File size: 9,484 Bytes
9fea522 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import argparse
import os
import random
import shutil
from tqdm import tqdm
import webdataset as wds
from huggingface_hub import HfApi, HfFolder
def sample_and_copy_files(source_dir, output_dir, num_samples, seed, scan_report_interval):
"""
Scans a source directory, randomly samples image files, and copies them
to an output directory, preserving the original structure.
IMPORTANT: This script is currently hardcoded to only sample images from
corruption severity level 5.
"""
print(f"1. Scanning for image files in '{source_dir}'...")
all_files = []
count = 0
for root, _, files in os.walk(source_dir):
# HARDCODED FILTER: Only include files from severity level 5 directories.
# We check if '5' is a component of the directory path.
path_parts = root.split(os.sep)
if '5' in path_parts:
for file in files:
if file.lower().endswith(('.png', '.jpg', '.jpeg', '.gif', '.bmp')):
all_files.append(os.path.join(root, file))
count += 1
if count > 0 and count % scan_report_interval == 0:
print(f" ...scanned {count} images (from severity 5)...")
if not all_files:
print(f"Error: No image files found for severity level 5 in '{source_dir}'. Exiting.")
return False
print(f"Found {len(all_files)} total images.")
# Sort the file list to ensure reproducibility across different systems.
# The order of files returned by os.walk is not guaranteed to be the same.
all_files.sort()
print(f"2. Randomly sampling {num_samples} images (seed={seed})...")
# Set the random seed for reproducibility.
# Note: For 100% identical results, the same version of Python should be used
# (e.g., this script was created using Python 3.10.14), as the underlying
# algorithm for the 'random' module can change between versions.
random.seed(seed)
num_to_sample = min(num_samples, len(all_files))
sampled_files = random.sample(all_files, num_to_sample)
print(f"Selected {len(sampled_files)} files to copy.")
print(f"3. Copying files to '{output_dir}'...")
if os.path.exists(output_dir):
print(f"Output directory '{output_dir}' already exists. Removing it.")
shutil.rmtree(output_dir)
os.makedirs(output_dir)
for file_path in tqdm(sampled_files, desc="Copying files"):
relative_path = os.path.relpath(file_path, source_dir)
dest_path = os.path.join(output_dir, relative_path)
os.makedirs(os.path.dirname(dest_path), exist_ok=True)
shutil.copy(file_path, dest_path)
print("File copying complete.")
return True
def generate_readme_content(repo_id, seed, python_version, tar_filename, script_filename):
"""
Generates the content for the README.md file for the Hugging Face dataset.
"""
return f"""---
license: mit
tags:
- image-classification
- computer-vision
- imagenet-c
---
# Nano ImageNet-C (Severity 5)
This is a randomly sampled subset of the ImageNet-C dataset, containing 5,000 images exclusively from corruption **severity level 5**. It is designed for efficient testing and validation of model robustness.
这是一个从 ImageNet-C 数据集中随机抽样的子集,包含 5000 张仅来自损坏等级为 **5** 的图像。它旨在用于高效地测试和验证模型的鲁棒性。
## How to Generate / 如何生成
This dataset was generated using the `{script_filename}` script included in this repository. To ensure reproducibility, the following parameters were used:
本数据集使用此仓库中包含的 `{script_filename}` 脚本生成。为确保可复现性,生成时使用了以下参数:
- **Source Dataset / 源数据集**: The full ImageNet-C dataset is required. / 需要完整的 ImageNet-C 数据集。
- **Random Seed / 随机种子**: `{seed}`
- **Python Version / Python 版本**: `{python_version}`
## Dataset Structure / 数据集结构
The dataset is provided as a single `.tar` file named `{tar_filename}` in the `webdataset` format. The internal structure preserves the original ImageNet-C hierarchy: `corruption_type/class_name/image.jpg`.
