File size: 5,334 Bytes
43d46be
 
 
 
 
17d811d
43d46be
17d811d
a3bda6f
43d46be
 
 
 
 
 
 
f15212d
 
e441ce3
4089584
f8b094f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
809ed23
 
 
f8b094f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43d46be
 
 
 
 
 
 
 
e441ce3
43d46be
 
 
e441ce3
 
43d46be
 
 
 
 
 
 
 
 
 
 
 
 
388bd3c
43d46be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da94279
 
 
 
43d46be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
388bd3c
 
 
f8b094f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- conversational
task_ids: []
paperswithcode_id: negotiation-dialogues-dataset
pretty_name: Deal or No Deal Negotiator
dataset_info:
- config_name: dialogues
  features:
  - name: input
    sequence:
    - name: count
      dtype: int32
    - name: value
      dtype: int32
  - name: dialogue
    dtype: string
  - name: output
    dtype: string
  - name: partner_input
    sequence:
    - name: count
      dtype: int32
    - name: value
      dtype: int32
  splits:
  - name: train
    num_bytes: 3860624
    num_examples: 10095
  - name: test
    num_bytes: 396258
    num_examples: 1052
  - name: validation
    num_bytes: 418491
    num_examples: 1087
  download_size: 5239072
  dataset_size: 4675373
- config_name: self_play
  features:
  - name: input
    sequence:
    - name: count
      dtype: int32
    - name: value
      dtype: int32
  splits:
  - name: train
    num_bytes: 261512
    num_examples: 8172
  download_size: 98304
  dataset_size: 261512
---


# Dataset Card for Deal or No Deal Negotiator

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Repository:** [Dataset Repository](https://github.com/facebookresearch/end-to-end-negotiator) 
- **Paper:** [Deal or No Deal? End-to-End Learning for Negotiation Dialogues](https://arxiv.org/abs/1706.05125)

### Dataset Summary

A large dataset of human-human negotiations on a multi-issue bargaining task, where agents who cannot observe each other’s reward functions must reach an agreement (or a deal) via natural language dialogue.

### Supported Tasks and Leaderboards

Train end-to-end models for negotiation

### Languages

The text in the dataset is in English

## Dataset Structure

### Data Instances

{'dialogue': 'YOU: i love basketball and reading <eos> THEM: no . i want the hat and the balls <eos> YOU: both balls ? <eos> THEM: yeah or 1 ball and 1 book <eos> YOU: ok i want the hat and you can have the rest <eos> THEM: okay deal ill take the books and the balls you can have only the hat <eos> YOU: ok <eos> THEM: <selection>',
 'input': {'count': [3, 1, 2], 'value': [0, 8, 1]},
 'output': 'item0=0 item1=1 item2=0 item0=3 item1=0 item2=2',
 'partner_input': {'count': [3, 1, 2], 'value': [1, 3, 2]}}

### Data Fields

`dialogue`: The dialogue between the agents. \
`input`: The input of the firt agent. \
`partner_input`: The input of the other agent. \
`count`: The count of the three available items. \
`value`: The value of the three available items. \
`output`: Describes how many of each of the three item typesare assigned to each agent
 

### Data Splits

|            | train | validation | test |
|------------|------:|-----------:|-----:|
| dialogues  | 10095 |       1087 | 1052 |
| self_play  |  8172 |         NA |   NA |

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

Human workers using Amazon Mechanical Turk. They were paid $0.15 per dialogue, with a $0.05 bonus for maximal scores. Only workers based in the United States with a 95% approval rating and at least 5000 previous HITs were used.

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

The project is licenced under CC-by-NC

### Citation Information
```
@article{lewis2017deal,
  title={Deal or no deal? end-to-end learning for negotiation dialogues},
  author={Lewis, Mike and Yarats, Denis and Dauphin, Yann N and Parikh, Devi and Batra, Dhruv},
  journal={arXiv preprint arXiv:1706.05125},
  year={2017}
}
```

### Contributions

Thanks to [@moussaKam](https://github.com/moussaKam) for adding this dataset.