Datasets:
File size: 16,885 Bytes
7369105 671c48e 7a180d3 7369105 7b78587 7369105 2fcf121 7f3fb6c 2fcf121 c5fcb4d 2fcf121 c5fcb4d 2fcf121 eb870ed 7f3fb6c cfd2ee9 d116df0 c5fcb4d 6e0ba6f eb870ed c5fcb4d 29ac49f 67b6614 c5fcb4d 2fcf121 9b82032 2fcf121 6e0ba6f 2fcf121 9b82032 c5fcb4d 6e0ba6f c5fcb4d 6e0ba6f c5fcb4d 2fcf121 6e0ba6f 2fcf121 6e0ba6f 2fcf121 6e0ba6f eb870ed 9b954f1 2fcf121 eb870ed 2fcf121 eb870ed 2fcf121 eb870ed 2fcf121 eb870ed 2fcf121 eb870ed 2fcf121 eb870ed 2fcf121 9b82032 2fcf121 9b82032 2fcf121 eb870ed 2fcf121 9b82032 2fcf121 eb870ed 6e0ba6f eb870ed 2fcf121 862b6a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
---
language:
- en
pretty_name: "ChaLL"
tags:
- error-preservation
- sla
- children
license: "apache-2.0" # todo
task_categories:
- automatic-speech-recognition
---
# Dataset Card for ChaLL
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://github.com/mict-zhaw/chall_e2e_stt
- **Repository:** https://github.com/mict-zhaw/chall_e2e_stt
- **Paper:** tbd
- **Leaderboard:**
- **Point of Contact:** mict@zhaw.ch
### Dataset Summary
This dataset contains audio recordings of spontaneous speech by young learners of English in Switzerland.
The recordings capture various language learning tasks designed to elicit authentic communication from the students.
The dataset includes detailed verbatim transcriptions with annotations for errors made by the learners.
The transcripts were prepared by a professional transcription service, and each recording was associated with detailed metadata, including school grade, recording conditions, and error annotations.
> [!IMPORTANT]
> <b>Data Availability</b>: The dataset that we collected contains sensitive data of minors and thus cannot be shared publicly. The
> data can, however, be accessed as part of a joint project with one or several of the original project
> partners, subject to a collaboration agreement (<b>yet to be detailed</b>).
To use the ChaLL dataset, you need to download it manually.
Once you have manually downloaded the files, please extract all files into a single folder.
You can then load the dataset into your environment using the following command:
```python
from datasets import load_dataset
dataset = load_dataset('chall', data_dir='path/to/folder/folder_name')
```
Ensure the path specified in `data_dir` correctly points to the folder where you have extracted the dataset files.
Examples in this dataset are generated using the `soundfile` library (for reading and chunking).
To handle the audio data correctly, you need to install the soundfile library in your project.
```shell
pip install soundfile
```
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
The primary language represented in this dataset is English, specifically as spoken by Swiss children who are learners of the language.
This includes a variety of accents and dialectal influences from the German-speaking regions of Switzerland.
## Dataset Structure
The dataset can be loaded using different configurations to suit various experimental setups.
### Dataset Builder Configuration
The configurations define how the data is preprocessed and loaded into the environment.
Below are the details of the configurations used in experiments:
#### `original`
This configuration uses the data in its raw, unmodified form while ensuring all participant information is anonymized.
It includes the preservation of the data's original structure without segmentation, filtering, or other preprocessing techniques.
```python
from datasets import load_dataset
dataset = load_dataset('mict-zhaw/chall', 'original', data_dir='path/to/folder/folder_name')
```
#### `asr`
This configuration is intended for ASR experiments, enabling segment splitting for more granular processing of the audio data.
#### `asr_acl`
This configuration includes specific settings used in the related research paper.
It is designed to handle various segmentation and preprocessing tasks to prepare the data.
The results for the paper were generated at a time when the data was not yet complete.
Thus, this dataset configuration comprises approximately 85 hours (excluding pauses between utterances) of spontaneous English speech recordings from young learners in Switzerland, collected from 327 distinct speakers in grades 4 to 6.
The dataset includes 45,004 individual utterances and is intended to train an ASR system that preserves learner errors for corrective feedback in language learning.
The configuration is set to split segments, with a maximum pause length of 12 seconds, maximum chunk length of 12 seconds, minimum chunk length of 0.5 seconds,
removes trailing pauses, converts text to lowercase and numbers to words.
```python
from datasets import load_dataset
dataset = load_dataset('mict-zhaw/chall', 'asr_acl', data_dir='path/to/folder/folder_name')
```
#### Custom
The `ChallConfig` class provides various parameters that can be customized:
- **split_segments (`bool`):** Whether to split the audio into smaller segments.
- **max_chunk_length (`float` or `None`)**: Maximum length of each audio chunk in seconds (used only if split_segments is True).
- **min_chunk_length (`float` or `None`)**: Minimum length of each audio chunk in seconds (used only if split_segments is True).
