File size: 3,543 Bytes
9315463 1e16338 759d2f9 1e16338 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
import os
import datasets
import pandas as pd
class geo_heterConfig(datasets.BuilderConfig):
def __init__(self, features, data_url, **kwargs):
super(geo_heterConfig, self).__init__(**kwargs)
self.features = features
self.data_url = data_url
class geo_heter(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
geo_heterConfig(
name="pairs",
features={
"ltable_id":datasets.Value("string"),
"rtable_id":datasets.Value("string"),
"label":datasets.Value("string"),
},
data_url="https://huggingface.co/datasets/matchbench/geo-heter/resolve/main/",
),
geo_heterConfig(
name="source",
features={
"name":datasets.Value("string"),
"latitude":datasets.Value("string"),
"longitude":datasets.Value("string"),
"address":datasets.Value("string"),
"postalCode":datasets.Value("string"),
},
data_url="https://huggingface.co/datasets/matchbench/geo-heter/resolve/main/tableA.csv",
),
geo_heterConfig(
name="target",
features={
"name":datasets.Value("string"),
"position":datasets.Value("string"),
"address":datasets.Value("string"),
"postalCode":datasets.Value("string"),
},
data_url="https://huggingface.co/datasets/matchbench/geo-heter/resolve/main/tableB.csv",
),
]
def _info(self):
return datasets.DatasetInfo(
features=datasets.Features(self.config.features)
)
def _split_generators(self, dl_manager):
if self.config.name == "pairs":
return [
datasets.SplitGenerator(
name=split,
gen_kwargs={
"path_file": dl_manager.download_and_extract(os.path.join(self.config.data_url, f"{split}.csv")),
"split":split,
}
)
for split in ["train", "valid", "test"]
]
if self.config.name == "source":
return [ datasets.SplitGenerator(name="source",gen_kwargs={"path_file":dl_manager.download_and_extract(self.config.data_url), "split":"source",})]
if self.config.name == "target":
return [ datasets.SplitGenerator(name="target",gen_kwargs={"path_file":dl_manager.download_and_extract(self.config.data_url), "split":"target",})]
def _generate_examples(self, path_file, split):
file = pd.read_csv(path_file)
for i, row in file.iterrows():
if split not in ['source', 'target']:
yield i, {
"ltable_id": row["ltable_id"],
"rtable_id": row["rtable_id"],
"label": row["label"],
}
elif split == 'source':
yield i, {
"name": row["name"],
"latitude": row["latitude"],
"longitude": row["longitude"],
"address": row["address"],
"postalCode": row["postalCode"],
}
else:
yield i, {
"name": row["name"],
"position": row["position"],
"address": row["address"],
"postalCode": row["postalCode"],
} |