text
stringlengths
29
317k
id
stringlengths
22
166
metadata
dict
__index_level_0__
int64
0
231
""" coding=utf-8 Copyright 2018, Antonio Mendoza Hao Tan, Mohit Bansal Adapted From Facebook Inc, Detectron2 Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.import copy """ import colorsys import io import cv2 import matplotlib as mpl import matplotlib.colors as mplc import matplotlib.figure as mplfigure import numpy as np import torch from matplotlib.backends.backend_agg import FigureCanvasAgg from utils import img_tensorize _SMALL_OBJ = 1000 class SingleImageViz: def __init__( self, img, scale=1.2, edgecolor="g", alpha=0.5, linestyle="-", saveas="test_out.jpg", rgb=True, pynb=False, id2obj=None, id2attr=None, pad=0.7, ): """ img: an RGB image of shape (H, W, 3). """ if isinstance(img, torch.Tensor): img = img.numpy().astype("np.uint8") if isinstance(img, str): img = img_tensorize(img) assert isinstance(img, np.ndarray) width, height = img.shape[1], img.shape[0] fig = mplfigure.Figure(frameon=False) dpi = fig.get_dpi() width_in = (width * scale + 1e-2) / dpi height_in = (height * scale + 1e-2) / dpi fig.set_size_inches(width_in, height_in) ax = fig.add_axes([0.0, 0.0, 1.0, 1.0]) ax.axis("off") ax.set_xlim(0.0, width) ax.set_ylim(height) self.saveas = saveas self.rgb = rgb self.pynb = pynb self.img = img self.edgecolor = edgecolor self.alpha = 0.5 self.linestyle = linestyle self.font_size = int(np.sqrt(min(height, width)) * scale // 3) self.width = width self.height = height self.scale = scale self.fig = fig self.ax = ax self.pad = pad self.id2obj = id2obj self.id2attr = id2attr self.canvas = FigureCanvasAgg(fig) def add_box(self, box, color=None): if color is None: color = self.edgecolor (x0, y0, x1, y1) = box width = x1 - x0 height = y1 - y0 self.ax.add_patch( mpl.patches.Rectangle( (x0, y0), width, height, fill=False, edgecolor=color, linewidth=self.font_size // 3, alpha=self.alpha, linestyle=self.linestyle, ) ) def draw_boxes(self, boxes, obj_ids=None, obj_scores=None, attr_ids=None, attr_scores=None): if len(boxes.shape) > 2: boxes = boxes[0] if len(obj_ids.shape) > 1: obj_ids = obj_ids[0] if len(obj_scores.shape) > 1: obj_scores = obj_scores[0] if len(attr_ids.shape) > 1: attr_ids = attr_ids[0] if len(attr_scores.shape) > 1: attr_scores = attr_scores[0] if isinstance(boxes, torch.Tensor): boxes = boxes.numpy() if isinstance(boxes, list): boxes = np.array(boxes) assert isinstance(boxes, np.ndarray) areas = np.prod(boxes[:, 2:] - boxes[:, :2], axis=1) sorted_idxs = np.argsort(-areas).tolist() boxes = boxes[sorted_idxs] if boxes is not None else None obj_ids = obj_ids[sorted_idxs] if obj_ids is not None else None obj_scores = obj_scores[sorted_idxs] if obj_scores is not None else None attr_ids = attr_ids[sorted_idxs] if attr_ids is not None else None attr_scores = attr_scores[sorted_idxs] if attr_scores is not None else None assigned_colors = [self._random_color(maximum=1) for _ in range(len(boxes))] assigned_colors = [assigned_colors[idx] for idx in sorted_idxs] if obj_ids is not None: labels = self._create_text_labels_attr(obj_ids, obj_scores, attr_ids, attr_scores) for i in range(len(boxes)): color = assigned_colors[i] self.add_box(boxes[i], color) self.draw_labels(labels[i], boxes[i], color) def draw_labels(self, label, box, color): x0, y0, x1, y1 = box text_pos = (x0, y0) instance_area = (y1 - y0) * (x1 - x0) small = _SMALL_OBJ * self.scale if instance_area < small or y1 - y0 < 40 * self.scale: if y1 >= self.height - 5: text_pos = (x1, y0) else: text_pos = (x0, y1) height_ratio = (y1 - y0) / np.sqrt(self.height * self.width) lighter_color = self._change_color_brightness(color, brightness_factor=0.7) font_size = np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2) font_size *= 0.75 * self.font_size self.draw_text( text=label, position=text_pos, color=lighter_color, ) def draw_text( self, text, position, color="g", ha="left", ): rotation = 0 font_size = self.font_size color = np.maximum(list(mplc.to_rgb(color)), 0.2) color[np.argmax(color)] = max(0.8, np.max(color)) bbox = { "facecolor": "black", "alpha": self.alpha, "pad": self.pad, "edgecolor": "none", } x, y = position self.ax.text( x, y, text, size=font_size * self.scale, family="sans-serif", bbox=bbox, verticalalignment="top", horizontalalignment=ha, color=color, zorder=10, rotation=rotation, ) def save(self, saveas=None): if saveas is None: saveas = self.saveas if saveas.lower().endswith(".jpg") or saveas.lower().endswith(".png"): cv2.imwrite( saveas, self._get_buffer()[:, :, ::-1], ) else: self.fig.savefig(saveas) def _create_text_labels_attr(self, classes, scores, attr_classes, attr_scores): labels = [self.id2obj[i] for i in classes] attr_labels = [self.id2attr[i] for i in attr_classes] labels = [ f"{label} {score:.2f} {attr} {attr_score:.2f}" for label, score, attr, attr_score in zip(labels, scores, attr_labels, attr_scores) ] return labels def _create_text_labels(self, classes, scores): labels = [self.id2obj[i] for i in classes] if scores is not None: if labels is None: labels = ["{:.0f}%".format(s * 100) for s in scores] else: labels = ["{} {:.0f}%".format(li, s * 100) for li, s in zip(labels, scores)] return labels def _random_color(self, maximum=255): idx = np.random.randint(0, len(_COLORS)) ret = _COLORS[idx] * maximum if not self.rgb: ret = ret[::-1] return ret def _get_buffer(self): if not self.pynb: s, (width, height) = self.canvas.print_to_buffer() if (width, height) != (self.width, self.height): img = cv2.resize(self.img, (width, height)) else: img = self.img else: buf = io.BytesIO() # works for cairo backend self.canvas.print_rgba(buf) width, height = self.width, self.height s = buf.getvalue() img = self.img buffer = np.frombuffer(s, dtype="uint8") img_rgba = buffer.reshape(height, width, 4) rgb, alpha = np.split(img_rgba, [3], axis=2) try: import numexpr as ne # fuse them with numexpr visualized_image = ne.evaluate("img * (1 - alpha / 255.0) + rgb * (alpha / 255.0)") except ImportError: alpha = alpha.astype("float32") / 255.0 visualized_image = img * (1 - alpha) + rgb * alpha return visualized_image.astype("uint8") def _change_color_brightness(self, color, brightness_factor): assert brightness_factor >= -1.0 and brightness_factor <= 1.0 color = mplc.to_rgb(color) polygon_color = colorsys.rgb_to_hls(*mplc.to_rgb(color)) modified_lightness = polygon_color[1] + (brightness_factor * polygon_color[1]) modified_lightness = 0.0 if modified_lightness < 0.0 else modified_lightness modified_lightness = 1.0 if modified_lightness > 1.0 else modified_lightness modified_color = colorsys.hls_to_rgb(polygon_color[0], modified_lightness, polygon_color[2]) return modified_color # Color map _COLORS = ( np.array( [ 0.000, 0.447, 0.741, 0.850, 0.325, 0.098, 0.929, 0.694, 0.125, 0.494, 0.184, 0.556, 0.466, 0.674, 0.188, 0.301, 0.745, 0.933, 0.635, 0.078, 0.184, 0.300, 0.300, 0.300, 0.600, 0.600, 0.600, 1.000, 0.000, 0.000, 1.000, 0.500, 0.000, 0.749, 0.749, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 1.000, 0.667, 0.000, 1.000, 0.333, 0.333, 0.000, 0.333, 0.667, 0.000, 0.333, 1.000, 0.000, 0.667, 0.333, 0.000, 0.667, 0.667, 0.000, 0.667, 1.000, 0.000, 1.000, 0.333, 0.000, 1.000, 0.667, 0.000, 1.000, 1.000, 0.000, 0.000, 0.333, 0.500, 0.000, 0.667, 0.500, 0.000, 1.000, 0.500, 0.333, 0.000, 0.500, 0.333, 0.333, 0.500, 0.333, 0.667, 0.500, 0.333, 1.000, 0.500, 0.667, 0.000, 0.500, 0.667, 0.333, 0.500, 0.667, 0.667, 0.500, 0.667, 1.000, 0.500, 1.000, 0.000, 0.500, 1.000, 0.333, 0.500, 1.000, 0.667, 0.500, 1.000, 1.000, 0.500, 0.000, 0.333, 1.000, 0.000, 0.667, 1.000, 0.000, 1.000, 1.000, 0.333, 0.000, 1.000, 0.333, 0.333, 1.000, 0.333, 0.667, 1.000, 0.333, 1.000, 1.000, 0.667, 0.000, 1.000, 0.667, 0.333, 1.000, 0.667, 0.667, 1.000, 0.667, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 0.333, 1.000, 1.000, 0.667, 1.000, 0.333, 0.000, 0.000, 0.500, 0.000, 0.000, 0.667, 0.000, 0.000, 0.833, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 0.167, 0.000, 0.000, 0.333, 0.000, 0.000, 0.500, 0.000, 0.000, 0.667, 0.000, 0.000, 0.833, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 0.167, 0.000, 0.000, 0.333, 0.000, 0.000, 0.500, 0.000, 0.000, 0.667, 0.000, 0.000, 0.833, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 0.143, 0.143, 0.143, 0.857, 0.857, 0.857, 1.000, 1.000, 1.000, ] ) .astype(np.float32) .reshape(-1, 3) )
transformers/examples/research_projects/visual_bert/visualizing_image.py/0
{ "file_path": "transformers/examples/research_projects/visual_bert/visualizing_image.py", "repo_id": "transformers", "token_count": 8190 }
84
#!/usr/bin/env bash python run_asr.py \ --output_dir="./wav2vec2-large-xlsr-53-arabic-speech-corpus" \ --num_train_epochs="50" \ --per_device_train_batch_size="1" \ --per_device_eval_batch_size="1" \ --gradient_accumulation_steps="8" \ --eval_strategy="steps" \ --save_steps="500" \ --eval_steps="100" \ --logging_steps="50" \ --learning_rate="5e-4" \ --warmup_steps="3000" \ --model_name_or_path="elgeish/wav2vec2-large-xlsr-53-arabic" \ --fp16 \ --dataset_name="arabic_speech_corpus" \ --train_split_name="train" \ --validation_split_name="test" \ --max_duration_in_seconds="15" \ --orthography="buckwalter" \ --preprocessing_num_workers="$(nproc)" \ --group_by_length \ --freeze_feature_extractor \ --target_feature_extractor_sampling_rate \ --verbose_logging \
transformers/examples/research_projects/wav2vec2/finetune_large_xlsr_53_arabic_speech_corpus.sh/0
{ "file_path": "transformers/examples/research_projects/wav2vec2/finetune_large_xlsr_53_arabic_speech_corpus.sh", "repo_id": "transformers", "token_count": 323 }
85
<!--- Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Multiple-choice training (e.g. SWAG) This folder contains the `run_swag.py` script, showing an examples of *multiple-choice answering* with the 🤗 Transformers library. For straightforward use-cases you may be able to use these scripts without modification, although we have also included comments in the code to indicate areas that you may need to adapt to your own projects. ### Multi-GPU and TPU usage By default, the script uses a `MirroredStrategy` and will use multiple GPUs effectively if they are available. TPUs can also be used by passing the name of the TPU resource with the `--tpu` argument. ### Memory usage and data loading One thing to note is that all data is loaded into memory in this script. Most multiple-choice datasets are small enough that this is not an issue, but if you have a very large dataset you will need to modify the script to handle data streaming. This is particularly challenging for TPUs, given the stricter requirements and the sheer volume of data required to keep them fed. A full explanation of all the possible pitfalls is a bit beyond this example script and README, but for more information you can see the 'Input Datasets' section of [this document](https://www.tensorflow.org/guide/tpu). ### Example command ```bash python run_swag.py \ --model_name_or_path distilbert/distilbert-base-cased \ --output_dir output \ --do_eval \ --do_train ```
transformers/examples/tensorflow/multiple-choice/README.md/0
{ "file_path": "transformers/examples/tensorflow/multiple-choice/README.md", "repo_id": "transformers", "token_count": 513 }
86
#!/usr/bin/env bash # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script evals the following fsmt models # it covers: # - facebook/wmt19-ru-en # - facebook/wmt19-en-ru # - facebook/wmt19-de-en # - facebook/wmt19-en-de # this script needs to be run from the top level of the transformers repo if [ ! -d "src/transformers" ]; then echo "Error: This script needs to be run from the top of the transformers repo" exit 1 fi # In these scripts you may have to lower BS if you get CUDA OOM (or increase it if you have a large GPU) ### a short estimate version for quick testing ### export PAIR=en-ru export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=8 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src | head -10 > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref | head -10 > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ### Normal eval ### # ru-en export PAIR=ru-en export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=50 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS # (target BLEU: 41.3 http://matrix.statmt.org/matrix/output/1907?run_id=6937) # en-ru export PAIR=en-ru export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=50 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS # (target BLEU: 36.4 http://matrix.statmt.org/matrix/output/1914?score_id=37605) # en-de export PAIR=en-de export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS # (target BLEU: 43.1 http://matrix.statmt.org/matrix/output/1909?run_id=6862) # de-en export PAIR=de-en export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=50 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS # (target BLEU: 42.3 http://matrix.statmt.org/matrix/output/1902?run_id=6750) ### Searching hparams eval ### # en-ru export PAIR=ru-en export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=32 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target CUDA_VISIBLE_DEVICES="0" PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval_search.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --search="num_beams=5 length_penalty=0.6:0.7:0.8:0.9:1.0:1.1" # en-ru export PAIR=en-ru export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=16 mkdir -p $DATA_DIR mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target CUDA_VISIBLE_DEVICES="0" PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval_search.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --search="num_beams=5:8:11:15 length_penalty=0.6:0.7:0.8:0.9:1.0:1.1 early_stopping=true:false" # en-de export PAIR=en-de export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=16 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target CUDA_VISIBLE_DEVICES="1" PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval_search.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --search="num_beams=5:8:11:15 length_penalty=0.6:0.7:0.8:0.9:1.0:1.1 early_stopping=true:false" # de-en export PAIR=de-en export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=16 mkdir -p $DATA_DIR mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target CUDA_VISIBLE_DEVICES="1" PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval_search.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --search="num_beams=5:8:11:15 length_penalty=0.6:0.7:0.8:0.9:1.0:1.1 early_stopping=true:false"
transformers/scripts/fsmt/eval-facebook-wmt19.sh/0
{ "file_path": "transformers/scripts/fsmt/eval-facebook-wmt19.sh", "repo_id": "transformers", "token_count": 2623 }
87
#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _import_structure = { "agents": ["Agent", "CodeAgent", "ManagedAgent", "ReactAgent", "ReactCodeAgent", "ReactJsonAgent", "Toolbox"], "llm_engine": ["HfApiEngine", "TransformersEngine"], "monitoring": ["stream_to_gradio"], "tools": ["PipelineTool", "Tool", "ToolCollection", "launch_gradio_demo", "load_tool", "tool"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["default_tools"] = ["FinalAnswerTool", "PythonInterpreterTool"] _import_structure["document_question_answering"] = ["DocumentQuestionAnsweringTool"] _import_structure["image_question_answering"] = ["ImageQuestionAnsweringTool"] _import_structure["search"] = ["DuckDuckGoSearchTool", "VisitWebpageTool"] _import_structure["speech_to_text"] = ["SpeechToTextTool"] _import_structure["text_to_speech"] = ["TextToSpeechTool"] _import_structure["translation"] = ["TranslationTool"] if TYPE_CHECKING: from .agents import Agent, CodeAgent, ManagedAgent, ReactAgent, ReactCodeAgent, ReactJsonAgent, Toolbox from .llm_engine import HfApiEngine, TransformersEngine from .monitoring import stream_to_gradio from .tools import PipelineTool, Tool, ToolCollection, launch_gradio_demo, load_tool, tool try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .default_tools import FinalAnswerTool, PythonInterpreterTool from .document_question_answering import DocumentQuestionAnsweringTool from .image_question_answering import ImageQuestionAnsweringTool from .search import DuckDuckGoSearchTool, VisitWebpageTool from .speech_to_text import SpeechToTextTool from .text_to_speech import TextToSpeechTool from .translation import TranslationTool else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/agents/__init__.py/0
{ "file_path": "transformers/src/transformers/agents/__init__.py", "repo_id": "transformers", "token_count": 949 }
88
