Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:
File size: 7,768 Bytes
3c495f2
 
 
e0b06e3
 
 
c29c088
3c495f2
e0b06e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c495f2
 
 
 
 
4dd3744
3c495f2
 
4dd3744
3c495f2
 
4dd3744
3c495f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dd3744
3c495f2
24f97d4
 
5500d07
24f97d4
 
 
 
 
 
 
 
 
 
 
65b65de
e0b06e3
0fea600
e0b06e3
24f97d4
e0b06e3
 
 
b920d74
 
27bda37
e0b06e3
 
4857d85
e0b06e3
 
2ba3399
e0b06e3
c29d973
24f97d4
 
 
3c495f2
e0b06e3
 
 
 
 
459014c
 
33f446e
459014c
 
33f446e
459014c
 
 
 
 
 
 
 
 
3c495f2
 
 
 
 
e0b06e3
459014c
e0b06e3
3c495f2
e0b06e3
 
 
 
7ba9dbe
2cf440c
e0b06e3
 
 
 
 
 
 
3c495f2
e0b06e3
459014c
e0b06e3
 
 
fda2265
7987d7a
 
f7a2032
7987d7a
 
 
09df852
3c495f2
7987d7a
3c495f2
e0b06e3
459014c
 
e0b06e3
3c495f2
 
24af8d4
2cf440c
fde9896
a444eea
7e509d5
be53e01
015be83
fde9896
 
375ded2
2cf440c
 
8eac489
3c495f2
e0b06e3
 
 
459014c
415a155
e0b06e3
 
3c495f2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import datasets
import csv
import requests
import pandas as pd
import inspect
import copy
from .process_underscores import run

key_to_entry = requests.get('https://www.dropbox.com/scl/fi/85pnc7n6e4puoureavtzo/filtered_disrpt.json?rlkey=6cbgbe9vn2549eths7ah8gm7u&dl=1').json()
citation="\n".join(key_to_entry.values())

datasets_and_citations = {
    "deu.rst.pcc": "stede-neumann-2014-potsdam",
    "eng.dep.covdtb": "nishida-matsumoto-2022-domain",
    "eng.dep.scidtb": "yang-li-2018-scidtb",
    "eng.rst.gum": "Zeldes2017",
    "eng.rst.rstdt": "carlson-etal-2001-building",
    "eng.sdrt.stac": "asher-etal-2016-discourse",
    "eus.rst.ert": "IruskietaAranzabeIlarrazaEtAl2013",
    "fas.rst.prstc": "shahmohammadi2021persian",
    "fra.sdrt.annodis": "afantenos-etal-2012-empirical",
    "nld.rst.nldt": "redeker-etal-2012-multi",
    "por.rst.cstn": "CardosoMazieroRosarioCastroJorgeEtAl2011",
    "rus.rst.rrt": "toldova-etal-2017-rhetorical",
    "spa.rst.rststb": "da-cunha-etal-2011-development",
    "spa.rst.sctb": "cao-etal-2018-rst",
    "zho.dep.scidtb": "yi-etal-2021-unifying,cheng-li-2019-zero",
    "zho.rst.gcdt": "peng_gcdt_2022,peng_chinese_2022",
    "zho.rst.sctb": "cao-etal-2018-rst",
    "eng.pdtb.pdtb": "prasad-etal-2014-reflections",
    "eng.pdtb.tedm": "zeyrek-etal-2018-multilingual,zeyrek2019ted",
    "ita.pdtb.luna": "tonelli-etal-2010-annotation,RiccardiStepanovChowdhury2016",
    "por.pdtb.crpc": "CRPC-DB-Portuguese,genereux-etal-2012-introducing",
    "por.pdtb.tedm": "zeyrek-etal-2018-multilingual,zeyrek2019ted",
    "tha.pdtb.tdtb": "",
    "tur.pdtb.tdb": "zeyrek-webber-2008-discourse,zeyrek-kurfali-2017-tdb",
    "tur.pdtb.tedm": "zeyrek-etal-2018-multilingual,zeyrek2019ted",
    "zho.pdtb.cdtb": "Zhou2014"
}


class Config(datasets.BuilderConfig):
    citation=citation

files = [
    "deu.rst.pcc",
    "eng.dep.covdtb",
    "eng.dep.scidtb",
    "eng.pdtb.gum",
    "eng.pdtb.pdtb",
    "eng.pdtb.tedm",
    "eng.rst.gentle",
    "eng.rst.gum",
    "eng.rst.rstdt",
    "eng.sdrt.stac",
    "eus.rst.ert",
    "fas.rst.prstc",
    "fra.sdrt.annodis",
    "ita.pdtb.luna",
    "nld.rst.nldt",
    "por.pdtb.crpc",
    "por.pdtb.tedm",
    "por.rst.cstn",
    "rus.rst.rrt",
    "spa.rst.rststb",
    "spa.rst.sctb",
    "tha.pdtb.tdtb",
    "tur.pdtb.tdb",
    "tur.pdtb.tedm",
    "zho.dep.scidtb",
    "zho.pdtb.cdtb",
    "zho.rst.gcdt",
    "zho.rst.sctb"
]
def fix_mwe(sentence):
    mwe={}
    sentence['parent_mwe']=[]
    for i, x in enumerate(sentence['id']):
        if '-' in x:
            for a in x.split('-'):
                mwe[a]=sentence['form'][i]
        sentence['parent_mwe']+=[mwe.get(x,'')]

