File size: 5,623 Bytes
278c72d
 
 
7f25e72
278c72d
 
 
 
 
 
7f25e72
278c72d
 
 
 
 
 
 
7f25e72
278c72d
 
 
 
7f25e72
 
278c72d
7f25e72
 
 
 
 
 
 
 
 
 
 
 
9efb0df
7f25e72
278c72d
 
 
 
7f25e72
 
 
 
 
278c72d
 
 
 
 
 
 
 
7f25e72
278c72d
 
 
 
 
 
 
 
 
 
 
7f25e72
278c72d
 
 
 
7f25e72
 
 
 
 
 
9efb0df
7f25e72
 
 
8aa6a87
 
 
 
 
 
7f25e72
 
 
278c72d
 
7f25e72
 
278c72d
 
 
 
f54860e
 
 
 
fa08263
f54860e
278c72d
 
 
 
 
 
 
 
7f25e72
278c72d
7f25e72
278c72d
 
 
 
 
 
6cb3338
278c72d
 
 
7f25e72
278c72d
d778e2c
278c72d
 
 
 
 
 
 
 
 
 
 
7f25e72
 
 
 
 
 
278c72d
 
 
7f25e72
278c72d
 
 
 
 
7f25e72
 
 
 
 
278c72d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3

import json
import gzip
import datasets
from collections import defaultdict
from dataclasses import dataclass

_CITATION = """
"""

surprise_languages = ["de", "yo"]
new_languages = ["es", "fa", "fr", "hi", "zh"] + surprise_languages
languages = ["ar", "bn", "en", "es", "fa", "fi", "fr", "hi", "id", "ja", "ko", "ru", "sw", "te", "th", "zh"] + surprise_languages

_DESCRIPTION = "dataset load script for MIRACL"


def get_first_stage_runfile(lang):
    first_stages = [
        "bm25", "mdpr", "hybrid",
    ]
    return {
        first_stage: f"https://huggingface.co/datasets/miracl/miracl-reranking/resolve/main/data/{first_stage}/{lang}.gz" for first_stage in first_stages
    }


_DATASET_URLS = {
    lang: {
        "dev": {
            "topics": f"https://huggingface.co/datasets/miracl/miracl/resolve/main/miracl-v1.0-{lang}/topics/topics.miracl-v1.0-{lang}-dev.tsv",
            "qrels": f"https://huggingface.co/datasets/miracl/miracl/resolve/main/miracl-v1.0-{lang}/qrels/qrels.miracl-v1.0-{lang}-dev.tsv",
            **get_first_stage_runfile(lang),
        },
    } for lang in languages
}


def load_topic(fn):
    qid2topic = {}
    with open(fn, encoding="utf-8") as f:
        for line in f:
            qid, topic = line.strip().split("\t")
            qid2topic[qid] = topic
    return qid2topic


def load_qrels(fn):
    if fn is None:
        return None

    qrels = defaultdict(dict)
    with open(fn, encoding="utf-8") as f:
        for line in f:
            qid, _, docid, rel = line.strip().split("\t")
            qrels[qid][docid] = int(rel)
    return qrels


def load_runfile(fn, topk=100):
    file_handle = gzip.open(fn, "rb") if fn.endswith(".gz") else open(fn, "r")
    runs = defaultdict(dict)
    for line in file_handle:
        if not isinstance(line, str):
            line = line.decode()
        qid, _, docid, _, score, _ = line.strip().split()
        runs[qid][docid] = float(score)

    if topk > 0:
        for qid in runs:
            runs[qid] = dict(sorted(
                runs[qid].items(),
                key=lambda doc_score: doc_score[1],
                reverse=True,
            )[:topk])
    return runs


class MIRACLReranking(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [datasets.BuilderConfig(
            version=datasets.Version("1.0.0"),
            name=lang, description=f"MIRACL Reranking in language {lang}."
        ) for lang in languages
    ]

    def _info(self):
        features = datasets.Features(
            query=datasets.Value("string"),
            positive=datasets.Sequence(datasets.Value("string")),
            negative=datasets.Sequence(datasets.Value("string")),
            candidates=datasets.Sequence(datasets.Value("string")),
        )

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage="https://project-miracl.github.io",
            # License for the dataset if available
            license="",
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        lang = self.config.name
        downloaded_files = dl_manager.download_and_extract(_DATASET_URLS[lang]["dev"])

        splits = [
            datasets.SplitGenerator(
                name="dev",
                gen_kwargs={
                    "filepaths": downloaded_files,
                },
            ),
        ]

        return splits

    def _generate_examples(self, filepaths):
        def formulate_doc(title, text):
            return f"{title} {text}"

        lang = self.config.name
        miracl_corpus = datasets.load_dataset("miracl/miracl-corpus", lang)["train"]
        docid2doc = {doc["docid"]: formulate_doc(doc["title"], doc["text"]) for doc in miracl_corpus}

        topic_fn = filepaths["topics"]
        qrel_fn = filepaths["qrels"]
        runfile = filepaths["bm25"]

        qid2topic = load_topic(topic_fn)
        qrels = load_qrels(qrel_fn)
        runs = load_runfile(runfile, topk=100)
        for qid in qid2topic:
            data = {}

            pos_docids = [docid for docid, rel in qrels[qid].items() if rel == 1] if qrels is not None else []
            neg_docids = [docid for docid, rel in qrels[qid].items() if rel == 0] if qrels is not None else []

            data["query"] = qid2topic[qid]
            data["positive"] = [docid2doc[docid] for docid in pos_docids]
            data["negative"] = [docid2doc[docid] for docid in neg_docids]
            data["candidates"] = [docid2doc[docid] for docid in runs[qid]]

            yield qid, data