odia_vqa_en_odi_set / README.md
shantipriya's picture
Update README.md
06ff057 verified
---
dataset_info:
features:
- name: id
dtype: string
- name: message
list:
- name: content
dtype: string
- name: role
dtype: string
- name: image
dtype: image
splits:
- name: train
num_bytes: 5779284964.76
num_examples: 44486
- name: validation
num_bytes: 708420205.08
num_examples: 5560
- name: test
num_bytes: 744693334.836
num_examples: 5562
download_size: 3060451737
dataset_size: 7232398504.676001
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
task_categories:
- question-answering
- translation
- image-to-text
language:
- or
- en
pretty_name: Odia_VQA_Multimodal_Dataset
size_categories:
- 10K<n<100K
---
# Dataset Card for Odia_VQA_Multimodal_Dataset
### Dataset Summary
This dataset contains 27K English-Odia parallel instruction sets (Question-Answer) and 6k unique images.
The dataset is useful for multimodal Visual Question-answering (VQA) in Odia and English. The instruction set format allows a multimodal large language model (LLM) fine-tuning.
The Odia data was annotated by the local language speakers and verified by linguists.
### Supported Tasks and Leaderboards
Large Language Model (LLM)
### Languages
Odia, English
## Dataset Structure
JSON
### Licensing Information
This work is licensed under a
[Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License][cc-by-nc-sa].
[![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa]
[cc-by-nc-sa]: http://creativecommons.org/licenses/by-nc-sa/4.0/
[cc-by-nc-sa-image]: https://licensebuttons.net/l/by-nc-sa/4.0/88x31.png
[cc-by-nc-sa-shield]: https://img.shields.io/badge/License-CC%20BY--NC--SA%204.0-lightgrey.svg
### Citation Information
If you use the **OVQA** dataset, please consider giving 👏 and cite the following paper:
```
@inproceedings{parida2025ovqa,
title = {{OVQA: A Dataset for Visual Question Answering and Multimodal Research in Odia Language}},
author = {Parida, Shantipriya and Sahoo, Shashikanta and Sekhar, Sambit and Sahoo, Kalyanamalini and Kotwal, Ketan and Khosla, Sonal and Dash, Satya Ranjan and Bose, Aneesh and Kohli, Guneet Singh and Lenka, Smruti Smita and Bojar, Ondřej},
year = {2025},
note = {Accepted at the IndoNLP Workshop at COLING 2025} }
```
### Contributions
* Shantipriya Parida, Silo AI, Helsinki, Finland
* Shashikanta Sahoo, Government college of Engineering Kalahandi,India
* Sambit Sekhar, Odia Generative AI, India
* Satya Rankan Dash, KIIT University, India
* Kalyanamalini Sahoo, University of Artois, France
* Sonal Khosla, Odia Generative AI, India
* Aneesh Bose, Microsoft, India
* Guneet Singh Kohli, GreyOrange, India
* Ketan Kotwal, Idiap Research Institute, Switzerland
* Smruti Smita Lenka, Odia Generative AI, India
* Ondřej Bojar, UFAL, Charles University, Prague, Czech Republic
### Point of Contact:
**Shantipriya Parida, and Sambit Sekhar**