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team and the librosa & torchaudio authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Audio processing functions to extract features from audio waveforms. This code is pure numpy to support all frameworks and remove unnecessary dependencies. """ import warnings from typing import List, Optional, Tuple, Union import numpy as np def hertz_to_mel(freq: Union[float, np.ndarray], mel_scale: str = "htk") -> Union[float, np.ndarray]: """ Convert frequency from hertz to mels. Args: freq (`float` or `np.ndarray`): The frequency, or multiple frequencies, in hertz (Hz). mel_scale (`str`, *optional*, defaults to `"htk"`): The mel frequency scale to use, `"htk"`, `"kaldi"` or `"slaney"`. Returns: `float` or `np.ndarray`: The frequencies on the mel scale. """ if mel_scale not in ["slaney", "htk", "kaldi"]: raise ValueError('mel_scale should be one of "htk", "slaney" or "kaldi".') if mel_scale == "htk": return 2595.0 * np.log10(1.0 + (freq / 700.0)) elif mel_scale == "kaldi": return 1127.0 * np.log(1.0 + (freq / 700.0)) min_log_hertz = 1000.0 min_log_mel = 15.0 logstep = 27.0 / np.log(6.4) mels = 3.0 * freq / 200.0 if isinstance(freq, np.ndarray): log_region = freq >= min_log_hertz mels[log_region] = min_log_mel + np.log(freq[log_region] / min_log_hertz) * logstep elif freq >= min_log_hertz: mels = min_log_mel + np.log(freq / min_log_hertz) * logstep return mels def mel_to_hertz(mels: Union[float, np.ndarray], mel_scale: str = "htk") -> Union[float, np.ndarray]: """ Convert frequency from mels to hertz. Args: mels (`float` or `np.ndarray`): The frequency, or multiple frequencies, in mels. mel_scale (`str`, *optional*, `"htk"`): The mel frequency scale to use, `"htk"`, `"kaldi"` or `"slaney"`. Returns: `float` or `np.ndarray`: The frequencies in hertz. """ if mel_scale not in ["slaney", "htk", "kaldi"]: raise ValueError('mel_scale should be one of "htk", "slaney" or "kaldi".') if mel_scale == "htk": return 700.0 * (np.power(10, mels / 2595.0) - 1.0) elif mel_scale == "kaldi": return 700.0 * (np.exp(mels / 1127.0) - 1.0) min_log_hertz = 1000.0 min_log_mel = 15.0 logstep = np.log(6.4) / 27.0 freq = 200.0 * mels / 3.0 if isinstance(mels, np.ndarray): log_region = mels >= min_log_mel freq[log_region] = min_log_hertz * np.exp(logstep * (mels[log_region] - min_log_mel)) elif mels >= min_log_mel: freq = min_log_hertz * np.exp(logstep * (mels - min_log_mel)) return freq def hertz_to_octave( freq: Union[float, np.ndarray], tuning: Optional[float] = 0.0, bins_per_octave: Optional[int] = 12 ): """ Convert frequency from hertz to fractional octave numbers. Adapted from *librosa*. Args: freq (`float` or `np.ndarray`): The frequency, or multiple frequencies, in hertz (Hz). tuning (`float`, defaults to `0.`): Tuning deviation from the Stuttgart pitch (A440) in (fractional) bins per octave. bins_per_octave (`int`, defaults to `12`): Number of bins per octave. Returns: `float` or `np.ndarray`: The frequencies on the octave scale. """ stuttgart_pitch = 440.0 * 2.0 ** (tuning / bins_per_octave) octave = np.log2(freq / (float(stuttgart_pitch) / 16)) return octave def _create_triangular_filter_bank(fft_freqs: np.ndarray, filter_freqs: np.ndarray) -> np.ndarray: """ Creates a triangular filter bank. Adapted from *torchaudio* and *librosa*. Args: fft_freqs (`np.ndarray` of shape `(num_frequency_bins,)`): Discrete frequencies of the FFT bins in Hz. filter_freqs (`np.ndarray` of shape `(num_mel_filters,)`): Center frequencies of the triangular filters to create, in Hz. Returns: `np.ndarray` of shape `(num_frequency_bins, num_mel_filters)` """ filter_diff = np.diff(filter_freqs) slopes = np.expand_dims(filter_freqs, 0) - np.expand_dims(fft_freqs, 1) down_slopes = -slopes[:, :-2] / filter_diff[:-1] up_slopes = slopes[:, 2:] / filter_diff[1:] return np.maximum(np.zeros(1), np.minimum(down_slopes, up_slopes)) def chroma_filter_bank( num_frequency_bins: int, num_chroma: int, sampling_rate: int, tuning: float = 0.0, power: Optional[float] = 2.0, weighting_parameters: Optional[Tuple[float]] = (5.0, 2), start_at_c_chroma: Optional[bool] = True, ): """ Creates a chroma filter bank, i.e a linear transformation to project spectrogram bins onto chroma bins. Adapted from *librosa*. Args: num_frequency_bins (`int`): Number of frequencies used to compute the spectrogram (should be the same as in `stft`). num_chroma (`int`): Number of chroma bins (i.e pitch classes). sampling_rate (`float`): Sample rate of the audio waveform. tuning (`float`): Tuning deviation from A440 in fractions of a chroma bin. power (`float`, *optional*, defaults to 2.0): If 12.0, normalizes each column with their L2 norm. If 1.0, normalizes each column with their L1 norm. weighting_parameters (`Tuple[float]`, *optional*, defaults to `(5., 2.)`): If specified, apply a Gaussian weighting parameterized by the first element of the tuple being the center and the second element being the Gaussian half-width. start_at_c_chroma (`float`, *optional*, defaults to `True`): If True, the filter bank will start at the 'C' pitch class. Otherwise, it will start at 'A'. Returns: `np.ndarray` of shape `(num_frequency_bins, num_chroma)` """ # Get the FFT bins, not counting the DC component frequencies = np.linspace(0, sampling_rate, num_frequency_bins, endpoint=False)[1:] freq_bins = num_chroma * hertz_to_octave(frequencies, tuning=tuning, bins_per_octave=num_chroma) # make up a value for the 0 Hz bin = 1.5 octaves below bin 1 # (so chroma is 50% rotated from bin 1, and bin width is broad) freq_bins = np.concatenate(([freq_bins[0] - 1.5 * num_chroma], freq_bins)) bins_width = np.concatenate((np.maximum(freq_bins[1:] - freq_bins[:-1], 1.0), [1])) chroma_filters = np.subtract.outer(freq_bins, np.arange(0, num_chroma, dtype="d")).T num_chroma2 = np.round(float(num_chroma) / 2) # Project into range -num_chroma/2 .. num_chroma/2 # add on fixed offset of 10*num_chroma to ensure all values passed to # rem are positive chroma_filters = np.remainder(chroma_filters + num_chroma2 + 10 * num_chroma, num_chroma) - num_chroma2 # Gaussian bumps - 2*D to make them narrower chroma_filters = np.exp(-0.5 * (2 * chroma_filters / np.tile(bins_width, (num_chroma, 1))) ** 2) # normalize each column if power is not None: chroma_filters = chroma_filters / np.sum(chroma_filters**power, axis=0, keepdims=True) ** (1.0 / power) # Maybe apply scaling for fft bins if weighting_parameters is not None: center, half_width = weighting_parameters chroma_filters *= np.tile( np.exp(-0.5 * (((freq_bins / num_chroma - center) / half_width) ** 2)), (num_chroma, 1), ) if start_at_c_chroma: chroma_filters = np.roll(chroma_filters, -3 * (num_chroma // 12), axis=0) # remove aliasing columns, copy to ensure row-contiguity return np.ascontiguousarray(chroma_filters[:, : int(1 + num_frequency_bins / 2)]) def mel_filter_bank( num_frequency_bins: int, num_mel_filters: int, min_frequency: float, max_frequency: float, sampling_rate: int, norm: Optional[str] = None, mel_scale: str = "htk", triangularize_in_mel_space: bool = False, ) -> np.ndarray: """ Creates a frequency bin conversion matrix used to obtain a mel spectrogram. This is called a *mel filter bank*, and various implementation exist, which differ in the number of filters, the shape of the filters, the way the filters are spaced, the bandwidth of the filters, and the manner in which the spectrum is warped. The goal of these features is to approximate the non-linear human perception of the variation in pitch with respect to the frequency. Different banks of mel filters were introduced in the literature. The following variations are supported: - MFCC FB-20: introduced in 1980 by Davis and Mermelstein, it assumes a sampling frequency of 10 kHz and a speech bandwidth of `[0, 4600]` Hz. - MFCC FB-24 HTK: from the Cambridge HMM Toolkit (HTK) (1995) uses a filter bank of 24 filters for a speech bandwidth of `[0, 8000]` Hz. This assumes sampling rate ≥ 16 kHz. - MFCC FB-40: from the Auditory Toolbox for MATLAB written by Slaney in 1998, assumes a sampling rate of 16 kHz and speech bandwidth of `[133, 6854]` Hz. This version also includes area normalization. - HFCC-E FB-29 (Human Factor Cepstral Coefficients) of Skowronski and Harris (2004), assumes a sampling rate of 12.5 kHz and speech bandwidth of `[0, 6250]` Hz. This code is adapted from *torchaudio* and *librosa*. Note that the default parameters of torchaudio's `melscale_fbanks` implement the `"htk"` filters while librosa uses the `"slaney"` implementation. Args: num_frequency_bins (`int`): Number of frequencies used to compute the spectrogram (should be the same as in `stft`). num_mel_filters (`int`): Number of mel filters to generate. min_frequency (`float`): Lowest frequency of interest in Hz. max_frequency (`float`): Highest frequency of interest in Hz. This should not exceed `sampling_rate / 2`. sampling_rate (`int`): Sample rate of the audio waveform. norm (`str`, *optional*): If `"slaney"`, divide the triangular mel weights by the width of the mel band (area normalization). mel_scale (`str`, *optional*, defaults to `"htk"`): The mel frequency scale to use, `"htk"`, `"kaldi"` or `"slaney"`. triangularize_in_mel_space (`bool`, *optional*, defaults to `False`): If this option is enabled, the triangular filter is applied in mel space rather than frequency space. This should be set to `true` in order to get the same results as `torchaudio` when computing mel filters. Returns: `np.ndarray` of shape (`num_frequency_bins`, `num_mel_filters`): Triangular filter bank matrix. This is a projection matrix to go from a spectrogram to a mel spectrogram. """ if norm is not None and norm != "slaney": raise ValueError('norm must be one of None or "slaney"') # center points of the triangular mel filters mel_min = hertz_to_mel(min_frequency, mel_scale=mel_scale) mel_max = hertz_to_mel(max_frequency, mel_scale=mel_scale) mel_freqs = np.linspace(mel_min, mel_max, num_mel_filters + 2) filter_freqs = mel_to_hertz(mel_freqs, mel_scale=mel_scale) if triangularize_in_mel_space: # frequencies of FFT bins in Hz, but filters triangularized in mel space fft_bin_width = sampling_rate / (num_frequency_bins * 2) fft_freqs = hertz_to_mel(fft_bin_width * np.arange(num_frequency_bins), mel_scale=mel_scale) filter_freqs = mel_freqs else: # frequencies of FFT bins in Hz fft_freqs = np.linspace(0, sampling_rate // 2, num_frequency_bins) mel_filters = _create_triangular_filter_bank(fft_freqs, filter_freqs) if norm is not None and norm == "slaney": # Slaney-style mel is scaled to be approx constant energy per channel enorm = 2.0 / (filter_freqs[2 : num_mel_filters + 2] - filter_freqs[:num_mel_filters]) mel_filters *= np.expand_dims(enorm, 0) if (mel_filters.max(axis=0) == 0.0).any(): warnings.warn( "At least one mel filter has all zero values. " f"The value for `num_mel_filters` ({num_mel_filters}) may be set too high. " f"Or, the value for `num_frequency_bins` ({num_frequency_bins}) may be set too low." ) return mel_filters def optimal_fft_length(window_length: int) -> int: """ Finds the best FFT input size for a given `window_length`. This function takes a given window length and, if not already a power of two, rounds it up to the next power or two. The FFT algorithm works fastest when the length of the input is a power of two, which may be larger than the size of the window or analysis frame. For example, if the window is 400 samples, using an FFT input size of 512 samples is more optimal than an FFT size of 400 samples. Using a larger FFT size does not affect the detected frequencies, it simply gives a higher frequency resolution (i.e. the frequency bins are smaller). """ return 2 ** int(np.ceil(np.log2(window_length))) def window_function( window_length: int, name: str = "hann", periodic: bool = True, frame_length: Optional[int] = None, center: bool = True, ) -> np.ndarray: """ Returns an array containing the specified window. This window is intended to be used with `stft`. The following window types are supported: - `"boxcar"`: a rectangular window - `"hamming"`: the Hamming window - `"hann"`: the Hann window - `"povey"`: the Povey window Args: window_length (`int`): The length of the window in samples. name (`str`, *optional*, defaults to `"hann"`): The name of the window function. periodic (`bool`, *optional*, defaults to `True`): Whether the window is periodic or symmetric. frame_length (`int`, *optional*): The length of the analysis frames in samples. Provide a value for `frame_length` if the window is smaller than the frame length, so that it will be zero-padded. center (`bool`, *optional*, defaults to `True`): Whether to center the window inside the FFT buffer. Only used when `frame_length` is provided. Returns: `np.ndarray` of shape `(window_length,)` or `(frame_length,)` containing the window. """ length = window_length + 1 if periodic else window_length if name == "boxcar": window = np.ones(length) elif name in ["hamming", "hamming_window"]: window = np.hamming(length) elif name in ["hann", "hann_window"]: window = np.hanning(length) elif name in ["povey"]: window = np.power(np.hanning(length), 0.85) else: raise ValueError(f"Unknown window function '{name}'") if periodic: window = window[:-1] if frame_length is None: return window if window_length > frame_length: raise ValueError( f"Length of the window ({window_length}) may not be larger than frame_length ({frame_length})" ) padded_window = np.zeros(frame_length) offset = (frame_length - window_length) // 2 if center else 0 padded_window[offset : offset + window_length] = window return padded_window # TODO This method does not support batching yet as we are mainly focused on inference. def spectrogram( waveform: np.ndarray, window: np.ndarray, frame_length: int, hop_length: int, fft_length: Optional[int] = None, power: Optional[float] = 1.0, center: bool = True, pad_mode: str = "reflect", onesided: bool = True, preemphasis: Optional[float] = None, mel_filters: Optional[np.ndarray] = None, mel_floor: float = 1e-10, log_mel: Optional[str] = None, reference: float = 1.0, min_value: float = 1e-10, db_range: Optional[float] = None, remove_dc_offset: Optional[bool] = None, dtype: np.dtype = np.float32, ) -> np.ndarray: """ Calculates a spectrogram over one waveform using the Short-Time Fourier Transform. This function can create the following kinds of spectrograms: - amplitude spectrogram (`power = 1.0`) - power spectrogram (`power = 2.0`) - complex-valued spectrogram (`power = None`) - log spectrogram (use `log_mel` argument) - mel spectrogram (provide `mel_filters`) - log-mel spectrogram (provide `mel_filters` and `log_mel`) How this works: 1. The input waveform is split into frames of size `frame_length` that are partially overlapping by `frame_length - hop_length` samples. 2. Each frame is multiplied by the window and placed into a buffer of size `fft_length`. 3. The DFT is taken of each windowed frame. 4. The results are stacked into a spectrogram. We make a distinction between the following "blocks" of sample data, each of which may have a different lengths: - The analysis frame. This is the size of the time slices that the input waveform is split into. - The window. Each analysis frame is multiplied by the window to avoid spectral leakage. - The FFT input buffer. The length of this determines how many frequency bins are in the spectrogram. In this implementation, the window is assumed to be zero-padded to have the same size as the analysis frame. A padded window can be obtained from `window_function()`. The FFT input buffer may be larger than the analysis frame, typically the next power of two. Note: This function is not optimized for speed yet. It should be mostly compatible with `librosa.stft` and `torchaudio.functional.transforms.Spectrogram`, although it is more flexible due to the different ways spectrograms can be constructed. Args: waveform (`np.ndarray` of shape `(length,)`): The input waveform. This must be a single real-valued, mono waveform. window (`np.ndarray` of shape `(frame_length,)`): The windowing function to apply, including zero-padding if necessary. The actual window length may be shorter than `frame_length`, but we're assuming the array has already been zero-padded. frame_length (`int`): The length of the analysis frames in samples. With librosa this is always equal to `fft_length` but we also allow smaller sizes. hop_length (`int`): The stride between successive analysis frames in samples. fft_length (`int`, *optional*): The size of the FFT buffer in samples. This determines how many frequency bins the spectrogram will have. For optimal speed, this should be a power of two. If `None`, uses `frame_length`. power (`float`, *optional*, defaults to 1.0): If 1.0, returns the amplitude spectrogram. If 2.0, returns the power spectrogram. If `None`, returns complex numbers. center (`bool`, *optional*, defaults to `True`): Whether to pad the waveform so that frame `t` is centered around time `t * hop_length`. If `False`, frame `t` will start at time `t * hop_length`. pad_mode (`str`, *optional*, defaults to `"reflect"`): Padding mode used when `center` is `True`. Possible values are: `"constant"` (pad with zeros), `"edge"` (pad with edge values), `"reflect"` (pads with mirrored values). onesided (`bool`, *optional*, defaults to `True`): If True, only computes the positive frequencies and returns a spectrogram containing `fft_length // 2 + 1` frequency bins. If False, also computes the negative frequencies and returns `fft_length` frequency bins. preemphasis (`float`, *optional*) Coefficient for a low-pass filter that applies pre-emphasis before the DFT. mel_filters (`np.ndarray` of shape `(num_freq_bins, num_mel_filters)`, *optional*): The mel filter bank. If supplied, applies a this filter bank to create a mel spectrogram. mel_floor (`float`, *optional*, defaults to 1e-10): Minimum value of mel frequency banks. log_mel (`str`, *optional*): How to convert the spectrogram to log scale. Possible options are: `None` (don't convert), `"log"` (take the natural logarithm) `"log10"` (take the base-10 logarithm), `"dB"` (convert to decibels). Can only be used when `power` is not `None`. reference (`float`, *optional*, defaults to 1.0): Sets the input spectrogram value that corresponds to 0 dB. For example, use `np.max(spectrogram)` to set the loudest part to 0 dB. Must be greater than zero. min_value (`float`, *optional*, defaults to `1e-10`): The spectrogram will be clipped to this minimum value before conversion to decibels, to avoid taking `log(0)`. For a power spectrogram, the default of `1e-10` corresponds to a minimum of -100 dB. For an amplitude spectrogram, the value `1e-5` corresponds to -100 dB. Must be greater than zero. db_range (`float`, *optional*): Sets the maximum dynamic range in decibels. For example, if `db_range = 80`, the difference between the peak value and the smallest value will never be more than 80 dB. Must be greater than zero. remove_dc_offset (`bool`, *optional*): Subtract mean from waveform on each frame, applied before pre-emphasis. This should be set to `true` in order to get the same results as `torchaudio.compliance.kaldi.fbank` when computing mel filters. dtype (`np.dtype`, *optional*, defaults to `np.float32`): Data type of the spectrogram tensor. If `power` is None, this argument is ignored and the dtype will be `np.complex64`. Returns: `nd.array` containing a spectrogram of shape `(num_frequency_bins, length)` for a regular spectrogram or shape `(num_mel_filters, length)` for a mel spectrogram. """ window_length = len(window) if fft_length is None: fft_length = frame_length if frame_length > fft_length: raise ValueError(f"frame_length ({frame_length}) may not be larger than fft_length ({fft_length})") if window_length != frame_length: raise ValueError(f"Length of the window ({window_length}) must equal frame_length ({frame_length})") if hop_length <= 0: raise ValueError("hop_length must be greater than zero") if waveform.ndim != 1: raise ValueError(f"Input waveform must have only one dimension, shape is {waveform.shape}") if np.iscomplexobj(waveform): raise ValueError("Complex-valued input waveforms are not currently supported") if power is None and mel_filters is not None: raise ValueError( "You have provided `mel_filters` but `power` is `None`. Mel spectrogram computation is not yet supported for complex-valued spectrogram." "Specify `power` to fix this issue." ) # center pad the waveform if center: padding = [(int(frame_length // 2), int(frame_length // 2))] waveform = np.pad(waveform, padding, mode=pad_mode) # promote to float64, since np.fft uses float64 internally waveform = waveform.astype(np.float64) window = window.astype(np.float64) # split waveform into frames of frame_length size num_frames = int(1 + np.floor((waveform.size - frame_length) / hop_length)) num_frequency_bins = (fft_length // 2) + 1 if onesided else fft_length spectrogram = np.empty((num_frames, num_frequency_bins), dtype=np.complex64) # rfft is faster than fft fft_func = np.fft.rfft if onesided else np.fft.fft buffer = np.zeros(fft_length) timestep = 0 for frame_idx in range(num_frames): buffer[:frame_length] = waveform[timestep : timestep + frame_length] if remove_dc_offset: buffer[:frame_length] = buffer[:frame_length] - buffer[:frame_length].mean() if preemphasis is not None: buffer[1:frame_length] -= preemphasis * buffer[: frame_length - 1] buffer[0] *= 1 - preemphasis buffer[:frame_length] *= window spectrogram[frame_idx] = fft_func(buffer) timestep += hop_length # note: ** is much faster than np.power if power is not None: spectrogram = np.abs(spectrogram, dtype=np.float64) ** power spectrogram = spectrogram.T if mel_filters is not None: spectrogram = np.maximum(mel_floor, np.dot(mel_filters.T, spectrogram)) if power is not None and log_mel is not None: if log_mel == "log": spectrogram = np.log(spectrogram) elif log_mel == "log10": spectrogram = np.log10(spectrogram) elif log_mel == "dB": if power == 1.0: spectrogram = amplitude_to_db(spectrogram, reference, min_value, db_range) elif power == 2.0: spectrogram = power_to_db(spectrogram, reference, min_value, db_range) else: raise ValueError(f"Cannot use log_mel option '{log_mel}' with power {power}") else: raise ValueError(f"Unknown log_mel option: {log_mel}") spectrogram = np.asarray(spectrogram, dtype) return spectrogram def spectrogram_batch( waveform_list: List[np.ndarray], window: np.ndarray, frame_length: int, hop_length: int, fft_length: Optional[int] = None, power: Optional[float] = 1.0, center: bool = True, pad_mode: str = "reflect", onesided: bool = True, preemphasis: Optional[float] = None, mel_filters: Optional[np.ndarray] = None, mel_floor: float = 1e-10, log_mel: Optional[str] = None, reference: float = 1.0, min_value: float = 1e-10, db_range: Optional[float] = None, remove_dc_offset: Optional[bool] = None, dtype: np.dtype = np.float32, ) -> List[np.ndarray]: """ Calculates spectrograms for a list of waveforms using the Short-Time Fourier Transform, optimized for batch processing. This function extends the capabilities of the `spectrogram` function to handle multiple waveforms efficiently by leveraging broadcasting. It supports generating various types of spectrograms: - amplitude spectrogram (`power = 1.0`) - power spectrogram (`power = 2.0`) - complex-valued spectrogram (`power = None`) - log spectrogram (use `log_mel` argument) - mel spectrogram (provide `mel_filters`) - log-mel spectrogram (provide `mel_filters` and `log_mel`) How this works: 1. The input waveform is split into frames of size `frame_length` that are partially overlapping by `frame_length - hop_length` samples. 