Datasets:
File size: 9,633 Bytes
d92d7ab df293f3 d92d7ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Wiki Asp datasert for Multi-domain Aspect-based Summarization"""
import json
import os
import datasets
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@article{hayashi20tacl,
title = {WikiAsp: A Dataset for Multi-domain Aspect-based Summarization},
authors = {Hiroaki Hayashi and Prashant Budania and Peng Wang and Chris Ackerson and Raj Neervannan and Graham Neubig},
journal = {Transactions of the Association for Computational Linguistics (TACL)},
year = {2020},
url = {https://arxiv.org/abs/2011.07832}
}
"""
_DESCRIPTION = """\
WikiAsp is a multi-domain, aspect-based summarization dataset in the encyclopedic
domain. In this task, models are asked to summarize cited reference documents of a
Wikipedia article into aspect-based summaries. Each of the 20 domains include 10
domain-specific pre-defined aspects.
"""
_HOMEPAGE = "https://github.com/neulab/wikiasp"
_LICENSE = "CC BY-SA 4.0"
# Download links
_URLs = {
"album": "http://phontron.com/download/wikiasp/Album.tar.bz2",
"animal": "http://phontron.com/download/wikiasp/Animal.tar.bz2",
"artist": "http://phontron.com/download/wikiasp/Artist.tar.bz2",
"building": "http://phontron.com/download/wikiasp/Building.tar.bz2",
"company": "http://phontron.com/download/wikiasp/Company.tar.bz2",
"educational_institution": "http://phontron.com/download/wikiasp/EducationalInstitution.tar.bz2",
"event": "http://phontron.com/download/wikiasp/Event.tar.bz2",
"film": "http://phontron.com/download/wikiasp/Film.tar.bz2",
"group": "http://phontron.com/download/wikiasp/Group.tar.bz2",
"historic_place": "http://phontron.com/download/wikiasp/HistoricPlace.tar.bz2",
"infrastructure": "http://phontron.com/download/wikiasp/Infrastructure.tar.bz2",
"mean_of_transportation": "http://phontron.com/download/wikiasp/MeanOfTransportation.tar.bz2",
"office_holder": "http://phontron.com/download/wikiasp/OfficeHolder.tar.bz2",
"plant": "http://phontron.com/download/wikiasp/Plant.tar.bz2",
"single": "http://phontron.com/download/wikiasp/Single.tar.bz2",
"soccer_player": "http://phontron.com/download/wikiasp/SoccerPlayer.tar.bz2",
"software": "http://phontron.com/download/wikiasp/Software.tar.bz2",
"television_show": "http://phontron.com/download/wikiasp/TelevisionShow.tar.bz2",
"town": "http://phontron.com/download/wikiasp/Town.tar.bz2",
"written_work": "http://phontron.com/download/wikiasp/WrittenWork.tar.bz2",
}
class WikiAsp(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.1.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="album", version=VERSION, description="A subset of dataset from the musical album domain"
),
datasets.BuilderConfig(
name="animal", version=VERSION, description="A subset of dataset from the animal domain"
),
datasets.BuilderConfig(
name="artist", version=VERSION, description="A subset of dataset from the artist domain"
),
datasets.BuilderConfig(
name="building", version=VERSION, description="A subset of dataset from the buildings domain"
),
datasets.BuilderConfig(
name="company", version=VERSION, description="A subset of dataset from the company domain"
),
datasets.BuilderConfig(
name="educational_institution",
version=VERSION,
description="A subset of dataset from the educational institution domain",
),
datasets.BuilderConfig(
name="event", version=VERSION, description="A subset of dataset from the events domain"
),
datasets.BuilderConfig(name="film", version=VERSION, description="A subset of dataset from the film domain"),
datasets.BuilderConfig(name="group", version=VERSION, description="A subset of dataset from the group domain"),
datasets.BuilderConfig(
name="historic_place", version=VERSION, description="A subset of dataset from the historic places domain"
),
datasets.BuilderConfig(
name="infrastructure", version=VERSION, description="A subset of dataset from the infrastructure domain"
),
datasets.BuilderConfig(
name="mean_of_transportation",
version=VERSION,
description="A subset of dataset from the transportation mean domain",
),
datasets.BuilderConfig(
name="office_holder", version=VERSION, description="A subset of dataset from the office holder domain"
),
datasets.BuilderConfig(name="plant", version=VERSION, description="A subset of dataset from the plant domain"),
datasets.BuilderConfig(
name="single", version=VERSION, description="A subset of dataset from the musical single domain"
),
datasets.BuilderConfig(
name="soccer_player", version=VERSION, description="A subset of dataset from the soccer player domain"
),
datasets.BuilderConfig(
name="software", version=VERSION, description="A subset of dataset from the software domain"
),
datasets.BuilderConfig(
name="television_show", version=VERSION, description="A subset of dataset from the television show domain"
),
datasets.BuilderConfig(name="town", version=VERSION, description="A subset of dataset from the town domain"),
datasets.BuilderConfig(
name="written_work", version=VERSION, description="A subset of dataset from the written work domain"
),
]
def _info(self):
features = datasets.Features(
{
"exid": datasets.Value("string"),
"inputs": datasets.Sequence(datasets.Value("string")),
"targets": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
my_urls = _URLs[self.config.name]
data_dir = dl_manager.download_and_extract(my_urls)
data_dir = os.path.join(data_dir, self.config.name.title().replace("_", ""))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, "train.jsonl"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": os.path.join(data_dir, "test.jsonl"), "split": "test"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(data_dir, "valid.jsonl"),
"split": "dev",
},
),
]
def _generate_examples(self, filepath, split):
"""Yields examples."""
with open(filepath, encoding="utf-8") as f:
for id_, row in enumerate(f):
data = json.loads(row)
yield id_, {
"exid": data["exid"],
"inputs": data["inputs"],
"targets": data["targets"],
}
|