File size: 8,973 Bytes
aa5cdf5
 
1d354d2
 
b95480a
 
749517b
1d354d2
 
 
 
aa5cdf5
1d354d2
 
 
 
 
 
 
 
 
 
 
 
 
 
67ded90
f73c767
8840adf
74bfa15
1d354d2
5627b6f
73fbc98
1d354d2
 
 
 
 
 
 
 
 
6233098
 
1d354d2
 
 
 
 
 
 
 
 
 
d255ed7
 
 
 
 
221df18
1d354d2
8312d67
1d354d2
d255ed7
8312d67
d255ed7
1d354d2
 
8312d67
1d354d2
d255ed7
8312d67
d255ed7
1d354d2
 
 
c59cbdc
 
1d354d2
 
 
 
 
 
 
 
dda118a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d354d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1de047d
3a6d16a
dda118a
63eb4ac
 
 
1de047d
 
1d354d2
 
1600f26
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
---
license: cc-by-nc-sa-4.0
task_categories:
- text-classification
task_ids:
- natural-language-inference
- multi-input-text-classification
language:
- fr
size_categories:
- 1K<n<10K
---

# Dataset Card for Dataset Name


## Dataset Description

- **Homepage:** 
- **Repository:** 
- **Paper:** 
- **Leaderboard:** 
- **Point of Contact:** 

### Dataset Summary

This repository contains a machine-translated French version of [SICK](https://huggingface.co/datasets/sick) (Sentences Involving Compositional Knowldedge) dataset. The goal is to predict textual entailment (does sentence A 
imply/contradict/neither sentence B), which is a classification task (given two sentences, predict one of three labels). Apart from machine translating the sentence pairs, the rest of information (pair ID, labels, source dataset of each sentence, train/dev/test subset partition) has been left intact as in the original English dataset. 

The dataset is here formatted in a similar manner (TSV format) as the widely used [XNLI](https://huggingface.co/datasets/xnli) dataset for convenience.

The machine translation produced in the present repository should be of pretty decent quality, given the average short length of the sentences in SICK dataset.

### Supported Tasks and Leaderboards

This dataset can be used for the task of Natural Language Inference (NLI), also known as Recognizing Textual Entailment (RTE), which is a sentence-pair classification task.

## Dataset Structure

### Data Fields

- `pair_ID`: Sentence pair ID.
- `sentence_A`: Sentence A, also known as premise in other NLI datasets.
- `sentence_B`: Sentence B, also known as hypothesis in other NLI datasets.
- `entailment_label`: textual entailment gold label (NEUTRAL, ENTAILMENT, or CONTRADICTION).
- `entailment_AB`: Entailment label for the A-B order (A_neutral_B, A_entails_B, or A_contradicts_B).
- `entailment_BA`: Entailment label for the B-A order (B_neutral_A, B_entails_A, or B_contradicts_A).
- `original_SICK_sentence_A`: The original premise from the English source dataset.
- `original_SICK_sentence_B`: The original hypothesis from the English source dataset.
- `sentence_A_dataset`: The dataset from which the original sentence A was extracted (FLICKR vs. SEMEVAL).
- `sentence_B_dataset`: The dataset from which the original sentence B was extracted (FLICKR vs. SEMEVAL).

### Data Splits

|  name  |Entailment|Neutral|Contradiction|Total|
|--------|---------:|------:|------------:|------------:|
|train |   1274    |  2524  |     641     |     4439     |
|validation |   143    |  281  |     71     |     495     |
|test |   1404    |  2790  |     712     |     4906     |

For the A-B order:
|  name  |A_entails_B|A_neutral_B|A_contradicts_B|
|--------|---------:|------:|------------:|
|train |   1274    |  2381  |     784     |
|validation |   143    |  266  |     86     |
|test |   1404    |  2621  |     881     |

For the B-A order:
|  name  |B_entails_A|B_neutral_A|B_contradicts_A|
|--------|---------:|------:|------------:|
|train |   606    |  3072  |     761     |
|validation |   84    |  329  |     82     |
|test |   610    |  3431  |     865     |

## Dataset Creation

The dataset was machine translated from English to French using the latest neural machine translation [opus-mt-tc-big](https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-en-fr) model available for French. 
The translation of the sentences was carried out on November 26th, 2023.

