Datasets:

Modalities:
Text
Formats:
parquet
Languages:
French
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 6,139 Bytes
d52136f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from rank_bm25 import BM25Plus
import datasets
from sklearn.base import BaseEstimator
from sklearn.model_selection import GridSearchCV

from huggingface_hub import create_repo
from huggingface_hub.utils._errors import HfHubHTTPError


N_NEGATIVE_DOCS = 10
SPLIT = "test"

# Prepare documents
def create_text(example:dict) -> str:
    return "\n".join([example["title"], example["text"]])

documents = datasets.load_dataset("lyon-nlp/alloprof", "documents")["test"]
documents = documents.map(lambda x: {"text": create_text(x)})
documents = documents.rename_column("uuid", "doc_id")
documents = documents.remove_columns(["__index_level_0__", "title", "topic"])

# Prepare queries
queries = datasets.load_dataset("lyon-nlp/alloprof", "queries")[SPLIT]
queries = queries.rename_columns({"text": "queries", "relevant": "doc_id"})
queries = queries.remove_columns(["__index_level_0__", "answer", "id", "subject"])

# Optimize BM25 parameters
### Build sklearn estimator feature BM25
class BM25Estimator(BaseEstimator):

    def __init__(self, corpus_dataset:datasets.Dataset, *, k1:float=1.5, b:float=.75, delta:int=1):
        """Initialize BM25 estimator using the coprus dataset.

        The dataset must contain 2 columns:

        - "doc_id" : the documents ids

        - "text" : the document texts



        Args:

            corpus_dataset (datasets.Dataset): _description_

            k1 (float, optional): _description_. Defaults to 1.5.

            b (float, optional): _description_. Defaults to .75.

            delta (int, optional): _description_. Defaults to 1.

        """
        self.is_fitted_ = False

        self.corpus_dataset = corpus_dataset
        self.k1 = k1
        self.b = b
        self.delta=delta
        self.bm25 = None

    def tokenize_corpus(self, corpus:list[str]) -> list[str]:
        """Tokenize a corpus of strings



        Args:

            corpus (list[str]): the list of string to tokenize



        Returns:

            list[str]: the tokeinzed corpus

        """
        if isinstance(corpus, str):
            return corpus.lower().split()
        
        return [c.lower().split() for c in corpus]

    def fit(self, X=None, y=None):
        """Fits the BM25 using the dataset of documents

        Args are placeholders required by sklearn

        """
        tokenized_corpus = self.tokenize_corpus(self.corpus_dataset["text"])
        self.bm25 = BM25Plus(
            corpus=tokenized_corpus,
            k1=self.k1,
            b=self.b,
            delta=self.delta
        )
        self.is_fitted_ = True

        return self

    def predict(self, query:str, topN:int=10) -> list[str]:
        """Returns the best doc ids in order of best relevance first



        Args:

            query (str): _description_

            topN (int, optional): _description_. Defaults to 10.



        Returns:

            list[str]: _description_

        """
        if not self.is_fitted_:
            self.fit()

        tokenized_query = self.tokenize_corpus(query)
        best_docs = self.bm25.get_top_n(tokenized_query, self.corpus_dataset["text"], n=topN)
        doc_text2id = dict(list(zip(self.corpus_dataset["text"], self.corpus_dataset["doc_id"])))
        best_docs_ids = [doc_text2id[doc] for doc in best_docs]

        return best_docs_ids
    
    def score(self, queries:list[str], relevant_docs:list[list[str]]):
        """Scores the bm25 using the queries and relevant docs,

        using MRR as the metric.



        Args:

            queries (list[str]): list of queries

            relevant_docs (list[list[str]]): list of relevant documents ids for each query

        """
        best_docs_ids_preds = [self.predict(q, N_NEGATIVE_DOCS) for q in queries]
        best_docs_isrelevant = [
            [
                doc in rel_docs for doc in best_docs_ids_pred
                ]
            for best_docs_ids_pred, rel_docs in zip(best_docs_ids_preds, relevant_docs)
        ]
        mrrs = [self._compute_mrr(preds) for preds in best_docs_isrelevant]
        mrr = sum(mrrs)/len(mrrs)

        return mrr

    def _compute_mrr(self, predictions:list[bool]) -> float:
        """Compute the mrr considering a list of boolean predictions.

        Example:

            if predictions = [False, False, True, False], it would indicate

            that only the third document was labeled as relevant to the query



        Args:

            predictions (list[bool]): the binarized relevancy of predictions



        Returns:

            float: the mrr

        """
        if any(predictions):
            mrr = [1/(i+1) for i, pred in enumerate(predictions) if pred]
            mrr = sum(mrr)/len(mrr)
            return mrr
        else: 
            return 0

### Perform gridSearch to find best parameters for BM25
print("Optimizing BM25 parameters...")

params = {
    "k1":[1.25, 1.5, 1.75],
    "b": [.5, .75, 1.],
    "delta": [0, 1]
    }

gscv = GridSearchCV(BM25Estimator(documents), params, verbose=1)
gscv.fit(queries["queries"], queries["doc_id"])

print("Best parameterss :",  gscv.best_params_)
print("Best MRR score :",  gscv.best_score_)

# Build reranking dataset with positives and negative queries using best estimator
print("Generating reranking dataset...")
reranking_dataset = datasets.Dataset.from_dict(
    {
        "query": queries["queries"],
        "positive": queries["doc_id"],
        "negative": [
            [doc_id for doc_id in gscv.estimator.predict(q, N_NEGATIVE_DOCS) if doc_id not in relevant_ids]
            for q, relevant_ids in zip(queries["queries"], queries["doc_id"])
            ]
    })

# Push dataset to hub
### create HF repo
repo_id = "lyon-nlp/mteb-fr-reranking-alloprof-s2p"
try:
    create_repo(repo_id, repo_type="dataset")
except HfHubHTTPError as e:
    print("HF repo already exist")

### push to hub
reranking_dataset.push_to_hub(repo_id, config_name="queries", split=SPLIT)
documents.push_to_hub(repo_id, config_name="documents", split="test")