File size: 13,245 Bytes
f2ad62a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

from evaluation_utils import quac_correct_retrieved_instance_idx_list
from evaluation_utils import unanswerable_keyphrases
import json
from metrics import F1Metric
import copy
import re


def compute_f1_score(predicted_answers, groundtruth_answer, exp_name="default"):
    """Evaluating F1 Score"""
    print(len(predicted_answers), len(groundtruth_answer))
    if len(predicted_answers) != len(groundtruth_answer):
        groundtruth_answer = groundtruth_answer[:len(predicted_answers)]

    guess_list = []
    for guess in predicted_answers:
        guess = guess.strip()
        if "</s>" in guess:
            guess = guess.replace("</s>", "")
        guess_list.append(guess)

    answer_list = []
    for answer in groundtruth_answer:
        answer_list.append(answer)

    assert len(guess_list) == len(answer_list), \
        "lengths of guess and answer are different!"

    precision, recall, f1 = F1Metric.compute_all_pairs(guess_list, answer_list)
    print('Method: %s; Precision: %.4f; recall: %.4f; f1: %.4f' % (\
        exp_name, precision, recall, f1))


def load_groundtruth_file(data_file):
    
    with open(data_file, "r") as f:
        examples = json.load(f)

    data = []
    for instance in examples:
        if "answers" in instance:
            answers = instance["answers"]
        elif "answer" in instance:
            if type(instance["answer"]) is str:
                answers = [instance["answer"]]
            elif type(instance["answer"]) is list:
                answers = instance["answer"]
            else:
                answers = [str(instance["answer"])]
        else:
            raise ValueError("need to have answer or answers")
        data.append(answers)

    return data


def load_prediction(data_file):

    data = []
    with open(data_file, "r") as f:
        for line in f.readlines():
            data.append(line.strip())

    return data


def evaluate_f1(ground_truth_file, prediction_file):

    groundtruth_answers = load_groundtruth_file(ground_truth_file)
    if "inscit" in ground_truth_file:
        groundtruth_answers_update = []
        for answers in groundtruth_answers:
            answers_update = []
            for ans in answers:
                ## this answer is additionally added to the answer_list for inscit dataset, needs to remove
                if ans != "Sorry. I cannot find the answer based on the context.":
                    answers_update.append(ans)
            assert len(answers_update) > 0
            groundtruth_answers_update.append(copy.deepcopy(answers_update))
        groundtruth_answers = groundtruth_answers_update

    predicted_answers = load_prediction(prediction_file)
    if "quac" in prediction_file or "doqa" in prediction_file:
        predicted_answers_new = []
        for pred in predicted_answers:
            pred = pred.lower()
            for keyphrase in unanswerable_keyphrases:
                if keyphrase in pred:
                    pred = "Sorry. I cannot find the answer based on the context."
                    break
            predicted_answers_new.append(pred)
        predicted_answers = predicted_answers_new

    compute_f1_score(predicted_answers, groundtruth_answers)


def separate_cannot_answer(ground_truth_file, prediction_file):
    # load ground truth
    with open(ground_truth_file, "r") as f:
        groundtruth_answers = json.load(f)
    # load prediction
    predicted_answers = load_prediction(prediction_file)
    print(len(predicted_answers), len(groundtruth_answers))
    if len(predicted_answers) != len(groundtruth_answers):
        groundtruth_answers = groundtruth_answers[:len(predicted_answers)]

    if "quac" in prediction_file:
        """
        For answerable cases, we want to make sure the retrieved context list contains the gold chunk.
        For QuAC dataset, we use top-5 retrieved contexts as inputs, quac_correct_retrieved_instance_idx_list 
        is the index list where the top-5 retrieved context contains the gold answer
        """
        answerable_instance_idx_list = quac_correct_retrieved_instance_idx_list
    else:
        answerable_instance_idx_list = None

    predicted_answers_new = []
    for pred in predicted_answers:
        pred = pred.lower()
        for keyphrase in unanswerable_keyphrases:
            if keyphrase in pred:
                pred = "Sorry. I cannot find the answer based on the context."
                break
        predicted_answers_new.append(pred)
    predicted_answers = predicted_answers_new

    cannot_answer_idx_list = []
    answerable_idx_list = []
    if answerable_instance_idx_list:
        count_idx = 0
    for idx, item in enumerate(groundtruth_answers):
        if 'answers' in item:
            answer = item["answers"][0]
        else:
            answer = item['answer']
        noanswer_response = "Sorry. I cannot find the answer based on the context."

