File size: 10,050 Bytes
39b4c8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import sys
sys.path.append("..")
import pandas as pd
import numpy as np
import os
import re 
import matplotlib.pyplot as plt
import scipy.stats as ss
import scikit_posthocs as sp
import pandas as pd

def sort_nicely(l): 
    """ Sort the given list in the way that humans expect. 
    """ 
    convert = lambda text: int(text) if text.isdigit() else text 
    alphanum_key = lambda key: [ convert(c) for c in re.split('([0-9]+)', key) ] 
    l.sort( key=alphanum_key ) 

    return l


DATASETS = ['PURE', 'UBFC1', 'UBFC2', 'LGI-PPGI']
#DATASETS = ['PURE', 'UBFC1', 'UBFC2', 'LGI-PPGI', 'Cohface', 'Mahnob']
#DATASETS = ['Cohface', 'Mahnob']
all_methods = ['CHROM','Green','ICA','LGI','PBV','PCA','POS','SSR']
metrics = ['CC', 'MAE']

avg_type = 'mean'
#avg_type = 'median'

data_CC = []
data_MAE = []

for r,DATASET in enumerate(DATASETS):
    
    #Experiment Path
    exp_path = '../results/' + DATASET + '/'
    files = sort_nicely(os.listdir(exp_path))

    #---------------- Produce Box plots for each method on a given dataset -----------

    win_to_use = 10

    f_to_use = [i for i in files if 'winSize'+str(win_to_use) in i][0]
    path = exp_path + f_to_use
    res = pd.read_hdf(path)

    print('\n\n\t\t' + DATASET + '\n\n')

    if DATASET == 'UBFC1' or DATASET == 'UBFC2' or DATASET == 'Mahnob' or DATASET == 'UBFC_ALL':

        all_vals_CC = []
        all_vals_MAE = []
        curr_dataCC = np.zeros(len(all_methods))
        curr_dataMAE = np.zeros(len(all_methods))
        
        for metric in metrics:
            for method in all_methods:
                #print(method)
                mean_v = []
                raw_values = res[res['method'] == method][metric]
                values = []
                for v in raw_values:
                    if metric == 'CC':
                        values.append(v[np.argmax(v)])
                    else:
                        values.append(v[np.argmin(v)])

                if metric == 'CC':
                    all_vals_CC.append(np.array(values))
                if metric == 'MAE':
                    all_vals_MAE.append(np.array(values))

        for c in range(len(all_vals_CC)): #for each method
            if avg_type == 'median':
                curr_dataCC[c] = np.median(all_vals_CC[c])
                curr_dataMAE[c] = np.median(all_vals_MAE[c])
            else:
                curr_dataCC[c] = np.mean(all_vals_CC[c])
                curr_dataMAE[c] = np.mean(all_vals_MAE[c])

        data_CC.append(curr_dataCC)
        data_MAE.append(curr_dataMAE)
        

    elif DATASET == 'PURE':

        cases = {'01':'steady', '02':'talking', '03':'slow_trans', '04':'fast_trans', '05':'small_rot', '06':'fast_rot'}
        all_CC = {'01':[], '02':[], '03':[], '04':[], '05':[], '06':[]}
        all_MAE = {'01':[], '02':[], '03':[], '04':[], '05':[], '06':[]}
        CC_allcases = []
        MAE_allcases = []
        curr_dataCC = np.zeros(len(all_methods))
        curr_dataMAE = np.zeros(len(all_methods))
            
        for metric in metrics:
            for method in all_methods:
                #print(method)
                for curr_case in cases.keys():
                    
                    curr_res = res[res['videoName'].str.split('/').str[5].str.split('-').str[1] == curr_case]
                    raw_values = curr_res[curr_res['method'] == method][metric]
                    
                    values = []
                    for v in raw_values:
                        if metric == 'CC':
                            values.append(v[np.argmax(v)])
                        else:
                            values.append(v[np.argmin(v)])

                    if metric == 'CC':
                        all_CC[curr_case].append(np.array(values))
                    if metric == 'MAE':
                        all_MAE[curr_case].append(np.array(values))
        
        for curr_case in cases.keys():

            all_vals_CC = all_CC[curr_case]
            all_vals_MAE = all_MAE[curr_case]

            for c in range(len(all_vals_CC)): #for each method
                if avg_type == 'median':
                    curr_dataCC[c] = np.median(all_vals_CC[c])
                    curr_dataMAE[c] = np.median(all_vals_MAE[c])
                else:
                    curr_dataCC[c] = np.mean(all_vals_CC[c])
                    curr_dataMAE[c] = np.mean(all_vals_MAE[c])

            data_CC.append(curr_dataCC.copy())
            data_MAE.append(curr_dataMAE.copy())

    elif DATASET == 'Cohface':
            