## Additional Information

### Citation Information

**BibTeX:**

````BibTeX
@inproceedings{skandalis-etal-2024-new-datasets,
    title = "New Datasets for Automatic Detection of Textual Entailment and of Contradictions between Sentences in {F}rench",
    author = "Skandalis, Maximos  and
      Moot, Richard  and
      Retor{\'e}, Christian  and
      Robillard, Simon",
    editor = "Calzolari, Nicoletta  and
      Kan, Min-Yen  and
      Hoste, Veronique  and
      Lenci, Alessandro  and
      Sakti, Sakriani  and
      Xue, Nianwen",
    booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
    month = may,
    year = "2024",
    address = "Torino, Italy",
    publisher = "ELRA and ICCL",
    url = "https://aclanthology.org/2024.lrec-main.1065",
    pages = "12173--12186",
    abstract = "This paper introduces DACCORD, an original dataset in French for automatic detection of contradictions between sentences. It also presents new, manually translated versions of two datasets, namely the well known dataset RTE3 and the recent dataset GQNLI, from English to French, for the task of natural language inference / recognising textual entailment, which is a sentence-pair classification task. These datasets help increase the admittedly limited number of datasets in French available for these tasks. DACCORD consists of 1034 pairs of sentences and is the first dataset exclusively dedicated to this task and covering among others the topic of the Russian invasion in Ukraine. RTE3-FR contains 800 examples for each of its validation and test subsets, while GQNLI-FR is composed of 300 pairs of sentences and focuses specifically on the use of generalised quantifiers. Our experiments on these datasets show that they are more challenging than the two already existing datasets for the mainstream NLI task in French (XNLI, FraCaS). For languages other than English, most deep learning models for NLI tasks currently have only XNLI available as a training set. Additional datasets, such as ours for French, could permit different training and evaluation strategies, producing more robust results and reducing the inevitable biases present in any single dataset.",
}

@inproceedings{marelli-etal-2014-sick,
    title = "A {SICK} cure for the evaluation of compositional distributional semantic models",
    author = "Marelli, Marco  and
      Menini, Stefano  and
      Baroni, Marco  and
      Bentivogli, Luisa  and
      Bernardi, Raffaella  and
      Zamparelli, Roberto",
    editor = "Calzolari, Nicoletta  and
      Choukri, Khalid  and
      Declerck, Thierry  and
      Loftsson, Hrafn  and
      Maegaard, Bente  and
      Mariani, Joseph  and
      Moreno, Asuncion  and
      Odijk, Jan  and
      Piperidis, Stelios",
    booktitle = "Proceedings of the Ninth International Conference on Language Resources and Evaluation ({LREC}'14)",
    month = may,
    year = "2014",
    address = "Reykjavik, Iceland",
    publisher = "European Language Resources Association (ELRA)",
    url = "http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf",
    pages = "216--223",
    abstract = "Shared and internationally recognized benchmarks are fundamental for the development of any computational system. We aim to help the research community working on compositional distributional semantic models (CDSMs) by providing SICK (Sentences Involving Compositional Knowldedge), a large size English benchmark tailored for them. SICK consists of about 10,000 English sentence pairs that include many examples of the lexical, syntactic and semantic phenomena that CDSMs are expected to account for, but do not require dealing with other aspects of existing sentential data sets (idiomatic multiword expressions, named entities, telegraphic language) that are not within the scope of CDSMs. By means of crowdsourcing techniques, each pair was annotated for two crucial semantic tasks: relatedness in meaning (with a 5-point rating scale as gold score) and entailment relation between the two elements (with three possible gold labels: entailment, contradiction, and neutral). The SICK data set was used in SemEval-2014 Task 1, and it freely available for research purposes.",
}
````

**ACL:**

Maximos Skandalis, Richard Moot, Christian Retoré, and Simon Robillard. 2024. [New Datasets for Automatic Detection of Textual Entailment and of Contradictions between Sentences in French](https://aclanthology.org/2024.lrec-main.1065). In *Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)*, pages 12173–12186, Torino, Italy. ELRA and ICCL.

And

Marco Marelli, Stefano Menini, Marco Baroni, Luisa Bentivogli, Raffaella Bernardi, and Roberto Zamparelli. 2014. [A SICK cure for the evaluation of compositional distributional semantic models](http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf). In *Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)*, pages 216–223, Reykjavik, Iceland. European Language Resources Association (ELRA).

### Acknowledgements

This translation of the original dataset was done as part of a research project supported by the Defence Innovation Agency (AID) of the Directorate General of Armament (DGA) of the French Ministry of Armed Forces, and by the ICO, _Institut Cybersécurité Occitanie_, funded by Région Occitanie, France.