File size: 3,543 Bytes
9315463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e16338
 
 
 
 
 
 
 
759d2f9
1e16338
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import os
import datasets
import pandas as pd

class geo_heterConfig(datasets.BuilderConfig):
    def __init__(self, features, data_url, **kwargs):
        super(geo_heterConfig, self).__init__(**kwargs)
        self.features = features
        self.data_url = data_url

class geo_heter(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        geo_heterConfig(
            name="pairs",
            features={
                "ltable_id":datasets.Value("string"),
                "rtable_id":datasets.Value("string"),
                "label":datasets.Value("string"),
            },
            data_url="https://huggingface.co/datasets/matchbench/geo-heter/resolve/main/",
        ),
        geo_heterConfig(
            name="source",
            features={
                "name":datasets.Value("string"),
                "latitude":datasets.Value("string"),
                "longitude":datasets.Value("string"),
                "address":datasets.Value("string"),
				"postalCode":datasets.Value("string"),
            },
            data_url="https://huggingface.co/datasets/matchbench/geo-heter/resolve/main/tableA.csv",
        ),
        geo_heterConfig(
            name="target",
            features={
                "name":datasets.Value("string"),
                "position":datasets.Value("string"),
                "address":datasets.Value("string"),
                "postalCode":datasets.Value("string"),
            },
            data_url="https://huggingface.co/datasets/matchbench/geo-heter/resolve/main/tableB.csv",
        ),
    ]
    
    def _info(self):
        return datasets.DatasetInfo(
            features=datasets.Features(self.config.features)
        )
    
    def _split_generators(self, dl_manager):
        if self.config.name == "pairs":
            return [
                datasets.SplitGenerator(
                    name=split,
                    gen_kwargs={
                        "path_file": dl_manager.download_and_extract(os.path.join(self.config.data_url, f"{split}.csv")),
                        "split":split,
                    }
                )
                for split in ["train", "valid", "test"]
            ]
        if self.config.name == "source":
            return [ datasets.SplitGenerator(name="source",gen_kwargs={"path_file":dl_manager.download_and_extract(self.config.data_url), "split":"source",})]
        if self.config.name == "target":
            return [ datasets.SplitGenerator(name="target",gen_kwargs={"path_file":dl_manager.download_and_extract(self.config.data_url), "split":"target",})]
    
    
    
    def _generate_examples(self, path_file, split):
        file = pd.read_csv(path_file)
        for i, row in file.iterrows():
            if split not in ['source', 'target']:
                yield i, {
                    "ltable_id": row["ltable_id"],
                    "rtable_id": row["rtable_id"],
                    "label": row["label"],
                }
            elif split == 'source':
                yield i, {
                    "name": row["name"],
                    "latitude": row["latitude"],
                    "longitude": row["longitude"],
                    "address": row["address"],
                    "postalCode": row["postalCode"],
                }
            else:
                yield i, {
                    "name": row["name"],
                    "position": row["position"],
                    "address": row["address"],
                    "postalCode": row["postalCode"],
                }