- **max_pause_length (`float` or None)**: Maximum allowable pause length within segments (used only if split_segments is True).
- **remove_trailing_pauses (`bool`)**: Whether to remove trailing pauses from segments (used only if split_segments is True).
- **lowercase (`bool`)**: Whether to convert all text to lowercase.
- **num_to_words (`bool`)**: Whether to convert numerical expressions to words.
- **allowed_chars (`set`)**: Set of allowed characters in the text. Automatically set based on the lowercase parameter.
- **special_terms_mapping (`dict`)**: Dictionary for mapping special terms to their replacements.
- **stratify_column (`str` or `None`)**: Column used for stratifying the data into different folds.
- **folds (`dict` or `None`)**: Dictionary defining the data folds for stratified sampling.
Custom configurations can be used alone or in combination with existing ones,
and they will overwrite predefined defaults.
```python
from datasets import load_dataset
dataset = load_dataset('mict-zhaw/chall', data_dir='path/to/folder/folder_name', **kwargs)
dataset = load_dataset('mict-zhaw/chall', 'asr_acl', data_dir='path/to/folder/folder_name', **kwargs)
```
### Data Instances
A typical data instance in this dataset include an audio file, its full transcription, error annotations, and associated metadata such as the speaker's grade level and recording conditions.
Here is an example:
#### `split_segments == True`
When `split_segments` is set to True, the audio data is divided into utterances.
An utterance data instance includes the spoken text from one participant along with meta information such as school_grade, area_of_school_code, background_noise, and intervention.
The audio is present as byte array under audio.
```json
{
"audio_id": "S004_A005_000",
"intervention": 4,
"school_grade": "6",
"area_of_school_code": 5,
"background_noise": false,
"raw_text": "A male or is it a female?",
"clear_text": "a male or is it a female",
"words": {
"start": [0.4099999964237213, 0.5600000023841858, 1.0399999618530273, 1.25, 1.3700000047683716, 1.5499999523162842, 1.6699999570846558],
"end": [0.5400000214576721, 1.0399999618530273, 1.25, 1.3700000047683716, 1.5499999523162842, 1.6699999570846558, 2.5399999618530273],
"duration": [0.1300000250339508, 0.47999995946884155, 0.21000003814697266, 0.12000000476837158, 0.1799999475479126, 0.12000000476837158, 0.8700000047683716],
"text": ["A", "male", "or", "is", "it", "a", "female?"]
},
"audio": {
"path": false,
"array": [0, 0, 0, "...", 0, 0, 0],
"sampling_rate": 16000
}
}
```
#### `split_segments == False`
When `split_segments` is set to False, the audio remains intact and includes multiple turns with one or more speakers.
In this case, additional participant meta information is present, but speakers (from the transcript) and participants cannot be aligned and do not need to match in number.
This means the transcription agency may define more than one speaker for a single participant.
```json
{
"audio_id": "S001_A046",
"intervention": 1,
"school_grade": "4",
"area_of_school_code": 2,
"raw_text": "If you could have-have any superpower, what would it be? I would choose to have invincibility because when I'm invincible, I can't die or get hurt by anyone and I think this concept is very cool...",
"clear_text": "if you could have have any superpower what would it be i would choose to have invincibility because when i'm invincible i can't die or get hurt by anyone and i think this concept is very cool...",
"participants": {
"estimated_l2_proficiency": [null, null],
"gender": ["M", "F"],
"languages": ["NNS", "NNS"],
"pseudonym": ["P033", "P034"],
"school_grade": [6, 6],
"year_of_birth": [2010, 2011]
},
"background_noise": true,
"speakers": {
"name": ["Participant 1", "Participant 2"],
"spkid": ["S002_A004_SPK0", "S002_A004_SPK1"]
},
"segments": {
"speaker": ["S002_A004_SPK0", "S002_A004_SPK1", ...],
"words": [
{
"start": [1.8799999952316284, 2.119999885559082, 3.2899999618530273, ...],
"end": [2.119999885559082, 2.390000104904175, 3.859999895095825, ...],
"duration": [0.2399998903274536, 0.2700002193450928, 0.5699999332427979, ...],
"text": ["If", "you", "could", "have-have", "any", "superpower,", "what", "would", "it", "be?"]
}, {
"start": [10.760000228881836, 11.029999732971191, 11.420000076293945, ...],
"end": [11.029999732971191, 11.420000076293945, 12.170000076293945, ...],
"duration": [0.26999950408935547, 0.3900003433227539, 0.75, ...],
"text": ["I", "would", "choose", "to", "have", "invincibility", "because", "when", "I'm", "invincible,", "I", "can't", "die", "or", "get", "hurt", "by", "anyone", "and", "I", "think", "this", "concept", "is", "very", "cool."]
}
]
},
"audio": {
"path": null,
"array": [0, 0, 0, ..., 0, 0, 0],
"sampling_rate": 16000
}
}
```
### Data Fields
- **audio_id**: A unique identifier for the audio recording.
