Datasets:

Languages:
English
ArXiv:
License:
File size: 6,566 Bytes
f7ac0e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf01044
 
 
 
 
f7ac0e2
3395d86
f7ac0e2
 
 
 
 
 
 
1e908ac
f7ac0e2
 
 
 
 
f658846
 
 
 
 
f7ac0e2
f658846
c4b382e
 
 
 
 
 
 
 
f7ac0e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca64b19
 
 
 
f7ac0e2
d78ecbb
f7ac0e2
ad7086e
 
 
f7ac0e2
ad7086e
 
 
75c8083
 
f5593f3
f7ac0e2
 
 
 
 
 
e4de6dd
f7ac0e2
 
 
 
c4b382e
f7ac0e2
 
1548ee6
439a5e3
e4de6dd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" VASR Loading Script """

import json
import os
import pandas as pd
import datasets
from huggingface_hub import hf_hub_url

# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """
"""

_DESCRIPTION = """\
VASR is a challenging dataset for evaluating computer vision commonsense reasoning abilities. Given a triplet of images, the task is to select an image candidate B' that completes the analogy (A to A' is like B to what?). Unlike previous work on visual analogy that focused on simple image transformations, we tackle complex analogies requiring understanding of scenes. Our experiments demonstrate that state-of-the-art models struggle with carefully chosen distractors (±53%, compared to 90% human accuracy).
"""

_HOMEPAGE = "https://vasr-dataset.github.io/"

_LICENSE = "https://creativecommons.org/licenses/by/4.0/"

_URL = "https://huggingface.co/datasets/nlphuji/vasr/blob/main"
_URLS = {
    "train": os.path.join(_URL, "train_gold.csv"),
    "dev": os.path.join(_URL, "dev_gold.csv"),
    "test": os.path.join(_URL, "test_gold.csv"),
}

class Vasr(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.1.0")

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="v1", version=VERSION, description="vasr gold test dataset"),
    ]

    def _info(self):
        features = datasets.Features(
            {
                "A": datasets.Image(),
                "A'": datasets.Image(),
                "B": datasets.Image(),
                "B'": datasets.Image(),
                "candidates_images": [datasets.Image()],
                "label": datasets.Value("int64"),
                "candidates": [datasets.Value("string")],
                "A_verb": datasets.Value("string"),
                "B_verb": datasets.Value("string"),
                "C_verb": datasets.Value("string"),
                "D_verb": datasets.Value("string"),
                "diff_item_A": datasets.Value("string"),
                "diff_item_A_str_first": datasets.Value("string"),
                "diff_item_B": datasets.Value("string"),
                "diff_item_B_str_first": datasets.Value("string"),
            }
        )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        data_dir = dl_manager.download_and_extract({
            "images_dir": hf_hub_url(repo_id="nlphuji/vasr", repo_type='dataset', filename="vasr_images.zip")
        })
        test_examples = hf_hub_url(repo_id="nlphuji/vasr", repo_type='dataset', filename="test_gold.csv")
        dev_examples = hf_hub_url(repo_id="nlphuji/vasr", repo_type='dataset', filename="dev_gold.csv")
        train_examples = hf_hub_url(repo_id="nlphuji/vasr", repo_type='dataset', filename="train_gold.csv")

        train_gen = datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={**data_dir, **{'examples_csv': train_examples}})
        dev_gen = datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={**data_dir, **{'examples_csv': dev_examples}})
        test_gen = datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={**data_dir, **{'examples_csv': test_examples}})

        return [train_gen, dev_gen, test_gen]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, examples_csv, images_dir):
        # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.

        df = pd.read_csv(examples_csv)

        d_keys = ['A_img', 'B_img', 'C_img', 'candidates', 'label', 'D_img', 'A_verb', 'B_verb', 'C_verb', 'D_verb', 'diff_item_A', 'diff_item_A_str_first', 'diff_item_B', 'diff_item_B_str_first']

        for r_idx, r in df.iterrows():
            r_dict = r.to_dict()
            r_dict['candidates'] = json.loads(r_dict['candidates'])
            candidates_images = [os.path.join(images_dir, "vasr_images", x) for x in
                                 r_dict['candidates']]
            r_dict['candidates_images'] = candidates_images
            for img in ['A_img', 'B_img', 'C_img', 'D_img']:
                r_dict[img] = os.path.join(images_dir, "vasr_images", r_dict[img])
            relevant_r_dict = {k:v for k,v in r_dict.items() if k in d_keys or k == 'candidates_images'}
            yield r_idx, relevant_r_dict