File size: 2,937 Bytes
735c35d 8e49f6a d4f4d2c 8e49f6a 2ab1275 d4f4d2c 77e370e d4f4d2c 1af978e d4f4d2c 8e49f6a d4f4d2c e86a312 d4f4d2c 903001e d4f4d2c 2ab1275 2578c89 d4f4d2c 2578c89 424e73c d4f4d2c 2578c89 d4f4d2c 1af978e b30dd27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
task_categories:
- visual-question-answering
language:
- en
pretty_name: YTTB-VQA
size_categories:
- n<1K
license: cc-by-nc-4.0
---
# Dataset Card for Dataset Name
## Dataset Description
- **Homepage:** https://gordonhu608.github.io/bliva/
- **Repository:** https://github.com/mlpc-ucsd/BLIVA.git
- **Paper:**
- **Point of Contact:** w1hu@ucsd.edu
### Dataset Summary
The YTTB-VQA Dataset is a collection of 400 Youtube thumbnail question-answer pairs to evaluate the visual perception abilities of in-text images. It covers 11
categories, including technology, sports, entertainment, food, news, history, music, nature, cars, and education.
### Supported Tasks and Leaderboards
This dataset supports many tasks, including visual question answering, image captioning, etc.
### License
CC-By-NC-4.0
### Languages
The language of the data is primarily English.
## Getting Started
### Creating the dataset
Run the following command to download the images and create the dataset:
```python3 create_dataset.py```
You will find the images in `images_new` and the dataset in `youtube_new.json`.
## Dataset Structure
### Data Instances
A data instance in this dataset represents entries from a collection augmented by human-generated questions submitted to BLIVA. The answer is then entered into the answer field.
### Data Fields
**video_id:** a unique string representing a specific YouTube thumbnail image.<br>
**question:** representing a human-generated question.<br>
**video_classes:** representing a specific category for the YouTube thumbnail image.<br>
**answers:** This represents a ground truth answer for the question made about the YouTube thumbnail image.<br>
**video link** Representing the URL link for each YouTube video.
### Data Splits
The data are unsplit.
## Dataset Creation
### Source Data
#### Initial Data Collection and Normalization
We randomly selected YouTube videos with text-rich thumbnails from different categories during the data collection.
We recorded the unique video ID for each YouTube video and obtained the high-resolution thumbnail from the
URL ”http://img.youtube.com/vi/YouTube-Video-ID/maxresdefault.jpg”.
### Annotations
#### Annotation process
We created the annotation file with the following fields: ”video id,” question,” video classes,” answers,” and ”video link" in JSON format.
## Considerations for Using the Data
### Discussion of Biases
Although our dataset spans 11 categories, the ratio within each category varies. For example, 18% of the dataset pertains to education, while only 2% is dedicated to news.
### Acknowledgments
The youtube thumbnails dataset is purely for academic research and not for any monetary uses. For any of the authors who saw our dataset and found their thumbnail images used inappropriately, please get in touch with us directly by this email at w1hu@ucsd.edu and we will remove the image immediately. |