File size: 5,754 Bytes
614eef8
 
 
 
 
 
 
 
 
 
a7cae74
614eef8
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
{
    "model": "Qwen/Qwen2-VL-2B-Instruct",
    "model_api_url": "",
    "model_api_key": "",
    "model_api_name": "",
    "base_model": "",
    "revision": "main",
    "precision": "float16",
    "private": false,
    "weight_type": "Original",
    "status": "FINISHED",
    "submitted_time": "2025-01-24T02:46:12Z",
    "model_type": "\ud83d\udfe2 : pretrained",
    "params": 2.209,
    "runsh": "#!/bin/bash\ncurrent_file=\"$0\"\ncurrent_dir=\"$(dirname \"$current_file\")\"\nSERVER_IP=$1\nSERVER_PORT=$2\nPYTHONPATH=$current_dir:$PYTHONPATH  accelerate launch $current_dir/model_adapter.py  --server_ip $SERVER_IP --server_port $SERVER_PORT \"${@:3}\" --cfg $current_dir/meta.json\n",
    "adapter": "import torch\nfrom typing import Dict, Any\nimport time\nfrom transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor\nfrom flagevalmm.server import ServerDataset\nfrom flagevalmm.models.base_model_adapter import BaseModelAdapter\nfrom flagevalmm.server.utils import parse_args, process_images_symbol\nfrom qwen_vl_utils import process_vision_info\n\n\nclass CustomDataset(ServerDataset):\n    def __getitem__(self, index):\n        data = self.get_data(index)\n        question_id = data[\"question_id\"]\n        img_path = data[\"img_path\"]\n        qs = data[\"question\"]\n        qs, idx = process_images_symbol(qs)\n        idx = set(idx)\n        img_path_idx = []\n        for i in idx:\n            if i < len(img_path):\n                img_path_idx.append(img_path[i])\n            else:\n                print(\"[warning] image index out of range\")\n        return question_id, img_path_idx, qs\n\n\nclass ModelAdapter(BaseModelAdapter):\n    def model_init(self, task_info: Dict):\n        ckpt_path = task_info[\"model_path\"]\n        torch.set_grad_enabled(False)\n        with self.accelerator.main_process_first():\n            tokenizer = AutoTokenizer.from_pretrained(ckpt_path, trust_remote_code=True)\n            model = Qwen2VLForConditionalGeneration.from_pretrained(\n                ckpt_path,\n                device_map=\"auto\",\n                torch_dtype=torch.bfloat16,\n                attn_implementation=\"flash_attention_2\",\n            )\n\n        model = self.accelerator.prepare_model(model, evaluation_mode=True)\n        self.tokenizer = tokenizer\n        if hasattr(model, \"module\"):\n            model = model.module\n        self.model = model\n        self.processor = AutoProcessor.from_pretrained(ckpt_path)\n\n    def build_message(\n        self,\n        query: str,\n        image_paths=[],\n    ) -> str:\n        messages = []\n        messages.append(\n            {\n                \"role\": \"user\",\n                \"content\": [],\n            },\n        )\n        for img_path in image_paths:\n            messages[-1][\"content\"].append(\n                {\"type\": \"image\", \"image\": img_path},\n            )\n        # add question\n        messages[-1][\"content\"].append(\n            {\n                \"type\": \"text\",\n                \"text\": query,\n            },\n        )\n        return messages\n\n    def run_one_task(self, task_name: str, meta_info: Dict[str, Any]):\n        results = []\n        cnt = 0\n\n        data_loader = self.create_data_loader(\n            CustomDataset, task_name, batch_size=1, num_workers=0\n        )\n        for question_id, img_path, qs in data_loader:\n            if cnt == 1:\n                start_time = time.perf_counter()\n            cnt += 1\n\n            question_id = question_id[0]\n            img_path_flaten = [p[0] for p in img_path]\n            qs = qs[0]\n            messages = self.build_message(qs, image_paths=img_path_flaten)\n\n            text = self.processor.apply_chat_template(\n                messages, tokenize=False, add_generation_prompt=True\n            )\n            image_inputs, video_inputs = process_vision_info(messages)\n            inputs = self.processor(\n                text=[text],\n                images=image_inputs,\n                videos=video_inputs,\n                padding=True,\n                return_tensors=\"pt\",\n            )\n            inputs = inputs.to(\"cuda\")\n\n            # Inference\n            generated_ids = self.model.generate(**inputs, max_new_tokens=1024)\n            generated_ids_trimmed = [\n                out_ids[len(in_ids) :]\n                for in_ids, out_ids in zip(inputs.input_ids, generated_ids)\n            ]\n            response = self.processor.batch_decode(\n                generated_ids_trimmed,\n                skip_special_tokens=True,\n                clean_up_tokenization_spaces=False,\n            )[0]\n\n            self.accelerator.print(f\"{qs}\\n{response}\\n\\n\")\n            results.append(\n                {\"question_id\": question_id, \"answer\": response.strip(), \"prompt\": qs}\n            )\n        rank = self.accelerator.state.local_process_index\n\n        self.save_result(results, meta_info, rank=rank)\n        self.accelerator.wait_for_everyone()\n\n        if self.accelerator.is_main_process:\n            correct_num = self.collect_results_and_save(meta_info)\n            total_time = time.perf_counter() - start_time\n            print(\n                f\"Total time: {total_time}\\nAverage time:{total_time / cnt}\\nResults_collect number: {correct_num}\"\n            )\n\n        print(\"rank\", rank, \"finished\")\n\n\nif __name__ == \"__main__\":\n    args = parse_args()\n    model_adapter = ModelAdapter(\n        server_ip=args.server_ip,\n        server_port=args.server_port,\n        timeout=args.timeout,\n        extra_cfg=args.cfg,\n    )\n    model_adapter.run()\n",
    "eval_id": 26049,
    "flageval_id": 1054
}