File size: 10,050 Bytes
39b4c8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import sys
sys.path.append("..")
import pandas as pd
import numpy as np
import os
import re
import matplotlib.pyplot as plt
import scipy.stats as ss
import scikit_posthocs as sp
import pandas as pd
def sort_nicely(l):
""" Sort the given list in the way that humans expect.
"""
convert = lambda text: int(text) if text.isdigit() else text
alphanum_key = lambda key: [ convert(c) for c in re.split('([0-9]+)', key) ]
l.sort( key=alphanum_key )
return l
DATASETS = ['PURE', 'UBFC1', 'UBFC2', 'LGI-PPGI']
#DATASETS = ['PURE', 'UBFC1', 'UBFC2', 'LGI-PPGI', 'Cohface', 'Mahnob']
#DATASETS = ['Cohface', 'Mahnob']
all_methods = ['CHROM','Green','ICA','LGI','PBV','PCA','POS','SSR']
metrics = ['CC', 'MAE']
avg_type = 'mean'
#avg_type = 'median'
data_CC = []
data_MAE = []
for r,DATASET in enumerate(DATASETS):
#Experiment Path
exp_path = '../results/' + DATASET + '/'
files = sort_nicely(os.listdir(exp_path))
#---------------- Produce Box plots for each method on a given dataset -----------
win_to_use = 10
f_to_use = [i for i in files if 'winSize'+str(win_to_use) in i][0]
path = exp_path + f_to_use
res = pd.read_hdf(path)
print('\n\n\t\t' + DATASET + '\n\n')
if DATASET == 'UBFC1' or DATASET == 'UBFC2' or DATASET == 'Mahnob' or DATASET == 'UBFC_ALL':
all_vals_CC = []
all_vals_MAE = []
curr_dataCC = np.zeros(len(all_methods))
curr_dataMAE = np.zeros(len(all_methods))
for metric in metrics:
for method in all_methods:
#print(method)
mean_v = []
raw_values = res[res['method'] == method][metric]
values = []
for v in raw_values:
if metric == 'CC':
values.append(v[np.argmax(v)])
else:
values.append(v[np.argmin(v)])
if metric == 'CC':
all_vals_CC.append(np.array(values))
if metric == 'MAE':
all_vals_MAE.append(np.array(values))
for c in range(len(all_vals_CC)): #for each method
if avg_type == 'median':
curr_dataCC[c] = np.median(all_vals_CC[c])
curr_dataMAE[c] = np.median(all_vals_MAE[c])
else:
curr_dataCC[c] = np.mean(all_vals_CC[c])
curr_dataMAE[c] = np.mean(all_vals_MAE[c])
data_CC.append(curr_dataCC)
data_MAE.append(curr_dataMAE)
elif DATASET == 'PURE':
cases = {'01':'steady', '02':'talking', '03':'slow_trans', '04':'fast_trans', '05':'small_rot', '06':'fast_rot'}
all_CC = {'01':[], '02':[], '03':[], '04':[], '05':[], '06':[]}
all_MAE = {'01':[], '02':[], '03':[], '04':[], '05':[], '06':[]}
CC_allcases = []
MAE_allcases = []
curr_dataCC = np.zeros(len(all_methods))
curr_dataMAE = np.zeros(len(all_methods))
for metric in metrics:
for method in all_methods:
#print(method)
for curr_case in cases.keys():
curr_res = res[res['videoName'].str.split('/').str[5].str.split('-').str[1] == curr_case]
raw_values = curr_res[curr_res['method'] == method][metric]
values = []
for v in raw_values:
if metric == 'CC':
values.append(v[np.argmax(v)])
else:
values.append(v[np.argmin(v)])
if metric == 'CC':
all_CC[curr_case].append(np.array(values))
if metric == 'MAE':
all_MAE[curr_case].append(np.array(values))
for curr_case in cases.keys():
all_vals_CC = all_CC[curr_case]
all_vals_MAE = all_MAE[curr_case]
for c in range(len(all_vals_CC)): #for each method
if avg_type == 'median':
curr_dataCC[c] = np.median(all_vals_CC[c])
curr_dataMAE[c] = np.median(all_vals_MAE[c])
else:
curr_dataCC[c] = np.mean(all_vals_CC[c])
curr_dataMAE[c] = np.mean(all_vals_MAE[c])
data_CC.append(curr_dataCC.copy())
data_MAE.append(curr_dataMAE.copy())
elif DATASET == 'Cohface':
CC_allcases = []
MAE_allcases = []
curr_dataCC = np.zeros(len(all_methods))
curr_dataMAE = np.zeros(len(all_methods))
for metric in metrics:
for method in all_methods:
raw_values = res[res['method'] == method][metric]
values = []
for v in raw_values:
if metric == 'CC':
values.append(v[np.argmax(v)])
else:
values.append(v[np.argmin(v)])
if metric == 'CC':
CC_allcases.append(np.array(values))
if metric == 'MAE':
MAE_allcases.append(np.array(values))
for c in range(len(CC_allcases)): #for each method