2. Each frame is multiplied by the window and placed into a buffer of size `fft_length`. 3. The DFT is taken of each windowed frame. 4. The results are stacked into a spectrogram. We make a distinction between the following "blocks" of sample data, each of which may have a different lengths: - The analysis frame. This is the size of the time slices that the input waveform is split into. - The window. Each analysis frame is multiplied by the window to avoid spectral leakage. - The FFT input buffer. The length of this determines how many frequency bins are in the spectrogram. In this implementation, the window is assumed to be zero-padded to have the same size as the analysis frame. A padded window can be obtained from `window_function()`. The FFT input buffer may be larger than the analysis frame, typically the next power of two. Note: This function is designed for efficient batch processing of multiple waveforms but retains compatibility with individual waveform processing methods like `librosa.stft`. Args: waveform_list (`List[np.ndarray]` with arrays of shape `(length,)`): The list of input waveforms, each a single-channel (mono) signal. window (`np.ndarray` of shape `(frame_length,)`): The windowing function to apply, including zero-padding if necessary. frame_length (`int`): The length of each frame for analysis. hop_length (`int`): The step size between successive frames. fft_length (`int`, *optional*): The size of the FFT buffer, defining frequency bin resolution. power (`float`, *optional*, defaults to 1.0): Determines the type of spectrogram: 1.0 for amplitude, 2.0 for power, None for complex. center (`bool`, *optional*, defaults to `True`): Whether to center-pad the waveform frames. pad_mode (`str`, *optional*, defaults to `"reflect"`): The padding strategy when `center` is `True`. onesided (`bool`, *optional*, defaults to `True`): If True, returns a one-sided spectrogram for real input signals. preemphasis (`float`, *optional*): Applies a pre-emphasis filter to each frame. mel_filters (`np.ndarray`, *optional*): Mel filter bank for converting to mel spectrogram. mel_floor (`float`, *optional*, defaults to 1e-10): Floor value for mel spectrogram to avoid log(0). log_mel (`str`, *optional*): Specifies log scaling strategy; options are None, "log", "log10", "dB". reference (`float`, *optional*, defaults to 1.0): Reference value for dB conversion in log_mel. min_value (`float`, *optional*, defaults to 1e-10): Minimum floor value for log scale conversions. db_range (`float`, *optional*): Dynamic range for dB scale spectrograms. remove_dc_offset (`bool`, *optional*): Whether to remove the DC offset from each frame. dtype (`np.dtype`, *optional*, defaults to `np.float32`): Data type of the output spectrogram. Returns: List[`np.ndarray`]: A list of spectrogram arrays, one for each input waveform. """ window_length = len(window) if fft_length is None: fft_length = frame_length if frame_length > fft_length: raise ValueError(f"frame_length ({frame_length}) may not be larger than fft_length ({fft_length})") if window_length != frame_length: raise ValueError(f"Length of the window ({window_length}) must equal frame_length ({frame_length})") if hop_length <= 0: raise ValueError("hop_length must be greater than zero") # Check the dimensions of the waveform , and if waveform is complex for waveform in waveform_list: if waveform.ndim != 1: raise ValueError(f"Input waveform must have only one dimension, shape is {waveform.shape}") if np.iscomplexobj(waveform): raise ValueError("Complex-valued input waveforms are not currently supported") # Center pad the waveform if center: padding = [(int(frame_length // 2), int(frame_length // 2))] waveform_list = [ np.pad( waveform, padding, mode=pad_mode, ) for waveform in waveform_list ] original_waveform_lengths = [ len(waveform) for waveform in waveform_list ] # these lengths will be used to remove padding later # Batch pad the waveform max_length = max(original_waveform_lengths) padded_waveform_batch = np.array( [ np.pad(waveform, (0, max_length - len(waveform)), mode="constant", constant_values=0) for waveform in waveform_list ], dtype=dtype, ) # Promote to float64, since np.fft uses float64 internally padded_waveform_batch = padded_waveform_batch.astype(np.float64) window = window.astype(np.float64) # Split waveform into frames of frame_length size num_frames = int(1 + np.floor((padded_waveform_batch.shape[1] - frame_length) / hop_length)) # these lengths will be used to remove padding later true_num_frames = [int(1 + np.floor((length - frame_length) / hop_length)) for length in original_waveform_lengths] num_batches = padded_waveform_batch.shape[0] num_frequency_bins = (fft_length // 2) + 1 if onesided else fft_length spectrogram = np.empty((num_batches, num_frames, num_frequency_bins), dtype=np.complex64) # rfft is faster than fft fft_func = np.fft.rfft if onesided else np.fft.fft buffer = np.zeros((num_batches, fft_length)) for frame_idx in range(num_frames): timestep = frame_idx * hop_length buffer[:, :frame_length] = padded_waveform_batch[:, timestep : timestep + frame_length] if remove_dc_offset: buffer[:, :frame_length] -= buffer[:, :frame_length].mean(axis=1, keepdims=True) if preemphasis is not None: buffer[:, 1:frame_length] -= preemphasis * buffer[:, : frame_length - 1] buffer[:, 0] *= 1 - preemphasis buffer[:, :frame_length] *= window spectrogram[:, frame_idx] = fft_func(buffer) # Note: ** is much faster than np.power if power is not None: spectrogram = np.abs(spectrogram, dtype=np.float64) ** power # Apply mel filters if provided if mel_filters is not None: result = np.tensordot(spectrogram, mel_filters.T, axes=([2], [1])) spectrogram = np.maximum(mel_floor, result) # Convert to log scale if specified if power is not None and log_mel is not None: if log_mel == "log": spectrogram = np.log(spectrogram) elif log_mel == "log10": spectrogram = np.log10(spectrogram) elif log_mel == "dB": if power == 1.0: spectrogram = amplitude_to_db_batch(spectrogram, reference, min_value, db_range) elif power == 2.0: spectrogram = power_to_db_batch(spectrogram, reference, min_value, db_range) else: raise ValueError(f"Cannot use log_mel option '{log_mel}' with power {power}") else: raise ValueError(f"Unknown log_mel option: {log_mel}") spectrogram = np.asarray(spectrogram, dtype) spectrogram_list = [spectrogram[i, : true_num_frames[i], :].T for i in range(len(true_num_frames))] return spectrogram_list def power_to_db( spectrogram: np.ndarray, reference: float = 1.0, min_value: float = 1e-10, db_range: Optional[float] = None, ) -> np.ndarray: """ Converts a power spectrogram to the decibel scale. This computes `10 * log10(spectrogram / reference)`, using basic logarithm properties for numerical stability. The motivation behind applying the log function on the (mel) spectrogram is that humans do not hear loudness on a linear scale. Generally to double the perceived volume of a sound we need to put 8 times as much energy into it. This means that large variations in energy may not sound all that different if the sound is loud to begin with. This compression operation makes the (mel) spectrogram features match more closely what humans actually hear. Based on the implementation of `librosa.power_to_db`. Args: spectrogram (`np.ndarray`): The input power (mel) spectrogram. Note that a power spectrogram has the amplitudes squared! reference (`float`, *optional*, defaults to 1.0): Sets the input spectrogram value that corresponds to 0 dB. For example, use `np.max(spectrogram)` to set the loudest part to 0 dB. Must be greater than zero. min_value (`float`, *optional*, defaults to `1e-10`): The spectrogram will be clipped to this minimum value before conversion to decibels, to avoid taking `log(0)`. The default of `1e-10` corresponds to a minimum of -100 dB. Must be greater than zero. db_range (`float`, *optional*): Sets the maximum dynamic range in decibels. For example, if `db_range = 80`, the difference between the peak value and the smallest value will never be more than 80 dB. Must be greater than zero. Returns: `np.ndarray`: the spectrogram in decibels """ if reference <= 0.0: raise ValueError("reference must be greater than zero") if min_value <= 0.0: raise ValueError("min_value must be greater than zero") reference = max(min_value, reference) spectrogram = np.clip(spectrogram, a_min=min_value, a_max=None) spectrogram = 10.0 * (np.log10(spectrogram) - np.log10(reference)) if db_range is not None: if db_range <= 0.0: raise ValueError("db_range must be greater than zero") spectrogram = np.clip(spectrogram, a_min=spectrogram.max() - db_range, a_max=None) return spectrogram def power_to_db_batch( spectrogram: np.ndarray, reference: float = 1.0, min_value: float = 1e-10, db_range: Optional[float] = None, ) -> np.ndarray: """ Converts a batch of power spectrograms to the decibel scale. This computes `10 * log10(spectrogram / reference)`, using basic logarithm properties for numerical stability. This function supports batch processing, where each item in the batch is an individual power (mel) spectrogram. Args: spectrogram (`np.ndarray`): The input batch of power (mel) spectrograms. Expected shape is (batch_size, *spectrogram_shape). Note that a power spectrogram has the amplitudes squared! reference (`float`, *optional*, defaults to 1.0): Sets the input spectrogram value that corresponds to 0 dB. For example, use `np.max(spectrogram)` to set the loudest part to 0 dB. Must be greater than zero. min_value (`float`, *optional*, defaults to `1e-10`): The spectrogram will be clipped to this minimum value before conversion to decibels, to avoid taking `log(0)`. The default of `1e-10` corresponds to a minimum of -100 dB. Must be greater than zero. db_range (`float`, *optional*): Sets the maximum dynamic range in decibels. For example, if `db_range = 80`, the difference between the peak value and the smallest value will never be more than 80 dB. Must be greater than zero. Returns: `np.ndarray`: the batch of spectrograms in decibels """ if reference <= 0.0: raise ValueError("reference must be greater than zero") if min_value <= 0.0: raise ValueError("min_value must be greater than zero") reference = max(min_value, reference) spectrogram = np.clip(spectrogram, a_min=min_value, a_max=None) spectrogram = 10.0 * (np.log10(spectrogram) - np.log10(reference)) if db_range is not None: if db_range <= 0.0: raise ValueError("db_range must be greater than zero") # Apply db_range clipping per batch item max_values = spectrogram.max(axis=(1, 2), keepdims=True) spectrogram = np.clip(spectrogram, a_min=max_values - db_range, a_max=None) return spectrogram def amplitude_to_db( spectrogram: np.ndarray, reference: float = 1.0, min_value: float = 1e-5, db_range: Optional[float] = None, ) -> np.ndarray: """ Converts an amplitude spectrogram to the decibel scale. This computes `20 * log10(spectrogram / reference)`, using basic logarithm properties for numerical stability. The motivation behind applying the log function on the (mel) spectrogram is that humans do not hear loudness on a linear scale. Generally to double the perceived volume of a sound we need to put 8 times as much energy into it. This means that large variations in energy may not sound all that different if the sound is loud to begin with. This compression operation makes the (mel) spectrogram features match more closely what humans actually hear. Args: spectrogram (`np.ndarray`): The input amplitude (mel) spectrogram. reference (`float`, *optional*, defaults to 1.0): Sets the input spectrogram value that corresponds to 0 dB. For example, use `np.max(spectrogram)` to set the loudest part to 0 dB. Must be greater than zero. min_value (`float`, *optional*, defaults to `1e-5`): The spectrogram will be clipped to this minimum value before conversion to decibels, to avoid taking `log(0)`. The default of `1e-5` corresponds to a minimum of -100 dB. Must be greater than zero. db_range (`float`, *optional*): Sets the maximum dynamic range in decibels. For example, if `db_range = 80`, the difference between the peak value and the smallest value will never be more than 80 dB. Must be greater than zero. Returns: `np.ndarray`: the spectrogram in decibels """ if reference <= 0.0: raise ValueError("reference must be greater than zero") if min_value <= 0.0: raise ValueError("min_value must be greater than zero") reference = max(min_value, reference) spectrogram = np.clip(spectrogram, a_min=min_value, a_max=None) spectrogram = 20.0 * (np.log10(spectrogram) - np.log10(reference)) if db_range is not None: if db_range <= 0.0: raise ValueError("db_range must be greater than zero") spectrogram = np.clip(spectrogram, a_min=spectrogram.max() - db_range, a_max=None) return spectrogram def amplitude_to_db_batch( spectrogram: np.ndarray, reference: float = 1.0, min_value: float = 1e-5, db_range: Optional[float] = None ) -> np.ndarray: """ Converts a batch of amplitude spectrograms to the decibel scale. This computes `20 * log10(spectrogram / reference)`, using basic logarithm properties for numerical stability. The function supports batch processing, where each item in the batch is an individual amplitude (mel) spectrogram. Args: spectrogram (`np.ndarray`): The input batch of amplitude (mel) spectrograms. Expected shape is (batch_size, *spectrogram_shape). reference (`float`, *optional*, defaults to 1.0): Sets the input spectrogram value that corresponds to 0 dB. For example, use `np.max(spectrogram)` to set the loudest part to 0 dB. Must be greater than zero. min_value (`float`, *optional*, defaults to `1e-5`): The spectrogram will be clipped to this minimum value before conversion to decibels, to avoid taking `log(0)`. The default of `1e-5` corresponds to a minimum of -100 dB. Must be greater than zero. db_range (`float`, *optional*): Sets the maximum dynamic range in decibels. For example, if `db_range = 80`, the difference between the peak value and the smallest value will never be more than 80 dB. Must be greater than zero. Returns: `np.ndarray`: the batch of spectrograms in decibels """ if reference <= 0.0: raise ValueError("reference must be greater than zero") if min_value <= 0.0: raise ValueError("min_value must be greater than zero") reference = max(min_value, reference) spectrogram = np.clip(spectrogram, a_min=min_value, a_max=None) spectrogram = 20.0 * (np.log10(spectrogram) - np.log10(reference)) if db_range is not None: if db_range <= 0.0: raise ValueError("db_range must be greater than zero") # Apply db_range clipping per batch item max_values = spectrogram.max(axis=(1, 2), keepdims=True) spectrogram = np.clip(spectrogram, a_min=max_values - db_range, a_max=None) return spectrogram ### deprecated functions below this line ### def get_mel_filter_banks( nb_frequency_bins: int, nb_mel_filters: int, frequency_min: float, frequency_max: float, sample_rate: int, norm: Optional[str] = None, mel_scale: str = "htk", ) -> np.array: warnings.warn( "The function `get_mel_filter_banks` is deprecated and will be removed in version 4.31.0 of Transformers", FutureWarning, ) return mel_filter_bank( num_frequency_bins=nb_frequency_bins, num_mel_filters=nb_mel_filters, min_frequency=frequency_min, max_frequency=frequency_max, sampling_rate=sample_rate, norm=norm, mel_scale=mel_scale, ) def fram_wave(waveform: np.array, hop_length: int = 160, fft_window_size: int = 400, center: bool = True): """ In order to compute the short time fourier transform, the waveform needs to be split in overlapping windowed segments called `frames`. The window length (window_length) defines how much of the signal is contained in each frame, while the hop length defines the step between the beginning of each new frame. Args: waveform (`np.array` of shape `(sample_length,)`): The raw waveform which will be split into smaller chunks. hop_length (`int`, *optional*, defaults to 160): Step between each window of the waveform. fft_window_size (`int`, *optional*, defaults to 400): Defines the size of the window. center (`bool`, defaults to `True`): Whether or not to center each frame around the middle of the frame. Centering is done by reflecting the waveform on the left and on the right. Return: framed_waveform (`np.array` of shape `(waveform.shape // hop_length , fft_window_size)`): The framed waveforms that can be fed to `np.fft`. """ warnings.warn( "The function `fram_wave` is deprecated and will be removed in version 4.31.0 of Transformers", FutureWarning, ) frames = [] for i in range(0, waveform.shape[0] + 1, hop_length): if center: half_window = (fft_window_size - 1) // 2 + 1 start = i - half_window if i > half_window else 0 end = i + half_window if i < waveform.shape[0] - half_window else waveform.shape[0] frame = waveform[start:end] if start == 0: padd_width = (-i + half_window, 0) frame = np.pad(frame, pad_width=padd_width, mode="reflect") elif end == waveform.shape[0]: padd_width = (0, (i - waveform.shape[0] + half_window)) frame = np.pad(frame, pad_width=padd_width, mode="reflect") else: frame = waveform[i : i + fft_window_size] frame_width = frame.shape[0] if frame_width < waveform.shape[0]: frame = np.lib.pad( frame, pad_width=(0, fft_window_size - frame_width), mode="constant", constant_values=0 ) frames.append(frame) frames = np.stack(frames, 0) return frames def stft(frames: np.array, windowing_function: np.array, fft_window_size: int = None): """ Calculates the complex Short-Time Fourier Transform (STFT) of the given framed signal. Should give the same results as `torch.stft`. Args: frames (`np.array` of dimension `(num_frames, fft_window_size)`): A framed audio signal obtained using `audio_utils.fram_wav`. windowing_function (`np.array` of dimension `(nb_frequency_bins, nb_mel_filters)`: A array representing the function that will be used to reduces the amplitude of the discontinuities at the boundaries of each frame when computing the STFT. Each frame will be multiplied by the windowing_function. For more information on the discontinuities, called *Spectral leakage*, refer to [this tutorial]https://download.ni.com/evaluation/pxi/Understanding%20FFTs%20and%20Windowing.pdf fft_window_size (`int`, *optional*): Size of the window om which the Fourier transform is applied. This controls the frequency resolution of the spectrogram. 400 means that the fourrier transform is computed on windows of 400 samples. The number of frequency bins (`nb_frequency_bins`) used to divide the window into equal strips is equal to `(1+fft_window_size)//2`. An increase of the fft_window_size slows the calculus time proportionnally. Example: ```python >>> from transformers.audio_utils import stft, fram_wave >>> import numpy as np >>> audio = np.random.rand(50) >>> fft_window_size = 10 >>> hop_length = 2 >>> framed_audio = fram_wave(audio, hop_length, fft_window_size) >>> spectrogram = stft(framed_audio, np.hanning(fft_window_size + 1)) ``` Returns: spectrogram (`np.ndarray`): A spectrogram of shape `(num_frames, nb_frequency_bins)` obtained using the STFT algorithm """ warnings.warn( "The function `stft` is deprecated and will be removed in version 4.31.0 of Transformers", FutureWarning, ) frame_size = frames.shape[1] if fft_window_size is None: fft_window_size = frame_size if fft_window_size < frame_size: raise ValueError("FFT size must greater or equal the frame size") # number of FFT bins to store nb_frequency_bins = (fft_window_size >> 1) + 1 spectrogram = np.empty((len(frames), nb_frequency_bins), dtype=np.complex64) fft_signal = np.zeros(fft_window_size) for f, frame in enumerate(frames): if windowing_function is not None: np.multiply(frame, windowing_function, out=fft_signal[:frame_size]) else: fft_signal[:frame_size] = frame spectrogram[f] = np.fft.fft(fft_signal, axis=0)[:nb_frequency_bins] return spectrogram.T
