File size: 5,810 Bytes
d788aee
 
9fa8b98
 
9c82d79
 
d788aee
9fa8b98
 
f648741
9ee7b4f
f648741
2a3d9a6
 
77b7065
aa2072f
1f359f5
aa2072f
d28e7c4
aa2072f
77b7065
1f359f5
f648741
d28e7c4
1f359f5
9ee7b4f
 
77b7065
 
 
 
 
9ee7b4f
f648741
 
77b7065
 
f648741
 
77b7065
 
 
 
 
1f359f5
 
4c265d2
77b7065
 
 
1f359f5
d28e7c4
4050552
d28e7c4
1f359f5
4050552
 
 
1f359f5
 
6e4503c
 
4050552
 
6e4503c
4050552
6e4503c
d28e7c4
6e4503c
 
d28e7c4
 
1f359f5
6e4503c
 
 
 
 
1f359f5
 
6e4503c
1f359f5
 
 
 
 
 
 
6e4503c
 
 
1f359f5
6e4503c
 
d28e7c4
4c265d2
 
 
315cb18
4c265d2
6e4503c
4c265d2
 
 
315cb18
 
4c265d2
315cb18
4c265d2
315cb18
 
4c265d2
 
 
315cb18
 
 
 
 
4c265d2
6e4503c
 
 
 
 
 
 
 
 
 
 
 
 
4c265d2
 
 
 
 
 
 
 
 
 
315cb18
4c265d2
 
315cb18
 
 
 
 
 
 
 
 
 
 
4c265d2
315cb18
 
 
 
4c265d2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
---
license: cc0-1.0
tags:
- chess
- stockfish
pretty_name: Lichess Games With Stockfish Analysis
---
# Condensed Lichess Database
This dataset is a condensed version of the Lichess database.
It only includes games for which Stockfish evaluations were available.
Currently, the dataset contains the entire year 2023, which consists of >100M games and >1B positions.
Games are stored in a format that is much faster to process than the original PGN data.
<br>
<br>
Requirements:
```
    pip install zstandard python-chess datasets
```
<br>

# Quick Guide
In the following, I explain the data format and how to use the dataset. At the end, you find a complete example script.

### 1. Loading The Dataset
You can stream the data without storing it locally (~100 GB currently). The dataset requires `trust_remote_code=True` to execute the [custom data loading script](https://huggingface.co/datasets/mauricett/lichess_sf/blob/main/lichess_sf.py), which is necessary to decompress the files.
See [HuggingFace's documentation](https://huggingface.co/docs/datasets/main/en/load_hub#remote-code) if you're unsure.
```py
# Load dataset.
dataset = load_dataset(path="mauricett/lichess_sf",
                       split="train",
                       streaming=True,
                       trust_remote_code=True)
```
<br>

### 2. Data Format
After loading the dataset, you can check how the samples look like:
```py
example = next(iter(dataset))
print(example)
```

A single sample from the dataset contains one complete chess game as a dictionary. The dictionary keys are as follows:

1. `example['fens']` --- A list of FENs in a slightly stripped format, missing the halfmove clock and fullmove number (see [definitions on wiki](https://en.wikipedia.org/wiki/Forsyth%E2%80%93Edwards_Notation#Definition)). The starting positions have been excluded (no player made a move yet).
2. `example['moves']` --- A list of moves in [UCI format](https://en.wikipedia.org/wiki/Universal_Chess_Interface). `example['moves'][42]` is the move that led to position `example['fens'][42]`, etc.
3. `example['scores']` --- A list of Stockfish evaluations (in centipawns) from the perspective of the player who is next to move. If `example['fens'][42]` is black's turn, `example['scores'][42]` will be from black's perspective. If the game ended with a terminal condition, the last element of the list is a string 'C' (checkmate), 'S' (stalemate) or 'I' (insufficient material). Games with other outcome conditions have been excluded.
4. `example['WhiteElo'], example['BlackElo']` --- Player's Elos.
<br>

Everything but Elos is stored as strings.
<br>

### 3. Shuffle And Preprocess
Use `datasets.shuffle()` to properly shuffle the dataset. Use `datasets.map()` to transform the data to the format you require. This will process individual samples in parallel if you're using multiprocessing (e.g. with PyTorch dataloader).


```py
# Shuffle and apply your own preprocessing.
dataset = dataset.shuffle(seed=42)
dataset = dataset.map(preprocess, fn_kwargs={'tokenizer': tokenizer,
                                             'score_fn': score_fn})
```

In this example, we're passing two additional arguments to the preprocess function in dataset.map(). You can use the following mock examples for inspiration:
```py
# A mock tokenizer and functions for demonstration.
class Tokenizer:
    def __init__(self):
        pass
    def __call__(self, example):
        return example

# Transform Stockfish score and terminal outcomes.
def score_fn(score):
    return score

def preprocess(example, tokenizer, score_fn):
    # Get number of moves made in the game.
    max_ply = len(example['moves']) 
    pick_random_move = random.randint(0, max_ply-1)

    # Get the FEN, move and score for our random choice.
    fen = example['fens'][pick_random_move]
    move = example['moves'][pick_random_move]
    score = example['scores'][pick_random_move]

    # Transform data into the format of your choice.
    example['fens'] = tokenizer(fen)
    example['moves'] = tokenizer(move)
    example['scores'] = score_fn(score)
    return example

tokenizer = Tokenizer()
```
<br>
<br>
<br>

# Complete Example
You can try pasting this into Colab and it should work fine. Have fun!

```py
import random
from datasets import load_dataset
from torch.utils.data import DataLoader

# A mock tokenizer and functions for demonstration.
class Tokenizer:
    def __init__(self):
        pass
    def __call__(self, example):
        return example

def score_fn(score):
    # Transform Stockfish score and terminal outcomes.
    return score

def preprocess(example, tokenizer, score_fn):
    # Get number of moves made in the game.
    max_ply = len(example['moves']) 
    pick_random_move = random.randint(0, max_ply-1)

    # Get the FEN, move and score for our random choice.
    fen = example['fens'][pick_random_move]
    move = example['moves'][pick_random_move]
    score = example['scores'][pick_random_move]

    # Transform data into the format of your choice.
    example['fens'] = tokenizer(fen)
    example['moves'] = tokenizer(move)
    example['scores'] = score_fn(score)
    return example


tokenizer = Tokenizer()

# Load dataset.
dataset = load_dataset(path="mauricett/lichess_sf",
                       split="train",
                       streaming=True,
                       trust_remote_code=True)

                    
# Shuffle and apply your own preprocessing.
dataset = dataset.shuffle(seed=42)
dataset = dataset.map(preprocess, fn_kwargs={'tokenizer': tokenizer,
                                             'score_fn': score_fn})

# PyTorch dataloader
dataloader = DataLoader(dataset, batch_size=256, num_workers=4)


n = 0
for batch in dataloader:

    # do stuff

    n += 1
    print(n)
    if n == 50:
        break
```