|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""MEDLINE/PubMed data.""" |
|
|
|
|
|
import copy |
|
import xml.etree.ElementTree as ET |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
Courtesy of the U.S. National Library of Medicine. |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
NLM produces a baseline set of MEDLINE/PubMed citation records in XML format for download on an annual basis. The annual baseline is released in December of each year. Each day, NLM produces update files that include new, revised and deleted citations. See our documentation page for more information. |
|
""" |
|
|
|
_HOMEPAGE = "https://www.nlm.nih.gov/databases/download/pubmed_medline.html" |
|
|
|
_LICENSE = "" |
|
|
|
|
|
|
|
|
|
_URLs = [f"https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed23n{i:04d}.xml.gz" for i in range(1, 1167)] |
|
|
|
|
|
|
|
|
|
def deepupdate(target, src): |
|
"""Deep update target dict with src |
|
For each k,v in src: if k doesn't exist in target, it is deep copied from |
|
src to target. Otherwise, if v is a list, target[k] is extended with |
|
src[k]. If v is a set, target[k] is updated with v, If v is a dict, |
|
recursively deep-update it. |
|
|
|
Examples: |
|
>>> t = {'name': 'Ferry', 'hobbies': ['programming', 'sci-fi']} |
|
>>> deepupdate(t, {'hobbies': ['gaming']}) |
|
>>> print(t) |
|
{'name': 'Ferry', 'hobbies': ['programming', 'sci-fi', 'gaming']} |
|
""" |
|
for k, v in src.items(): |
|
if k in target and isinstance(target[k], int) and isinstance(v, str): |
|
try: |
|
v = int(v) |
|
except Exception: |
|
pass |
|
if k in target and type(target[k]) != type(v): |
|
logger.warning(f"Ignoring field {k} it's a {type(v)} and we expect a {type(target[k])}") |
|
continue |
|
|
|
if type(v) == list: |
|
if k not in target: |
|
target[k] = copy.deepcopy(v) |
|
elif isinstance(target[k], list): |
|
target[k].extend(v) |
|
elif isinstance(target[k], str): |
|
|
|
|
|
new_v = " ".join(el for el in v if isinstance(el, str)) |
|
target[k] = new_v |
|
else: |
|
logger.warning(f"Ignoring field {k} it's a {type(v)} and we expect a {type(target[k])}") |
|
elif type(v) == dict: |
|
if k not in target: |
|
target[k] = copy.deepcopy(v) |
|
elif isinstance(target[k], dict): |
|
deepupdate(target[k], v) |
|
else: |
|
logger.warning(f"Ignoring field {k} it's a {type(v)} and we expect a {type(target[k])}") |
|
elif type(v) == set: |
|
if k not in target: |
|
target[k] = v.copy() |
|
elif isinstance(target[k], set): |
|
target[k].update(v.copy()) |
|
else: |
|
logger.warning(f"Ignoring field {k} it's a {type(v)} and we expect a {type(target[k])}") |
|
else: |
|
if isinstance(target[k], (list, tuple, dict)): |
|
logger.warning(f"Ignoring field {k} it's a {type(v)} and we expect a {type(target[k])}") |
|
continue |
|
|
|
target[k] = copy.copy(v) |
|
|
|
|
|
def default_date(): |
|
return {"Year": 0, "Month": 0, "Day": 0} |
|
|
|
|
|
def default_inline_article(): |
|
return { |
|
|
|
"Abstract": {"AbstractText": ""}, |
|
"ArticleTitle": "", |
|
|
|
"AuthorList": {"Author": []}, |
|
"Language": "", |
|
"GrantList": { |
|
"Grant": [], |
|
}, |
|
"PublicationTypeList": {"PublicationType": []}, |
|
} |
|
|
|
|
|
def default_article(): |
|
return { |
|
"MedlineCitation": { |
|
"PMID": 0, |
|
"DateCompleted": default_date(), |
|
"NumberOfReferences": 0, |
|
"DateRevised": default_date(), |
|
"Article": default_inline_article(), |
