Datasets:
mteb
/

ArXiv:
File size: 5,289 Bytes
db30a2a
be4e641
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b94a514
be4e641
 
 
 
 
9cc7ec4
be4e641
 
 
 
 
b94a514
be4e641
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import json

import datasets

_CITATION = '''
@article{lawrie2023overview,
  title={Overview of the TREC 2022 NeuCLIR track},
  author={Lawrie, Dawn and MacAvaney, Sean and Mayfield, James and McNamee, Paul and Oard, Douglas W and Soldaini, Luca and Yang, Eugene},
  journal={arXiv preprint arXiv:2304.12367},
  year={2023}
}
'''

_LANGUAGES = [
    'rus',
    'fas',
    'zho',
]

_DESCRIPTION = 'dataset load script for NeuCLIR 2022'

_DATASET_URLS = {
    lang: {
        'test': f'https://huggingface.co/datasets/MTEB/neuclir-2022-fast/resolve/main/neuclir-{lang}/test-00000-of-00001.parquet',
    } for lang in _LANGUAGES
}

_DATASET_CORPUS_URLS = {
    f'corpus-{lang}': {
        'corpus': f'https://huggingface.co/datasets/MTEB/neuclir-2022-fast/resolve/main/neuclir-{lang}/corpus-00000-of-00001.parquet'
    } for lang in _LANGUAGES
}

_DATASET_QUERIES_URLS = {
    f'queries-{lang}': {
        'queries': f'https://huggingface.co/datasets/MTEB/neuclir-2022-fast/resolve/main/neuclir-{lang}/queries-00000-of-00001.parquet'
    } for lang in _LANGUAGES
}


class MLDR(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [datasets.BuilderConfig(
            version=datasets.Version('1.0.0'),
            name=lang, description=f'NeuCLIR dataset in language {lang}.'
        ) for lang in _LANGUAGES
    ] + [
        datasets.BuilderConfig(
            version=datasets.Version('1.0.0'),
            name=f'corpus-{lang}', description=f'corpus of NeuCLIR dataset in language {lang}.'
        ) for lang in _LANGUAGES
    ] + [ 
        datasets.BuilderConfig(
            version=datasets.Version('1.0.0'),
            name=f'queries-{lang}', description=f'queries of NeuCLIR dataset in language {lang}.'
        ) for lang in _LANGUAGES
    ]

    def _info(self):
        name = self.config.name
        if name.startswith('corpus-'):
            features = datasets.Features({
                '_id': datasets.Value('string'),
                'text': datasets.Value('string'),
                'title': datasets.Value('string'),
            })
        elif name.startswith("queries-"):
            features = datasets.Features({
                '_id': datasets.Value('string'),
                'text': datasets.Value('string'),
            })
        else:
            features = datasets.Features({
                'query-id': datasets.Value('string'),
                'corpus-id': datasets.Value('string'),
                'score': datasets.Value('int32'),
            })

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage='https://arxiv.org/abs/2304.12367',
            # License for the dataset if available
            license=None,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        name = self.config.name
        if name.startswith('corpus-'):
            downloaded_files = dl_manager.download_and_extract(_DATASET_CORPUS_URLS[name])
            splits = [
                datasets.SplitGenerator(
                    name='corpus',
                    gen_kwargs={
                        'filepath': downloaded_files['corpus'],
                    },
                ),
            ]
        elif name.startswith("queries-"):
            downloaded_files = dl_manager.download_and_extract(_DATASET_QUERIES_URLS[name])
            splits = [
                datasets.SplitGenerator(
                    name='queries',
                    gen_kwargs={
                        'filepath': downloaded_files['queries'],
                    },
                ),
            ]
        else:
            downloaded_files = dl_manager.download_and_extract(_DATASET_URLS[name])
            splits = [
                datasets.SplitGenerator(
                    name='test',
                    gen_kwargs={
                        'filepath': downloaded_files['test'],
                    },
                ),
            ]
        return splits

    def _generate_examples(self, filepath):
        import pandas as pd
        
        name = self.config.name
        df = pd.read_parquet(filepath)
        
        if name.startswith('corpus-'):
            for index, row in df.iterrows():
                yield row['_id'], {
                    '_id': row['_id'],
                    'text': row['text'],
                    'title': row['title']
                }
        elif name.startswith("queries-"):
            for index, row in df.iterrows():
                yield row['_id'], {
                    '_id': row['_id'],
                    'text': row['text']
                }
        else:
            for index, row in df.iterrows():
                yield f"{row['query-id']}-----{row['corpus-id']}", {
                    'query-id': row['query-id'],
                    'corpus-id': row['corpus-id'],
                    'score': row['score']
                }