language: | |
- fr | |
multilinguality: | |
- monolingual | |
task_categories: | |
- token-classification | |
# m2m3_fine_tuning_ref_cmbert_io | |
## Introduction | |
This dataset was used to fine-tuned [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) for **nested NER task** using Independant NER layers approach [M1]. | |
It contains Paris trade directories entries from the 19th century. | |
## Dataset parameters | |
* Approachrd : M2 and M3 | |
* Dataset type : ground-truth | |
* Tokenizer : [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) | |
* Tagging format : IO | |
* Counts : | |
* Train : 6084 | |
* Dev : 676 | |
* Test : 1685 | |
* Associated fine-tuned models : | |
* M2 : [nlpso/m2_joint_label_ref_cmbert_io](https://huggingface.co/nlpso/m2_joint_label_ref_cmbert_io) | |
* M3 : [nlpso/m3_hierarchical_ner_ref_cmbert_io](https://huggingface.co/nlpso/m3_hierarchical_ner_ref_cmbert_io) | |
## Entity types | |
Abbreviation|Entity group (level)|Description | |
-|-|- | |
O |1 & 2|Outside of a named entity | |
PER |1|Person or company name | |
ACT |1 & 2|Person or company professional activity | |
TITREH |2|Military or civil distinction | |
DESC |1|Entry full description | |
TITREP |2|Professionnal reward | |
SPAT |1|Address | |
LOC |2|Street name | |
CARDINAL |2|Street number | |
FT |2|Geographical feature | |
## How to use this dataset | |
```python | |
from datasets import load_dataset | |
train_dev_test = load_dataset("nlpso/m2m3_fine_tuning_ref_cmbert_io") | |