File size: 5,334 Bytes
43d46be 17d811d 43d46be 17d811d a3bda6f 43d46be f15212d e441ce3 4089584 f8b094f 809ed23 f8b094f 43d46be e441ce3 43d46be e441ce3 43d46be 388bd3c 43d46be da94279 43d46be 388bd3c f8b094f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- conversational
task_ids: []
paperswithcode_id: negotiation-dialogues-dataset
pretty_name: Deal or No Deal Negotiator
dataset_info:
- config_name: dialogues
features:
- name: input
sequence:
- name: count
dtype: int32
- name: value
dtype: int32
- name: dialogue
dtype: string
- name: output
dtype: string
- name: partner_input
sequence:
- name: count
dtype: int32
- name: value
dtype: int32
splits:
- name: train
num_bytes: 3860624
num_examples: 10095
- name: test
num_bytes: 396258
num_examples: 1052
- name: validation
num_bytes: 418491
num_examples: 1087
download_size: 5239072
dataset_size: 4675373
- config_name: self_play
features:
- name: input
sequence:
- name: count
dtype: int32
- name: value
dtype: int32
splits:
- name: train
num_bytes: 261512
num_examples: 8172
download_size: 98304
dataset_size: 261512
---
# Dataset Card for Deal or No Deal Negotiator
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** [Dataset Repository](https://github.com/facebookresearch/end-to-end-negotiator)
- **Paper:** [Deal or No Deal? End-to-End Learning for Negotiation Dialogues](https://arxiv.org/abs/1706.05125)
### Dataset Summary
A large dataset of human-human negotiations on a multi-issue bargaining task, where agents who cannot observe each other’s reward functions must reach an agreement (or a deal) via natural language dialogue.
### Supported Tasks and Leaderboards
Train end-to-end models for negotiation
### Languages
The text in the dataset is in English
## Dataset Structure
### Data Instances
{'dialogue': 'YOU: i love basketball and reading <eos> THEM: no . i want the hat and the balls <eos> YOU: both balls ? <eos> THEM: yeah or 1 ball and 1 book <eos> YOU: ok i want the hat and you can have the rest <eos> THEM: okay deal ill take the books and the balls you can have only the hat <eos> YOU: ok <eos> THEM: <selection>',
'input': {'count': [3, 1, 2], 'value': [0, 8, 1]},
'output': 'item0=0 item1=1 item2=0 item0=3 item1=0 item2=2',
'partner_input': {'count': [3, 1, 2], 'value': [1, 3, 2]}}
### Data Fields
`dialogue`: The dialogue between the agents. \
`input`: The input of the firt agent. \
`partner_input`: The input of the other agent. \
`count`: The count of the three available items. \
`value`: The value of the three available items. \
`output`: Describes how many of each of the three item typesare assigned to each agent
### Data Splits
| | train | validation | test |
|------------|------:|-----------:|-----:|
| dialogues | 10095 | 1087 | 1052 |
| self_play | 8172 | NA | NA |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
Human workers using Amazon Mechanical Turk. They were paid $0.15 per dialogue, with a $0.05 bonus for maximal scores. Only workers based in the United States with a 95% approval rating and at least 5000 previous HITs were used.
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
The project is licenced under CC-by-NC
### Citation Information
```
@article{lewis2017deal,
title={Deal or no deal? end-to-end learning for negotiation dialogues},
author={Lewis, Mike and Yarats, Denis and Dauphin, Yann N and Parikh, Devi and Batra, Dhruv},
journal={arXiv preprint arXiv:1706.05125},
year={2017}
}
```
### Contributions
Thanks to [@moussaKam](https://github.com/moussaKam) for adding this dataset. |