File size: 9,480 Bytes
a68b1a2 f5c2daf 6705935 2863107 16d9035 98fbdb1 45d4cbe 98fbdb1 84a28ef 45d4cbe 84a28ef 45d4cbe 84a28ef 45d4cbe 98fbdb1 86db073 98fbdb1 84a28ef 86db073 84a28ef 86db073 84a28ef 86db073 45d4cbe 86db073 a68b1a2 2863107 a68b1a2 2863107 a68b1a2 9419300 a68b1a2 320355e a68b1a2 9419300 a68b1a2 2863107 a68b1a2 9419300 a68b1a2 9419300 a68b1a2 9419300 a68b1a2 320355e a68b1a2 320355e a68b1a2 9419300 a68b1a2 2863107 a68b1a2 9419300 a68b1a2 9419300 a68b1a2 9419300 a68b1a2 2863107 a68b1a2 9419300 a68b1a2 2863107 a68b1a2 9419300 a68b1a2 9419300 a68b1a2 9419300 a68b1a2 9419300 a68b1a2 9419300 a68b1a2 9419300 a68b1a2 9419300 a68b1a2 9419300 a68b1a2 9419300 a68b1a2 98fbdb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
---
language:
- en
paperswithcode_id: ms-marco
pretty_name: Microsoft Machine Reading Comprehension Dataset
dataset_info:
- config_name: v1.1
features:
- name: answers
sequence: string
- name: passages
sequence:
- name: is_selected
dtype: int32
- name: passage_text
dtype: string
- name: url
dtype: string
- name: query
dtype: string
- name: query_id
dtype: int32
- name: query_type
dtype: string
- name: wellFormedAnswers
sequence: string
splits:
- name: validation
num_bytes: 42665198
num_examples: 10047
- name: train
num_bytes: 350516260
num_examples: 82326
- name: test
num_bytes: 40977580
num_examples: 9650
download_size: 217328153
dataset_size: 434159038
- config_name: v2.1
features:
- name: answers
sequence: string
- name: passages
sequence:
- name: is_selected
dtype: int32
- name: passage_text
dtype: string
- name: url
dtype: string
- name: query
dtype: string
- name: query_id
dtype: int32
- name: query_type
dtype: string
- name: wellFormedAnswers
sequence: string
splits:
- name: validation
num_bytes: 413765365
num_examples: 101093
- name: train
num_bytes: 3462807709
num_examples: 808731
- name: test
num_bytes: 405691932
num_examples: 101092
download_size: 2105722550
dataset_size: 4282265006
configs:
- config_name: v1.1
data_files:
- split: validation
path: v1.1/validation-*
- split: train
path: v1.1/train-*
- split: test
path: v1.1/test-*
- config_name: v2.1
data_files:
- split: validation
path: v2.1/validation-*
- split: train
path: v2.1/train-*
- split: test
path: v2.1/test-*
---
# Dataset Card for "ms_marco"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://microsoft.github.io/msmarco/](https://microsoft.github.io/msmarco/)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 1.55 GB
- **Size of the generated dataset:** 4.72 GB
- **Total amount of disk used:** 6.28 GB
### Dataset Summary
Starting with a paper released at NIPS 2016, MS MARCO is a collection of datasets focused on deep learning in search.
The first dataset was a question answering dataset featuring 100,000 real Bing questions and a human generated answer.
Since then we released a 1,000,000 question dataset, a natural langauge generation dataset, a passage ranking dataset,
keyphrase extraction dataset, crawling dataset, and a conversational search.
There have been 277 submissions. 20 KeyPhrase Extraction submissions, 87 passage ranking submissions, 0 document ranking
submissions, 73 QnA V2 submissions, 82 NLGEN submisions, and 15 QnA V1 submissions
This data comes in three tasks/forms: Original QnA dataset(v1.1), Question Answering(v2.1), Natural Language Generation(v2.1).
The original question answering datset featured 100,000 examples and was released in 2016. Leaderboard is now closed but data is availible below.
The current competitive tasks are Question Answering and Natural Language Generation. Question Answering features over 1,000,000 queries and
is much like the original QnA dataset but bigger and with higher quality. The Natural Language Generation dataset features 180,000 examples and
builds upon the QnA dataset to deliver answers that could be spoken by a smart speaker.
version v1.1
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### v1.1
- **Size of downloaded dataset files:** 168.69 MB
- **Size of the generated dataset:** 434.61 MB
- **Total amount of disk used:** 603.31 MB
An example of 'train' looks as follows.
```
```
#### v2.1
- **Size of downloaded dataset files:** 1.38 GB
- **Size of the generated dataset:** 4.29 GB
- **Total amount of disk used:** 5.67 GB
An example of 'validation' looks as follows.
```
```
### Data Fields
The data fields are the same among all splits.
#### v1.1
- `answers`: a `list` of `string` features.
- `passages`: a dictionary feature containing:
- `is_selected`: a `int32` feature.
- `passage_text`: a `string` feature.
- `url`: a `string` feature.
- `query`: a `string` feature.
- `query_id`: a `int32` feature.
- `query_type`: a `string` feature.
- `wellFormedAnswers`: a `list` of `string` features.
#### v2.1
- `answers`: a `list` of `string` features.
- `passages`: a dictionary feature containing:
- `is_selected`: a `int32` feature.
- `passage_text`: a `string` feature.
- `url`: a `string` feature.
- `query`: a `string` feature.
- `query_id`: a `int32` feature.
- `query_type`: a `string` feature.
- `wellFormedAnswers`: a `list` of `string` features.
### Data Splits
|name|train |validation| test |
|----|-----:|---------:|-----:|
|v1.1| 82326| 10047| 9650|
|v2.1|808731| 101093|101092|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@article{DBLP:journals/corr/NguyenRSGTMD16,
author = {Tri Nguyen and
Mir Rosenberg and
Xia Song and
Jianfeng Gao and
Saurabh Tiwary and
Rangan Majumder and
Li Deng},
title = {{MS} {MARCO:} {A} Human Generated MAchine Reading COmprehension Dataset},
journal = {CoRR},
volume = {abs/1611.09268},
year = {2016},
url = {http://arxiv.org/abs/1611.09268},
archivePrefix = {arXiv},
eprint = {1611.09268},
timestamp = {Mon, 13 Aug 2018 16:49:03 +0200},
biburl = {https://dblp.org/rec/journals/corr/NguyenRSGTMD16.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
}
```
### Contributions
Thanks to [@mariamabarham](https://github.com/mariamabarham), [@thomwolf](https://github.com/thomwolf), [@lewtun](https://github.com/lewtun) for adding this dataset. |