    for i, x in enumerate(sentence['id']):
        if "-" in x:
            for k,v in sentence.items():
                del v[i]
    return sentence

def parse_conll_stream(file_stream):
    names = ['id', 'form', 'lemma', 'upos', 'xpos', 'feats', 'head', 'deprel', 'deps', 'misc','doc_id']
    sentence = {name: [] for name in names}
    mwe_id=[]
    for line in file_stream:
        line = line.strip()
        if line.startswith("#"):
            if "doc_id" in line:
                doc_id=line.split('=')[-1].strip()
            continue
        if not line:
            if sentence['id']:
                yield sentence
                sentence = {name: [] for name in names}
            continue
        token_data = line.split('\t') + [doc_id]
        for name, value in zip(names, token_data):
            if name=='id' and not value.isnumeric():
                mwe_id=value.split('-')                
            else:
                sentence[name].append(value)

def get_kwarg_names(func):
    return [k for k, v in inspect.signature(func).parameters.items() if v.default != v.empty]
    
_URLs = {f'{task}-{split}.{type}':f"https://raw.githubusercontent.com/disrpt/sharedtask2023/main/data/{task}/{task}_{split}.{type}" \
         for task in files for split in 'train dev test'.split() for type in ['rels','conllu']}
#_URLs = {k:v for k,v in _URLs.items() if requests.get(v).status_code!=404}

conllu_features = ['id', 'form', 'lemma', 'upos', 'xpos', 'feats', 'head', 'deprel', 'deps', 'misc', 'seg','doc_id']
feature_type = {"seg":datasets.features.Sequence(
                        datasets.features.ClassLabel(names=["O","B-Segment"])),
                'id':datasets.Value("string"),'doc_id':datasets.Value("string")}

conllu_features = datasets.Features({x:feature_type.get(x,datasets.Sequence(datasets.Value("string")))
                                     for x in conllu_features})
 
def map_seg(x):
    return [("B-Segment" if "beginseg=yes" in a.lower() else "O") for a in x]

def remove_type(x):
    return x.replace(".rels","").replace(".conllu","")

class Dataset(datasets.GeneratorBasedBuilder):
    
    BUILDER_CONFIGS = [
            Config(
                name=f"{n}.{type}",
                data_dir=f"{n}.{type}",
            ) for n in files for type in ["rels","conllu"]
    ]
    def __init__(self,*args,**kwargs):
        self.BUILDER_CONFIG_CLASS.__post_init__=lambda x:x
        base_kwargs_names=get_kwarg_names(super().__init__)
        gen_kwargs={}
        self.files={}
        self.preprocessed_underscores=dict()
        for k,v in copy.deepcopy(kwargs).items():
            if k not in base_kwargs_names:
                gen_kwargs[k]=v
                del kwargs[k]
        self.gen_kwargs=gen_kwargs
        return super().__init__(*args,**kwargs)
        
    def _split_generators(self, dl_manager: datasets.DownloadManager):
        cfg_name = self.config.name.rsplit('.', 1)[0]
        data_dir = remove_type(self.config.data_dir)
        type = self.config.name.split('.')[-1]
        urls={k:v for (k,v) in _URLs.items() if cfg_name in k and requests.get(v).status_code!=404}
        data_file = dl_manager.download(urls)
        self.files = {**self.files, **data_file}

        splits_dict = {datasets.Split.TRAIN: 'train', datasets.Split.VALIDATION: 'dev', datasets.Split.TEST: 'test'}

        split_generators = [
            datasets.SplitGenerator(name=split, gen_kwargs={"filepath": data_file[f"{data_dir}-{key}.{type}"]})
            for split, key in splits_dict.items()
            if f"{data_dir}-{key}.{type}" in data_file
        ]
        return split_generators

    def _info(self): return datasets.DatasetInfo(
        citation=key_to_entry.get(datasets_and_citations.get(remove_type(self.config.name)),None),
        features=(None if ".rels" in self.config.name else conllu_features)
    )
        
    def _generate_examples(self, filepath):
        print(filepath)
        corpus=self.config.name.split('.')[2]
        run_args={
        'corpus':corpus,
        'rel_files': [v for k, v in self.files.items() if '.rels' in k],
        'dep_files': [v for k, v in self.files.items() if '.conllu' in k],
        **{k:v for k,v in self.gen_kwargs.items() if 'path' in k}
        }
        print('run_args',run_args)
        if corpus in ['rstdt','pdtb','cdtb','gum','tdb'] and not self.preprocessed_underscores.get(corpus,False) and self.gen_kwargs.get('process_underscore',True):
            run(**run_args)
            self.preprocessed_underscores[corpus]=True
            
        with open(filepath, encoding="utf-8") as f:
            if "conllu" in self.config.name:
                stream=parse_conll_stream(f)
                for i, row in enumerate(stream):
                    row['seg']=map_seg(row['misc'])
                    row['doc_id']=row['doc_id'][0]
                    yield i,row
            reader = csv.DictReader(f,delimiter='\t',quoting=csv.QUOTE_NONE)
            for id_, row in enumerate(reader):
                if id_ == 0:
                    continue
                yield id_, row