数据集以 `webdataset` 格式打包在名为 `{tar_filename}` 的单个 `.tar` 文件中。其内部结构保留了原始 ImageNet-C 的层次结构:`corruption_type/class_name/image.jpg`。
## Citation / 引用
If you use this dataset, please cite the original ImageNet-C paper:
如果您使用此数据集,请引用原始 ImageNet-C 的论文:
```bibtex
@inproceedings{{danhendrycks2019robustness,
title={{Benchmarking Neural Network Robustness to Common Corruptions and Perturbations}},
author={{Dan Hendrycks and Thomas Dietterich}},
booktitle={{International Conference on Learning Representations}},
year={{2019}},
url={{https://openreview.net/forum?id=HJz6tiCqYm}},
}}
```
"""
def package_with_webdataset(output_dir, tar_path):
"""
Packages the contents of a directory into a single .tar file using webdataset.
"""
print(f"4. Packaging '{output_dir}' into '{tar_path}'...")
with wds.TarWriter(tar_path) as sink:
for root, _, files in tqdm(list(os.walk(output_dir)), desc="Packaging files"):
for file in files:
file_path = os.path.join(root, file)
with open(file_path, "rb") as stream:
content = stream.read()
relative_path = os.path.relpath(file_path, output_dir)
key, ext = os.path.splitext(relative_path)
extension = ext.lstrip('.')
sink.write({
"__key__": key,
extension: content
})
print("Packaging complete.")
def upload_to_hf(tar_path, readme_path, script_path, repo_id):
"""
Uploads a file to a specified Hugging Face Hub repository.
"""
print(f"5. Uploading files to Hugging Face Hub repository: {repo_id}...")
if HfFolder.get_token() is None:
print("Hugging Face token not found. Please log in using `huggingface-cli login` first.")
return
try:
api = HfApi()
print(f"Creating repository '{repo_id}' (if it doesn't exist)...")
api.create_repo(repo_id, repo_type="dataset", exist_ok=True)
print("Uploading README.md...")
api.upload_file(
path_or_fileobj=readme_path,
path_in_repo="README.md",
repo_id=repo_id,
repo_type="dataset"
)
script_filename = os.path.basename(script_path)
print(f"Uploading generation script '{script_filename}'...")
api.upload_file(
path_or_fileobj=script_path,
path_in_repo=script_filename,
repo_id=repo_id,
repo_type="dataset"
)
tar_filename = os.path.basename(tar_path)
print(f"Uploading dataset file '{tar_filename}'...")
api.upload_file(
path_or_fileobj=tar_path,
path_in_repo=tar_filename,
repo_id=repo_id,
repo_type="dataset"
)
print("Upload successful!")
print(f"Dataset available at: https://huggingface.co/datasets/{repo_id}")
except Exception as e:
print(f"An error occurred during upload: {e}")
def main():
"""
Main function to orchestrate the dataset creation, packaging, and upload process.
"""
parser = argparse.ArgumentParser(description="Create, package, and upload a smaller version of an image dataset.")
parser.add_argument("--source_dir", type=str, default="./data/ImageNet-C", help="Path to the source dataset.")
parser.add_argument("--output_dir", type=str, default="./data/nano-ImageNet-C", help="Path to save the new sampled dataset.")
parser.add_argument("--num_samples", type=int, default=5000, help="Number of images to sample.")
parser.add_argument("--seed", type=int, default=7600, help="Random seed for reproducibility.")
parser.add_argument("--repo_id", type=str, default="niuniandaji/nano-imagenet-c", help="The Hugging Face Hub repository ID.")
parser.add_argument("--tar_path", type=str, default="./data/nano-ImageNet-C.tar", help="Path to save the final webdataset archive.")
parser.add_argument("--scan_report_interval", type=int, default=50000, help="How often to report progress during file scanning.")
args = parser.parse_args()
print("--- Starting Dataset Creation Process ---")
print("IMPORTANT: The script is configured to sample ONLY from severity level 5.")
# Generate README content
script_filename = os.path.basename(__file__)
readme_content = generate_readme_content(
args.repo_id,
args.seed,
"3.10.14",
os.path.basename(args.tar_path),
script_filename
)
# Write README to a local file
readme_path = "README.md"
with open(readme_path, "w", encoding="utf-8") as f:
f.write(readme_content)
print(f"Generated README.md for the dataset.")
if sample_and_copy_files(args.source_dir, args.output_dir, args.num_samples, args.seed, args.scan_report_interval):
package_with_webdataset(args.output_dir, args.tar_path)
upload_to_hf(args.tar_path, readme_path, script_filename, args.repo_id)
print("--- Process Finished ---")
if __name__ == "__main__":
main()
|