Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:
File size: 5,163 Bytes
7377307
 
 
555c696
 
b12a7b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c55cb5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e75ab0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
555c696
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b12a7b7
 
 
 
 
 
 
 
c55cb5c
 
 
 
 
 
 
 
0e75ab0
 
 
 
 
 
 
 
555c696
 
 
 
 
 
 
 
7377307
956bedf
bb10b06
7377307
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
---
language:
- en
license: apache-2.0
dataset_info:
- config_name: eng.dep.scidtb.conllu
  features:
  - name: id
    sequence: string
  - name: form
    sequence: string
  - name: lemma
    sequence: string
  - name: upos
    sequence: string
  - name: xpos
    sequence: string
  - name: feats
    sequence: string
  - name: head
    sequence: string
  - name: deprel
    sequence: string
  - name: deps
    sequence: string
  - name: misc
    sequence: string
  - name: doc_id
    dtype: string
  - name: mwe
    sequence: string
  splits:
  - name: train
    num_bytes: 5396222
    num_examples: 2570
  - name: validation
    num_bytes: 1749607
    num_examples: 815
  - name: test
    num_bytes: 1706155
    num_examples: 817
  download_size: 1091171
  dataset_size: 8851984
- config_name: eng.dep.scidtb.rels
  features:
  - name: doc
    dtype: string
  - name: unit1_toks
    dtype: string
  - name: unit2_toks
    dtype: string
  - name: unit1_txt
    dtype: string
  - name: unit2_txt
    dtype: string
  - name: s1_toks
    dtype: string
  - name: s2_toks
    dtype: string
  - name: unit1_sent
    dtype: string
  - name: unit2_sent
    dtype: string
  - name: dir
    dtype: string
  - name: orig_label
    dtype: string
  - name: label
    dtype: string
  splits:
  - name: train
    num_bytes: 3463826
    num_examples: 6060
  - name: validation
    num_bytes: 1125360
    num_examples: 1933
  - name: test
    num_bytes: 1092953
    num_examples: 1911
  download_size: 1494028
  dataset_size: 5682139
- config_name: zho.dep.scidtb.conllu
  features:
  - name: id
    sequence: string
  - name: form
    sequence: string
  - name: lemma
    sequence: string
  - name: upos
    sequence: string
  - name: xpos
    sequence: string
  - name: feats
    sequence: string
  - name: head
    sequence: string
  - name: deprel
    sequence: string
  - name: deps
    sequence: string
  - name: misc
    sequence: string
  - name: doc_id
    dtype: string
  - name: mwe
    sequence: 'null'
  splits:
  - name: train
    num_bytes: 827143
    num_examples: 308
  - name: validation
    num_bytes: 282227
    num_examples: 103
  - name: test
    num_bytes: 264697
    num_examples: 89
  download_size: 204388
  dataset_size: 1374067
- config_name: zho.dep.scidtb.rels
  features:
  - name: doc
    dtype: string
  - name: unit1_toks
    dtype: string
  - name: unit2_toks
    dtype: string
  - name: unit1_txt
    dtype: string
  - name: unit2_txt
    dtype: string
  - name: s1_toks
    dtype: string
  - name: s2_toks
    dtype: string
  - name: unit1_sent
    dtype: string
  - name: unit2_sent
    dtype: string
  - name: dir
    dtype: string
  - name: orig_label
    dtype: string
  - name: label
    dtype: string
  splits:
  - name: train
    num_bytes: 628861
    num_examples: 802
  - name: validation
    num_bytes: 228839
    num_examples: 281
  - name: test
    num_bytes: 181790
    num_examples: 215
  download_size: 254512
  dataset_size: 1039490
configs:
- config_name: eng.dep.scidtb.conllu
  data_files:
  - split: train
    path: eng.dep.scidtb.conllu/train-*
  - split: validation
    path: eng.dep.scidtb.conllu/validation-*
  - split: test
    path: eng.dep.scidtb.conllu/test-*
- config_name: eng.dep.scidtb.rels
  data_files:
  - split: train
    path: eng.dep.scidtb.rels/train-*
  - split: validation
    path: eng.dep.scidtb.rels/validation-*
  - split: test
    path: eng.dep.scidtb.rels/test-*
- config_name: zho.dep.scidtb.conllu
  data_files:
  - split: train
    path: zho.dep.scidtb.conllu/train-*
  - split: validation
    path: zho.dep.scidtb.conllu/validation-*
  - split: test
    path: zho.dep.scidtb.conllu/test-*
- config_name: zho.dep.scidtb.rels
  data_files:
  - split: train
    path: zho.dep.scidtb.rels/train-*
  - split: validation
    path: zho.dep.scidtb.rels/validation-*
  - split: test
    path: zho.dep.scidtb.rels/test-*
---
https://github.com/disrpt/sharedtask2023

scditb:
```
@inproceedings{yang-li-2018-scidtb,
    title = "{S}ci{DTB}: Discourse Dependency {T}ree{B}ank for Scientific Abstracts",
    author = "Yang, An  and
      Li, Sujian",
    booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
    month = jul,
    year = "2018",
    address = "Melbourne, Australia",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/P18-2071",
    doi = "10.18653/v1/P18-2071",
    pages = "444--449",
    abstract = "Annotation corpus for discourse relations benefits NLP tasks such as machine translation and question answering. In this paper, we present SciDTB, a domain-specific discourse treebank annotated on scientific articles. Different from widely-used RST-DT and PDTB, SciDTB uses dependency trees to represent discourse structure, which is flexible and simplified to some extent but do not sacrifice structural integrity. We discuss the labeling framework, annotation workflow and some statistics about SciDTB. Furthermore, our treebank is made as a benchmark for evaluating discourse dependency parsers, on which we provide several baselines as fundamental work.",
}
```