File size: 5,654 Bytes
f0c06c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
---
license:
- cc0-1.0
kaggle_id: muratkokludataset/rice-image-dataset
---
# Dataset Card for Rice Image Dataset
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://kaggle.com/datasets/muratkokludataset/rice-image-dataset
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
Rice Image Dataset
DATASET: https://www.muratkoklu.com/datasets/
Citation Request: See the articles for more detailed information on the data.
Koklu, M., Cinar, I., & Taspinar, Y. S. (2021). Classification of rice varieties with deep learning methods. Computers and Electronics in Agriculture, 187, 106285. https://doi.org/10.1016/j.compag.2021.106285
Cinar, I., & Koklu, M. (2021). Determination of Effective and Specific Physical Features of Rice Varieties by Computer Vision In Exterior Quality Inspection. Selcuk Journal of Agriculture and Food Sciences, 35(3), 229-243. https://doi.org/10.15316/SJAFS.2021.252
Cinar, I., & Koklu, M. (2022). Identification of Rice Varieties Using Machine Learning Algorithms. Journal of Agricultural Sciences https://doi.org/10.15832/ankutbd.862482
Cinar, I., & Koklu, M. (2019). Classification of Rice Varieties Using Artificial Intelligence Methods. International Journal of Intelligent Systems and Applications in Engineering, 7(3), 188-194. https://doi.org/10.18201/ijisae.2019355381
DATASET: https://www.muratkoklu.com/datasets/
Highlights
• Arborio, Basmati, Ipsala, Jasmine and Karacadag rice varieties were used.
• The dataset (1) has 75K images including 15K pieces from each rice variety. The dataset (2) has 12 morphological, 4 shape and 90 color features.
• ANN, DNN and CNN models were used to classify rice varieties.
• Classified with an accuracy rate of 100% through the CNN model created.
• The models used achieved successful results in the classification of rice varieties.
Abstract
Rice, which is among the most widely produced grain products worldwide, has many genetic varieties. These varieties are separated from each other due to some of their features. These are usually features such as texture, shape, and color. With these features that distinguish rice varieties, it is possible to classify and evaluate the quality of seeds. In this study, Arborio, Basmati, Ipsala, Jasmine and Karacadag, which are five different varieties of rice often grown in Turkey, were used. A total of 75,000 grain images, 15,000 from each of these varieties, are included in the dataset. A second dataset with 106 features including 12 morphological, 4 shape and 90 color features obtained from these images was used. Models were created by using Artificial Neural Network (ANN) and Deep Neural Network (DNN) algorithms for the feature dataset and by using the Convolutional Neural Network (CNN) algorithm for the image dataset, and classification processes were performed. Statistical results of sensitivity, specificity, prediction, F1 score, accuracy, false positive rate and false negative rate were calculated using the confusion matrix values of the models and the results of each model were given in tables. Classification successes from the models were achieved as 99.87% for ANN, 99.95% for DNN and 100% for CNN. With the results, it is seen that the models used in the study in the classification of rice varieties can be applied successfully in this field.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
This dataset was shared by [@muratkokludataset](https://kaggle.com/muratkokludataset)
### Licensing Information
The license for this dataset is cc0-1.0
### Citation Information
```bibtex
[More Information Needed]
```
### Contributions
[More Information Needed] |