card",
"lost_or_stolen_phone",
"order_physical_card",
"passcode_forgotten",
"pending_card_payment",
"pending_cash_withdrawal",
"pending_top_up",
"pending_transfer",
"pin_blocked",
"receiving_money",
"request_refund",
"reverted_card_payment?",
"supported_cards_and_currencies",
"terminate_account",
"top_up_by_bank_transfer_charge",
"top_up_by_card_charge",
"top_up_by_cash_or_cheque",
"top_up_failed",
"top_up_limits",
"top_up_reverted",
"topping_up_by_card",
"transaction_charged_twice",
"transfer_fee_charged",
"transfer_into_account",
"transfer_not_received_by_recipient",
"transfer_timing",
"unable_to_verify_identity",
"verify_my_identity",
"verify_source_of_funds",
"verify_top_up",
"virtual_card_not_working",
"visa_or_mastercard",
"why_verify_identity",
"wrong_amount_of_cash_received",
"wrong_exchange_rate_for_cash_withdrawal",
]
},
},
"terms_of_service": {
"name": "terms_of_service",
"description": "",
"data_columns": ["Sentence", "ID"],
"label_columns": {"Label": ["not potentially unfair", "potentially unfair"]},
},
"tai_safety_research": {
"name": "tai_safety_research",
"description": "",
"data_columns": [
"Title",
"Abstract Note",
"Url",
"Publication Year",
"Item Type",
"Author",
"Publication Title",
"ID",
],
"label_columns": {"Label": ["TAI safety research", "not TAI safety research"]},
},
"neurips_impact_statement_risks": {
"name": "neurips_impact_statement_risks",
"description": "",
"data_columns": ["Paper title", "Paper link", "Impact statement", "ID"],
"label_columns": {"Label": ["doesn't mention a harmful application", "mentions a harmful application"]},
},
"overruling": {
"name": "overruling",
"description": "",
"data_columns": ["Sentence", "ID"],
"label_columns": {"Label": ["not overruling", "overruling"]},
},
"systematic_review_inclusion": {
"name": "systematic_review_inclusion",
"description": "",
"data_columns": ["Title", "Abstract", "Authors", "Journal", "ID"],
"label_columns": {"Label": ["included", "not included"]},
},
"one_stop_english": {
"name": "one_stop_english",
"description": "",
"data_columns": ["Article", "ID"],
"label_columns": {"Label": ["advanced", "elementary", "intermediate"]},
},
"tweet_eval_hate": {
"name": "tweet_eval_hate",
"description": "",
"data_columns": ["Tweet", "ID"],
"label_columns": {"Label": ["hate speech", "not hate speech"]},
},
"twitter_complaints": {
"name": "twitter_complaints",
"description": "",
"data_columns": ["Tweet text", "ID"],
"label_columns": {"Label": ["complaint", "no complaint"]},
},
"semiconductor_org_types": {
"name": "semiconductor_org_types",
"description": "",
"data_columns": ["Paper title", "Organization name", "ID"],
"label_columns": {"Label": ["company", "research institute", "university"]},
},
}
_URLs = {s: {"train": f"{DATA_DIR_URL}{s}/train.csv", "test": f"{DATA_DIR_URL}{s}/test_unlabeled.csv"} for s in TASKS}
class Raft(datasets.GeneratorBasedBuilder):
"""RAFT Dataset."""
VERSION = datasets.Version("1.1.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = []
for key in TASKS:
td = TASKS[key]
name = td["name"]
description = td["description"]
BUILDER_CONFIGS.append(datasets.BuilderConfig(name=name, version=VERSION, description=description))
DEFAULT_CONFIG_NAME = (
"tai_safety_research" # It's not mandatory to have a default configuration. Just use one if it make sense.
)
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
DEFAULT_LABEL_NAME = "Unlabeled"
task = TASKS[self.config.name]
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
data_columns = {col_name: datasets.Value("string") for col_name in task["data_columns"]}
label_columns = {}
for label_name in task["label_columns"]:
labels = [DEFAULT_LABEL_NAME] + task["label_columns"][label_name]
label_columns[label_name] = datasets.ClassLabel(len(labels), labels)
# Merge dicts
features = datasets.Features(**data_columns, **label_columns)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
data_dir = dl_manager.download_and_extract(_URLs)
dataset = self.config.name
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir[dataset]["train"], "split": "train"}
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"filepath": data_dir[dataset]["test"], "split": "test"}
),
]
def _generate_examples(
self, filepath, split # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
):
"""Yields examples as (key, example) tuples."""
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is here for legacy reason (tfds) and is not important in itself.
task = TASKS[self.config.name]
labels = list(task["label_columns"])
with open(filepath, encoding="utf-8") as f:
csv_reader = csv.reader(f, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True)
column_names = next(csv_reader)
# Test csvs don't have any label columns.
if split == "test":
column_names += labels
for id_, row in enumerate(csv_reader):
if split == "test":
row += ["Unlabeled"] * len(labels)
# dicts don't have inherent ordering in python, right??
yield id_, {name: value for name, value in zip(column_names, row)}
|