|
"MedlineJournalInfo": {"Country": ""}, |
|
"ChemicalList": {"Chemical": []}, |
|
"CitationSubset": "", |
|
"MeshHeadingList": {"MeshHeading": []}, |
|
}, |
|
"PubmedData": { |
|
"ArticleIdList": [{"ArticleId": []}], |
|
"PublicationStatus": "", |
|
"History": {"PubMedPubDate": []}, |
|
"ReferenceList": [], |
|
}, |
|
} |
|
|
|
|
|
class Pubmed(datasets.GeneratorBasedBuilder): |
|
"""Pubmed citations records""" |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="2023", description="The 2023 annual record", version=datasets.Version("3.0.0")), |
|
] |
|
|
|
|
|
SIMPLE_KEYS = {"PubmedArticleSet"} |
|
LIST_KEYS = {"PubmedArticle"} |
|
IGNORE_KEYS = set() |
|
|
|
def fill_keys_from_features(self, features): |
|
if isinstance(features, dict): |
|
for key, value in features.items(): |
|
if isinstance(value, datasets.Sequence): |
|
self.LIST_KEYS.add(key) |
|
self.fill_keys_from_features(value.feature) |
|
else: |
|
self.SIMPLE_KEYS.add(key) |
|
self.fill_keys_from_features(value) |
|
|
|
def xml_to_dictionnary(self, parentElement): |
|
data = {} |
|
if parentElement.tag in {"AbstractText", "ArticleTitle"}: |
|
|
|
|
|
tag = parentElement.tag |
|
string = ET.tostring(parentElement).decode("utf-8").strip() |
|
inner_string = string[len(f"<{tag}>") : -len(f"</{tag}>")] |
|
return {parentElement.tag: inner_string} |
|
|
|
for child in list(parentElement): |
|
child.text = child.text if (child.text is not None) else " " |
|
key = child.tag |
|
if len(child) == 0: |
|
value = child.text.strip() |
|
else: |
|
value = self.xml_to_dictionnary(child) |
|
if isinstance(value, dict) and set(value.keys()) == {key}: |
|
value = value[key] |
|
|
|
if key in data: |
|
old_value = data[key] |
|
if isinstance(old_value, dict): |
|
data[key] = [old_value, value] |
|
elif isinstance(old_value, list): |
|
data[key].append(value) |
|
elif key in self.LIST_KEYS: |
|
data[key] = [value] |
|
elif key in self.SIMPLE_KEYS: |
|
data[key] = value |
|
elif key in self.IGNORE_KEYS: |
|
continue |
|
else: |
|
logger.info(f"Ignoring key {key} from {parentElement.tag}") |
|
self.IGNORE_KEYS.add(key) |
|
|
|
|
|
if parentElement.tag == "MeshHeading" and "QualifierName" not in data: |
|
data["QualifierName"] = "" |
|
elif parentElement.tag == "Author": |
|
if "ForeName" not in data: |
|
data["ForeName"] = "" |
|
if "Initials" not in data: |
|
data["Initials"] = "" |
|
if "LastName" not in data: |
|
data["LastName"] = "" |
|
if "CollectiveName" not in data: |
|
data["CollectiveName"] = "" |
|
elif parentElement.tag == "JournalIssue": |
|
if "Volume" not in data: |
|
data["Volume"] = "" |
|
if "Issue" not in data: |
|
data["Issue"] = "" |
|
elif parentElement.tag == "Grant" and "GrantID" not in data: |
|
data["GrantID"] = "" |
|
|
|
return {parentElement.tag: data} |
|
|
|
def _info(self): |
|
Date = { |
|
"Year": datasets.Value("int32"), |
|
"Month": datasets.Value("int32"), |
|
"Day": datasets.Value("int32"), |
|
} |
|
|
|
MeshHeading = {"DescriptorName": datasets.Value("string"), "QualifierName": datasets.Value("string")} |
|
|
|
MedlineJournalInfo = { |
|
"Country": datasets.Value("string"), |
|
|
|
|
|
|
|
|
|
} |
|
Chemical = { |
|
"RegistryNumber": datasets.Value("string"), |
|
"NameOfSubstance": datasets.Value("string"), |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Author = { |
|
"LastName": datasets.Value("string"), |
|
"ForeName": datasets.Value("string"), |