        if answer == noanswer_response:
            cannot_answer_idx_list.append(idx)
            continue
        
        if answerable_instance_idx_list:
            if count_idx in answerable_instance_idx_list:
                answerable_idx_list.append(idx)
            count_idx += 1
        else:
            answerable_idx_list.append(idx)

    print("number of cannot answer cases: %d (out of %d)" % (len(cannot_answer_idx_list), len(groundtruth_answers)))
    print("number of answerable cases: %d (out of %d)" % (len(answerable_idx_list), len(groundtruth_answers)))

    return predicted_answers, cannot_answer_idx_list, answerable_idx_list


def get_cannot_answer_and_answerable_acc(predicted_answers, cannot_answer_idx_list, answerable_idx_list):
    # cannot answer
    noanswer_count = 0
    for idx in cannot_answer_idx_list:
        prediction = predicted_answers[idx]
        prediction = prediction.lower()
        # print(prediction)
        if "sorry" in prediction and "cannot find the answer" in prediction:
            # print(prediction)
            noanswer_count += 1
    cannot_answer_acc = noanswer_count / len(cannot_answer_idx_list)
    print("accuracy of cannot answer cases: %.4f" % cannot_answer_acc)

    # answerable
    answerable_count = 0
    for idx in answerable_idx_list:
        prediction = predicted_answers[idx]
        prediction = prediction.lower()
        if "sorry" in prediction and "cannot find the answer" in prediction:
            # print(prediction)
            continue
        answerable_count += 1
    answerable_acc = answerable_count / len(answerable_idx_list)
    print("accuracy of answerable cases: %.4f" % answerable_acc)


def evaluate_cannot_answer_acc(ground_truth_file, prediction_file):
    predicted_answers, cannot_answer_idx_list, answerable_idx_list = \
                                separate_cannot_answer(ground_truth_file, prediction_file)

    get_cannot_answer_and_answerable_acc(predicted_answers, cannot_answer_idx_list, answerable_idx_list)


def evaluate_convfinqa(ground_truth_file, prediction_file):
    """
    Since the model will give a long answer output, while the gold answer for ConvFinQA are either 
    a arithmetic formula or a final executed number.
    We consider the output containing either the executed number or the arithmetic formula as correct.
    This script is to measure the proportion of the outputs containing these elements.
    """

    def _is_float(string):
        try:
            float(string)
            return True
        except ValueError:
            return False

    with open(ground_truth_file, "r") as f:
        gold_list = json.load(f)
    
    groundtruth_answers = [item['exe_answer'] for item in gold_list]
    groundtruth_answers_formula = [item['answers'][0] for item in gold_list]

    ## last turn question_list
    question_list = [item['messages'][-1]['content'] for item in gold_list]
    predicted_answers = load_prediction(prediction_file)

    print(len(predicted_answers), len(groundtruth_answers))
    if len(predicted_answers) != len(groundtruth_answers):
        groundtruth_answers = groundtruth_answers[:len(predicted_answers)]

    count_exact_match = 0
    for question, pred, gold, gold_formula in zip(question_list, predicted_answers, groundtruth_answers, groundtruth_answers_formula):

        original_pred = pred
        ## convert 1,000,000 into 1000000
        original_pred = original_pred.replace(",", "")

        ## convert $10 million + $20 million into 10 + 20
        original_pred = original_pred.replace("$", "").replace("million", "").replace("billion", "")

        ## convert 10 (2017) + 20 (2018) into 10 + 20
        pattern = r'\((\b\w+\b)\)'
        original_pred = re.sub(pattern, '', original_pred)

        ## make sure it each token only has one space in between
        original_pred = " ".join(original_pred.split())
        
        if str(gold) in original_pred:
            count_exact_match += 1
        
        elif str(gold_formula) in original_pred:
            count_exact_match += 1
        
        elif _is_float(gold) and (str(round(float(gold), 3)) in original_pred or str(round(float(gold), 2)) in original_pred):
            count_exact_match += 1
        
        elif "percent" in question and (str(float(gold)*100) in original_pred or str(round(float(gold)*100, 1)) in original_pred or str(round(float(gold)*100, 2)) in original_pred):
            count_exact_match += 1
        
        elif str(gold).endswith(".0") and str(int(gold)) in original_pred:
            ## gold is a integer like 80.0 then convert it into 80
            count_exact_match += 1
        
        elif "decrease" in original_pred and _is_float(gold) and gold < 0 and (str(-1 * gold) in original_pred):
            ## for the case where model generates something like a decrese of 10 million, while gold is -10.
            count_exact_match += 1

    print("accuracy of exact match: %.4f" % (count_exact_match/len(predicted_answers)))


def main():