transformers/src/transformers/audio_utils.py/0
{ "file_path": "transformers/src/transformers/audio_utils.py", "repo_id": "transformers", "token_count": 19128 }
89
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert pytorch checkpoints to TensorFlow""" import argparse import os from . import ( AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPT2Config, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, T5Config, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPT2LMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFT5ForConditionalGeneration, TFTransfoXLLMHeadModel, TFWav2Vec2Model, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, Wav2Vec2Config, Wav2Vec2Model, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tf2_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPT2LMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, T5ForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() MODEL_CLASSES = { "bart": ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, ), "bert": ( BertConfig, TFBertForPreTraining, BertForPreTraining, ), "google-bert/bert-large-uncased-whole-word-masking-finetuned-squad": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, ), "google-bert/bert-large-cased-whole-word-masking-finetuned-squad": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, ), "google-bert/bert-base-cased-finetuned-mrpc": ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, ), "dpr": ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, ), "openai-community/gpt2": ( GPT2Config, TFGPT2LMHeadModel, GPT2LMHeadModel, ), "xlnet": ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, ), "xlm": ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, ), "xlm-roberta": ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, ), "transfo-xl": ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, ), "openai-community/openai-gpt": ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, ), "roberta": ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ), "layoutlm": ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, ), "FacebookAI/roberta-large-mnli": ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ), "camembert": ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, ), "flaubert": ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, ), "distilbert": ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, ), "distilbert-base-distilled-squad": ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, ), "lxmert": ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, ), "lxmert-visual-feature-encoder": ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, ), "Salesforce/ctrl": ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, ), "albert": ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ), "t5": ( T5Config, TFT5ForConditionalGeneration, T5ForConditionalGeneration, ), "electra": ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ), "wav2vec2": ( Wav2Vec2Config, TFWav2Vec2Model, Wav2Vec2Model, ), } def convert_pt_checkpoint_to_tf( model_type, pytorch_checkpoint_path, config_file, tf_dump_path, compare_with_pt_model=False, use_cached_models=True ): if model_type not in MODEL_CLASSES: raise ValueError(f"Unrecognized model type, should be one of {list(MODEL_CLASSES.keys())}.") config_class, model_class, pt_model_class, aws_config_map = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: config_file = cached_file(config_file, CONFIG_NAME, force_download=not use_cached_models) config = config_class.from_json_file(config_file) config.output_hidden_states = True config.output_attentions = True print(f"Building TensorFlow model from configuration: {config}") tf_model = model_class(config) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): pytorch_checkpoint_path = cached_file( pytorch_checkpoint_path, WEIGHTS_NAME, force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: tf_model = load_pytorch_checkpoint_in_tf2_model(tf_model, pytorch_checkpoint_path) if compare_with_pt_model: tfo = tf_model(tf_model.dummy_inputs, training=False) # build the network weights_only_kwarg = {"weights_only": True} state_dict = torch.load( pytorch_checkpoint_path, map_location="cpu", **weights_only_kwarg, ) pt_model = pt_model_class.from_pretrained( pretrained_model_name_or_path=None, config=config, state_dict=state_dict ) with torch.no_grad(): pto = pt_model(**pt_model.dummy_inputs) np_pt = pto[0].numpy() np_tf = tfo[0].numpy() diff = np.amax(np.abs(np_pt - np_tf)) print(f"Max absolute difference between models outputs {diff}") assert diff <= 2e-2, f"Error, model absolute difference is >2e-2: {diff}" # Save pytorch-model print(f"Save TensorFlow model to {tf_dump_path}") tf_model.save_weights(tf_dump_path, save_format="h5") def convert_all_pt_checkpoints_to_tf( args_model_type, tf_dump_path, model_shortcut_names_or_path=None, config_shortcut_names_or_path=None, compare_with_pt_model=False, use_cached_models=False, remove_cached_files=False, only_convert_finetuned_models=False, ): if args_model_type is None: model_types = list(MODEL_CLASSES.keys()) else: model_types = [args_model_type] for j, model_type in enumerate(model_types, start=1): print("=" * 100) print(f" Converting model type {j}/{len(model_types)}: {model_type}") print("=" * 100) if model_type not in MODEL_CLASSES: raise ValueError(f"Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys())}.") config_class, model_class, pt_model_class, aws_model_maps, aws_config_map = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: model_shortcut_names_or_path = list(aws_model_maps.keys()) if config_shortcut_names_or_path is None: config_shortcut_names_or_path = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(model_shortcut_names_or_path, config_shortcut_names_or_path), start=1 ): print("-" * 100) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(f" Skipping finetuned checkpoint {model_shortcut_name}") continue model_type = model_shortcut_name elif only_convert_finetuned_models: print(f" Skipping not finetuned checkpoint {model_shortcut_name}") continue print( f" Converting checkpoint {i}/{len(aws_config_map)}: {model_shortcut_name} - model_type {model_type}" ) print("-" * 100) if config_shortcut_name in aws_config_map: config_file = cached_file(config_shortcut_name, CONFIG_NAME, force_download=not use_cached_models) else: config_file = config_shortcut_name if model_shortcut_name in aws_model_maps: model_file = cached_file(model_shortcut_name, WEIGHTS_NAME, force_download=not use_cached_models) else: model_file = model_shortcut_name if os.path.isfile(model_shortcut_name): model_shortcut_name = "converted_model" convert_pt_checkpoint_to_tf( model_type=model_type, pytorch_checkpoint_path=model_file, config_file=config_file, tf_dump_path=os.path.join(tf_dump_path, model_shortcut_name + "-tf_model.h5"), compare_with_pt_model=compare_with_pt_model, ) if remove_cached_files: os.remove(config_file) os.remove(model_file) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_dump_path", default=None, type=str, required=True, help="Path to the output Tensorflow dump file." ) parser.add_argument( "--model_type", default=None, type=str, help=( f"Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and " "convert all the models from AWS." ), ) parser.add_argument( "--pytorch_checkpoint_path", default=None, type=str, help=( "Path to the PyTorch checkpoint path or shortcut name to download from AWS. " "If not given, will download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--config_file", default=None, type=str, help=( "The config json file corresponding to the pre-trained model. \n" "This specifies the model architecture. If not given and " "--pytorch_checkpoint_path is not given or is a shortcut name " "use the configuration associated to the shortcut name on the AWS" ), ) parser.add_argument( "--compare_with_pt_model", action="store_true", help="Compare Tensorflow and PyTorch model predictions." ) parser.add_argument( "--use_cached_models", action="store_true", help="Use cached models if possible instead of updating to latest checkpoint versions.", ) parser.add_argument( "--remove_cached_files", action="store_true", help="Remove pytorch models after conversion (save memory when converting in batches).", ) parser.add_argument("--only_convert_finetuned_models", action="store_true", help="Only convert finetuned models.") args = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
transformers/src/transformers/convert_pytorch_checkpoint_to_tf2.py/0
{ "file_path": "transformers/src/transformers/convert_pytorch_checkpoint_to_tf2.py", "repo_id": "transformers", "token_count": 6724 }
90
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """XNLI utils (dataset loading and evaluation)""" import os from ...utils import logging from .utils import DataProcessor, InputExample logger = logging.get_logger(__name__) class XnliProcessor(DataProcessor): """ Processor for the XNLI dataset. Adapted from https://github.com/google-research/bert/blob/f39e881b169b9d53bea03d2d341b31707a6c052b/run_classifier.py#L207 """ def __init__(self, language, train_language=None): self.language = language self.train_language = train_language def get_train_examples(self, data_dir): """See base class.""" lg = self.language if self.train_language is None else self.train_language lines = self._read_tsv(os.path.join(data_dir, f"XNLI-MT-1.0/multinli/multinli.train.{lg}.tsv")) examples = [] for i, line in enumerate(lines): if i == 0: continue guid = f"train-{i}" text_a = line[0] text_b = line[1] label = "contradiction" if line[2] == "contradictory" else line[2] if not isinstance(text_a, str): raise TypeError(f"Training input {text_a} is not a string") if not isinstance(text_b, str): raise TypeError(f"Training input {text_b} is not a string") if not isinstance(label, str): raise TypeError(f"Training label {label} is not a string") examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def get_test_examples(self, data_dir): """See base class.""" lines = self._read_tsv(os.path.join(data_dir, "XNLI-1.0/xnli.test.tsv")) examples = [] for i, line in enumerate(lines): if i == 0: continue language = line[0] if language != self.language: continue guid = f"test-{i}" text_a = line[6] text_b = line[7] label = line[1] if not isinstance(text_a, str): raise TypeError(f"Training input {text_a} is not a string") if not isinstance(text_b, str): raise TypeError(f"Training input {text_b} is not a string") if not isinstance(label, str): raise TypeError(f"Training label {label} is not a string") examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def get_labels(self): """See base class.""" return ["contradiction", "entailment", "neutral"] xnli_processors = { "xnli": XnliProcessor, } xnli_output_modes = { "xnli": "classification", } xnli_tasks_num_labels = { "xnli": 3, }
transformers/src/transformers/data/processors/xnli.py/0
{ "file_path": "transformers/src/transformers/data/processors/xnli.py", "repo_id": "transformers", "token_count": 1505 }
91
import time import warnings from abc import ABC from collections import OrderedDict from copy import deepcopy from typing import Dict, List, Optional, Tuple, Union import numpy as np import torch from torch.nn import functional as F from ..pytorch_utils import isin_mps_friendly from ..tokenization_utils_base import PreTrainedTokenizerBase from ..utils import add_start_docstrings, logging logger = logging.get_logger(__name__) # We maintain a module-level cache of the embedding vectors for the stop string criterion # because they are slow to compute STOP_STRING_EMBEDDING_CACHE = OrderedDict() STOPPING_CRITERIA_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. If this stopping criteria depends on the `scores` input, make sure you pass `return_dict_in_generate=True, output_scores=True` to `generate`. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `torch.BoolTensor`. (`torch.BoolTensor` of shape `(batch_size, 1)`), where `True` indicates we stop generation for a particular row, `True` indicates we should continue. """ class StoppingCriteria(ABC): """Abstract base class for all stopping criteria that can be applied during generation. If your stopping criteria depends on the `scores` input, make sure you pass `return_dict_in_generate=True, output_scores=True` to `generate`. """ @add_start_docstrings(STOPPING_CRITERIA_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> torch.BoolTensor: raise NotImplementedError("StoppingCriteria needs to be subclassed") class MaxLengthCriteria(StoppingCriteria): """ This class can be used to stop generation whenever the full generated number of tokens exceeds `max_length`. Keep in mind for decoder-only type of transformers, this will include the initial prompted tokens. Args: max_length (`int`): The maximum length that the output sequence can have in number of tokens. max_position_embeddings (`int`, *optional*): The maximum model length, as defined by the model's `config.max_position_embeddings` attribute. """ def __init__(self, max_length: int, max_position_embeddings: Optional[int] = None): self.max_length = max_length self.max_position_embeddings = max_position_embeddings @add_start_docstrings(STOPPING_CRITERIA_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> torch.BoolTensor: cur_len = input_ids.shape[-1] is_done = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( "This is a friendly reminder - the current text generation call will exceed the model's predefined " f"maximum length ({self.max_position_embeddings}). Depending on the model, you may observe " "exceptions, performance degradation, or nothing at all." ) return torch.full((input_ids.shape[0],), is_done, device=input_ids.device, dtype=torch.bool) class MaxTimeCriteria(StoppingCriteria): """ This class can be used to stop generation whenever the full generation exceeds some amount of time. By default, the time will start being counted when you initialize this function. You can override this by passing an `initial_time`. Args: max_time (`float`): The maximum allowed time in seconds for the generation. initial_time (`float`, *optional*, defaults to `time.time()`): The start of the generation allowed time. """ def __init__(self, max_time: float, initial_timestamp: Optional[float] = None): self.max_time = max_time self.initial_timestamp = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(STOPPING_CRITERIA_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> torch.BoolTensor: is_done = time.time() - self.initial_timestamp > self.max_time return torch.full((input_ids.shape[0],), is_done, device=input_ids.device, dtype=torch.bool) class StopStringCriteria(StoppingCriteria): """ This class can be used to stop generation whenever specific string sequences are generated. It preprocesses the strings together with the tokenizer vocab to find positions where tokens can validly complete the stop strings. Generation is stopped as soon as a token is generated that completes any of the stop strings. We want to catch any instance in which the stop string would be present in the decoded output, which means we must also catch cases with "overhangs" off one or both ends. To make this more concrete, for the stop string "stop", any of the following token sequences would trigger the match: - ["st", "op"] - ["stop"] - ["st", "opera"] - ["sto", "pper"] - ["las", "topper"] - ["s", "to", "pped"] Note that a match will only be triggered if the stop string is at the end of the generated sequence. In other words, these sequences will not trigger a match: - ["stop", "at"] - ["st", "op", "at"] - ["st", "opera", "tion"] The reason these are not a match is that the stop string does not overlap with the final token. If you can remove one or more tokens from the end of the sequence without destroying the stop string, then this criterion will not match that stop string. This is by design; because this check is run after each token is generated, we can't miss a valid stop string if one is generated, but we don't want to halt generation just because the stop string exists somewhere in the past input_ids. How is the match actually performed, though? We do it in quite a confusing way, because we want the entire match process to be compilable with Torch or XLA, which means we cannot use standard string methods. However, it is possible, with some work, to do string matching with pure tensor operations. We'll begin by describing the algorithm we use with standard string operations, and then at the end we'll explain how this is converted to pure tensor operations. The key to the algorithm is an observation: Because the stop string must overlap with the end of the token sequence, we can start at the end of the sequence and work backwards. Specifically, we check that there is an overlap between the start of the final token and the end of the stop_string, or to put it another way, stop_string[-i:] == token[:i] for some i > 0. If you look at the positive examples above, you'll see the last token in all of them fulfills this property: - ["st", "op"] (overlap is "op", overlap length == 2) - ["stop"] (overlap is "stop", overlap length == 4) - ["st", "opera"] (overlap