Datasets:
Tasks:
Token Classification
Languages:
Persian
Upload ner_dataset_script.py
Browse files- ner_dataset_script.py +89 -0
ner_dataset_script.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import csv
|
2 |
+
|
3 |
+
import datasets
|
4 |
+
|
5 |
+
|
6 |
+
logger = datasets.logging.get_logger(__name__)
|
7 |
+
|
8 |
+
_CITATION = """Citation"""
|
9 |
+
|
10 |
+
_DESCRIPTION = """Description"""
|
11 |
+
|
12 |
+
_DOWNLOAD_URLS = {
|
13 |
+
"train": "Splitdataset\nerutc_train.csv",
|
14 |
+
"test": "Splitdataset\nerutc_test.csv",
|
15 |
+
}
|
16 |
+
|
17 |
+
|
18 |
+
class DatasetNameConfig(datasets.BuilderConfig):
|
19 |
+
def __init__(self, **kwargs):
|
20 |
+
super(DatasetNameConfig, self).__init__(**kwargs)
|
21 |
+
|
22 |
+
|
23 |
+
class DatasetName(datasets.GeneratorBasedBuilder):
|
24 |
+
BUILDER_CONFIGS = [
|
25 |
+
DatasetNameConfig(
|
26 |
+
name="nerutc",
|
27 |
+
version=datasets.Version("1.1.1"),
|
28 |
+
description=_DESCRIPTION,
|
29 |
+
),
|
30 |
+
]
|
31 |
+
|
32 |
+
def _info(self):
|
33 |
+
return datasets.DatasetInfo(
|
34 |
+
description=_DESCRIPTION,
|
35 |
+
features=datasets.Features(
|
36 |
+
{
|
37 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
38 |
+
# TODO YOU SHOULD PUT THE EXTRACTED UNIQUE TAGS IN YOUR DATASET HERE. THIS LIST IS JUST AN EXAMPLE
|
39 |
+
"""
|
40 |
+
To extract unique tags from a pandas dataframe use this code and paste the output list below.
|
41 |
+
|
42 |
+
```python
|
43 |
+
unique_tags = df["TAGS_COLUMN_NAME"].explode().unique()
|
44 |
+
print(unique_tags)
|
45 |
+
```
|
46 |
+
"""
|
47 |
+
"ner_tags": datasets.Sequence( # USE `pos_tags`, `ner_tags`, `chunk_tags`, etc.
|
48 |
+
datasets.features.ClassLabel(names=['O' 'B-UNI' 'I-UNI']) # TODO
|
49 |
+
),
|
50 |
+
}
|
51 |
+
),
|
52 |
+
homepage="PUT PATH TO THE ORIGINAL DATASET HOME PAGE HERE (OPTIONAL BUT RECOMMENDED)",
|
53 |
+
citation=_CITATION,
|
54 |
+
)
|
55 |
+
|
56 |
+
def _split_generators(self, dl_manager):
|
57 |
+
"""
|
58 |
+
Return SplitGenerators.
|
59 |
+
"""
|
60 |
+
|
61 |
+
train_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["train"])
|
62 |
+
test_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["test"])
|
63 |
+
|
64 |
+
return [
|
65 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
|
66 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}),
|
67 |
+
]
|
68 |
+
|
69 |
+
# TODO
|
70 |
+
def _generate_examples(self, filepath):
|
71 |
+
"""
|
72 |
+
Per each file_path read the csv file and iterate it.
|
73 |
+
For each row yield a tuple of (id, {"tokens": ..., "tags": ..., ...})
|
74 |
+
Each call to this method yields an output like below:
|
75 |
+
```
|
76 |
+
(124, {"tokens": ["hello", "world"], "pos_tags": ["NOUN", "NOUN"]})
|
77 |
+
```
|
78 |
+
"""
|
79 |
+
logger.info("⏳ Generating examples from = %s", filepath)
|
80 |
+
with open(filepath, encoding="utf-8") as csv_file:
|
81 |
+
csv_reader = csv.reader(csv_file, quotechar='"', skipinitialspace=True)
|
82 |
+
|
83 |
+
# Uncomment below line to skip the first row if your csv file has a header row
|
84 |
+
# next(csv_reader, None)
|
85 |
+
|
86 |
+
for id_, row in enumerate(csv_reader):
|
87 |
+
tokens, ner_tags = row
|
88 |
+
# Optional preprocessing here
|
89 |
+
yield id_, {"tokens": tokens, "ner_tags": ner_tags}
|