Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
Urdu
Size:
10K - 100K
License:
File size: 2,731 Bytes
3a14920 65a9bca 3a14920 65a9bca 3a14920 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
"""IMDB Urdu movie reviews dataset."""
import csv
import os
import datasets
from datasets.tasks import TextClassification
_CITATION = """
@InProceedings{maas-EtAl:2011:ACL-HLT2011,
author = {Maas, Andrew L. and Daly,nRaymond E. and Pham, Peter T. and Huang, Dan and Ng, Andrew Y...},
title = {Learning Word Vectors for Sentiment Analysis},
month = {June},
year = {2011},
address = {Portland, Oregon, USA},
publisher = {Association for Computational Linguistics},
pages = {142--150},
url = {http://www.aclweb.org/anthology/P11-1015}
}
"""
_DESCRIPTION = """
Large Movie translated Urdu Reviews Dataset.
This is a dataset for binary sentiment classification containing substantially more data than previous
benchmark datasets. We provide a set of 40,000 highly polar movie reviews for training, and 10,000 for testing.
To increase the availability of sentiment analysis dataset for a low recourse language like Urdu,
we opted to use the already available IMDB Dataset. we have translated this dataset using google translator.
This is a binary classification dataset having two classes as positive and negative.
The reason behind using this dataset is high polarity for each class.
It contains 50k samples equally divided in two classes.
"""
_URL = "https://github.com/mirfan899/Urdu/blob/master/sentiment/imdb_urdu_reviews.csv.tar.gz?raw=true"
_HOMEPAGE = "https://github.com/mirfan899/Urdu"
class ImdbUrduReviews(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"sentence": datasets.Value("string"),
"sentiment": datasets.ClassLabel(names=["positive", "negative"]),
}
),
citation=_CITATION,
homepage=_HOMEPAGE,
task_templates=[TextClassification(text_column="sentence", label_column="sentiment")],
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
dl_path = dl_manager.download_and_extract(_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(dl_path, "imdb_urdu_reviews.csv")}
),
]
def _generate_examples(self, filepath):
"""Yields examples."""
with open(filepath, encoding="utf-8") as f:
reader = csv.reader(f, delimiter=",")
for id_, row in enumerate(reader):
if id_ == 0:
continue
yield id_, {"sentiment": row[1], "sentence": row[0]}
|