if avg_type == 'median':
curr_dataCC[c] = np.median(all_vals_CC[c])
curr_dataMAE[c] = np.median(all_vals_MAE[c])
else:
curr_dataCC[c] = np.mean(CC_allcases[c])
curr_dataMAE[c] = np.mean(MAE_allcases[c])
data_CC.append(curr_dataCC)
data_MAE.append(curr_dataMAE)
elif DATASET == 'LGI-PPGI':
cases = ['gym', 'resting', 'rotation', 'talk']
#cases = ['resting']
all_CC = {'gym':[], 'resting':[], 'rotation':[], 'talk':[]}
all_MAE = {'gym':[], 'resting':[], 'rotation':[], 'talk':[]}
CC_allcases = []
MAE_allcases = []
curr_dataCC = np.zeros(len(all_methods))
curr_dataMAE = np.zeros(len(all_methods))
for metric in metrics:
for method in all_methods:
#print(method)
for curr_case in cases:
curr_res = res[res['videoName'].str.split('/').str[6].str.split('_').str[1] == curr_case]
raw_values = curr_res[curr_res['method'] == method][metric]
values = []
for v in raw_values:
if metric == 'CC':
values.append(v[np.argmax(v)])
else:
values.append(v[np.argmin(v)])
if metric == 'CC':
all_CC[curr_case].append(np.array(values))
if metric == 'MAE':
all_MAE[curr_case].append(np.array(values))
for curr_case in cases:
all_vals_CC = all_CC[curr_case]
all_vals_MAE = all_MAE[curr_case]
for c in range(len(all_vals_CC)): #for each method
if avg_type == 'median':
curr_dataCC[c] = np.median(all_vals_CC[c])
curr_dataMAE[c] = np.median(all_vals_MAE[c])
else:
curr_dataCC[c] = np.mean(all_vals_CC[c])
curr_dataMAE[c] = np.mean(all_vals_MAE[c])
data_CC.append(curr_dataCC.copy())
data_MAE.append(curr_dataMAE.copy())
data_CC = np.vstack(data_CC)
data_MAE = np.vstack(data_MAE)
n_datasets = data_CC.shape[0]
alpha = '0.05'
plt.figure()
plt.subplot(1,2,1)
plt.title('CC Multi Dataset')
plt.boxplot(data_CC, showfliers=True)
plt.xticks(np.arange(1,len(all_methods)+1), all_methods)
plt.subplot(1,2,2)
plt.title('MAE Multi Dataset')
plt.boxplot(data_MAE, showfliers=True)
plt.xticks(np.arange(1,len(all_methods)+1), all_methods)
from nonparametric_tests import friedman_aligned_ranks_test as ft
import Orange
data_MAE_df = pd.DataFrame(data_MAE, columns=all_methods)
print('\nFriedman Test MAE:')
#print(ss.friedmanchisquare(*data_MAE.T))
#print(' ')
t,p,ranks_mae,piv_mae = ft(data_MAE[:,0], data_MAE[:,1], data_MAE[:,2], data_MAE[:,3], data_MAE[:,4], data_MAE[:,5], data_MAE[:,6], data_MAE[:,7])
avranksMAE = list(np.divide(ranks_mae, n_datasets))
print('statistic: ' + str(t))
print('pvalue: ' + str(p))
print(' ')
pc = sp.posthoc_nemenyi_friedman(data_MAE_df)
cmap = ['1', '#fb6a4a', '#08306b', '#4292c6', '#c6dbef']
heatmap_args = {'cmap': cmap, 'linewidths': 0.25, 'linecolor': '0.5', 'clip_on': False, 'square': True, 'cbar_ax_bbox': [0.80, 0.35, 0.04, 0.3]}
plt.figure()
sp.sign_plot(pc, **heatmap_args)
plt.title('Nemenyi Test MAE')
data_CC_df = pd.DataFrame(data_CC, columns=all_methods)
print('\nFriedman Test CC:')
#print(ss.friedmanchisquare(*data_CC.T))
#print(' ')
t,p,ranks_cc,piv_cc = ft(data_CC[:,0], data_CC[:,1], data_CC[:,2], data_CC[:,3], data_CC[:,4], data_CC[:,5], data_CC[:,6], data_CC[:,7])
avranksCC = list(np.divide(ranks_cc, n_datasets))
print('statistic: ' + str(t))
print('pvalue: ' + str(p))
print(' ')
pc = sp.posthoc_nemenyi_friedman(data_CC_df)
cmap = ['1', '#fb6a4a', '#08306b', '#4292c6', '#c6dbef']
heatmap_args = {'cmap': cmap, 'linewidths': 0.25, 'linecolor': '0.5', 'clip_on': False, 'square': True, 'cbar_ax_bbox': [0.80, 0.35, 0.04, 0.3]}
plt.figure()
sp.sign_plot(pc, **heatmap_args)
plt.title('Nemenyi Test CC')
cd = Orange.evaluation.compute_CD(avranksMAE, n_datasets, alpha=alpha) #tested on 30 datasets
Orange.evaluation.graph_ranks(avranksMAE, all_methods, cd=cd, width=6, textspace=1.5, reverse=True)
plt.title('CD Diagram MAE')
cd = Orange.evaluation.compute_CD(avranksCC, n_datasets, alpha=alpha) #tested on 30 datasets
Orange.evaluation.graph_ranks(avranksCC, all_methods, cd=cd, width=6, textspace=1.5)
plt.title('CD Diagram CC')
print(data_MAE_df)
print(' ')
print(data_CC_df)
plt.show() |