Datasets:
File size: 2,065 Bytes
b762efe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
annotations_creators:
- no-annotation
language:
- zh
language_creators:
- found
license:
- apache-2.0
pretty_name: CSL
size_categories:
- 1M<n<10M
source_datasets:
- extended|csl
tags: []
task_categories:
- text-retrieval
task_ids:
- document-retrieval
---
# Dataset Card for CSL
## Dataset Description
CSL is the Chinese Scientific Literature Dataset.
- **Paper:** https://aclanthology.org/2022.coling-1.344
- **Repository:** https://github.com/ydli-ai/CSL
### Dataset Summary
The dataset contains titles, abstracts, keywords of papers written in Chinese from several academic fields.
### Languages
- Chinese
## Dataset Structure
### Data Instances
| Split | Documents |
|-----------------|----------:|
| `csl` | 396k |
### Data Fields
- `id`: unique identifier for this document
- `cc_file`: source file from connon crawl
- `time`: extracted date/time from article
- `title`: title extracted from article
- `text`: extracted article body
- `url`: source URL
## Dataset Usage
Using 🤗 Datasets:
```python
from datasets import load_dataset
dataset = load_dataset('neuclir/csl')['csl']
```
## License & Citation
This dataset is based off the [Chinese Scientific Literature Dataset](https://github.com/ydli-ai/CSL) under Apache 2.0.
The primay change is the addition of English translactions of the category and discipline descriptions by a native speaker.
If you use this data, please cite:
```
@inproceedings{li-etal-2022-csl,
title = "{CSL}: A Large-scale {C}hinese Scientific Literature Dataset",
author = "Li, Yudong and
Zhang, Yuqing and
Zhao, Zhe and
Shen, Linlin and
Liu, Weijie and
Mao, Weiquan and
Zhang, Hui",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2022.coling-1.344",
pages = "3917--3923",
}
```
|