is "op", overlap length == 2) - ["sto", "pper"] (overlap is "p", overlap length == 1) - ["las", "topper"] (overlap is "top", overlap length == 3) - ["s", "to", "pped"] (overlap is "p", overlap length == 1) It's impossible to construct a matching sequence that does not have this property (feel free to verify this yourself). However, although this overlap between the start of the final token and the end of the stop string is necessary for a match, it is not sufficient. We also need to check that the rest of the token sequence is consistent with the stop string. How do we do that? Let's use ["s", "to", "pped"] as an example. We know that the final token, "pped", has an overlap of 1 with the stop string, "stop". We then go back to the previous token, "to". Since we have already matched 1 character from the stop string, the remainder to check is "sto". We check that the next token "to" matches the end of the remainder, which it does. We have now matched 3 characters from the stop string, and the remainder to match is "s". We go back to the previous token again, which is also "s". This is a match, and so we have matched the entire stop string. How does it work when the tokens run off the start of the stop string, though? Let's consider the example of ["las", "topper"]. The final token, "topper", has an overlap of 3 with the stop string, "stop". Therefore, the remaining stop string to match is "s". We go back to the previous token, "las". Because the remainder to match is just "s", with length 1, we consider only the final 1 character from the token, which is "s". This matches the stop string, and so the entire string is matched. How do we compute these matches with tensor operations, though? Simply: we efficiently precompute the necessary information for all tokens! For every token, we compute: - Its overlap with the end of the stop string, if any - The positions inside the stop string where the token matches, including matches that run off the start. - The total length of the token For example, for the token "pped", we would compute an end overlap of 1, no internal matching positions, and a length of 4. For the token "to", we would compute no end overlap, a single internal matching position of 1 (counting from the end), and a length of 2. For the token "s", we would compute no end overlap, a single internal matching position of 3 (again counting from the end) and a length of 1. As long as we have this information, we can execute the algorithm above without any string comparison operations. We simply perform the following steps: - Check if the final token has an end-overlap with the start string - Continue backwards, keeping track of how much of the stop string we've matched so far - At each point, check if the next token has the current position as one of its valid positions - Continue until either a match fails, or we completely match the whole stop string Again, consider ["s", "to", "pped"] as an example. "pped" has an end overlap of 1, so we can begin a match. We have matched 1 character so far, so we check that the next token "to", has 1 as a valid position (again, counting from the end). It does, so we add the length of "to" to our position tracker. We have now matched 3 characters, so we check that the next token "s" has 3 as a valid position. It does, so we add its length to the position tracker. The position tracker is now 4, which is the length of the stop string. We have matched the entire stop string. In the second case, ["las", "topper"], "topper" has an end overlap of 3, so we can begin a match. We have matched 3 characters so far, so we check that the next token "las" has 3 as a valid position. It does, because we allow tokens to match positions that run off the start of the stop string. We add its length to the position tracker. The position tracker is now 6, which is greater than the length of the stop string! Don't panic, though - this also counts as a match of the stop string. We have matched the entire stop string. Args: tokenizer (`PreTrainedTokenizer`): The model's associated tokenizer (necessary to extract vocab and tokenize the termination sequences) stop_strings (`Union[str, List[str]]`): A list of strings that should end generation. If a string is passed, it will be treated like a list with a single element. Examples: ```python >>> from transformers import AutoModelForCausalLM, AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2") >>> model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2") >>> inputs = tokenizer("The biggest states in the USA by land area:", return_tensors="pt") >>> gen_out = model.generate(**inputs) >>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0]) The biggest states in the USA by land area: - Alaska - Texas - California >>> # Passing one or more stop strings will halt generation after those strings are emitted >>> # Note that generating with stop strings requires you to pass the tokenizer too >>> gen_out = model.generate(**inputs, stop_strings=["Texas"], tokenizer=tokenizer) >>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0]) The biggest states in the USA by land area: - Alaska - Texas ``` """ def __init__(self, tokenizer: PreTrainedTokenizerBase, stop_strings: Union[str, List[str]]): if isinstance(stop_strings, str): stop_strings = [stop_strings] self.stop_strings: Tuple[str, ...] = tuple(stop_strings) vocab = tokenizer.get_vocab() token_list, token_indices = tuple(vocab.keys()), tuple(vocab.values()) self.embedding_vec, self.max_valid_positions, self.max_valid_end_lens = self.clean_and_embed_tokens_with_cache( token_list, token_indices, self.stop_strings, tokenizer ) self.maximum_token_len = max([len(stop_string) for stop_string in self.stop_strings]) self.num_stop_strings = len(self.stop_strings) self.target_lens = torch.tensor([len(stop_string) for stop_string in stop_strings], dtype=torch.int32) def clean_and_embed_tokens_with_cache(self, token_list, token_indices, stop_strings, tokenizer): # We don't use the tokenizer in the cache key, because I don't trust it to have well-behaved equality if (token_list, token_indices, stop_strings) in STOP_STRING_EMBEDDING_CACHE: embedding_vec, max_valid_positions, max_valid_end_lens = STOP_STRING_EMBEDDING_CACHE[ (token_list, token_indices, self.stop_strings) ] STOP_STRING_EMBEDDING_CACHE.move_to_end((token_list, token_indices, stop_strings)) else: clean_token_list, clean_token_indices = self.clean_tokenizer_vocab(tokenizer) embedding_vec, max_valid_positions, max_valid_end_lens = self._stop_string_create_embedding_vec( clean_token_list, clean_token_indices, stop_strings ) STOP_STRING_EMBEDDING_CACHE[(token_list, token_indices, stop_strings)] = ( embedding_vec, max_valid_positions, max_valid_end_lens, ) if len(STOP_STRING_EMBEDDING_CACHE) > 8: STOP_STRING_EMBEDDING_CACHE.popitem(last=False) # Pop from the start, the least recently used item return embedding_vec, max_valid_positions, max_valid_end_lens @staticmethod def clean_tokenizer_vocab(tokenizer, static_prefix="abcdef"): """ This method turns a tokenizer vocab into a "clean" vocab where each token represents the actual string it will yield, without any special prefixes like "##" or "Ġ". This is trickier than it looks - the method tokenizer.convert_tokens_to_string() does not always return the correct string because of issues with prefix space addition/removal. To work around this, we add a static prefix to the start of the token, then remove it (and any prefix that may have been introduced with it) after calling convert_tokens_to_string(). """ vocab = tokenizer.get_vocab() clean_token_list = [] clean_token_indices = [] sentence_base = tokenizer(static_prefix, add_special_tokens=False)["input_ids"] tokens_base = [tokenizer._convert_id_to_token(tok) for tok in sentence_base] for token, token_idx in vocab.items(): token_string = tokenizer.convert_tokens_to_string(tokens_base + [token]) token_string = token_string[token_string.index(static_prefix) + len(static_prefix) :] clean_token_list.append(token_string) clean_token_indices.append(token_idx) return tuple(clean_token_list), tuple(clean_token_indices) @staticmethod def _stop_string_get_matching_positions( token_list, token_indices, stop_strings ) -> Tuple[Dict[str, Dict[str, List[int]]], Dict[str, Dict[str, List[int]]]]: """This function preprocesses stop strings and the tokenizer vocabulary to determine where tokens can validly appear in the stop strings. For each token, it computes a list of positions in the stop string where the token appears, as well as a list of the possible "end overlaps" for that token - that is, the number of characters from the end of the stop string that overlap with the start of the token, which can have more than one value. The reason for computing these may seem a bit cryptic - please see the docstring for StopStringCriteria for a full explanation of what these values are for!""" token_valid_positions = {} token_end_overlaps = {} for stop_string in stop_strings: reversed_stop_string = stop_string[::-1] token_valid_positions[stop_string] = {} token_end_overlaps[stop_string] = {} for token, tok_idx in zip(token_list, token_indices): reversed_token = token[::-1] matching_positions = [] possible_end_lengths = [] for i in range(1 - len(token), len(stop_string)): if i < 0: tok = reversed_token[-i:] i = 0 else: tok = reversed_token stop = reversed_stop_string[i : i + len(tok)] if tok.startswith(stop): if i == 0: possible_end_lengths.append(min(len(tok), len(stop))) else: matching_positions.append(i) if matching_positions: token_valid_positions[stop_string][tok_idx] = matching_positions if possible_end_lengths: token_end_overlaps[stop_string][tok_idx] = possible_end_lengths return token_valid_positions, token_end_overlaps @staticmethod def _stop_string_create_embedding_vec(token_list, token_indices, stop_strings) -> Dict[str, torch.tensor]: """This function precomputes everything needed for the run-time checks in StopStringCriteria, and packs them into an embedding tensor that can be accessed with pure tensor operations. For the specifics of the values that are precomputed and what they are used for, please refer to the StopStringCriteria docstring!""" token_valid_positions, token_end_overlaps = StopStringCriteria._stop_string_get_matching_positions( token_list, token_indices, stop_strings ) all_valid_positions = [len(val) for positions in token_valid_positions.values() for val in positions.values()] # In some cases, tokens may have no valid internal positions (such as single-character stop strings), so # we need a fallback to handle this case max_valid_positions = max(all_valid_positions) if all_valid_positions else 1 # There should always be at least one valid end_len, however, so no fallback needed here valid_end_lens = [len(val) for positions in token_end_overlaps.values() for val in positions.values()] if not valid_end_lens: raise ValueError( "Stop string preprocessing was unable to identify tokens matching one or more of the " "supplied stop string(s). This is most often caused by the stop " "strings containing unusual characters that are not in the tokenizer vocabulary." ) max_valid_end_lens = max(valid_end_lens) vec_size = len(stop_strings) * (max_valid_positions + max_valid_end_lens) + 1 gather_vec = np.full((len(token_list), vec_size), dtype=np.int32, fill_value=-1) for i, stop_string in enumerate(stop_strings): positions = token_valid_positions[stop_string] end_lens = token_end_overlaps[stop_string] # Since this is lots of very small assignments of lists, we build it with numpy rather # than torch for speed + simplicity, then convert to torch at the end for token_idx, valid_positions in positions.items(): gather_vec[token_idx, max_valid_positions * i : max_valid_positions * i + len(valid_positions)] = ( valid_positions ) for token_idx, possible_end_lens in end_lens.items(): gather_vec[ token_idx, max_valid_positions * len(stop_strings) + max_valid_end_lens * i : max_valid_positions * len(stop_strings) + max_valid_end_lens * i + len(possible_end_lens), ] = possible_end_lens for token, token_idx in zip(token_list, token_indices): gather_vec[token_idx, -1] = len(token) gather_vec = torch.tensor(gather_vec, dtype=torch.int32) return gather_vec, max_valid_positions, max_valid_end_lens @add_start_docstrings(STOPPING_CRITERIA_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> torch.Tensor: self.embedding_vec = self.embedding_vec.to(input_ids.device) self.target_lens = self.target_lens.to(input_ids.device) # The maximum length we need to consider is 1 token per character. Note that input_ids can also be # *shorter* than the global max, and the code below should be ready for that input_ids = input_ids[:, -self.maximum_token_len :] # Flip input_ids because we're only matching strings at the end of the generated sequence flipped_ids = torch.flip(input_ids, (1,)) # Size of the vector of positions a single token can match max_valid_positions = self.max_valid_positions # The embedding vec contains the valid positions, end_lengths and total lengths for each token embedded = F.embedding(flipped_ids, self.embedding_vec) # Now we split the embedding vector. valid_positions is the positions in the stop string the token can fit valid_positions = embedded[:, 1:, : max_valid_positions * self.num_stop_strings].unflatten( -1, (self.num_stop_strings, -1) ) # end_lengths is the number of characters from the string, counting from the end, that the token # contains. It can have multiple values if the same token can overlap different end lengths end_lengths = embedded[:, :1, max_valid_positions * self.num_stop_strings : -1].unflatten( -1, (self.num_stop_strings, -1) ) # Lengths is the total length of each token. Unlike the others, it always has a single value lengths = embedded[:, 1:, None, -1:] # Insert a dummy dimension for stop_strings even though lengths are const # Concatenate lengths onto each possible end_lengths value lengths = lengths.expand((-1, -1, end_lengths.shape[-2], end_lengths.shape[-1])) lengths_with_ends = torch.cat([end_lengths, lengths], dim=1) # cumsum() to get the number of matched characters in the stop string after each token cumsum = lengths_with_ends.cumsum(dim=1) # B x maximum_token_len x num_stop_strings x max_valid_end_lens # The calculation above assumes that all tokens are in valid positions. Now we mask the ones that are not. # First, tokens match the start of the string if they have a positive value in the end_lengths vector initial_match = end_lengths > 0 # Tokens continue the string if the cumsum() so far is one of the valid positions for that token # Note that we're actually tracking one cumsum() for for each possible end_length later_match = torch.any(cumsum[:, :-1, :, None] == valid_positions[:, :, :, :, None], axis=-2) # The match vector is a boolean vector that indicates which positions have valid tokens match = torch.cat([initial_match, later_match], dim=1) # Once a single position does not match, all positions following that position are masked mask = (~match).cumsum(dim=1, dtype=torch.int32) mask = mask == 0 # The string is matched if we reached a cumsum equal to or greater than the length of the string # before hitting the mask string_matches = torch.amax(cumsum * mask, dim=(1, -1)) >= self.target_lens[None, :] # We return a per-sample vector that is True if any stop string is matched for that sample return torch.any(string_matches, dim=-1) class EosTokenCriteria(StoppingCriteria): """ This class can be used to stop generation whenever the "end-of-sequence" token is generated. By default, it uses the `model.generation_config.eos_token_id`. Args: eos_token_id (`Union[int, List[int], torch.Tensor]`): The id(s) of the *end-of-sequence* token. """ def __init__(self, eos_token_id: Union[int, List[int], torch.Tensor]): if not isinstance(eos_token_id, torch.Tensor): if isinstance(eos_token_id, int): eos_token_id = [eos_token_id] eos_token_id = torch.tensor(eos_token_id) self.eos_token_id = eos_token_id @add_start_docstrings(STOPPING_CRITERIA_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> torch.BoolTensor: self.eos_token_id = self.eos_token_id.to(input_ids.device) is_done = isin_mps_friendly(input_ids[:, -1], self.eos_token_id) return is_done class ConfidenceCriteria(StoppingCriteria): """ This class can be used to stop generation whenever assistant model's confidence in its prediction for the current token is lower than the threshold `model.generation_config.assistant_confidence_threshold` even if the number of speculative tokens (defined by `num_assistant_tokens`) is not yet reached. Args: assistant_confidence_threshold (`float`): The value of the threshold. """ def __init__(self, assistant_confidence_threshold): self.assistant_confidence_threshold = assistant_confidence_threshold def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> torch.BoolTensor: probs = scores[-1].softmax(-1) p = probs[0, input_ids[0, -1]].item() if p < self.assistant_confidence_threshold: return True return False class StoppingCriteriaList(list): @add_start_docstrings(STOPPING_CRITERIA_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> torch.BoolTensor: is_done = torch.full((input_ids.shape[0],), False, device=input_ids.device, dtype=torch.bool) for criteria in self: is_done = is_done | criteria(input_ids, scores, **kwargs) return is_done @property def max_length(self) -> Optional[int]: for stopping_criterium in self: if isinstance(stopping_criterium, MaxLengthCriteria): return stopping_criterium.max_length return None def validate_stopping_criteria(stopping_criteria: StoppingCriteriaList, max_length: int) -> StoppingCriteriaList: stopping_max_length = stopping_criteria.max_length new_stopping_criteria = deepcopy(stopping_criteria) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("You set different `max_length` for stopping criteria and `max_length` parameter", UserWarning) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=max_length)) return new_stopping_criteria
transformers/src/transformers/generation/stopping_criteria.py/0
{ "file_path": "transformers/src/transformers/generation/stopping_criteria.py", "repo_id": "transformers", "token_count": 10401 }
92
