Datasets:
Tasks:
Question Answering
Sub-tasks:
extractive-qa
Languages:
English
Size:
1K<n<10K
ArXiv:
License:
File size: 9,124 Bytes
9c52d99 45259c9 9c52d99 4adb20b 9c52d99 4adb20b 9c52d99 4adb20b 9c52d99 4adb20b 9c52d99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""SubjQA is a question answering dataset that focuses on subjective questions and answers.
The dataset consists of roughly 10,000 questions over reviews from 6 different domains: books, movies, grocery,
electronics, TripAdvisor (i.e. hotels), and restaurants."""
import ast
import os
import pandas as pd
import datasets
_CITATION = """\
@inproceedings{bjerva20subjqa,
title = "SubjQA: A Dataset for Subjectivity and Review Comprehension",
author = "Bjerva, Johannes and
Bhutani, Nikita and
Golahn, Behzad and
Tan, Wang-Chiew and
Augenstein, Isabelle",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = November,
year = "2020",
publisher = "Association for Computational Linguistics",
}
"""
_DESCRIPTION = """SubjQA is a question answering dataset that focuses on subjective questions and answers.
The dataset consists of roughly 10,000 questions over reviews from 6 different domains: books, movies, grocery,
electronics, TripAdvisor (i.e. hotels), and restaurants."""
_HOMEPAGE = ""
_LICENSE = ""
# From: https://github.com/lewtun/SubjQA/archive/refs/heads/master.zip
_URLs = {"default": "data.zip"}
class Subjqa(datasets.GeneratorBasedBuilder):
"""SubjQA is a question answering dataset that focuses on subjective questions and answers."""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="books", version=VERSION, description="Amazon book reviews"),
datasets.BuilderConfig(name="electronics", version=VERSION, description="Amazon electronics reviews"),
datasets.BuilderConfig(name="grocery", version=VERSION, description="Amazon grocery reviews"),
datasets.BuilderConfig(name="movies", version=VERSION, description="Amazon movie reviews"),
datasets.BuilderConfig(name="restaurants", version=VERSION, description="Yelp restaurant reviews"),
datasets.BuilderConfig(name="tripadvisor", version=VERSION, description="TripAdvisor hotel reviews"),
]
def _info(self):
features = datasets.Features(
{
"domain": datasets.Value("string"),
"nn_mod": datasets.Value("string"),
"nn_asp": datasets.Value("string"),
"query_mod": datasets.Value("string"),
"query_asp": datasets.Value("string"),
"q_reviews_id": datasets.Value("string"),
"question_subj_level": datasets.Value("int64"),
"ques_subj_score": datasets.Value("float"),
"is_ques_subjective": datasets.Value("bool"),
"review_id": datasets.Value("string"),
"id": datasets.Value("string"),
"title": datasets.Value("string"),
"context": datasets.Value("string"),
"question": datasets.Value("string"),
"answers": datasets.features.Sequence(
{
"text": datasets.Value("string"),
"answer_start": datasets.Value("int32"),
"answer_subj_level": datasets.Value("int64"),
"ans_subj_score": datasets.Value("float"),
"is_ans_subjective": datasets.Value("bool"),
}
),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URLs["default"])
data_dir = os.path.join(data_dir, "SubjQA-master", "SubjQA", self.config.name, "splits")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, "train.csv")
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, "test.csv")
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(data_dir, "dev.csv")
},
),
]
def _generate_examples(self, filepath):
df = pd.read_csv(filepath)
squad_format = self._convert_to_squad(df)
for example in squad_format["data"]:
title = example.get("title", "").strip()
for paragraph in example["paragraphs"]:
context = paragraph["context"].strip()
for qa in paragraph["qas"]:
question = qa["question"].strip()
question_meta = {k: v for k, v in qa.items() if k in self.question_meta_columns}
id_ = qa["id"]
answer_starts = [answer["answer_start"] for answer in qa["answers"]]
answers = [answer["text"].strip() for answer in qa["answers"]]
answer_meta = pd.DataFrame(qa["answers"], columns=self.answer_meta_columns).to_dict("list")
yield id_, {
**{
"title": title,
"context": context,
"question": question,
"id": id_,
"answers": {
**{
"answer_start": answer_starts,
"text": answers,
},
**answer_meta,
},
},
**question_meta,
}
def _create_paragraphs(self, df):
"A helper function to convert a pandas.DataFrame of (question, context, answer) rows to SQuAD paragraphs."
self.question_meta_columns = [
"domain",
"nn_mod",
"nn_asp",
"query_mod",
"query_asp",
"q_reviews_id",
"question_subj_level",
"ques_subj_score",
"is_ques_subjective",
"review_id",
]
self.answer_meta_columns = ["answer_subj_level", "ans_subj_score", "is_ans_subjective"]
id2review = dict(zip(df["review_id"], df["review"]))
pars = []
for review_id, review in id2review.items():
qas = []
review_df = df.query(f"review_id == '{review_id}'")
id2question = dict(zip(review_df["q_review_id"], review_df["question"]))
for k, v in id2question.items():
d = df.query(f"q_review_id == '{k}'").to_dict(orient="list")
answer_starts = [ast.literal_eval(a)[0] for a in d["human_ans_indices"]]
answer_meta = {k: v[0] for k, v in d.items() if k in self.answer_meta_columns}
question_meta = {k: v[0] for k, v in d.items() if k in self.question_meta_columns}
# Only fill answerable questions
if pd.unique(d["human_ans_spans"])[0] != "ANSWERNOTFOUND":
answers = [
{**{"text": text, "answer_start": answer_start}, **answer_meta}
for text, answer_start in zip(d["human_ans_spans"], answer_starts)
if text != "ANSWERNOTFOUND"
]
else:
answers = []
qas.append({**{"question": v, "id": k, "answers": answers}, **question_meta})
# Slice off ANSWERNOTFOUND from context
pars.append({"qas": qas, "context": review[: -len(" ANSWERNOTFOUND")]})
return pars
def _convert_to_squad(self, df):
"A helper function to convert a pandas.DataFrame of product-based QA dataset into SQuAD format"
groups = (
df.groupby("item_id")
.apply(self._create_paragraphs)
.to_frame(name="paragraphs")
.reset_index()
.rename(columns={"item_id": "title"})
)
squad_data = {}
squad_data["data"] = groups.to_dict(orient="records")
return squad_data
|