File size: 2,308 Bytes
6b37d32
 
 
 
 
 
 
 
 
9da8d49
 
6b37d32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abd9f5c
9da8d49
6b37d32
9da8d49
 
6b37d32
 
 
abd9f5c
6b37d32
 
242d722
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
---
dataset_info:
  features:
  - name: task
    dtype: string
  - name: org
    dtype: string
  - name: model
    dtype: string
  - name: hardware
    dtype: string
  - name: date
    dtype: string
  - name: prefill
    struct:
    - name: efficency
      struct:
      - name: unit
        dtype: string
      - name: value
        dtype: float64
    - name: energy
      struct:
      - name: cpu
        dtype: float64
      - name: gpu
        dtype: float64
      - name: ram
        dtype: float64
      - name: total
        dtype: float64
      - name: unit
        dtype: string
  - name: decoding
    struct:
    - name: efficiency
      struct:
      - name: unit
        dtype: string
      - name: value
        dtype: float64
    - name: energy
      struct:
      - name: cpu
        dtype: float64
      - name: gpu
        dtype: float64
      - name: ram
        dtype: float64
      - name: total
        dtype: float64
      - name: unit
        dtype: string
  - name: preprocessing
    struct:
    - name: efficiency
      struct:
      - name: unit
        dtype: string
      - name: value
        dtype: float64
    - name: energy
      struct:
      - name: cpu
        dtype: float64
      - name: gpu
        dtype: float64
      - name: ram
        dtype: float64
      - name: total
        dtype: float64
      - name: unit
        dtype: string
  splits:
  - name: benchmark_results
    num_bytes: 1886
    num_examples: 7
  download_size: 14982
  dataset_size: 1886
configs:
- config_name: default
  data_files:
  - split: benchmark_results
    path: data/train-*
---

# Analysis of energy usage for HUGS models

Based on the [energy_star branch](https://github.com/huggingface/optimum-benchmark/tree/energy_star_dev) of [optimum-benchmark](https://github.com/huggingface/optimum-benchmark), and using [codecarbon](https://pypi.org/project/codecarbon/2.1.4/).

# Fields
- task: Task the model was benchmarked on
- org: Organization hosting the model
- model: The specific model. Model names at HF are usually constructed with {org}/{model}
- date: The date that the benchmark was fun
- prefill: The esimated energy and efficiency for prefilling.
- decode: The estimated energy and efficiency for decoding.
- preprocess: The estimated energy and efficiency for preprocessing.