from ..utils import is_accelerate_available, is_torch_available, logging if is_accelerate_available(): from accelerate import init_empty_weights if is_torch_available(): import torch import torch.nn as nn import torch.nn.functional as F logger = logging.get_logger(__name__) # the weights are ternary so can be represented with 2 bits, and they are packed in uint8 tensors, hence the number of values per item is 4 VALUES_PER_ITEM = 4 def pack_weights(quantized_weights: torch.Tensor) -> torch.Tensor: """ Packs a tensor of quantized weights into a compact format using 2 bits per value. Parameters: ----------- quantized_weights : torch.Tensor A tensor containing ternary quantized weights with values in {-1, 0, 1}. These values are adjusted to {0, 1, 2} before being packed. Returns: -------- torch.Tensor A packed tensor where each element stores 4 quantized values (each using 2 bits) in an 8-bit format. """ original_shape = quantized_weights.shape row_dim = (original_shape[0] + VALUES_PER_ITEM - 1) // VALUES_PER_ITEM if len(original_shape) == 1: packed_tensor_shape = (row_dim,) else: packed_tensor_shape = (row_dim, *original_shape[1:]) quantized_weights += 1 packed = torch.zeros(packed_tensor_shape, device=quantized_weights.device, dtype=torch.uint8) unpacked = quantized_weights.to(torch.uint8) it = min(VALUES_PER_ITEM, (original_shape[0] // row_dim) + 1) for i in range(it): start = i * row_dim end = min(start + row_dim, original_shape[0]) packed[: (end - start)] |= unpacked[start:end] << 2 * i return packed @torch.compile def unpack_weights(packed: torch.Tensor, dtype: torch.dtype) -> torch.Tensor: """ Unpacks a tensor of quantized weights that were stored in a packed format using 2 bits per value. Parameters: ----------- packed : torch.Tensor A tensor containing packed weights where each element represents 4 quantized values (using 2 bits per value). dtype : torch.dtype The dtype of the returned Tensor Returns: -------- torch.Tensor A tensor of unpacked weights, where each value is converted from its packed 2-bit representation. Example: -------- packed = torch.tensor([[0b10100001, 0b00011000], [0b10010000, 0b00001010]], dtype=torch.uint8) # Unpack the values unpacked = unpack_weights(packed) # Resulting unpacked tensor print(unpacked) # Output: tensor([[ 0, -1], [-1, 1], [-1, 1], [-1, 1], [ 1, 0], [ 0, -1], [ 1, -1], [ 1, -1]]) Explanation of the example: --------------------------- Let's take the first value for example 0b10100001, we we will only focus on the first column, because every element is unpacked across the first dimension - First 2 bits: `01` → 0 at [0][0] - Second 2 bits: `00` → -1 at [0][2] - Third 2 bits: `10` → 1 at [0][4] - Fourth 2 bits: `10` → 1 at [0][6] the second value of the same row (0b10010000) will give the values for [0][1], [0][3], [0][5], [0][7] We subtract 1 because during the packing process, it's easier to work with values like 0, 1, and 2. To make this possible, we add 1 to the original ternary weights (which are typically -1, 0, and 1) when packing them. When unpacking, we reverse this by subtracting 1 to restore the original ternary values. """ packed_shape = packed.shape if len(packed_shape) == 1: original_row_dim = packed_shape[0] * VALUES_PER_ITEM unpacked_shape = (original_row_dim,) else: original_row_dim = packed_shape[0] * VALUES_PER_ITEM unpacked_shape = (original_row_dim, *packed_shape[1:]) unpacked = torch.zeros(unpacked_shape, device=packed.device, dtype=torch.uint8) for i in range(VALUES_PER_ITEM): start = i * packed_shape[0] end = start + packed_shape[0] mask = 3 << (2 * i) unpacked[start:end] = (packed & mask) >> (2 * i) return unpacked.to(dtype) - 1 class BitLinear(nn.Module): def __init__(self, in_features: int, out_features: int, bias: bool, device=None, dtype=None): super().__init__() self.dtype = dtype self.in_features = in_features self.out_features = out_features self.register_buffer( "weight", torch.zeros( (out_features // VALUES_PER_ITEM, in_features), dtype=torch.uint8, device=device, ), ) self.register_buffer( "weight_scale", torch.ones( (1), dtype=dtype, device=device, ), ) if bias: self.register_buffer("bias", torch.zeros((out_features), dtype=dtype, device=device)) else: self.bias = None @torch.compile def activation_quant(self, input, num_bits=8): """ Activation function : Performs symmetric, per-token quantization on the input activations. Parameters: ----------- x : torch.Tensor Input activations to be quantized. num_bits : int, optional (default=8) Number of bits to use for quantization, determining the quantization range. Returns: -------- result : torch.Tensor Quantized activation tensor, with values mapped to an `int8` range. scale : torch.Tensor The per-channel scaling factors used to quantize the tensor. """ Qn = -(2 ** (num_bits - 1)) Qp = 2 ** (num_bits - 1) - 1 scale = Qp / input.abs().max(dim=-1, keepdim=True).values.clamp(min=1e-5) result = (input * scale).round().clamp(Qn, Qp) return result.to(torch.int8), scale @torch.compile def post_quant_process(self, input, input_scale, weight_scale): out = input / (input_scale * weight_scale) return out def forward(self, input): w = self.weight w_quant = unpack_weights(w, dtype=self.dtype) input_quant, input_scale = self.activation_quant(input) y = F.linear(input_quant.to(self.dtype), w_quant) y = self.post_quant_process(y, self.weight_scale, input_scale) if self.bias is not None: y += self.bias.view(1, -1).expand_as(y) return y def _replace_with_bitnet_linear( model, modules_to_not_convert=None, current_key_name=None, quantization_config=None, has_been_replaced=False, pre_quantized=False, ): """ Private method that wraps the recursion for module replacement. Returns the converted model and a boolean that indicates if the conversion has been successfull or not. """ if current_key_name is None: current_key_name = [] for name, module in model.named_children(): if current_key_name is None: current_key_name = [] current_key_name.append(name) # Check if the current key is not in the `modules_to_not_convert` if not any(key in ".".join(current_key_name) for key in modules_to_not_convert): with init_empty_weights(): if isinstance(module, nn.Linear) and name not in modules_to_not_convert: in_features = module.in_features out_features = module.out_features model._modules[name] = BitLinear( in_features=in_features, out_features=out_features, bias=module.bias is not None, device=module.weight.device, dtype=module.weight.dtype, ) has_been_replaced = True model._modules[name].requires_grad_(False) if len(list(module.children())) > 0: _, has_been_replaced = _replace_with_bitnet_linear( module, modules_to_not_convert=modules_to_not_convert, current_key_name=current_key_name, quantization_config=quantization_config, has_been_replaced=has_been_replaced, ) # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced def replace_with_bitnet_linear( model, modules_to_not_convert=None, current_key_name=None, quantization_config=None, pre_quantized=False, ): """ A helper function to replace all `torch.nn.Linear` modules by `BitLinear158` modules`. The function will be run recursively and replace all `torch.nn.Linear` modules except for the `lm_head` that should be kept as a `torch.nn.Linear` module. The replacement is done under `init_empty_weights` context manager so no CPU/GPU memory is required to run this function. Each weight will be quantized along the channel. Parameters: model (`torch.nn.Module`): Input model or `torch.nn.Module` as the function is run recursively. modules_to_not_convert (`List[`str`]`, *optional*, defaults to `["lm_head"]`): Names of the modules to not convert in `EetqLinear`. In practice we keep the `lm_head` in full precision for numerical stability reasons. current_key_name (`List[`str`]`, *optional*): An array to track the current key of the recursion. This is used to check whether the current key (part of it) is not in the list of modules to not convert (for instances modules that are offloaded to `cpu` or `disk`). """ modules_to_not_convert = ["lm_head"] if modules_to_not_convert is None else modules_to_not_convert if quantization_config and quantization_config.modules_to_not_convert is not None: modules_to_not_convert.extend(quantization_config.modules_to_not_convert) modules_to_not_convert = list(set(modules_to_not_convert)) model, has_been_replaced = _replace_with_bitnet_linear( model, modules_to_not_convert, current_key_name, quantization_config, pre_quantized=pre_quantized, ) if not has_been_replaced: logger.warning( "You are loading your model using bitnet but no linear modules were found in your model." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model
transformers/src/transformers/integrations/bitnet.py/0
{ "file_path": "transformers/src/transformers/integrations/bitnet.py", "repo_id": "transformers", "token_count": 4597 }
93
from pathlib import Path from typing import Any from transformers.convert_slow_tokenizer import TikTokenConverter from transformers.tokenization_utils_fast import TIKTOKEN_VOCAB_FILE, TOKENIZER_FILE def convert_tiktoken_to_fast(encoding: Any, output_dir: str): """ Converts given `tiktoken` encoding to `PretrainedTokenizerFast` and saves the configuration of converted tokenizer on disk. Args: encoding (`str` or `tiktoken.Encoding`): Tokenizer from `tiktoken` library. If `encoding` is `str`, the tokenizer will be loaded with `tiktoken.get_encoding(encoding)`. output_dir (`str`): Save path for converted tokenizer configuration file. """ output_dir = Path(output_dir) output_dir.mkdir(exist_ok=True) save_file = output_dir / "tiktoken" / TIKTOKEN_VOCAB_FILE tokenizer_file = output_dir / TOKENIZER_FILE save_file_absolute = str(save_file.absolute()) output_file_absolute = str(tokenizer_file.absolute()) try: from tiktoken import get_encoding from tiktoken.load import dump_tiktoken_bpe if isinstance(encoding, str): encoding = get_encoding(encoding) dump_tiktoken_bpe(encoding._mergeable_ranks, save_file_absolute) except ImportError: raise ValueError( "`tiktoken` is required to save a `tiktoken` file. Install it with " "`pip install tiktoken`." ) tokenizer = TikTokenConverter( vocab_file=save_file_absolute, pattern=encoding._pat_str, additional_special_tokens=encoding._special_tokens ).tokenizer() tokenizer.save(output_file_absolute)
transformers/src/transformers/integrations/tiktoken.py/0
{ "file_path": "transformers/src/transformers/integrations/tiktoken.py", "repo_id": "transformers", "token_count": 647 }
94
/*! ************************************************************************************************** * Deformable DETR * Copyright (c) 2020 SenseTime. All Rights Reserved. * Licensed under the Apache License, Version 2.0 [see LICENSE for details] ************************************************************************************************** * Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 ************************************************************************************************** */ #include <vector> #include <cuda.h> #include <cuda_runtime.h> #include <cstdio> #include <algorithm> #include <cstring> #include <ATen/ATen.h> #include <ATen/cuda/CUDAContext.h> #include <THC/THCAtomics.cuh> #define CUDA_KERNEL_LOOP(i, n) \ for (int i = blockIdx.x * blockDim.x + threadIdx.x; \ i < (n); \ i += blockDim.x * gridDim.x) at::Tensor ms_deform_attn_cuda_forward( const at::Tensor &value, const at::Tensor &spatial_shapes, const at::Tensor &level_start_index, const at::Tensor &sampling_loc, const at::Tensor &attn_weight, const int im2col_step) { AT_ASSERTM(value.is_contiguous(), "value tensor has to be contiguous"); AT_ASSERTM(spatial_shapes.is_contiguous(), "spatial_shapes tensor has to be contiguous"); AT_ASSERTM(level_start_index.is_contiguous(), "level_start_index tensor has to be contiguous"); AT_ASSERTM(sampling_loc.is_contiguous(), "sampling_loc tensor has to be contiguous"); AT_ASSERTM(attn_weight.is_contiguous(), "attn_weight tensor has to be contiguous"); AT_ASSERTM(value.type().is_cuda(), "value must be a CUDA tensor"); AT_ASSERTM(spatial_shapes.type().is_cuda(), "spatial_shapes must be a CUDA tensor"); AT_ASSERTM(level_start_index.type().is_cuda(), "level_start_index must be a CUDA tensor"); AT_ASSERTM(sampling_loc.type().is_cuda(), "sampling_loc must be a CUDA tensor"); AT_ASSERTM(attn_weight.type().is_cuda(), "attn_weight must be a CUDA tensor"); const int batch = value.size(0); const int spatial_size = value.size(1); const int num_heads = value.size(2); const int channels = value.size(3); const int num_levels = spatial_shapes.size(0); const int num_query = sampling_loc.size(1); const int num_point = sampling_loc.size(4); const int im2col_step_ = std::min(batch, im2col_step); AT_ASSERTM(batch % im2col_step_ == 0, "batch(%d) must divide im2col_step(%d)", batch, im2col_step_); auto output = at::zeros({batch, num_query, num_heads, channels}, value.options()); const int batch_n = im2col_step_; auto output_n = output.view({batch/im2col_step_, batch_n, num_query, num_heads, channels}); auto per_value_size = spatial_size * num_heads * channels; auto per_sample_loc_size = num_query * num_heads * num_levels * num_point * 2; auto per_attn_weight_size = num_query * num_heads * num_levels * num_point; for (int n = 0; n < batch/im2col_step_; ++n) { auto columns = output_n.select(0, n); AT_DISPATCH_FLOATING_TYPES(value.type(), "ms_deform_attn_forward_cuda", ([&] { ms_deformable_im2col_cuda(at::cuda::getCurrentCUDAStream(), value.data<scalar_t>() + n * im2col_step_ * per_value_size, spatial_shapes.data<int64_t>(), level_start_index.data<int64_t>(), sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size, attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size, batch_n, spatial_size, num_heads, channels, num_levels, num_query, num_point, columns.data<scalar_t>()); })); } output = output.view({batch, num_query, num_heads*channels}); return output; } std::vector<at::Tensor> ms_deform_attn_cuda_backward( const at::Tensor &value, const at::Tensor &spatial_shapes, const at::Tensor &level_start_index, const at::Tensor &sampling_loc, const at::Tensor &attn_weight, const at::Tensor &grad_output, const int im2col_step) { AT_ASSERTM(value.is_contiguous(), "value tensor has to be contiguous"); AT_ASSERTM(spatial_shapes.is_contiguous(), "spatial_shapes tensor has to be contiguous"); AT_ASSERTM(level_start_index.is_contiguous(), "level_start_index tensor has to be contiguous"); AT_ASSERTM(sampling_loc.is_contiguous(), "sampling_loc tensor has to be contiguous"); AT_ASSERTM(attn_weight.is_contiguous(), "attn_weight tensor has to be contiguous"); AT_ASSERTM(grad_output.is_contiguous(), "grad_output tensor has to be contiguous"); AT_ASSERTM(value.type().is_cuda(), "value must be a CUDA tensor"); AT_ASSERTM(spatial_shapes.type().is_cuda(), "spatial_shapes must be a CUDA tensor"); AT_ASSERTM(level_start_index.type().is_cuda(), "level_start_index must be a CUDA tensor"); AT_ASSERTM(sampling_loc.type().is_cuda(), "sampling_loc must be a CUDA tensor"); AT_ASSERTM(attn_weight.type().is_cuda(), "attn_weight must be a CUDA tensor"); AT_ASSERTM(grad_output.type().is_cuda(), "grad_output must be a CUDA tensor"); const int batch = value.size(0); const int spatial_size = value.size(1); const int num_heads = value.size(2); const int channels = value.size(3); const int num_levels = spatial_shapes.size(0); const int num_query = sampling_loc.size(1); const int num_point = sampling_loc.size(4); const int im2col_step_ = std::min(batch, im2col_step); AT_ASSERTM(batch % im2col_step_ == 0, "batch(%d) must divide im2col_step(%d)", batch, im2col_step_); auto grad_value = at::zeros_like(value); auto grad_sampling_loc = at::zeros_like(sampling_loc); auto grad_attn_weight = at::zeros_like(attn_weight); const int batch_n = im2col_step_; auto per_value_size = spatial_size * num_heads * channels; auto per_sample_loc_size = num_query * num_heads * num_levels * num_point * 2; auto per_attn_weight_size = num_query * num_heads * num_levels * num_point; auto grad_output_n = grad_output.view({batch/im2col_step_, batch_n, num_query, num_heads, channels}); for (int n = 0; n < batch/im2col_step_; ++n) { auto grad_output_g = grad_output_n.select(0, n); AT_DISPATCH_FLOATING_TYPES(value.type(), "ms_deform_attn_backward_cuda", ([&] { ms_deformable_col2im_cuda(at::cuda::getCurrentCUDAStream(), grad_output_g.data<scalar_t>(), value.data<scalar_t>() + n * im2col_step_ * per_value_size, spatial_shapes.data<int64_t>(), level_start_index.data<int64_t>(), sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size, attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size, batch_n, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value.data<scalar_t>() + n * im2col_step_ * per_value_size, grad_sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size, grad_attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size); })); } return { grad_value, grad_sampling_loc, grad_attn_weight }; } const int CUDA_NUM_THREADS = 1024; inline int GET_BLOCKS(const int N, const int num_threads) { return (N + num_threads - 1) / num_threads; } template <typename scalar_t> __device__ scalar_t ms_deform_attn_im2col_bilinear(const scalar_t* &bottom_data, const int &height, const int &width, const int &nheads, const int &channels, const scalar_t &h, const scalar_t &w, const int &m, const int &c) { const int h_low = floor(h); const int w_low = floor(w); const int h_high = h_low + 1; const int w_high = w_low + 1; const scalar_t lh = h - h_low; const scalar_t lw = w - w_low; const scalar_t hh = 1 - lh, hw = 1 - lw; const int w_stride = nheads * channels; const int h_stride = width * w_stride; const int h_low_ptr_offset = h_low * h_stride; const int h_high_ptr_offset = h_low_ptr_offset + h_stride; const int w_low_ptr_offset = w_low * w_stride; const int w_high_ptr_offset = w_low_ptr_offset + w_stride; const int base_ptr = m * channels + c; scalar_t v1 = 0; if (h_low >= 0 && w_low >= 0) { const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr; v1 = bottom_data[ptr1]; } scalar_t v2 = 0; if (h_low >= 0 && w_high <= width - 1) { const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr; v2 = bottom_data[ptr2]; } scalar_t v3 = 0; if (h_high <= height - 1 && w_low >= 0) { const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr; v3 = bottom_data[ptr3]; } scalar_t v4 = 0; if (h_high <= height - 1 && w_high <= width - 1) { const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr; v4 = bottom_data[ptr4]; } const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw; const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4); return val; } template <typename scalar_t> __device__ void ms_deform_attn_col2im_bilinear(const scalar_t* &bottom_data, const int &height, const int &width, const int &nheads, const int &channels, const scalar_t &h, const scalar_t &w, const int &m, const int &c, const scalar_t &top_grad, const scalar_t &attn_weight, scalar_t* &grad_value, scalar_t* grad_sampling_loc, scalar_t* grad_attn_weight) { const int h_low = floor(h); const int w_low = floor(w); const int h_high = h_low + 1; const int w_high = w_low + 1; const scalar_t lh = h - h_low; const scalar_t lw = w - w_low; const scalar_t hh = 1 - lh, hw = 1 - lw; const int w_stride = nheads * channels; const int h_stride = width * w_stride; const int h_low_ptr_offset = h_low * h_stride; const int h_high_ptr_offset = h_low_ptr_offset + h_stride; const int w_low_ptr_offset = w_low * w_stride; const int w_high_ptr_offset = w_low_ptr_offset + w_stride; const int base_ptr = m * channels + c; const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw; const scalar_t top_grad_value = top_grad * attn_weight; scalar_t grad_h_weight = 0, grad_w_weight = 0; scalar_t v1 = 0; if (h_low >= 0 && w_low >= 0) { const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr; v1 = bottom_data[ptr1]; grad_h_weight -= hw * v1; grad_w_weight -= hh * v1; atomicAdd(grad_value+ptr1, w1*top_grad_value); } scalar_t v2 = 0; if (h_low >= 0 && w_high <= width - 1) { const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr; v2 = bottom_data[ptr2]; grad_h_weight -= lw * v2; grad_w_weight += hh * v2; atomicAdd(grad_value+ptr2, w2*top_grad_value); } scalar_t v3 = 0; if (h_high <= height - 1 && w_low >= 0) { const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr; v3 = bottom_data[ptr3]; grad_h_weight += hw * v3; grad_w_weight -= lh * v3; atomicAdd(grad_value+ptr3, w3*top_grad_value); } scalar_t