Datasets:
Tasks:
Image Classification
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
100K - 1M
Tags:
OCR
Handwriting
Character Recognition
Grayscale Images
ASCII Labels
Optical Character Recognition
License:
File size: 8,011 Bytes
c1c308b f0a06da abb5ce2 f0a06da 78b7510 9a7c996 690d362 a7ad983 b648569 0062dd9 b648569 d096766 a7ad983 d096766 a7ad983 d096766 a7ad983 8cc3542 d096766 a7ad983 d096766 d52c3af a7ad983 85689d9 7ed8cab a7ad983 a8bc50c a7ad983 d895ff8 a7ad983 d895ff8 a7ad983 d895ff8 a7ad983 d895ff8 a7ad983 d895ff8 a7ad983 d895ff8 a7ad983 d895ff8 a7ad983 d096766 78b7510 d52c3af d895ff8 63c8894 d895ff8 33b0037 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
---
license: mit
---
# AlphaNum Dataset
![AlphaNum](assets/1.png)
## Abstract
The AlphaNum dataset is a collection of 108,740 grayscale images of handwritten characters and numerals as well as special character, each sized 24x24 pixels. This dataset is designed to bolster Optical Character Recognition (OCR) research and development.
For consistency, images extracted from the MNIST dataset have been color-inverted to match the grayscale aesthetics of the AlphaNum dataset.
## Data Sources
1) [Handwriting Characters Database](https://github.com/sueiras/handwritting_characters_database)
2) [MNIST](https://huggingface.co/datasets/mnist)
3) [AZ Handwritten Alphabets in CSV format](https://www.kaggle.com/datasets/sachinpatel21/az-handwritten-alphabets-in-csv-format)
In an effort to maintain uniformity, the dataset files have been resized to 24x24 pixels and recolored from white-on-black to black-on-white.
## Dataset Structure
### Instance Description
Each dataset instance contains an image of a handwritten character or numeral, paired with its corresponding ASCII label.
### Data Organization
The dataset is organized into three separate .zip files: `train.zip`, `test.zip`, and `validation.zip`. Each ASCII symbol is housed in a dedicated folder, the name of which corresponds to the ASCII value of the symbol.
- `train.zip` size: 55.9 MB
- `test.zip` size: 16 MB
- `validation.zip` size: 8.06 MB
## Dataset Utility
The AlphaNum dataset caters to a variety of use cases including text recognition, document processing, and machine learning tasks. It is particularly instrumental in the development, fine-tuning, and enhancement of OCR models.
## Null Category Image Generation
The 'null' category comprises images generated by injecting noise to mimic randomly distributed light pixels. The creation of these images is accomplished through the following Python script:
This approach is particularly valuable as it enables the model to effectively disregard specific areas of the training data by utilizing a 'null' label. By doing so, the model becomes better at recognizing letters and can ignore irrelevant parts, enhancing its performance in reallive OCR tasks.
The 'null' labelled images in this dataset have been generated using the following algorithm.
(Please note that this is a non-deterministic approach, so you will most likely get different results.)
```python
import os
import numpy as np
from PIL import Image, ImageOps, ImageEnhance
def generate_noisy_images(num_images, image_size=(24, 24) output_dir='NoisyImages', image_format='JPEG'):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
for i in range(num_images):
variation_scale = abs(np.random.normal(30, 15))
# Generate random noise with reduced strength
noise = np.random.rand(image_size[0], image_size[1]) * 0.05
noise = (noise * 255).astype(np.uint8)
# Create a PIL image from the noise
image = Image.fromarray(noise, mode='L') # 'L' for grayscale
# Invert the image
inverted_image = ImageOps.invert(image)
# Enhance the contrast with increased amplitude
enhancer = ImageEnhance.Contrast(inverted_image)
contrast_enhanced_image = enhancer.enhance(variation_scale) # Increased amplitude (e.g., 3.0)
# Save the image
contrast_enhanced_image.save(os.path.join(output_dir, f'{i}.jpg'), format=image_format)
generate_noisy_images(5000)
```
example: ![noisy Image](assets/0.jpg)
## ASCII Table and Corresponding File Counts
| ASCII Value | Character | Number of Files |
|-------------|-----------|-----------------|
| 33 | ! | 207 |
| 34 | " | 267 |
| 35 | # | 152 |
| 36 | $ | 192 |
| 37 | % | 190 |
| 38 | & | 104 |
| 39 | ' | 276 |
| 40 | ( | 346 |
| 41 | ) | 359 |
| 42 | * | 128 |
| 43 | + | 146 |
| 44 | , | 320 |
| 45 | - | 447 |
| 46 | . | 486 |
| 47 | / | 259 |
| 48 | 0 | 2664 |
| 49 | 1 | 2791 |
| 50 | 2 | 2564 |
| 51 | 3 | 2671 |
| 52 | 4 | 2530 |
| 53 | 5 | 2343 |
| 54 | 6 | 2503 |
| 55 | 7 | 2679 |
| 56 | 8 | 2544 |
| 57 | 9 | 2617 |
| 58 | : | 287 |
| 59 | ; | 223 |
| 60 | < | 168 |
| 61 | = | 254 |
| 62 | > | 162 |
| 63 | ? | 194 |
| 64 | @ | 83 |
| 65 | A | 1923 |
| 66 | B | 1505 |
| 67 | C | 1644 |
| 68 | D | 1553 |
| 69 | E | 2171 |
| 70 | F | 1468 |
| 71 | G | 1443 |
| 72 | H | 1543 |
| 73 | I | 1888 |
| 74 | J | 1470 |
| 75 | K | 1504 |
| 76 | L | 1692 |
| 77 | M | 1484 |
| 78 | N | 1683 |
| 79 | O | 2097 |
| 80 | P | 1605 |
| 81 | Q | 1409 |
| 82 | R | 1811 |
| 83 | S | 1786 |
| 84 | T | 1729 |
| 85 | U | 1458 |
| 86 | V | 1405 |
| 87 | W | 1521 |
| 88 | X | 1366 |
| 89 | Y | 1456 |
| 90 | Z | 1451 |
| 91 | [ | 111 |
| 93 | ] | 104 |
| 94 | ^ | 88 |
| 95 | _ | 80 |
| 96 | ` | 42 |
| 97 | a | 2219 |
| 98 | b | 624 |
| 99 | c | 880 |
| 100 | d | 1074 |
| 101 | e | 2962 |
| 102 | f | 608 |
| 103 | g | 760 |
| 104 | h | 990 |
| 105 | i | 2035 |
| 106 | j | 427 |
| 107 | k | 557 |
| 108 | l | 1415 |
| 109 | m | 879 |
| 110 | n | 1906 |
| 111 | o | 2048 |
| 112 | p | 786 |
| 113 | q | 427 |
| 114 | r | 1708 |
| 115 | s | 1557 |
| 116 | t | 1781 |
| 117 | u | 1319 |
| 118 | v | 555 |
| 119 | w | 680 |
| 120 | x | 463 |
| 121 | y | 680 |
| 122 | z | 505 |
| 123 | { | 73 |
| 124 | \| | 91 |
| 125 | } | 77 |
| 126 | ~ | 59 |
| 999 | null | 4999 | |