|
"Initials": datasets.Value("string"), |
|
"CollectiveName": datasets.Value("string"), |
|
} |
|
Reference = { |
|
"Citation": datasets.Value("string"), |
|
"CitationId": datasets.Value("int32"), |
|
} |
|
Grant = { |
|
"GrantID": datasets.Value("string"), |
|
"Agency": datasets.Value("string"), |
|
"Country": datasets.Value("string"), |
|
} |
|
Article = { |
|
|
|
"Abstract": {"AbstractText": datasets.Value("string")}, |
|
"ArticleTitle": datasets.Value("string"), |
|
|
|
|
|
"AuthorList": {"Author": datasets.Sequence(Author)}, |
|
"Language": datasets.Value("string"), |
|
"GrantList": { |
|
"Grant": datasets.Sequence(Grant), |
|
}, |
|
"PublicationTypeList": {"PublicationType": datasets.Sequence(datasets.Value("string"))}, |
|
} |
|
features = datasets.Features( |
|
{ |
|
"MedlineCitation": { |
|
"PMID": datasets.Value("int32"), |
|
"DateCompleted": Date, |
|
"NumberOfReferences": datasets.Value("int32"), |
|
"DateRevised": Date, |
|
"Article": Article, |
|
"MedlineJournalInfo": MedlineJournalInfo, |
|
"ChemicalList": {"Chemical": datasets.Sequence(Chemical)}, |
|
"CitationSubset": datasets.Value("string"), |
|
"MeshHeadingList": { |
|
"MeshHeading": datasets.Sequence(MeshHeading), |
|
}, |
|
}, |
|
"PubmedData": { |
|
"ArticleIdList": datasets.Sequence({"ArticleId": datasets.Sequence(datasets.Value("string"))}), |
|
"PublicationStatus": datasets.Value("string"), |
|
"History": {"PubMedPubDate": datasets.Sequence(Date)}, |
|
"ReferenceList": datasets.Sequence(Reference), |
|
}, |
|
} |
|
) |
|
self.fill_keys_from_features(features) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
dl_dir = dl_manager.download_and_extract(_URLs) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filenames": dl_dir}, |
|
), |
|
] |
|
|
|
def update_citation(self, article): |
|
""" |
|
ArticleId and ArticleIdList are already used field name so we rewrite and |
|
flatten those as {Citation, CitationId}. |
|
""" |
|
citations = [] |
|
try: |
|
list_ = article["PubmedData"]["ReferenceList"] |
|
except Exception: |
|
return |
|
|
|
for ref in list_: |
|
if "Reference" not in ref: |
|
continue |
|
for re in ref["Reference"]: |
|
if "Citation" not in re: |
|
continue |
|
citation = re["Citation"] |
|
if "ArticleIdList" not in re: |
|
continue |
|
for r in re["ArticleIdList"]: |
|
if "ArticleId" not in r: |
|
continue |
|
for rr in r["ArticleId"]: |
|
try: |
|
citation = {"Citation": citation, "CitationId": int(rr)} |
|
except Exception: |
|
continue |
|
citations.append(citation) |
|
article["PubmedData"]["ReferenceList"] = citations |
|
|
|
def _generate_examples(self, filenames): |
|
"""Yields examples.""" |
|
id_ = 0 |
|
for filename in filenames: |
|
try: |
|
tree = ET.parse(filename) |
|
root = tree.getroot() |
|
xmldict = self.xml_to_dictionnary(root) |
|
except ET.ParseError: |
|
logger.warning(f"Ignoring file {filename}, it is malformed") |
|
continue |
|
|
|
for article in xmldict["PubmedArticleSet"]["PubmedArticle"]: |
|
self.update_citation(article) |
|
new_article = default_article() |
|
|
|
try: |
|
deepupdate(new_article, article) |
|
except Exception: |
|
logger.warning(f"Ignoring article {article}, it is malformed") |
|
continue |
|
|
|
try: |
|
_ = self.info.features.encode_example(new_article) |
|
except Exception as e: |
|
logger.warning(f"Ignore example because {e}") |
|
continue |
|
yield id_, new_article |
|
id_ += 1 |
|
|