File size: 8,078 Bytes
b755ff9 9ca02d1 ae55b0d 9ca02d1 b755ff9 9ca02d1 0713ba0 52c6153 9ca02d1 52c6153 0b5c7ab 9ca02d1 ecd0877 7c95c3e 0b5c7ab 7c95c3e 0b5c7ab 7c95c3e 0b5c7ab 7c95c3e 9ca02d1 7c95c3e 0b5c7ab 9ca02d1 0b5c7ab 7712349 ecd0877 7712349 9ca02d1 7712349 9ca02d1 a26eef4 0b5c7ab 7712349 7c95c3e 7712349 9ca02d1 5911804 7712349 5911804 0b5c7ab 5911804 ecd0877 7712349 5911804 9ca02d1 7c95c3e 5911804 9ca02d1 7c95c3e 7712349 0b5c7ab 7c95c3e 7712349 7c95c3e ae55b0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
---
annotations_creators:
- expert-generated
language:
- ar
- bn
- en
- es
- fa
- fi
- fr
- hi
- id
- ja
- ko
- ru
- sw
- te
- th
- zh
multilinguality:
- multilingual
pretty_name: NoMIRACL
size_categories:
- 10K<n<100K
source_datasets:
- miracl/miracl
task_categories:
- text-classification
license:
- apache-2.0
---
# Dataset Card for NoMIRACL (EMNLP 2024 Findings Track)
<img src="nomiracl.png" alt="NoMIRACL Hallucination Examination (Generated using miramuse.ai and Adobe photoshop)" width="500" height="400">
## Quick Overview
This repository contains the topics, qrels, and top-k (a maximum of 10) annotated passages. The passage collection can be found here on HF: [miracl/miracl-corpus](https://huggingface.co/datasets/miracl/miracl-corpus).
```python
import datasets
language = 'german' # or any of the 18 languages (mentioned above in `languages`)
subset = 'relevant' # or 'non_relevant' (two subsets: relevant & non-relevant)
split = 'test' # or 'dev' for the development split
# four combinations available: 'dev.relevant', 'dev.non_relevant', 'test.relevant' and 'test.non_relevant'
nomiracl = datasets.load_dataset('miracl/nomiracl', language, split=f'{split}.{subset}', trust_remote_code=True)
```
## What is NoMIRACL?
Retrieval Augmented Generation (RAG) is a powerful approach to incorporating external knowledge into large language models (LLMs) to enhance the accuracy and faithfulness of LLM-generated responses. However, evaluating query-passage relevance across diverse language families has been a challenge, leading to gaps in understanding the model's performance against errors in external retrieved knowledge. To address this, we present NoMIRACL, a completely human-annotated dataset designed for evaluating multilingual LLM relevance across 18 diverse languages.
NoMIRACL evaluates LLM relevance as a binary classification objective, containing two subsets: `non-relevant` and `relevant`. The `non-relevant` subset contains queries with all passages manually judged by an expert assessor as non-relevant, while the `relevant` subset contains queries with at least one judged relevant passage within the labeled passages. LLM relevance is measured using two key metrics:
- *hallucination rate* (on the `non-relevant` subset) measuring model tendency to recognize when none of the passages provided are relevant for a given question (non-answerable).
- *error rate* (on the `relevant` subset) measuring model tendency as unable to identify relevant passages when provided for a given question (answerable).
## Acknowledgement
This dataset would not have been possible without all the topics are generated by native speakers of each language in conjunction with our **multilingual RAG universe** work in part 1, **MIRACL** [[TACL '23]](https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00595/117438/MIRACL-A-Multilingual-Retrieval-Dataset-Covering). The queries with all non-relevant passages are used to create the `non-relevant` subset whereas queries with at least a single relevant passage (i.e., MIRACL dev and test splits) are used to create `relevant` subset.
This repository contains the topics, qrels and top-10 (maximum) annotated documents of NoMIRACL. The whole collection can be found [here](https://huggingface.co/datasets/miracl/miracl-corpus).
