File size: 6,462 Bytes
17f4a45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c75721
 
 
17f4a45
 
 
 
 
 
e8d20c6
 
6f26bb1
4c75721
 
 
17f4a45
 
4c75721
 
 
 
1ecb6ae
 
 
4c75721
 
6f26bb1
 
 
adff01c
6f26bb1
d5714c9
17f4a45
 
 
 
 
 
 
 
 
 
 
ee81d62
 
 
17f4a45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c75721
17f4a45
4c75721
17f4a45
 
 
4c75721
17f4a45
4c75721
17f4a45
 
4c75721
17f4a45
4c75721
 
 
 
 
 
 
 
6f26bb1
 
adff01c
6f26bb1
adff01c
6f26bb1
 
17f4a45
 
 
 
 
 
 
2d7c1b6
17f4a45
 
 
 
 
 
 
ee81d62
 
17f4a45
 
 
33075b8
17f4a45
 
 
68cff1c
17f4a45
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3

import json
import datasets
from collections import defaultdict
from dataclasses import dataclass

_CITATION = '''
'''

surprise_languages = ['de', 'yo']
new_languages = ['es', 'fa', 'fr', 'hi', 'zh'] + surprise_languages
languages = ['ar', 'bn', 'en', 'es', 'fa', 'fi', 'fr', 'hi', 'id', 'ja', 'ko', 'ru', 'sw', 'te', 'th', 'zh'] + surprise_languages

_DESCRIPTION = 'dataset load script for MIRACL'

_DATASET_URLS = {
    lang: {
        'dev': [
            f'https://huggingface.co/datasets/miracl/miracl/resolve/main/miracl-v1.0-{lang}/topics/topics.miracl-v1.0-{lang}-dev.tsv',
            f'https://huggingface.co/datasets/miracl/miracl/resolve/main/miracl-v1.0-{lang}/qrels/qrels.miracl-v1.0-{lang}-dev.tsv',
        ],
        'testB': [
            f'https://huggingface.co/datasets/miracl/miracl/resolve/main/miracl-v1.0-{lang}/topics/topics.miracl-v1.0-{lang}-test-b.tsv',
        ],
    } for lang in languages
}
for lang in languages:
    if lang in surprise_languages:
        continue
    _DATASET_URLS[lang]['train'] = [
        f'https://huggingface.co/datasets/miracl/miracl/resolve/main/miracl-v1.0-{lang}/topics/topics.miracl-v1.0-{lang}-train.tsv',
        f'https://huggingface.co/datasets/miracl/miracl/resolve/main/miracl-v1.0-{lang}/qrels/qrels.miracl-v1.0-{lang}-train.tsv',
    ]


for lang in languages:
    if lang in new_languages:
        continue
    _DATASET_URLS[lang]['testA'] = [
        f'https://huggingface.co/datasets/miracl/miracl/resolve/main/miracl-v1.0-{lang}/topics/topics.miracl-v1.0-{lang}-test-a.tsv',
    ]

def load_topic(fn):
    qid2topic = {}
    with open(fn, encoding="utf-8") as f:
        for line in f:
            qid, topic = line.strip().split('\t')
            qid2topic[qid] = topic
    return qid2topic


def load_qrels(fn):
    if fn is None:
        return None

    qrels = defaultdict(dict)
    with open(fn, encoding="utf-8") as f:
        for line in f:
            qid, _, docid, rel = line.strip().split('\t')
            qrels[qid][docid] = int(rel)
    return qrels


class MIRACL(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [datasets.BuilderConfig(
            version=datasets.Version('1.0.0'),
            name=lang, description=f'MIRACL dataset in language {lang}.'
        ) for lang in languages
    ]

    def _info(self):
        features = datasets.Features({
            'query_id': datasets.Value('string'),
            'query': datasets.Value('string'),

            'positive_passages': [{
                'docid': datasets.Value('string'),
                'text': datasets.Value('string'), 'title': datasets.Value('string')
            }],
            'negative_passages': [{
                'docid': datasets.Value('string'),
                'text': datasets.Value('string'), 'title': datasets.Value('string'),
            }],
        })

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage='https://project-miracl.github.io',
            # License for the dataset if available
            license='',
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        lang = self.config.name
        downloaded_files = dl_manager.download_and_extract(_DATASET_URLS[lang])

        splits = [
            datasets.SplitGenerator(
                name='dev',
                gen_kwargs={
                    'filepaths': downloaded_files['dev'],
                },
            ),
            datasets.SplitGenerator(
                name='testB',
                gen_kwargs={
                    'filepaths': downloaded_files['testB'],
                },
            ),

        ]
        if lang not in surprise_languages:
            splits.append(datasets.SplitGenerator(
                name='train',
                gen_kwargs={
                    'filepaths': downloaded_files['train'],
                },
            ))

        if lang not in new_languages:
            splits.append(datasets.SplitGenerator(
                name='testA',
                gen_kwargs={
                    'filepaths': downloaded_files['testA'],
                },
            ))
        return splits

    def _generate_examples(self, filepaths):
        lang = self.config.name
        miracl_corpus = datasets.load_dataset('miracl/miracl-corpus', lang)['train']
        docid2doc = {doc['docid']: (doc['title'], doc['text']) for doc in miracl_corpus}

        topic_fn, qrel_fn = (filepaths) if len(filepaths) == 2 else (filepaths[0], None)
        qid2topic = load_topic(topic_fn)
        qrels = load_qrels(qrel_fn)
        for qid in qid2topic:
            data = {}
            data['query_id'] = qid
            data['query'] = qid2topic[qid]
            
            pos_docids = [docid for docid, rel in qrels[qid].items() if rel == 1] if qrels is not None else []
            neg_docids = [docid for docid, rel in qrels[qid].items() if rel == 0] if qrels is not None else []
            data['positive_passages'] = [{
                'docid': docid, 
                **dict(zip(['title', 'text'], docid2doc[docid]))
            } for docid in pos_docids if docid in docid2doc]
            data['negative_passages'] = [{
                'docid': docid, 
                **dict(zip(['title', 'text'], docid2doc[docid]))
            } for docid in neg_docids if docid in docid2doc]
            yield qid, data