Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
AFQMC / README.md
Samoed's picture
Add dataset card
2fbe82b verified
metadata
language:
  - cmn
multilinguality: monolingual
source_datasets:
  - C-MTEB/AFQMC
task_categories:
  - sentence-similarity
task_ids:
  - semantic-similarity-scoring
dataset_info:
  features:
    - name: sentence1
      dtype: string
    - name: sentence2
      dtype: string
    - name: score
      dtype: int64
  splits:
    - name: test
      num_bytes: 363274
      num_examples: 3861
    - name: train
      num_bytes: 3259167
      num_examples: 34334
    - name: validation
      num_bytes: 409021
      num_examples: 4316
  download_size: 2084206
  dataset_size: 4031462
configs:
  - config_name: default
    data_files:
      - split: test
        path: data/test-*
      - split: train
        path: data/train-*
      - split: validation
        path: data/validation-*
tags:
  - mteb
  - text

AFQMC

An MTEB dataset
Massive Text Embedding Benchmark

A Chinese dataset for textual relatedness

Task category t2t
Domains None
Reference https://aclanthology.org/2021.emnlp-main.357

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_task("AFQMC")
evaluator = mteb.MTEB([task])

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repository.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@inproceedings{raghu-etal-2021-end,
  abstract = {We propose a novel problem within end-to-end learning of task oriented dialogs (TOD), in which the dialog system mimics a troubleshooting agent who helps a user by diagnosing their problem (e.g., car not starting). Such dialogs are grounded in domain-specific flowcharts, which the agent is supposed to follow during the conversation. Our task exposes novel technical challenges for neural TOD, such as grounding an utterance to the flowchart without explicit annotation, referring to additional manual pages when user asks a clarification question, and ability to follow unseen flowcharts at test time. We release a dataset (FLODIAL) consisting of 2,738 dialogs grounded on 12 different troubleshooting flowcharts. We also design a neural model, FLONET, which uses a retrieval-augmented generation architecture to train the dialog agent. Our experiments find that FLONET can do zero-shot transfer to unseen flowcharts, and sets a strong baseline for future research.},
  address = {Online and Punta Cana, Dominican Republic},
  author = {Raghu, Dinesh  and
Agarwal, Shantanu  and
Joshi, Sachindra  and
{Mausam}},
  booktitle = {Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing},
  doi = {10.18653/v1/2021.emnlp-main.357},
  editor = {Moens, Marie-Francine  and
Huang, Xuanjing  and
Specia, Lucia  and
Yih, Scott Wen-tau},
  month = nov,
  pages = {4348--4366},
  publisher = {Association for Computational Linguistics},
  title = {End-to-End Learning of Flowchart Grounded Task-Oriented Dialogs},
  url = {https://aclanthology.org/2021.emnlp-main.357},
  year = {2021},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("AFQMC")

desc_stats = task.metadata.descriptive_stats
{}

This dataset card was automatically generated using MTEB