- **intervention**: An integer representing the type or stage of intervention.
- **school_grade**: The grade level of the student(s) involved in the recording.
- **area_of_school_code**: A code representing a specific area within the school.
- **raw_text**: The raw transcription of the audio, capturing exactly what was spoken.
- **clear_text**: A cleaned version of the raw text, formatted for easier analysis.
- **background_noise**: A boolean indicating whether background noise is present in the recording.
- **audio**: An object containing the audio data and related information.
- **path**: The file path of the audio recording (can be null).
- **array**: An array representing the audio waveform data.
- **sampling_rate**: The rate at which the audio was sampled, in Hz.
In addition to the common fields, there are specific fields depending on `split_segments`:
#### Utterance Data Instance (`True`)
- **words**: An object containing details about each word spoken in the utterance.
- **start**: A list of start times for each word.
- **end**: A list of end times for each word.
- **duration**: A list of durations for each word.
- **text**: A list of words spoken.
#### Audio Data Instance (`False`)
- **participants**: An object containing meta information about the participants in the recording.
- **estimated_l2_proficiency**: A list of estimated language proficiency levels.
- **gender**: A list of genders of the participants.
- **languages**: A list of languages spoken by the participants.
- **pseudonym**: A list of pseudonyms assigned to the participants.
- **school_grade**: A list of school grades for each participant.
- **year_of_birth**: A list of birth years for each participant.
- **speakers**: An object containing information about the speakers in the transcript.
- **name**: A list of speaker names as identified in the transcript.
- **spkid**: A list of speaker IDs.
- **segments**: An object containing details about each segment of the recording.
- **speaker**: A list of speaker IDs for each segment.
- **words**: A list of objects, each containing details about the words spoken in the segment.
- **start**: A list of start times for each word in the segment.
- **end**: A list of end times for each word in the segment.
- **duration**: A list of durations for each word in the segment.
- **text**: A list of words spoken in the segment.
### Data Splits
The data splits can define as part of the configuration using the `folds`.
Without specifying `folds` all data is loaded in the train split.
#### `asr_acl`
For the experiments in this paper, we split the dataset into five distinct folds of similar duration
(about 16h each), where each class (and therefore also each speaker) occurs in only one fold.
To simulate the use case of the ASR system being confronted with a new class of learners, each fold
contains data from a mix of grades. The following figure visualises the duration and grade distribution of each fold.
![Chall Folds](doc/chall_data_folds_v1.svg)
## Dataset Creation
### Curation Rationale
The dataset was created to address the need for ASR systems that can handle children’s spontaneous speech
and preserve their errors to provide effective corrective feedback in language learning environments.
### Source Data
#### Initial Data Collection and Normalization
Audio data was collected from primary school students aged 9 to 14 years, performing language learning tasks in pairs, trios, or individually. The recordings were made at schools and universities, and detailed verbatim transcriptions were created by a transcription agency, following specific guidelines.
#### Who are the source language producers?
The source data producers include primary school students from German-speaking Switzerland, aged 9 to 14 years, participating in language learning activities.
### Annotations
#### Annotation process
The transcription and annotation process was outsourced to a transcription agency, following detailed guidelines for error annotation,
including symbols for grammatical, lexical, and pronunciation errors, as well as German word usage.
#### Who are the annotators?
The annotators were professionals from a transcription agency, trained according to specific guidelines provided by the project team.
### Personal and Sensitive Information
The dataset contains audio recordings of minors.
All data was collected with informed consent from legal guardians, and recordings are anonymized to protect the identities of the participants.
## Considerations for Using the Data
### Social Impact of Dataset
The dataset supports the development of educational tools that could enhance language learning for children, providing an important resource for educational technology.
### Discussion of Biases
Given the specific demographic (Swiss German-speaking schoolchildren), the dataset may not generalize well to other forms of English or to speakers from different linguistic or cultural backgrounds.
### Other Known Limitations
The outsourcing of transcription and error annotations always poses a risk of yielding erroneous data, since most
transcribers are not trained in error annotation.
## Additional Information
### Dataset Curators
The dataset was curated by researchers at PHZH, UZH and Zhaw, with collaboration from local schools in Switzerland.
### Licensing Information
[More Information Needed]
### Citation Information
```bibtex
@inproceedings{
anonymous2024errorpreserving,
title={Error-preserving Automatic Speech Recognition of Young English Learners' Language},
author={Janick Michot, Manuela Hürlimann, Jan Deriu, Luzia Sauer, Katsiaryna Mlynchyk, Mark Cieliebak},
booktitle={The 62nd Annual Meeting of the Association for Computational Linguistics},
year={2024},
url={https://openreview.net/forum?id=XPIwvlqIfI}
}
```
### Contributions
Thanks to [@mict-zhaw](https://github.com/mict-zhaw) for adding this dataset. |