PsyQA / loading_script.py
siyangliu's picture
load_script
47dcb7c
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PsyQA dataset."""
import json
import os
import datasets
_DESCRIPTION = """ FutureWarning
"""
_CITATION = """ null """
_URLs = {
"train": "https://huggingface.co/datasets/siyangliu/PsyQA/resolve/main/train.json",
"valid": "https://huggingface.co/datasets/siyangliu/PsyQA/resolve/main/valid.json",
"test": "https://huggingface.co/datasets/siyangliu/PsyQA/resolve/main/test.json",
}
class PsyQA(datasets.GeneratorBasedBuilder):
"""PsyQA dataset."""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="plain_text",
description="Plain text",
version=VERSION,
)
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"question": datasets.Value("string"),
"questionID": datasets.Value("int16"),
"description": datasets.Value("string"),
"keywords": datasets.Value("string"),
"answer": datasets.Value("string"),
"has_label": datasets.Value("bool"),
"label_sequence":datasets.features.Sequence(
{
"start": datasets.Value("int16"),
"end": datasets.Value("int16"),
"type": datasets.Value("string"),
}
),
}
),
supervised_keys=None,
homepage="https://huggingface.co/datasets/siyangliu/PsyQA",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
data_dir = dl_manager.download_and_extract(_URLs)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir["train"],
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_dir["test"],
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": data_dir["valid"],
},
),
]
def _generate_examples(self, input_filepath, label_filepath=None):
"""Yields examples."""
with open(input_filepath, encoding="utf-8") as input_file:
dataset = json.load(input_file)
idx = 0
for meta_data in dataset:
for ans in meta_data["answers"]:
yield idx, {"question": meta_data["question"], "description": meta_data["description"], "keywords": meta_data["keywords"], "answer": ans["answer_text"], \
"label_sequence": ans["label_sequence"], "questionID": meta_data["questionID"], "has_label": meta_data["has_label"],}
idx += 1