## Quickstart
```python
import datasets
language = 'german' # or any of the 18 languages
subset = 'relevant' # or 'non_relevant'
split = 'test' # or 'dev' for development split
# four combinations available: 'dev.relevant', 'dev.non_relevant', 'test.relevant' and 'test.non_relevant'
nomiracl = datasets.load_dataset('miracl/nomiracl', language, split=f'{split}.{subset}', trust_remote_code=True)
```
## Dataset Description
* **Website:** https://nomiracl.github.io
* **Paper:** https://aclanthology.org/2024.findings-emnlp.730/
* **Repository:** https://github.com/project-miracl/nomiracl
## Dataset Structure
1. To download the files:
Under folders `data/{lang}`,
the subset of the corpus is saved in `.jsonl.gz` format, with each line to be:
```
{"docid": "28742#27",
"title": "Supercontinent",
"text": "Oxygen levels of the Archaean Eon were negligible and today they are roughly 21 percent. [ ... ]"}
```
Under folders `data/{lang}/topics`,
the topics are saved in `.tsv` format, with each line to be:
```
qid\tquery
```
Under folders `miracl-v1.0-{lang}/qrels`,
the qrels are saved in standard TREC format, with each line to be:
```
qid Q0 docid relevance
```
2. To access the data using HuggingFace `datasets`:
```python
import datasets
language = 'german' # or any of the 18 languages
subset = 'relevant' # or 'non_relevant'
split = 'test' # or 'dev' for development split
# four combinations: 'dev.relevant', 'dev.non_relevant', 'test.relevant' and 'test.non_relevant'
nomiracl = datasets.load_dataset('miracl/nomiracl', language, split=f'{split}.{subset}')
# Individual entry in `relevant` or `non_relevant` subset
for data in nomiracl: # or 'dev', 'testA'
query_id = data['query_id']
query = data['query']
positive_passages = data['positive_passages']
negative_passages = data['negative_passages']
for entry in positive_passages: # OR 'negative_passages'
docid = entry['docid']
title = entry['title']
text = entry['text']
```
## Dataset Statistics
For NoMIRACL dataset statistics, please refer to our EMNLP 2024 Findings publication.
Paper: [https://aclanthology.org/2024.findings-emnlp.730/](https://aclanthology.org/2024.findings-emnlp.730/).
## Citation Information
This work was conducted as a collaboration between the University of Waterloo and Huawei Technologies.
```
@inproceedings{thakur-etal-2024-knowing,
title = "{``}Knowing When You Don{'}t Know{''}: A Multilingual Relevance Assessment Dataset for Robust Retrieval-Augmented Generation",
author = "Thakur, Nandan and
Bonifacio, Luiz and
Zhang, Crystina and
Ogundepo, Odunayo and
Kamalloo, Ehsan and
Alfonso-Hermelo, David and
Li, Xiaoguang and
Liu, Qun and
Chen, Boxing and
Rezagholizadeh, Mehdi and
Lin, Jimmy",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-emnlp.730",
pages = "12508--12526",
abstract = "Retrieval-Augmented Generation (RAG) grounds Large Language Model (LLM) output by leveraging external knowledge sources to reduce factual hallucinations. However, prior work lacks a comprehensive evaluation of different language families, making it challenging to evaluate LLM robustness against errors in external retrieved knowledge. To overcome this, we establish **NoMIRACL**, a human-annotated dataset for evaluating LLM robustness in RAG across 18 typologically diverse languages. NoMIRACL includes both a non-relevant and a relevant subset. Queries in the non-relevant subset contain passages judged as non-relevant, whereas queries in the relevant subset include at least a single judged relevant passage. We measure relevance assessment using: (i) *hallucination rate*, measuring model tendency to hallucinate when the answer is not present in passages in the non-relevant subset, and (ii) *error rate*, measuring model inaccuracy to recognize relevant passages in the relevant subset. In our work, we observe that most models struggle to balance the two capacities. Models such as LLAMA-2 and Orca-2 achieve over 88{\%} hallucination rate on the non-relevant subset. Mistral and LLAMA-3 hallucinate less but can achieve up to a 74.9{\%} error rate on the relevant subset. Overall, GPT-4 is observed to provide the best tradeoff on both subsets, highlighting future work necessary to improve LLM robustness. NoMIRACL dataset and evaluation code are available at: https://github.com/project-miracl/nomiracl.",
}
``` |