        CC_allcases = []
        MAE_allcases = []
        curr_dataCC = np.zeros(len(all_methods))
        curr_dataMAE = np.zeros(len(all_methods))

        for metric in metrics:
            for method in all_methods:
                    raw_values = res[res['method'] == method][metric]
                    
                    values = []
                    for v in raw_values:
                        if metric == 'CC':
                            values.append(v[np.argmax(v)])
                        else:
                            values.append(v[np.argmin(v)])
                    
                    if metric == 'CC':
                        CC_allcases.append(np.array(values))
                    if metric == 'MAE':
                        MAE_allcases.append(np.array(values))

        for c in range(len(CC_allcases)): #for each method
            if avg_type == 'median':
                curr_dataCC[c] = np.median(all_vals_CC[c])
                curr_dataMAE[c] = np.median(all_vals_MAE[c])
            else:
                curr_dataCC[c] = np.mean(CC_allcases[c])
                curr_dataMAE[c] = np.mean(MAE_allcases[c])

        data_CC.append(curr_dataCC)
        data_MAE.append(curr_dataMAE)


    elif DATASET == 'LGI-PPGI':

        cases = ['gym', 'resting', 'rotation', 'talk']
        #cases = ['resting']
        all_CC = {'gym':[], 'resting':[], 'rotation':[], 'talk':[]}
        all_MAE = {'gym':[], 'resting':[], 'rotation':[], 'talk':[]}
        CC_allcases = []
        MAE_allcases = []
        curr_dataCC = np.zeros(len(all_methods))
        curr_dataMAE = np.zeros(len(all_methods))

        for metric in metrics:
            for method in all_methods:
                #print(method)
                for curr_case in cases:

                    curr_res = res[res['videoName'].str.split('/').str[6].str.split('_').str[1] == curr_case]
                    raw_values = curr_res[curr_res['method'] == method][metric]
                    
                    values = []
                    for v in raw_values:
                        if metric == 'CC':
                            values.append(v[np.argmax(v)])
                        else:
                            values.append(v[np.argmin(v)])

                    if metric == 'CC':
                        all_CC[curr_case].append(np.array(values))
                    if metric == 'MAE':
                        all_MAE[curr_case].append(np.array(values))

        for curr_case in cases:
            all_vals_CC = all_CC[curr_case]
            all_vals_MAE = all_MAE[curr_case]

            for c in range(len(all_vals_CC)): #for each method
                if avg_type == 'median':
                    curr_dataCC[c] = np.median(all_vals_CC[c])
                    curr_dataMAE[c] = np.median(all_vals_MAE[c])
                else:
                    curr_dataCC[c] = np.mean(all_vals_CC[c])
                    curr_dataMAE[c] = np.mean(all_vals_MAE[c])

            data_CC.append(curr_dataCC.copy())
            data_MAE.append(curr_dataMAE.copy())


data_CC = np.vstack(data_CC)
data_MAE = np.vstack(data_MAE)
n_datasets = data_CC.shape[0]
alpha = '0.05'

plt.figure()

plt.subplot(1,2,1)
plt.title('CC Multi Dataset')
plt.boxplot(data_CC, showfliers=True)
plt.xticks(np.arange(1,len(all_methods)+1), all_methods)

plt.subplot(1,2,2)
plt.title('MAE Multi Dataset')
plt.boxplot(data_MAE, showfliers=True)
plt.xticks(np.arange(1,len(all_methods)+1), all_methods)
            
from nonparametric_tests import friedman_aligned_ranks_test as ft
import Orange

data_MAE_df = pd.DataFrame(data_MAE, columns=all_methods)
print('\nFriedman Test MAE:')
#print(ss.friedmanchisquare(*data_MAE.T))
#print(' ')
t,p,ranks_mae,piv_mae = ft(data_MAE[:,0], data_MAE[:,1], data_MAE[:,2], data_MAE[:,3], data_MAE[:,4], data_MAE[:,5], data_MAE[:,6], data_MAE[:,7])
avranksMAE = list(np.divide(ranks_mae, n_datasets))

print('statistic: ' + str(t))
print('pvalue: ' + str(p))
print(' ')
pc = sp.posthoc_nemenyi_friedman(data_MAE_df)
cmap = ['1', '#fb6a4a',  '#08306b',  '#4292c6', '#c6dbef']
heatmap_args = {'cmap': cmap, 'linewidths': 0.25, 'linecolor': '0.5', 'clip_on': False, 'square': True, 'cbar_ax_bbox': [0.80, 0.35, 0.04, 0.3]}

plt.figure()
sp.sign_plot(pc, **heatmap_args)
plt.title('Nemenyi Test MAE')


data_CC_df = pd.DataFrame(data_CC, columns=all_methods)
print('\nFriedman Test CC:')
#print(ss.friedmanchisquare(*data_CC.T))
#print(' ')
t,p,ranks_cc,piv_cc = ft(data_CC[:,0], data_CC[:,1], data_CC[:,2], data_CC[:,3], data_CC[:,4], data_CC[:,5], data_CC[:,6], data_CC[:,7])
avranksCC = list(np.divide(ranks_cc, n_datasets))

print('statistic: ' + str(t))
print('pvalue: ' + str(p))
print(' ')
pc = sp.posthoc_nemenyi_friedman(data_CC_df)
cmap = ['1', '#fb6a4a',  '#08306b',  '#4292c6', '#c6dbef']
heatmap_args = {'cmap': cmap, 'linewidths': 0.25, 'linecolor': '0.5', 'clip_on': False, 'square': True, 'cbar_ax_bbox': [0.80, 0.35, 0.04, 0.3]}

plt.figure()
sp.sign_plot(pc, **heatmap_args)
plt.title('Nemenyi Test CC')

cd = Orange.evaluation.compute_CD(avranksMAE, n_datasets, alpha=alpha) #tested on 30 datasets
Orange.evaluation.graph_ranks(avranksMAE, all_methods, cd=cd, width=6, textspace=1.5, reverse=True)
plt.title('CD Diagram MAE')

cd = Orange.evaluation.compute_CD(avranksCC, n_datasets, alpha=alpha) #tested on 30 datasets
Orange.evaluation.graph_ranks(avranksCC, all_methods, cd=cd, width=6, textspace=1.5)
plt.title('CD Diagram CC')

print(data_MAE_df)
print(' ')
print(data_CC_df)

plt.show()