File size: 3,732 Bytes
27a8040
 
 
d87417b
 
27a8040
 
 
 
d87417b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27a8040
 
 
 
d87417b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27a8040
 
 
 
4f8fbe8
d87417b
27a8040
4f8fbe8
d87417b
4f8fbe8
 
f6c83e9
772ac89
 
 
f6c83e9
 
 
 
 
 
 
27a8040
 
 
772ac89
 
d8e1b39
772ac89
80a7caa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
772ac89
 
43470bf
f5fed84
 
43470bf
d8e1b39
 
772ac89
c90368d
 
43470bf
 
 
772ac89
 
d8e1b39
772ac89
 
 
d8e1b39
772ac89
 
 
d8e1b39
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
---
dataset_info:
  features:
  - name: q_id
    dtype: int64
  - name: question
    dtype: string
  - name: answer
    dtype: string
  - name: q_word
    dtype: string
  - name: q_topic
    dtype: string
  - name: fine_class
    dtype: string
  - name: class
    dtype: string
  - name: ontology_concept
    dtype: string
  - name: ontology_concept2
    dtype: string
  - name: source
    dtype: string
  - name: q_src_id
    dtype: int64
  - name: quetion_type
    dtype: string
  - name: chapter_name
    dtype: string
  - name: chapter_no
    dtype: int64
  - name: verse
    sequence: string
  - name: question_en
    dtype: string
  - name: answer_en
    dtype: string
  - name: q_word_en
    dtype: string
  - name: q_topic_en
    dtype: string
  - name: fine_class_en
    dtype: string
  - name: class_en
    dtype: string
  - name: ontology_concept_en
    dtype: string
  - name: chapter_name_en
    dtype: string
  - name: context
    dtype: string
  splits:
  - name: train
    num_bytes: 2226830.0310711367
    num_examples: 978
  - name: test
    num_bytes: 557845.9689288634
    num_examples: 245
  download_size: 1515128
  dataset_size: 2784676.0
license: cc-by-4.0
task_categories:
- question-answering
pretty_name: Quran Question Answer with Context
language:
- ar
- en
tags:
- islam
- quran
- arabic
---
# Dataset Card for "quran-question-answer-context"

## Dataset Summary

Translated the original dataset from Arabic to English and added the Surah ayahs to the `context` column.

## Usage

```python
from datasets import load_dataset

dataset = load_dataset("nazimali/quran-question-answer-context")
```


```python
DatasetDict({
    train: Dataset({
        features: ['q_id', 'question', 'answer', 'q_word', 'q_topic', 'fine_class', 'class', 'ontology_concept', 'ontology_concept2', 'source', 'q_src_id', 'quetion_type', 'chapter_name', 'chapter_no', 'verse', 'question_en', 'answer_en', 'q_word_en', 'q_topic_en', 'fine_class_en', 'class_en', 'ontology_concept_en', 'chapter_name_en', 'context'],
        num_rows: 978
    })
    test: Dataset({
        features: ['q_id', 'question', 'answer', 'q_word', 'q_topic', 'fine_class', 'class', 'ontology_concept', 'ontology_concept2', 'source', 'q_src_id', 'quetion_type', 'chapter_name', 'chapter_no', 'verse', 'question_en', 'answer_en', 'q_word_en', 'q_topic_en', 'fine_class_en', 'class_en', 'ontology_concept_en', 'chapter_name_en', 'context'],
        num_rows: 245
    })
})
```

## Translation Info

1. Translated the Arabic questions/concept columns to English with [Helsinki-NLP/opus-mt-ar-en](https://huggingface.co/Helsinki-NLP/opus-mt-ar-en)
2. Used `en-yusufali` translations for ayas [M-AI-C/quran-en-tafssirs](https://huggingface.co/datasets/M-AI-C/quran-en-tafssirs)
3. Renamed Surahs with [kheder/quran](https://huggingface.co/datasets/kheder/quran)
4. Added the ayahs that helped answer the questions
  - Split the `ayah` columns string into a list of integers
  - Concactenated the Surah:Ayah pairs into a sentence to the `context` column

Columns with the suffix `_en` contain the translations of the original columns.

## TODO
The `context` column has some `null` values that needs to be investigated and fixed

## Initial Data Collection

The original dataset is from **[Annotated Corpus of Arabic Al-Quran Question and Answer](https://archive.researchdata.leeds.ac.uk/464/)**    

## Licensing Information

Original dataset [license](https://archive.researchdata.leeds.ac.uk/464/): **Creative Commons Attribution 4.0 International (CC BY 4.0)**

### Contributions

 Original paper authors: Alqahtani, Mohammad and Atwell, Eric (2018) Annotated Corpus of Arabic Al-Quran Question and Answer. University of Leeds. https://doi.org/10.5518/356