Datasets:

Sub-tasks:
extractive-qa
Languages:
English
ArXiv:
License:
File size: 9,154 Bytes
9c52d99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""SubjQA is a question answering dataset that focuses on subjective questions and answers.
The dataset consists of roughly 10,000 questions over reviews from 6 different domains: books, movies, grocery,
electronics, TripAdvisor (i.e. hotels), and restaurants."""


import ast
import os

import pandas as pd

import datasets


_CITATION = """\
@inproceedings{bjerva20subjqa,
    title = "SubjQA: A Dataset for Subjectivity and Review Comprehension",
    author = "Bjerva, Johannes  and
      Bhutani, Nikita  and
      Golahn, Behzad  and
      Tan, Wang-Chiew  and
      Augenstein, Isabelle",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
    month = November,
    year = "2020",
    publisher = "Association for Computational Linguistics",
}
"""

_DESCRIPTION = """SubjQA is a question answering dataset that focuses on subjective questions and answers.
The dataset consists of roughly 10,000 questions over reviews from 6 different domains: books, movies, grocery,
electronics, TripAdvisor (i.e. hotels), and restaurants."""

_HOMEPAGE = ""

_LICENSE = ""

_URLs = {"default": "https://github.com/lewtun/SubjQA/archive/refs/heads/master.zip"}


class Subjqa(datasets.GeneratorBasedBuilder):
    """SubjQA is a question answering dataset that focuses on subjective questions and answers."""

    VERSION = datasets.Version("1.1.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="books", version=VERSION, description="Amazon book reviews"),
        datasets.BuilderConfig(name="electronics", version=VERSION, description="Amazon electronics reviews"),
        datasets.BuilderConfig(name="grocery", version=VERSION, description="Amazon grocery reviews"),
        datasets.BuilderConfig(name="movies", version=VERSION, description="Amazon movie reviews"),
        datasets.BuilderConfig(name="restaurants", version=VERSION, description="Yelp restaurant reviews"),
        datasets.BuilderConfig(name="tripadvisor", version=VERSION, description="TripAdvisor hotel reviews"),
    ]

    def _info(self):
        features = datasets.Features(
            {
                "domain": datasets.Value("string"),
                "nn_mod": datasets.Value("string"),
                "nn_asp": datasets.Value("string"),
                "query_mod": datasets.Value("string"),
                "query_asp": datasets.Value("string"),
                "q_reviews_id": datasets.Value("string"),
                "question_subj_level": datasets.Value("int64"),
                "ques_subj_score": datasets.Value("float"),
                "is_ques_subjective": datasets.Value("bool"),
                "review_id": datasets.Value("string"),
                "id": datasets.Value("string"),
                "title": datasets.Value("string"),
                "context": datasets.Value("string"),
                "question": datasets.Value("string"),
                "answers": datasets.features.Sequence(
                    {
                        "text": datasets.Value("string"),
                        "answer_start": datasets.Value("int32"),
                        "answer_subj_level": datasets.Value("int64"),
                        "ans_subj_score": datasets.Value("float"),
                        "is_ans_subjective": datasets.Value("bool"),
                    }
                ),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        data_dir = dl_manager.download_and_extract(_URLs["default"])
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": os.path.join(data_dir, f"SubjQA-master/SubjQA/{self.config.name}/splits/train.csv")
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": os.path.join(data_dir, f"SubjQA-master/SubjQA/{self.config.name}/splits/test.csv")
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": os.path.join(data_dir, f"SubjQA-master/SubjQA/{self.config.name}/splits/dev.csv")
                },
            ),
        ]

    def _generate_examples(self, filepath):
        df = pd.read_csv(filepath)
        squad_format = self._convert_to_squad(df)
        for example in squad_format["data"]:
            title = example.get("title", "").strip()
            for paragraph in example["paragraphs"]:
                context = paragraph["context"].strip()
                for qa in paragraph["qas"]:
                    question = qa["question"].strip()
                    question_meta = {k: v for k, v in qa.items() if k in self.question_meta_columns}
                    id_ = qa["id"]
                    answer_starts = [answer["answer_start"] for answer in qa["answers"]]
                    answers = [answer["text"].strip() for answer in qa["answers"]]
                    answer_meta = pd.DataFrame(qa["answers"], columns=self.answer_meta_columns).to_dict("list")
                    yield id_, {
                        **{
                            "title": title,
                            "context": context,
                            "question": question,
                            "id": id_,
                            "answers": {
                                **{
                                    "answer_start": answer_starts,
                                    "text": answers,
                                },
                                **answer_meta,
                            },
                        },
                        **question_meta,
                    }

    def _create_paragraphs(self, df):
        "A helper function to convert a pandas.DataFrame of (question, context, answer) rows to SQuAD paragraphs."
        self.question_meta_columns = [
            "domain",
            "nn_mod",
            "nn_asp",
            "query_mod",
            "query_asp",
            "q_reviews_id",
            "question_subj_level",
            "ques_subj_score",
            "is_ques_subjective",
            "review_id",
        ]
        self.answer_meta_columns = ["answer_subj_level", "ans_subj_score", "is_ans_subjective"]
        id2review = dict(zip(df["review_id"], df["review"]))
        pars = []
        for review_id, review in id2review.items():
            qas = []
            review_df = df.query(f"review_id == '{review_id}'")
            id2question = dict(zip(review_df["q_review_id"], review_df["question"]))

            for k, v in id2question.items():
                d = df.query(f"q_review_id == '{k}'").to_dict(orient="list")
                answer_starts = [ast.literal_eval(a)[0] for a in d["human_ans_indices"]]
                answer_meta = {k: v[0] for k, v in d.items() if k in self.answer_meta_columns}
                question_meta = {k: v[0] for k, v in d.items() if k in self.question_meta_columns}
                # Only fill answerable questions
                if pd.unique(d["human_ans_spans"])[0] != "ANSWERNOTFOUND":
                    answers = [
                        {**{"text": text, "answer_start": answer_start}, **answer_meta}
                        for text, answer_start in zip(d["human_ans_spans"], answer_starts)
                        if text != "ANSWERNOTFOUND"
                    ]
                else:
                    answers = []
                qas.append({**{"question": v, "id": k, "answers": answers}, **question_meta})
            # Slice off ANSWERNOTFOUND from context
            pars.append({"qas": qas, "context": review[: -len(" ANSWERNOTFOUND")]})
        return pars

    def _convert_to_squad(self, df):
        "A helper function to convert a pandas.DataFrame of product-based QA dataset into SQuAD format"
        groups = (
            df.groupby("item_id")
            .apply(self._create_paragraphs)
            .to_frame(name="paragraphs")
            .reset_index()
            .rename(columns={"item_id": "title"})
        )
        squad_data = {}
        squad_data["data"] = groups.to_dict(orient="records")
        return squad_data