File size: 5,623 Bytes
278c72d 7f25e72 278c72d 7f25e72 278c72d 7f25e72 278c72d 7f25e72 278c72d 7f25e72 9efb0df 7f25e72 278c72d 7f25e72 278c72d 7f25e72 278c72d 7f25e72 278c72d 7f25e72 9efb0df 7f25e72 8aa6a87 7f25e72 278c72d 7f25e72 278c72d f54860e fa08263 f54860e 278c72d 7f25e72 278c72d 7f25e72 278c72d 6cb3338 278c72d 7f25e72 278c72d d778e2c 278c72d 7f25e72 278c72d 7f25e72 278c72d 7f25e72 278c72d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
import json
import gzip
import datasets
from collections import defaultdict
from dataclasses import dataclass
_CITATION = """
"""
surprise_languages = ["de", "yo"]
new_languages = ["es", "fa", "fr", "hi", "zh"] + surprise_languages
languages = ["ar", "bn", "en", "es", "fa", "fi", "fr", "hi", "id", "ja", "ko", "ru", "sw", "te", "th", "zh"] + surprise_languages
_DESCRIPTION = "dataset load script for MIRACL"
def get_first_stage_runfile(lang):
first_stages = [
"bm25", "mdpr", "hybrid",
]
return {
first_stage: f"https://huggingface.co/datasets/miracl/miracl-reranking/resolve/main/data/{first_stage}/{lang}.gz" for first_stage in first_stages
}
_DATASET_URLS = {
lang: {
"dev": {
"topics": f"https://huggingface.co/datasets/miracl/miracl/resolve/main/miracl-v1.0-{lang}/topics/topics.miracl-v1.0-{lang}-dev.tsv",
"qrels": f"https://huggingface.co/datasets/miracl/miracl/resolve/main/miracl-v1.0-{lang}/qrels/qrels.miracl-v1.0-{lang}-dev.tsv",
**get_first_stage_runfile(lang),
},
} for lang in languages
}
def load_topic(fn):
qid2topic = {}
with open(fn, encoding="utf-8") as f:
for line in f:
qid, topic = line.strip().split("\t")
qid2topic[qid] = topic
return qid2topic
def load_qrels(fn):
if fn is None:
return None
qrels = defaultdict(dict)
with open(fn, encoding="utf-8") as f:
for line in f:
qid, _, docid, rel = line.strip().split("\t")
qrels[qid][docid] = int(rel)
return qrels
def load_runfile(fn, topk=100):
file_handle = gzip.open(fn, "rb") if fn.endswith(".gz") else open(fn, "r")
runs = defaultdict(dict)
for line in file_handle:
if not isinstance(line, str):
line = line.decode()
qid, _, docid, _, score, _ = line.strip().split()
runs[qid][docid] = float(score)
if topk > 0:
for qid in runs:
runs[qid] = dict(sorted(
runs[qid].items(),
key=lambda doc_score: doc_score[1],
reverse=True,
)[:topk])
return runs
class MIRACLReranking(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [datasets.BuilderConfig(
version=datasets.Version("1.0.0"),
name=lang, description=f"MIRACL Reranking in language {lang}."
) for lang in languages
]
def _info(self):
features = datasets.Features(
query=datasets.Value("string"),
positive=datasets.Sequence(datasets.Value("string")),
negative=datasets.Sequence(datasets.Value("string")),
candidates=datasets.Sequence(datasets.Value("string")),
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
supervised_keys=None,
# Homepage of the dataset for documentation
homepage="https://project-miracl.github.io",
# License for the dataset if available
license="",
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
lang = self.config.name
downloaded_files = dl_manager.download_and_extract(_DATASET_URLS[lang]["dev"])
splits = [
datasets.SplitGenerator(
name="dev",
gen_kwargs={
"filepaths": downloaded_files,
},
),
]
return splits
def _generate_examples(self, filepaths):
def formulate_doc(title, text):
return f"{title} {text}"
lang = self.config.name
miracl_corpus = datasets.load_dataset("miracl/miracl-corpus", lang)["train"]
docid2doc = {doc["docid"]: formulate_doc(doc["title"], doc["text"]) for doc in miracl_corpus}
topic_fn = filepaths["topics"]
qrel_fn = filepaths["qrels"]
runfile = filepaths["bm25"]
qid2topic = load_topic(topic_fn)
qrels = load_qrels(qrel_fn)
runs = load_runfile(runfile, topk=100)
for qid in qid2topic:
data = {}
pos_docids = [docid for docid, rel in qrels[qid].items() if rel == 1] if qrels is not None else []
neg_docids = [docid for docid, rel in qrels[qid].items() if rel == 0] if qrels is not None else []
data["query"] = qid2topic[qid]
data["positive"] = [docid2doc[docid] for docid in pos_docids]
data["negative"] = [docid2doc[docid] for docid in neg_docids]
data["candidates"] = [docid2doc[docid] for docid in runs[qid]]
yield qid, data
|