File size: 9,869 Bytes
8ca9cd8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Autshumato Parallel Corpora"""
import os
import datasets
_CITATION = """\
@article{groenewald2010processing,
title={Processing parallel text corpora for three South African language pairs in the Autshumato project},
author={Groenewald, Hendrik J and du Plooy, Liza},
journal={AfLaT 2010},
pages={27},
year={2010}
}
"""
_DESCRIPTION = """\
Multilingual information access is stipulated in the South African constitution. In practise, this
is hampered by a lack of resources and capacity to perform the large volumes of translation
work required to realise multilingual information access. One of the aims of the Autshumato
project is to develop machine translation systems for three South African languages pairs.
"""
class AutshumatoConfig(datasets.BuilderConfig):
""" BuilderConfig for NewDataset"""
def __init__(self, langs, zip_file, **kwargs):
"""
Args:
pair: the language pair to consider
zip_file: The location of zip file containing original data
**kwargs: keyword arguments forwarded to super.
"""
self.langs = langs
self.zip_file = zip_file
super().__init__(**kwargs)
class Autshumato(datasets.GeneratorBasedBuilder):
"""The IWSLT 2017 Evaluation Campaign includes a multilingual TED Talks MT task."""
VERSION = datasets.Version("1.0.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
BUILDER_CONFIG_CLASS = AutshumatoConfig
BUILDER_CONFIGS = [
AutshumatoConfig(
name="autshumato-en-tn",
description="Autshumato English-Setswana Parallel Corpora",
version=datasets.Version("1.0.0"),
langs=("en", "tn"),
zip_file="https://repo.sadilar.org/bitstream/handle/20.500.12185/404/autshumato_english-setswana_parallel_corpora.zip",
),
# This data is protected by a form
# AutshumatoConfig(
# name="autshumato-en-nso",
# description="Autshumato English-Sesotho sa Leboa Parallel Corpora",
# version=datasets.Version("1.0.0"),
# langs=("en", "nso"),
# zip_file="https://repo.sadilar.org/bitstream/handle/20.500.12185/402/en-nso.release.zip",
# ),
# This data is protected by a form
# AutshumatoConfig(
# name="autshumato-en-af",
# description="Autshumato English-Afrikaans Parallel Corpora",
# version=datasets.Version("1.0.0"),
# langs=("en", "af"),
# zip_file="https://repo.sadilar.org/bitstream/handle/20.500.12185/397/en-af.release.zip",
# ),
AutshumatoConfig(
name="autshumato-en-zu",
description="Autshumato English-isiZulu Parallel Corpora",
version=datasets.Version("1.0.0"),
langs=("en", "zu"),
zip_file="https://repo.sadilar.org/bitstream/handle/20.500.12185/399/en-zu.release.zip",
),
AutshumatoConfig(
name="autshumato-en-ts",
description="Autshumato English-Xitsonga Parallel Corpora",
version=datasets.Version("1.0.0"),
langs=("en", "ts"),
zip_file="https://repo.sadilar.org/bitstream/handle/20.500.12185/406/en-ts.completebilingualcorpus.zip",
),
AutshumatoConfig(
name="autshumato-en-ts-manual",
description="Autshumato English-Xitsonga Manually Translated Parallel Corpora",
version=datasets.Version("1.0.0"),
langs=("en", "ts"),
zip_file="https://repo.sadilar.org/bitstream/handle/20.500.12185/405/en-ts.translationsonlycorpus.zip",
),
AutshumatoConfig(
name="autshumato-tn",
description="Autshumato Setswana Monolingual Corpora",
version=datasets.Version("1.0.0"),
langs=["tn"],
zip_file="https://repo.sadilar.org/bitstream/handle/20.500.12185/413/autshumato_setswana_monolingual_corpora.zip",
),
AutshumatoConfig(
name="autshumato-ts",
description="Autshumato Xitsonga Monolingual Corpora",
version=datasets.Version("1.0.0"),
langs=["ts"],
zip_file="https://repo.sadilar.org/bitstream/handle/20.500.12185/418/ts.monolingualcorpus.zip",
),
]
def _info(self):
if len(self.config.langs) == 2:
features = datasets.Features({"translation": datasets.features.Translation(languages=self.config.langs)})
else:
features = datasets.Features({"text": datasets.Value("string")})
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# datasets.features.FeatureConnectors
features=features,
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage="https://repo.sadilar.org/handle/20.500.12185/7/discover?filtertype=database&filter_relational_operator=equals&filter=Multilingual+Text+Corpora%3A+Aligned",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
if len(self.config.langs) == 2:
return self._split_generators_translation(dl_manager)
if len(self.config.langs) == 1:
return self._split_generators_mono(dl_manager)
raise NotImplementedError("Can only handle 1 or 2 languages")
def _split_generators_mono(self, dl_manager):
dl_dir = dl_manager.download_and_extract(self.config.zip_file)
filenames = set()
for root, dirs, files in os.walk(dl_dir):
for filename in files:
if filename == "README.txt":
continue
filenames.add(os.path.join(dl_dir, root, filename))
source_filenames = sorted(os.path.join(dl_dir, f) for f in filenames)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"source_files": source_filenames,
"target_files": [],
"split": "train",
},
),
]
def _split_generators_translation(self, dl_manager):
source, target = self.config.langs
dl_dir = dl_manager.download_and_extract(self.config.zip_file)
filenames = set(os.listdir(dl_dir))
if len(filenames) == 1:
dl_dir = os.path.join(dl_dir, list(filenames)[0])
filenames = set(os.listdir(dl_dir))
if "README.txt" in filenames:
filenames.remove("README.txt")
source_filenames = sorted(
os.path.join(dl_dir, f) for f in filenames if f.endswith(f"{source}.txt") or ".eng." in f
)
target_filenames = sorted(
os.path.join(dl_dir, f) for f in filenames if f.endswith(f"{target}.txt") or ".zul." in f
)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"source_files": source_filenames,
"target_files": target_filenames,
"split": "train",
},
),
]
def _generate_examples(self, source_files, target_files, split):
""" Yields examples. """
if len(self.config.langs) == 2:
return self._generate_examples_translation(source_files, target_files, split)
elif len(self.config.langs) == 1:
return self._generate_examples_mono(source_files, target_files, split)
raise NotImplementedError("Can only handle 1 or 2 langages")
def _generate_examples_mono(self, source_files, target_files, split):
for source_file in source_files:
with open(source_file, "r", encoding="utf-8") as sf:
for id_, source_row in enumerate(sf):
source_row = source_row.strip()
yield id_, {"text": source_row}
def _generate_examples_translation(self, source_files, target_files, split):
id_ = 0
source, target = self.config.langs
for source_file, target_file in zip(source_files, target_files):
with open(source_file, "r", encoding="utf-8") as sf:
with open(target_file, "r", encoding="utf-8") as tf:
for source_row, target_row in zip(sf, tf):
source_row = source_row.strip()
target_row = target_row.strip()
yield id_, {"translation": {source: source_row, target: target_row}}
id_ += 1
|