File size: 7,643 Bytes
f7ac0e2 bf01044 f7ac0e2 3395d86 f7ac0e2 1e908ac f7ac0e2 f658846 f7ac0e2 f658846 c4b382e d747acd c4b382e d747acd c4b382e d747acd a3c3d82 f7ac0e2 ca64b19 f7ac0e2 d78ecbb f7ac0e2 ad7086e f7ac0e2 ad7086e 75c8083 f5593f3 f7ac0e2 6e96e9c a3c3d82 f7ac0e2 c4b382e f7ac0e2 a3c3d82 1548ee6 439a5e3 18c4725 d747acd be7c089 d747acd f86292f e4de6dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" VASR Loading Script """
import json
import os
import pandas as pd
import datasets
from huggingface_hub import hf_hub_url
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """
"""
_DESCRIPTION = """\
VASR is a challenging dataset for evaluating computer vision commonsense reasoning abilities. Given a triplet of images, the task is to select an image candidate B' that completes the analogy (A to A' is like B to what?). Unlike previous work on visual analogy that focused on simple image transformations, we tackle complex analogies requiring understanding of scenes. Our experiments demonstrate that state-of-the-art models struggle with carefully chosen distractors (±53%, compared to 90% human accuracy).
"""
_HOMEPAGE = "https://vasr-dataset.github.io/"
_LICENSE = "https://creativecommons.org/licenses/by/4.0/"
_URL = "https://huggingface.co/datasets/nlphuji/vasr/blob/main"
_URLS = {
"train": os.path.join(_URL, "train_gold.csv"),
"dev": os.path.join(_URL, "dev_gold.csv"),
"test": os.path.join(_URL, "test_gold.csv"),
}
class Vasr(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.1.0")
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="v1", version=VERSION, description="vasr gold test dataset"),
]
def _info(self):
features = datasets.Features(
{
"A": datasets.Image(),
"A'": datasets.Image(),
"B": datasets.Image(),
"B'": datasets.Image(),
"candidates_images": [datasets.Image()],
"label": datasets.Value("int64"),
"candidates": [datasets.Value("string")],
"A_verb": datasets.Value("string"),
"A'_verb": datasets.Value("string"),
"B_verb": datasets.Value("string"),
"B'_verb": datasets.Value("string"),
"diff_item_A": datasets.Value("string"),
"diff_item_A_str_first": datasets.Value("string"),
"diff_item_A'": datasets.Value("string"),
"diff_item_A'_str_first": datasets.Value("string"),
"A_str": datasets.Value("string"),
"A'_str": datasets.Value("string"),
"B_str": datasets.Value("string"),
"B'_str": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
data_dir = dl_manager.download_and_extract({
"images_dir": hf_hub_url(repo_id="nlphuji/vasr", repo_type='dataset', filename="vasr_images.zip")
})
test_examples = hf_hub_url(repo_id="nlphuji/vasr", repo_type='dataset', filename="test_gold.csv")
dev_examples = hf_hub_url(repo_id="nlphuji/vasr", repo_type='dataset', filename="dev_gold.csv")
train_examples = hf_hub_url(repo_id="nlphuji/vasr", repo_type='dataset', filename="train_gold.csv")
train_gen = datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={**data_dir, **{'examples_csv': train_examples}})
dev_gen = datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={**data_dir, **{'examples_csv': dev_examples}})
test_gen = datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={**data_dir, **{'examples_csv': test_examples}})
return [train_gen, dev_gen, test_gen]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, examples_csv, images_dir):
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
df = pd.read_csv(examples_csv)
# d_keys = ['A_img', 'B_img', 'C_img', 'candidates', 'label', 'D_img', 'A_verb', 'B_verb', 'C_verb', 'D_verb', 'diff_item_A', 'diff_item_A_str_first', 'diff_item_B', 'diff_item_B_str_first']
d_keys = ["A", "A'", "B", "B'", 'candidates', 'label', 'A_verb', "A'_verb", 'B_verb', "B'_verb", 'diff_item_A', 'diff_item_A_str_first', "diff_item_A'", "diff_item_A'_str_first", "A_str", "A'_str", "B_str", "B'_str"]
for r_idx, r in df.iterrows():
r_dict = r.to_dict()
r_dict['candidates'] = json.loads(r_dict['candidates'])
candidates_images = [os.path.join(images_dir, "vasr_images", x) for x in
r_dict['candidates']]
r_dict['candidates_images'] = candidates_images
r_dict["A_str"] = r_dict['A_img']
r_dict["A'_str"] = r_dict['B_img']
r_dict["B_str"] = r_dict['C_img']
r_dict["B'_str"] = r_dict['D_img']
for img in ['A_img', 'B_img', 'C_img', 'D_img']:
r_dict[img] = os.path.join(images_dir, "vasr_images", r_dict[img])
r_dict["A"] = r_dict['A_img']
r_dict["A'"] = r_dict['B_img']
r_dict["B"] = r_dict['C_img']
r_dict["B'"] = r_dict['D_img']
r_dict["A'_verb"] = r_dict['B_verb']
r_dict["B_verb"] = r_dict['C_verb']
r_dict["B'_verb"] = r_dict['D_verb']
r_dict["diff_item_A'"] = r_dict['diff_item_B']
r_dict["diff_item_A'_str_first"] = r_dict['diff_item_B_str_first']
relevant_r_dict = {k:v for k,v in r_dict.items() if k in d_keys or k == 'candidates_images'}
yield r_idx, relevant_r_dict |