    ## doc2dial
    prediction_file = "PATH_TO_THE_GENERATED_OUTPUT"    # e.g., outputs/doc2idal_output.txt
    ground_truth_file = "PATH_TO_THE_TEST_DATA"     # e.g., data/doc2dial/test.json
    print("-"*80)
    print(prediction_file)
    print(ground_truth_file)
    evaluate_f1(ground_truth_file, prediction_file)

    ## quac
    prediction_file = "PATH_TO_THE_GENERATED_OUTPUT"
    ground_truth_file = "PATH_TO_THE_TEST_DATA"
    print("-"*80)
    print(prediction_file)
    print(ground_truth_file)
    evaluate_f1(ground_truth_file, prediction_file)
    evaluate_cannot_answer_acc(ground_truth_file, prediction_file)

    ## qrecc
    prediction_file = "PATH_TO_THE_GENERATED_OUTPUT"
    ground_truth_file = "PATH_TO_THE_TEST_DATA"
    print("-"*80)
    print(prediction_file)
    print(ground_truth_file)
    evaluate_f1(ground_truth_file, prediction_file)

    ## topiocqa
    prediction_file = "PATH_TO_THE_GENERATED_OUTPUT"
    ground_truth_file = "PATH_TO_THE_TEST_DATA"
    print("-"*80)
    print(prediction_file)
    print(ground_truth_file)
    evaluate_f1(ground_truth_file, prediction_file)

    ## inscit
    prediction_file = "PATH_TO_THE_GENERATED_OUTPUT"
    ground_truth_file = "PATH_TO_THE_TEST_DATA"
    print("-"*80)
    print(prediction_file)
    print(ground_truth_file)
    evaluate_f1(ground_truth_file, prediction_file)

    ## coqa
    prediction_file = "PATH_TO_THE_GENERATED_OUTPUT"
    ground_truth_file = "PATH_TO_THE_TEST_DATA"
    print("-"*80)
    print(prediction_file)
    print(ground_truth_file)
    evaluate_f1(ground_truth_file, prediction_file)

    ## hybridial
    prediction_file = "PATH_TO_THE_GENERATED_OUTPUT"
    ground_truth_file = "PATH_TO_THE_TEST_DATA"
    print("-"*80)
    print(prediction_file)
    print(ground_truth_file)
    evaluate_f1(ground_truth_file, prediction_file)

    ## sqa
    prediction_file = "PATH_TO_THE_GENERATED_OUTPUT"
    ground_truth_file = "PATH_TO_THE_TEST_DATA"
    print("-"*80)
    print(prediction_file)
    print(ground_truth_file)
    evaluate_f1(ground_truth_file, prediction_file)

    ## doqa_cooking
    prediction_file = "PATH_TO_THE_GENERATED_OUTPUT"
    ground_truth_file = "PATH_TO_THE_TEST_DATA"
    print("-"*80)
    print(prediction_file)
    print(ground_truth_file)
    evaluate_f1(ground_truth_file, prediction_file)
    evaluate_cannot_answer_acc(ground_truth_file, prediction_file)

    ## doqa_travel
    prediction_file = "PATH_TO_THE_GENERATED_OUTPUT"
    ground_truth_file = "PATH_TO_THE_TEST_DATA"
    print("-"*80)
    print(prediction_file)
    print(ground_truth_file)
    evaluate_f1(ground_truth_file, prediction_file)
    evaluate_cannot_answer_acc(ground_truth_file, prediction_file)

    ## doqa_movies
    prediction_file = "PATH_TO_THE_GENERATED_OUTPUT"
    ground_truth_file = "PATH_TO_THE_TEST_DATA"
    print("-"*80)
    print(prediction_file)
    print(ground_truth_file)
    evaluate_f1(ground_truth_file, prediction_file)
    evaluate_cannot_answer_acc(ground_truth_file, prediction_file)

    ## convfinqa
    prediction_file = "PATH_TO_THE_GENERATED_OUTPUT"
    ground_truth_file = "PATH_TO_THE_TEST_DATA"
    print("-"*80)
    print(prediction_file)
    print(ground_truth_file)
    evaluate_convfinqa(ground_truth_file, prediction_file)


if __name__ == "__main__":
    main()