Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed's picture
Add dataset card
6f9747b verified
metadata
annotations_creators:
  - derived
language:
  - eng
  - fra
license: other
multilinguality: multilingual
source_datasets:
  - McGill-NLP/statcan-dialogue-dataset-retrieval
task_categories:
  - text-retrieval
task_ids:
  - conversational
  - utterance-retrieval
dataset_info:
  - config_name: english-corpus
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
      - name: title
        dtype: string
    splits:
      - name: dev
        num_bytes: 38758739
        num_examples: 5907
      - name: test
        num_bytes: 38758739
        num_examples: 5907
    download_size: 18253448
    dataset_size: 77517478
  - config_name: english-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: int64
    splits:
      - name: dev
        num_bytes: 24362
        num_examples: 799
      - name: test
        num_bytes: 26970
        num_examples: 870
    download_size: 16359
    dataset_size: 51332
  - config_name: english-queries
    features:
      - name: _id
        dtype: string
      - name: text
        list:
          - name: content
            dtype: string
          - name: role
            dtype: string
    splits:
      - name: dev
        num_bytes: 351289
        num_examples: 543
      - name: test
        num_bytes: 403675
        num_examples: 553
    download_size: 313644
    dataset_size: 754964
  - config_name: french-corpus
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
      - name: title
        dtype: string
    splits:
      - name: dev
        num_bytes: 42530544
        num_examples: 5907
      - name: test
        num_bytes: 42530544
        num_examples: 5907
    download_size: 20041468
    dataset_size: 85061088
  - config_name: french-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: int64
    splits:
      - name: dev
        num_bytes: 6089
        num_examples: 201
      - name: test
        num_bytes: 4371
        num_examples: 141
    download_size: 5938
    dataset_size: 10460
  - config_name: french-queries
    features:
      - name: _id
        dtype: string
      - name: text
        list:
          - name: content
            dtype: string
          - name: role
            dtype: string
    splits:
      - name: dev
        num_bytes: 84889
        num_examples: 122
      - name: test
        num_bytes: 68323
        num_examples: 108
    download_size: 67281
    dataset_size: 153212
configs:
  - config_name: english-corpus
    data_files:
      - split: dev
        path: english-corpus/dev-*
      - split: test
        path: english-corpus/test-*
  - config_name: english-qrels
    data_files:
      - split: dev
        path: english-qrels/dev-*
      - split: test
        path: english-qrels/test-*
  - config_name: english-queries
    data_files:
      - split: dev
        path: english-queries/dev-*
      - split: test
        path: english-queries/test-*
  - config_name: french-corpus
    data_files:
      - split: dev
        path: french-corpus/dev-*
      - split: test
        path: french-corpus/test-*
  - config_name: french-qrels
    data_files:
      - split: dev
        path: french-qrels/dev-*
      - split: test
        path: french-qrels/test-*
  - config_name: french-queries
    data_files:
      - split: dev
        path: french-queries/dev-*
      - split: test
        path: french-queries/test-*
tags:
  - mteb
  - text

StatcanDialogueDatasetRetrieval

An MTEB dataset
Massive Text Embedding Benchmark

A Dataset for Retrieving Data Tables through Conversations with Genuine Intents, available in English and French.

Task category t2t
Domains Government, Web, Written
Reference https://mcgill-nlp.github.io/statcan-dialogue-dataset/

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_task("StatcanDialogueDatasetRetrieval")
evaluator = mteb.MTEB([task])

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repository.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@inproceedings{lu-etal-2023-statcan,
  address = {Dubrovnik, Croatia},
  author = {Lu, Xing Han  and
Reddy, Siva  and
de Vries, Harm},
  booktitle = {Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics},
  month = may,
  pages = {2799--2829},
  publisher = {Association for Computational Linguistics},
  title = {The {S}tat{C}an Dialogue Dataset: Retrieving Data Tables through Conversations with Genuine Intents},
  url = {https://arxiv.org/abs/2304.01412},
  year = {2023},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("StatcanDialogueDatasetRetrieval")

desc_stats = task.metadata.descriptive_stats
{}

This dataset card was automatically generated using MTEB