Datasets:
File size: 4,711 Bytes
de91d1e 5d23fb9 de91d1e 5d23fb9 08b9802 80ad6d2 de91d1e 24a70e9 de91d1e d699929 db4f4fa d699929 80ad6d2 7e04e23 80ad6d2 7e04e23 80ad6d2 7e04e23 80ad6d2 7e04e23 80ad6d2 7e04e23 2a8000b 7e04e23 80ad6d2 25fc267 80ad6d2 7e04e23 80ad6d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
---
license: mit
language:
- en
tags:
- chemistry
- medicinal chemistry
pretty_name: AggregatorAdvisor
size_categories:
- 10K<n<100K
dataset_summary: >-
AggregatorAdvisor identifies molecules that are known to aggregate or may aggregate in biochemical assays.
The approach is based on the chemical similarity to known aggregators, and physical properties.
The AggregatorAdvisor dataset contains 12645 compounds from 20 different sources.
citation: >-
@article
{Irwin2015, title = {An Aggregation Advisor for Ligand Discovery},
volume = {58}, ISSN = {1520-4804},
url = {http://dx.doi.org/10.1021/acs.jmedchem.5b01105},
DOI = {10.1021/acs.jmedchem.5b01105},
number = {17},
journal = {Journal of Medicinal Chemistry},
publisher = {American Chemical Society (ACS)},
author = {Irwin, John J. and Duan, Da and Torosyan, Hayarpi and Doak, Allison K. and
Ziebart, Kristin T. and Sterling, Teague and Tumanian, Gurgen and Shoichet, Brian K.},
year = {2015},
month = aug,
pages = {7076–7087}
}
config_names:
- AggregatorAdvisor
configs:
- config_name: AggregatorAdvisor
data_files:
- split: test
path: AggregatorAdvisor/test.csv
- split: train
path: AggregatorAdvisor/train.csv
dataset_info:
- config_name: AggregatorAdvisor
features:
- name: "new SMILES"
dtype: string
- name: "substance_id"
dtype: string
- name: "aggref_index"
dtype: int64
- name: "logP"
dtype: float64
- name: "reference"
dtype: string
splits:
- name: train
num_bytes: 404768
num_examples: 10116
- name: test
num_bytes: 101288
num_examples: 2529
---
# Aggregator Advisor
## Quickstart Usage
### Load a dataset in python
Each subset can be loaded into python using the Huggingface [datasets](https://huggingface.co/docs/datasets/index) library.
First, from the command line install the `datasets` library
$ pip install datasets
then, from within python load the datasets library
>>> import datasets
and load one of the `HematoxLong2023` datasets, e.g.,
>>> AggregatorAdvisor = datasets.load_dataset("maomlab/AggregatorAdvisor", name = "AggregatorAdvisor")
Downloading readme: 100%|██████████| 4.70k/4.70k [00:00<00:00, 277kB/s]
Downloading data: 100%|██████████| 530k/530k [00:00<00:00, 303kB/s]
Downloading data: 100%|██████████| 2.16M/2.16M [00:00<00:00, 12.1MB/s]
Generating test split: 100%|██████████| 2529/2529 [00:00<00:00, 29924.07 examples/s]
Generating train split: 100%|██████████| 10116/10116 [00:00<00:00, 95081.99 examples/s]
and inspecting the loaded dataset
>>> AggregatorAdvisor
DatasetDict({
test: Dataset({
features: ['new SMILES', 'substance_id', 'aggref_index', 'logP', 'reference'],
num_rows: 2529
})
train: Dataset({
features: ['new SMILES', 'substance_id', 'aggref_index', 'logP', 'reference'],
num_rows: 10116
})
})
### Use a dataset to train a model
One way to use the dataset is through the [MolFlux](https://exscientia.github.io/molflux/) package developed by Exscientia.
First, from the command line, install `MolFlux` library with `catboost` and `rdkit` support
pip install 'molflux[catboost,rdkit]'
then load, featurize, split, fit, and evaluate the catboost model
import json
from datasets import load_dataset
from molflux.datasets import featurise_dataset
from molflux.features import load_from_dicts as load_representations_from_dicts
from molflux.splits import load_from_dict as load_split_from_dict
from molflux.modelzoo import load_from_dict as load_model_from_dict
from molflux.metrics import load_suite
Split and evaluate the catboost model
split_dataset = load_dataset('maomlab/AggregatorAdvisor', name = 'AggregatorAdvisor')
split_featurised_dataset = featurise_dataset(
split_dataset,
column = "new SMILES",
representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))
model = load_model_from_dict({
"name": "cat_boost_regressor",
"config": {
"x_features": ['new SMILES::morgan', 'new SMILES::maccs_rdkit'],
"y_features": ['logP']}})
model.train(split_featurised_dataset["train"])
preds = model.predict(split_featurised_dataset["test"])
regression_suite = load_suite("regression")
scores = regression_suite.compute(
references=split_featurised_dataset["test"]['logP'],
predictions=preds["cat_boost_regressor::logP"])
## Citation
|