A dataset for benchmarking keyphrase extraction and generation techniques from long document English scientific papers. For more details about the dataset please refer the original paper - .
Dataset Summary
Dataset Structure
Data Fields
- id: unique identifier of the document.
- sections: list of all the sections present in the document.
- sec_text: list of white space separated list of words present in each section.
- sec_bio_tags: list of BIO tags of white space separated list of words present in each section.
- extractive_keyphrases: List of all the present keyphrases.
- abstractive_keyphrase: List of all the absent keyphrases.
Data Splits
Split | #datapoints |
---|---|
Train-Small | 20,000 |
Train-Medium | 50,000 |
Train-Large | 1,296,613 |
Test | 10,000 |
Validation | 10,000 |
Usage
Small Dataset
from datasets import load_dataset
# get small dataset
dataset = load_dataset("midas/ldkp10k", "small")
def order_sections(sample):
"""
corrects the order in which different sections appear in the document.
resulting order is: title, abstract, other sections in the body
"""
sections = []
sec_text = []
sec_bio_tags = []
if "title" in sample["sections"]:
title_idx = sample["sections"].index("title")
sections.append(sample["sections"].pop(title_idx))
sec_text.append(sample["sec_text"].pop(title_idx))
sec_bio_tags.append(sample["sec_bio_tags"].pop(title_idx))
if "abstract" in sample["sections"]:
abstract_idx = sample["sections"].index("abstract")
sections.append(sample["sections"].pop(abstract_idx))
sec_text.append(sample["sec_text"].pop(abstract_idx))
sec_bio_tags.append(sample["sec_bio_tags"].pop(abstract_idx))
sections += sample["sections"]
sec_text += sample["sec_text"]
sec_bio_tags += sample["sec_bio_tags"]
return sections, sec_text, sec_bio_tags
# sample from the train split
print("Sample from train data split")
train_sample = dataset["train"][0]
sections, sec_text, sec_bio_tags = order_sections(train_sample)
print("Fields in the sample: ", [key for key in train_sample.keys()])
print("Section names: ", sections)
print("Tokenized Document: ", sec_text)
print("Document BIO Tags: ", sec_bio_tags)
print("Extractive/present Keyphrases: ", train_sample["extractive_keyphrases"])
print("Abstractive/absent Keyphrases: ", train_sample["abstractive_keyphrases"])
print("\n-----------\n")
# sample from the validation split
print("Sample from validation data split")
validation_sample = dataset["validation"][0]
sections, sec_text, sec_bio_tags = order_sections(validation_sample)
print("Fields in the sample: ", [key for key in validation_sample.keys()])
print("Section names: ", sections)
print("Tokenized Document: ", sec_text)
print("Document BIO Tags: ", sec_bio_tags)
print("Extractive/present Keyphrases: ", validation_sample["extractive_keyphrases"])
print("Abstractive/absent Keyphrases: ", validation_sample["abstractive_keyphrases"])
print("\n-----------\n")
# sample from the test split
print("Sample from test data split")
test_sample = dataset["test"][0]
sections, sec_text, sec_bio_tags = order_sections(test_sample)
print("Fields in the sample: ", [key for key in test_sample.keys()])
print("Section names: ", sections)
print("Tokenized Document: ", sec_text)
print("Document BIO Tags: ", sec_bio_tags)
print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"])
print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"])
print("\n-----------\n")
Output
Medium Dataset
from datasets import load_dataset
# get medium dataset
dataset = load_dataset("midas/ldkp10k", "medium")
Large Dataset
from datasets import load_dataset
# get large dataset
dataset = load_dataset("midas/ldkp10k", "large")
Citation Information
Please cite the works below if you use this dataset in your work.
Contributions
Thanks to @debanjanbhucs, @dibyaaaaax, @UmaGunturi and @ad6398 for adding this dataset