v4 = 0; if (h_high <= height - 1 && w_high <= width - 1) { const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr; v4 = bottom_data[ptr4]; grad_h_weight += lw * v4; grad_w_weight += lh * v4; atomicAdd(grad_value+ptr4, w4*top_grad_value); } const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4); *grad_attn_weight = top_grad * val; *grad_sampling_loc = width * grad_w_weight * top_grad_value; *(grad_sampling_loc + 1) = height * grad_h_weight * top_grad_value; } template <typename scalar_t> __device__ void ms_deform_attn_col2im_bilinear_gm(const scalar_t* &bottom_data, const int &height, const int &width, const int &nheads, const int &channels, const scalar_t &h, const scalar_t &w, const int &m, const int &c, const scalar_t &top_grad, const scalar_t &attn_weight, scalar_t* &grad_value, scalar_t* grad_sampling_loc, scalar_t* grad_attn_weight) { const int h_low = floor(h); const int w_low = floor(w); const int h_high = h_low + 1; const int w_high = w_low + 1; const scalar_t lh = h - h_low; const scalar_t lw = w - w_low; const scalar_t hh = 1 - lh, hw = 1 - lw; const int w_stride = nheads * channels; const int h_stride = width * w_stride; const int h_low_ptr_offset = h_low * h_stride; const int h_high_ptr_offset = h_low_ptr_offset + h_stride; const int w_low_ptr_offset = w_low * w_stride; const int w_high_ptr_offset = w_low_ptr_offset + w_stride; const int base_ptr = m * channels + c; const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw; const scalar_t top_grad_value = top_grad * attn_weight; scalar_t grad_h_weight = 0, grad_w_weight = 0; scalar_t v1 = 0; if (h_low >= 0 && w_low >= 0) { const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr; v1 = bottom_data[ptr1]; grad_h_weight -= hw * v1; grad_w_weight -= hh * v1; atomicAdd(grad_value+ptr1, w1*top_grad_value); } scalar_t v2 = 0; if (h_low >= 0 && w_high <= width - 1) { const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr; v2 = bottom_data[ptr2]; grad_h_weight -= lw * v2; grad_w_weight += hh * v2; atomicAdd(grad_value+ptr2, w2*top_grad_value); } scalar_t v3 = 0; if (h_high <= height - 1 && w_low >= 0) { const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr; v3 = bottom_data[ptr3]; grad_h_weight += hw * v3; grad_w_weight -= lh * v3; atomicAdd(grad_value+ptr3, w3*top_grad_value); } scalar_t v4 = 0; if (h_high <= height - 1 && w_high <= width - 1) { const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr; v4 = bottom_data[ptr4]; grad_h_weight += lw * v4; grad_w_weight += lh * v4; atomicAdd(grad_value+ptr4, w4*top_grad_value); } const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4); atomicAdd(grad_attn_weight, top_grad * val); atomicAdd(grad_sampling_loc, width * grad_w_weight * top_grad_value); atomicAdd(grad_sampling_loc + 1, height * grad_h_weight * top_grad_value); } template <typename scalar_t> __global__ void ms_deformable_im2col_gpu_kernel(const int n, const scalar_t *data_value, const int64_t *data_spatial_shapes, const int64_t *data_level_start_index, const scalar_t *data_sampling_loc, const scalar_t *data_attn_weight, const int batch_size, const int spatial_size, const int num_heads, const int channels, const int num_levels, const int num_query, const int num_point, scalar_t *data_col) { CUDA_KERNEL_LOOP(index, n) { int _temp = index; const int c_col = _temp % channels; _temp /= channels; const int sampling_index = _temp; const int m_col = _temp % num_heads; _temp /= num_heads; const int q_col = _temp % num_query; _temp /= num_query; const int b_col = _temp; scalar_t *data_col_ptr = data_col + index; int data_weight_ptr = sampling_index * num_levels * num_point; int data_loc_w_ptr = data_weight_ptr << 1; const int qid_stride = num_heads * channels; const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; scalar_t col = 0; for (int l_col=0; l_col < num_levels; ++l_col) { const int level_start_id = data_level_start_index[l_col]; const int spatial_h_ptr = l_col << 1; const int spatial_h = data_spatial_shapes[spatial_h_ptr]; const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; const scalar_t *data_value_ptr = data_value + (data_value_ptr_init_offset + level_start_id * qid_stride); for (int p_col=0; p_col < num_point; ++p_col) { const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; const scalar_t weight = data_attn_weight[data_weight_ptr]; const scalar_t h_im = loc_h * spatial_h - 0.5; const scalar_t w_im = loc_w * spatial_w - 0.5; if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) { col += ms_deform_attn_im2col_bilinear(data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col) * weight; } data_weight_ptr += 1; data_loc_w_ptr += 2; } } *data_col_ptr = col; } } template <typename scalar_t, unsigned int blockSize> __global__ void ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1(const int n, const scalar_t *grad_col, const scalar_t *data_value, const int64_t *data_spatial_shapes, const int64_t *data_level_start_index, const scalar_t *data_sampling_loc, const scalar_t *data_attn_weight, const int batch_size, const int spatial_size, const int num_heads, const int channels, const int num_levels, const int num_query, const int num_point, scalar_t *grad_value, scalar_t *grad_sampling_loc, scalar_t *grad_attn_weight) { CUDA_KERNEL_LOOP(index, n) { __shared__ scalar_t cache_grad_sampling_loc[blockSize * 2]; __shared__ scalar_t cache_grad_attn_weight[blockSize]; unsigned int tid = threadIdx.x; int _temp = index; const int c_col = _temp % channels; _temp /= channels; const int sampling_index = _temp; const int m_col = _temp % num_heads; _temp /= num_heads; const int q_col = _temp % num_query; _temp /= num_query; const int b_col = _temp; const scalar_t top_grad = grad_col[index]; int data_weight_ptr = sampling_index * num_levels * num_point; int data_loc_w_ptr = data_weight_ptr << 1; const int grad_sampling_ptr = data_weight_ptr; grad_sampling_loc += grad_sampling_ptr << 1; grad_attn_weight += grad_sampling_ptr; const int grad_weight_stride = 1; const int grad_loc_stride = 2; const int qid_stride = num_heads * channels; const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; for (int l_col=0; l_col < num_levels; ++l_col) { const int level_start_id = data_level_start_index[l_col]; const int spatial_h_ptr = l_col << 1; const int spatial_h = data_spatial_shapes[spatial_h_ptr]; const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride; const scalar_t *data_value_ptr = data_value + value_ptr_offset; scalar_t *grad_value_ptr = grad_value + value_ptr_offset; for (int p_col=0; p_col < num_point; ++p_col) { const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; const scalar_t weight = data_attn_weight[data_weight_ptr]; const scalar_t h_im = loc_h * spatial_h - 0.5; const scalar_t w_im = loc_w * spatial_w - 0.5; *(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0; *(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0; *(cache_grad_attn_weight+threadIdx.x)=0; if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) { ms_deform_attn_col2im_bilinear( data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col, top_grad, weight, grad_value_ptr, cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x); } __syncthreads(); if (tid == 0) { scalar_t _grad_w=cache_grad_sampling_loc[0], _grad_h=cache_grad_sampling_loc[1], _grad_a=cache_grad_attn_weight[0]; int sid=2; for (unsigned int tid = 1; tid < blockSize; ++tid) { _grad_w += cache_grad_sampling_loc[sid]; _grad_h += cache_grad_sampling_loc[sid + 1]; _grad_a += cache_grad_attn_weight[tid]; sid += 2; } *grad_sampling_loc = _grad_w; *(grad_sampling_loc + 1) = _grad_h; *grad_attn_weight = _grad_a; } __syncthreads(); data_weight_ptr += 1; data_loc_w_ptr += 2; grad_attn_weight += grad_weight_stride; grad_sampling_loc += grad_loc_stride; } } } } template <typename scalar_t, unsigned int blockSize> __global__ void ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2(const int n, const scalar_t *grad_col, const scalar_t *data_value, const int64_t *data_spatial_shapes, const int64_t *data_level_start_index, const scalar_t *data_sampling_loc, const scalar_t *data_attn_weight, const int batch_size, const int spatial_size, const int num_heads, const int channels, const int num_levels, const int num_query, const int num_point, scalar_t *grad_value, scalar_t *grad_sampling_loc, scalar_t *grad_attn_weight) { CUDA_KERNEL_LOOP(index, n) { __shared__ scalar_t cache_grad_sampling_loc[blockSize * 2]; __shared__ scalar_t cache_grad_attn_weight[blockSize]; unsigned int tid = threadIdx.x; int _temp = index; const int c_col = _temp % channels; _temp /= channels; const int sampling_index = _temp; const int m_col = _temp % num_heads; _temp /= num_heads; const int q_col = _temp % num_query; _temp /= num_query; const int b_col = _temp; const scalar_t top_grad = grad_col[index]; int data_weight_ptr = sampling_index * num_levels * num_point; int data_loc_w_ptr = data_weight_ptr << 1; const int grad_sampling_ptr = data_weight_ptr; grad_sampling_loc += grad_sampling_ptr << 1; grad_attn_weight += grad_sampling_ptr; const int grad_weight_stride = 1; const int grad_loc_stride = 2; const int qid_stride = num_heads * channels; const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; for (int l_col=0; l_col < num_levels; ++l_col) { const int level_start_id = data_level_start_index[l_col]; const int spatial_h_ptr = l_col << 1; const int spatial_h = data_spatial_shapes[spatial_h_ptr]; const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride; const scalar_t *data_value_ptr = data_value + value_ptr_offset; scalar_t *grad_value_ptr = grad_value + value_ptr_offset; for (int p_col=0; p_col < num_point; ++p_col) { const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; const scalar_t weight = data_attn_weight[data_weight_ptr]; const scalar_t h_im = loc_h * spatial_h - 0.5; const scalar_t w_im = loc_w * spatial_w - 0.5; *(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0; *(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0; *(cache_grad_attn_weight+threadIdx.x)=0; if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) { ms_deform_attn_col2im_bilinear( data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col, top_grad, weight, grad_value_ptr, cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x); } __syncthreads(); for (unsigned int s=blockSize/2; s>0; s>>=1) { if (tid < s) { const unsigned int xid1 = tid << 1; const unsigned int xid2 = (tid + s) << 1; cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s]; cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2]; cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1]; } __syncthreads(); } if (tid == 0) { *grad_sampling_loc = cache_grad_sampling_loc[0]; *(grad_sampling_loc + 1) = cache_grad_sampling_loc[1]; *grad_attn_weight = cache_grad_attn_weight[0]; } __syncthreads(); data_weight_ptr += 1; data_loc_w_ptr += 2; grad_attn_weight += grad_weight_stride; grad_sampling_loc += grad_loc_stride; } } } } template <typename scalar_t> __global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v1(const int n, const scalar_t *grad_col, const scalar_t *data_value, const int64_t *data_spatial_shapes, const int64_t *data_level_start_index, const scalar_t *data_sampling_loc, const scalar_t *data_attn_weight, const int batch_size, const int spatial_size, const int num_heads, const int channels, const int num_levels, const int num_query, const int num_point, scalar_t *grad_value, scalar_t *grad_sampling_loc, scalar_t *grad_attn_weight) { CUDA_KERNEL_LOOP(index, n) { extern __shared__ int _s[]; scalar_t* cache_grad_sampling_loc = (scalar_t*)_s; scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x; unsigned int tid = threadIdx.x; int _temp = index; const int c_col = _temp % channels; _temp /= channels; const int sampling_index = _temp; const int m_col = _temp % num_heads; _temp /= num_heads; const int q_col = _temp % num_query; _temp /= num_query; const int b_col = _temp; const scalar_t top_grad = grad_col[index]; int data_weight_ptr = sampling_index * num_levels * num_point; int data_loc_w_ptr = data_weight_ptr << 1; const int grad_sampling_ptr = data_weight_ptr; grad_sampling_loc += grad_sampling_ptr << 1; grad_attn_weight += grad_sampling_ptr; const int grad_weight_stride = 1; const int grad_loc_stride = 2; const int qid_stride = num_heads * channels; const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; for (int l_col=0; l_col < num_levels; ++l_col) { const int level_start_id = data_level_start_index[l_col]; const int spatial_h_ptr = l_col << 1; const int spatial_h = data_spatial_shapes[spatial_h_ptr]; const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride; const scalar_t *data_value_ptr = data_value + value_ptr_offset; scalar_t *grad_value_ptr = grad_value + value_ptr_offset; for (int p_col=0; p_col < num_point; ++p_col) { const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; const scalar_t weight = data_attn_weight[data_weight_ptr]; const scalar_t h_im = loc_h * spatial_h - 0.5; const scalar_t w_im = loc_w * spatial_w - 0.5; *(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0; *(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0; *(cache_grad_attn_weight+threadIdx.x)=0; if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) { ms_deform_attn_col2im_bilinear( data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col, top_grad, weight, grad_value_ptr, cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x); } __syncthreads(); if (tid == 0) { scalar_t _grad_w=cache_grad_sampling_loc[0], _grad_h=cache_grad_sampling_loc[1], _grad_a=cache_grad_attn_weight[0]; int sid=2; for (unsigned int tid = 1; tid < blockDim.x; ++tid) { _grad_w += cache_grad_sampling_loc[sid]; _grad_h += cache_grad_sampling_loc[sid + 1]; _grad_a += cache_grad_attn_weight[tid]; sid += 2; } *grad_sampling_loc = _grad_w; *(grad_sampling_loc + 1) = _grad_h; *grad_attn_weight = _grad_a; } __syncthreads(); data_weight_ptr += 1; data_loc_w_ptr += 2; grad_attn_weight += grad_weight_stride; grad_sampling_loc += grad_loc_stride; } } } } template <typename scalar_t> __global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v2(const int n, const scalar_t *grad_col, const scalar_t *data_value, const int64_t *data_spatial_shapes, const int64_t *data_level_start_index, const scalar_t *data_sampling_loc, const scalar_t *data_attn_weight, const int batch_size, const int spatial_size, const int num_heads, const int channels, const int num_levels, const int num_query, const int num_point, scalar_t *grad_value, scalar_t *grad_sampling_loc, scalar_t *grad_attn_weight) { CUDA_KERNEL_LOOP(index, n) { extern __shared__ int _s[]; scalar_t* cache_grad_sampling_loc = (scalar_t*)_s; scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x; unsigned int tid = threadIdx.x; int _temp = index; const int c_col = _temp % channels; _temp /= channels; const int sampling_index = _temp; const int m_col = _temp % num_heads; _temp /= num_heads; const int q_col = _temp % num_query; _temp /= num_query; const int b_col = _temp; const scalar_t top_grad = grad_col[index]; int data_weight_ptr = sampling_index * num_levels * num_point; int data_loc_w_ptr = data_weight_ptr << 1; const int grad_sampling_ptr = data_weight_ptr; grad_sampling_loc += grad_sampling_ptr << 1; grad_attn_weight += grad_sampling_ptr; const int grad_weight_stride = 1; const int grad_loc_stride = 2; const int qid_stride = num_heads * channels; const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; for (int l_col=0; l_col < num_levels; ++l_col) { const int level_start_id = data_level_start_index[l_col]; const int spatial_h_ptr = l_col << 1; const int spatial_h = data_spatial_shapes[spatial_h_ptr]; const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride; const scalar_t *data_value_ptr = data_value + value_ptr_offset; scalar_t *grad_value_ptr = grad_value + value_ptr_offset; for (int p_col=0; p_col < num_point; ++p_col) { const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; const scalar_t weight = data_attn_weight[data_weight_ptr]; const scalar_t h_im = loc_h * spatial_h - 0.5; const scalar_t w_im = loc_w * spatial_w - 0.5; *(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0; *(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0; *(cache_grad_attn_weight+threadIdx.x)=0; if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) { ms_deform_attn_col2im_bilinear( data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col, top_grad, weight, grad_value_ptr, cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x); } __syncthreads(); for (unsigned int s=blockDim.x/2, spre=blockDim.x; s>0; s>>=1, spre>>=1) { if (tid < s) { const unsigned int xid1 = tid << 1; const unsigned int xid2 = (tid + s) << 1; cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s]; cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2]; cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1]; if (tid + (s << 1) < spre) { cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + (s << 1)]; cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2 + (s << 1)]; cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1 + (s << 1)]; } } __syncthreads(); } if (tid == 0) { *grad_sampling_loc = cache_grad_sampling_loc[0]; *(grad_sampling_loc + 1) = cache_grad_sampling_loc[1]; *grad_attn_weight = cache_grad_attn_weight[0]; } __syncthreads(); data_weight_ptr += 1; data_loc_w_ptr += 2; grad_attn_weight += grad_weight_stride; grad_sampling_loc += grad_loc_stride; } } } } template <typename scalar_t> __global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v2_multi_blocks(const int n, const scalar_t *grad_col, const scalar_t *data_value, const int64_t *data_spatial_shapes, const int64_t *data_level_start_index, const scalar_t *data_sampling_loc, const scalar_t *data_attn_weight, const int batch_size, const int spatial_size, const int num_heads, const int channels, const int num_levels, const int num_query, const int num_point, scalar_t *grad_value, scalar_t *grad_sampling_loc, scalar_t *grad_attn_weight) { CUDA_KERNEL_LOOP(index, n) { extern __shared__ int _s[]; scalar_t* cache_grad_sampling_loc = (scalar_t*)_s; scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x; unsigned int tid = threadIdx.x; int _temp = index; const int c_col = _temp % channels; _temp /= channels; const int sampling_index = _temp; const int m_col = _temp % num_heads; _temp /= num_heads; const int q_col = _temp % num_query; _temp /= num_query; const int b_col = _temp; const scalar_t top_grad = grad_col[index]; int data_weight_ptr = sampling_index * num_levels * num_point; int data_loc_w_ptr = data_weight_ptr << 1; const int grad_sampling_ptr = data_weight_ptr; grad_sampling_loc += grad_sampling_ptr << 1; grad_attn_weight += grad_sampling_ptr; const int grad_weight_stride = 1; const int grad_loc_stride = 2; const int qid_stride = num_heads * channels; const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; for (int l_col=0; l_col < num_levels; ++l_col) { const int level_start_id = data_level_start_index[l_col]; const int spatial_h_ptr = l_col << 1; const int spatial_h = data_spatial_shapes[spatial_h_ptr]; const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride; const scalar_t *data_value_ptr = data_value + value_ptr_offset; scalar_t *grad_value_ptr = grad_value + value_ptr_offset; for (int p_col=0; p_col < num_point; ++p_col) { const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; const scalar_t weight = data_attn_weight[data_weight_ptr]; const scalar_t h_im = loc_h * spatial_h - 0.5; const scalar_t w_im = loc_w * spatial_w - 0.5; *(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0; *(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0; *(cache_grad_attn_weight+threadIdx.x)=0; if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) { ms_deform_attn_col2im_bilinear( data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col, top_grad, weight, grad_value_ptr, cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x); } __syncthreads(); for (unsigned int s=blockDim.x/2, spre=blockDim.x; s>0; s>>=1, spre>>=1) { if (tid < s) { const unsigned int xid1 = tid << 1; const unsigned int xid2 = (tid + s) << 1; cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s]; cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2]; cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1]; if (tid + (s << 1) < spre) { cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + (s << 1)]; cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2 + (s << 1)]; cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1 + (s << 1)]; } } __syncthreads(); } if (tid == 0) { atomicAdd(grad_sampling_loc, cache_grad_sampling_loc[0]); atomicAdd(grad_sampling_loc + 1, cache_grad_sampling_loc[1]); atomicAdd(grad_attn_weight, cache_grad_attn_weight[0]); } __syncthreads(); data_weight_ptr += 1; data_loc_w_ptr += 2; grad_attn_weight += grad_weight_stride; grad_sampling_loc += grad_loc_stride; } } } } template <typename scalar_t> __global__ void ms_deformable_col2im_gpu_kernel_gm(const int n, const scalar_t *grad_col, const scalar_t *data_value, const int64_t *data_spatial_shapes, const int64_t *data_level_start_index, const scalar_t *data_sampling_loc, const scalar_t *data_attn_weight, const int batch_size, const int spatial_size, const int num_heads, const int channels, const int num_levels, const int num_query, const int num_point, scalar_t *grad_value, scalar_t *grad_sampling_loc, scalar_t *grad_attn_weight) { CUDA_KERNEL_LOOP(index, n) { int _temp = index; const int c_col = _temp % channels; _temp /= channels; const int sampling_index = _temp; const int m_col = _temp % num_heads; _temp /= num_heads; const int q_col = _temp % num_query; _temp /= num_query; const int b_col = _temp; const scalar_t top_grad = grad_col[index]; int data_weight_ptr = sampling_index * num_levels * num_point; int data_loc_w_ptr = data_weight_ptr << 1; const int grad_sampling_ptr = data_weight_ptr; grad_sampling_loc += grad_sampling_ptr << 1; grad_attn_weight += grad_sampling_ptr; const int grad_weight_stride = 1; const int grad_loc_stride = 2; const int qid_stride = num_heads * channels; const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; for (int l_col=0; l_col < num_levels; ++l_col) { const int level_start_id = data_level_start_index[l_col]; const int spatial_h_ptr = l_col << 1; const int spatial_h = data_spatial_shapes[spatial_h_ptr]; const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride; const scalar_t *data_value_ptr = data_value + value_ptr_offset; scalar_t *grad_value_ptr = grad_value + value_ptr_offset; for (int p_col=0; p_col < num_point; ++p_col) { const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; const scalar_t weight = data_attn_weight[data_weight_ptr]; const scalar_t h_im = loc_h * spatial_h - 0.5; const scalar_t w_im = loc_w * spatial_w - 0.5; if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) { ms_deform_attn_col2im_bilinear_gm( data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col, top_grad, weight, grad_value_ptr, grad_sampling_loc, grad_attn_weight); } data_weight_ptr += 1; data_loc_w_ptr += 2; grad_attn_weight += grad_weight_stride; grad_sampling_loc += grad_loc_stride; } } } } template <typename scalar_t> void ms_deformable_im2col_cuda(cudaStream_t stream, const scalar_t* data_value, const int64_t* data_spatial_shapes, const int64_t* data_level_start_index, const scalar_t* data_sampling_loc, const scalar_t* data_attn_weight, const int batch_size, const int spatial_size, const int num_heads, const int channels, const int num_levels, const int num_query, const int num_point, scalar_t* data_col) { const int num_kernels = batch_size * num_query * num_heads * channels; const int num_actual_kernels = batch_size * num_query * num_heads * channels; const int num_threads = CUDA_NUM_THREADS; ms_deformable_im2col_gpu_kernel<scalar_t> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, data_col); cudaError_t err = cudaGetLastError(); if (err != cudaSuccess) { printf("error in ms_deformable_im2col_cuda: %s\n", cudaGetErrorString(err)); } } template <typename scalar_t> void ms_deformable_col2im_cuda(cudaStream_t stream, const scalar_t* grad_col, const scalar_t* data_value, const int64_t * data_spatial_shapes, const int64_t * data_level_start_index, const scalar_t * data_sampling_loc, const scalar_t * data_attn_weight, const int batch_size, const int spatial_size, const int num_heads, const int channels, const int num_levels, const int num_query, const int num_point, scalar_t* grad_value, scalar_t* grad_sampling_loc, scalar_t* grad_attn_weight) { const int num_threads = (channels > CUDA_NUM_THREADS)?CUDA_NUM_THREADS:channels; const int num_kernels = batch_size * num_query * num_heads * channels; const int num_actual_kernels = batch_size * num_query * num_heads * channels; if (channels > 1024) { if ((channels & 1023) == 0) { ms_deformable_col2im_gpu_kernel_shm_reduce_v2_multi_blocks<scalar_t> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, num_threads*3*sizeof(scalar_t), stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); } else { ms_deformable_col2im_gpu_kernel_gm<scalar_t> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); } } else{ switch(channels) { case 1: ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 1> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); break; case 2: ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 2> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); break; case 4: ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 4> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); break; case 8: ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 8> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); break; case 16: ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 16> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); break; case 32: ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 32> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); break; case 64: ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 64> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); break; case 128: ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 128> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); break; case 256: ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 256> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); break; case 512: ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 512> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); break; case 1024: ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 1024> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, 0, stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); break; default: if (channels < 64) { ms_deformable_col2im_gpu_kernel_shm_reduce_v1<scalar_t> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, num_threads*3*sizeof(scalar_t), stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); } else { ms_deformable_col2im_gpu_kernel_shm_reduce_v2<scalar_t> <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, num_threads*3*sizeof(scalar_t), stream>>>( num_kernels, grad_col, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, grad_value, grad_sampling_loc, grad_attn_weight); } } } cudaError_t err = cudaGetLastError(); if (err != cudaSuccess) { printf("error in ms_deformable_col2im_cuda: %s\n", cudaGetErrorString(err)); } }
transformers/src/transformers/kernels/deta/cuda/ms_deform_attn_cuda.cuh/0
{ "file_path": "transformers/src/transformers/kernels/deta/cuda/ms_deform_attn_cuda.cuh", "repo_id": "transformers", "token_count": 34691 }
95
#define MAX_THREADS_PER_BLOCK 1024 #define OPTIMAL_THREADS_PER_BLOCK 256 #define WARP_SIZE 32 #define MAX_NUM_BLOCK_X 2147483647 #define MAX_NUM_BLOCK_Y 65535 #define MAX_NUM_BLOCK_Z 65535 #define MAX_SHARED_MEM_PER_BLOCK 48000 #define FULL_MASK 0xffffffff
transformers/src/transformers/kernels/yoso/common_cuda.h/0
{ "file_path": "transformers/src/transformers/kernels/yoso/common_cuda.h", "repo_id": "transformers", "token_count": 110 }
96
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch - Flax general utilities.""" import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from . import is_safetensors_available, is_torch_available from .utils import logging if is_torch_available(): import torch if is_safetensors_available(): from safetensors import safe_open from safetensors.flax import load_file as safe_load_file logger = logging.get_logger(__name__) ##################### # PyTorch => Flax # ##################### def load_pytorch_checkpoint_in_flax_state_dict( flax_model, pytorch_checkpoint_path, is_sharded, allow_missing_keys=False ): """Load pytorch checkpoints in a flax model""" if not is_sharded: pt_path = os.path.abspath(pytorch_checkpoint_path) logger.info(f"Loading PyTorch weights from {pt_path}") if pt_path.endswith(".safetensors"): pt_state_dict = {} with safe_open(pt_path, framework="flax") as f: for k in f.keys(): pt_state_dict[k] = f.get_tensor(k) else: try: import torch # noqa: F401 except (ImportError, ModuleNotFoundError): logger.error( "Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise weights_only_kwarg = {"weights_only": True} pt_state_dict = torch.load(pt_path, map_location="cpu", **weights_only_kwarg) logger.info(f"PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values()):,} parameters.") flax_state_dict = convert_pytorch_state_dict_to_flax(pt_state_dict, flax_model) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files flax_state_dict = convert_pytorch_sharded_state_dict_to_flax(pytorch_checkpoint_path, flax_model) return flax_state_dict def rename_key_and_reshape_tensor( pt_tuple_key: Tuple[str], pt_tensor: np.ndarray, random_flax_state_dict: Dict[str, jnp.ndarray], model_prefix: str, ) -> (Tuple[str], np.ndarray): """Rename PT weight names to corresponding Flax weight names and reshape tensor if necessary""" def is_key_or_prefix_key_in_dict(key: Tuple[str]) -> bool: """Checks if `key` of `(prefix,) + key` is in random_flax_state_dict""" return len(set(random_flax_state_dict) & {key, (model_prefix,) + key}) > 0 # layer norm renamed_pt_tuple_key = pt_tuple_key[:-1] + ("scale",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(renamed_pt_tuple_key): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean renamed_pt_tuple_key = pt_tuple_key[:-1] + ("mean",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(pt_tuple_key): return renamed_pt_tuple_key, pt_tensor # batch norm layer var renamed_pt_tuple_key = pt_tuple_key[:-1] + ("var",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(pt_tuple_key): return renamed_pt_tuple_key, pt_tensor # embedding renamed_pt_tuple_key = pt_tuple_key[:-1] + ("embedding",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(renamed_pt_tuple_key): return renamed_pt_tuple_key, pt_tensor # conv layer renamed_pt_tuple_key = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(pt_tuple_key): pt_tensor = pt_tensor.transpose(2, 3, 1, 0) return renamed_pt_tuple_key, pt_tensor # linear layer renamed_pt_tuple_key = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(pt_tuple_key): pt_tensor = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight renamed_pt_tuple_key = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias renamed_pt_tuple_key = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 name = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): name = pt_tuple_key[-2] + "_g" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): name = pt_tuple_key[-2] + "_v" if name is not None: renamed_pt_tuple_key = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def convert_pytorch_state_dict_to_flax(pt_state_dict, flax_model): # convert pytorch tensor to numpy from_bin = is_torch_available() and isinstance(next(iter(pt_state_dict.values())), torch.Tensor) bfloat16 = torch.bfloat16 if from_bin else "bfloat16" weight_dtypes = {k: v.dtype for k, v in pt_state_dict.items()} if from_bin: for k, v in pt_state_dict.items(): # numpy currently does not support bfloat16, need to go over float32 in this case to not lose precision if v.dtype == bfloat16: v = v.float() pt_state_dict[k] = v.cpu().numpy() model_prefix = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: flax_model_params = flax_model.params["params"] else: flax_model_params = flax_model.params random_flax_state_dict = flatten_dict(flax_model_params) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: flax_batch_stats = flatten_dict(flax_model.params["batch_stats"]) random_flax_state_dict.update(flax_batch_stats) flax_state_dict = {} load_model_with_head_into_base_model = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(".")[0] for k in pt_state_dict.keys()} ) load_base_model_into_model_with_head = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(".")[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): pt_tuple_key = tuple(pt_key.split(".")) is_bfloat_16 = weight_dtypes[pt_key] == bfloat16 # remove base model prefix if necessary has_base_model_prefix = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: pt_tuple_key = pt_tuple_key[1:] # Correctly rename weight parameters flax_key, flax_tensor = rename_key_and_reshape_tensor( pt_tuple_key, pt_tensor, random_flax_state_dict, model_prefix ) # add model prefix if necessary require_base_model_prefix = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: flax_key = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: flax_state_dict[("batch_stats",) + flax_key] = jnp.asarray(flax_tensor) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(flax_key, None) continue # also add unexpected weight so that warning is thrown flax_state_dict[("params",) + flax_key] = ( jnp.asarray(flax_tensor) if not is_bfloat_16 else jnp.asarray(flax_tensor, dtype=jnp.bfloat16) ) else: # also add unexpected weight so that warning is thrown flax_state_dict[flax_key] = ( jnp.asarray(flax_tensor) if not is_bfloat_16 else jnp.asarray(flax_tensor, dtype=jnp.bfloat16) ) return unflatten_dict(flax_state_dict) ############################ # Sharded Pytorch => Flax # ############################ def convert_pytorch_sharded_state_dict_to_flax(shard_filenames, flax_model): import torch # Load the index flax_state_dict = {} for shard_file in shard_filenames: # load using msgpack utils weights_only_kwarg = {"weights_only": True} pt_state_dict = torch.load(shard_file, **weights_only_kwarg) weight_dtypes = {k: v.dtype for k, v in pt_state_dict.items()} pt_state_dict = { k: v.numpy() if v.dtype != torch.bfloat16 else v.float().numpy() for k, v in pt_state_dict.items() } model_prefix = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: flax_model_params = flax_model.params["params"] random_flax_state_dict = flatten_dict(flax_model_params) random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"])) else: flax_model_params = flax_model.params random_flax_state_dict = flatten_dict(flax_model_params) load_model_with_head_into_base_model = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(".")[0] for k in pt_state_dict.keys()} ) load_base_model_into_model_with_head = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(".")[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): pt_tuple_key = tuple(pt_key.split(".")) is_bfloat_16 = weight_dtypes[pt_key] == torch.bfloat16 # remove base model prefix if necessary has_base_model_prefix = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: pt_tuple_key = pt_tuple_key[1:] # Correctly rename weight parameters flax_key, flax_tensor = rename_key_and_reshape_tensor( pt_tuple_key, pt_tensor, random_flax_state_dict, model_prefix ) # add model prefix if necessary require_base_model_prefix = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: flax_key = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: flax_state_dict[("batch_stats",) + flax_key] = jnp.asarray(flax_tensor) continue if "var" in flax_key[-1]: flax_state_dict[("batch_stats",) + flax_key] = jnp.asarray(flax_tensor) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(flax_key, None) continue # also add unexpected weight so that warning is thrown flax_state_dict[("params",) + flax_key] = ( jnp.asarray(flax_tensor) if not is_bfloat_16 else jnp.asarray(flax_tensor, dtype=jnp.bfloat16) ) else: # also add unexpected weight so that warning is thrown flax_state_dict[flax_key] = ( jnp.asarray(flax_tensor) if not is_bfloat_16 else jnp.asarray(flax_tensor, dtype=jnp.bfloat16) ) return unflatten_dict(flax_state_dict) ##################### # Flax => PyTorch # ##################### def load_flax_checkpoint_in_pytorch_model(model, flax_checkpoint_path): """Load flax checkpoints in a PyTorch model""" flax_checkpoint_path = os.path.abspath(flax_checkpoint_path) logger.info(f"Loading Flax weights from {flax_checkpoint_path}") # import correct flax class flax_cls = getattr(transformers, "Flax" + model.__class__.__name__) # load flax weight dict if flax_checkpoint_path.endswith(".safetensors"): flax_state_dict = safe_load_file(flax_checkpoint_path) flax_state_dict = unflatten_dict(flax_state_dict, sep=".") else: with open(flax_checkpoint_path, "rb") as state_f: try: flax_state_dict = from_bytes(flax_cls, state_f.read()) except UnpicklingError: raise EnvironmentError(f"Unable to convert {flax_checkpoint_path} to Flax deserializable object. ") return load_flax_weights_in_pytorch_model(model, flax_state_dict) def load_flax_weights_in_pytorch_model(pt_model, flax_state): """Load flax checkpoints in a PyTorch model""" try: import torch # noqa: F401 except (ImportError, ModuleNotFoundError): logger.error( "Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights is_type_bf16 = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype == jnp.bfloat16, flax_state)).values() if any(is_type_bf16): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) flax_state = jax.tree_util.tree_map( lambda params: params.astype(np.float32) if params.dtype == jnp.bfloat16 else params, flax_state ) flax_state_dict = flatten_dict(flax_state) pt_model_dict = pt_model.state_dict() load_model_with_head_into_base_model = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split(".")[0] for k in pt_model_dict.keys()} ) load_base_model_into_model_with_head = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split(".")[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys unexpected_keys = [] missing_keys = set(pt_model_dict.keys()) for flax_key_tuple, flax_tensor in flax_state_dict.items(): has_base_model_prefix = flax_key_tuple[0] == pt_model.base_model_prefix require_base_model_prefix = ".".join((pt_model.base_model_prefix,) + flax_key_tuple) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: flax_key_tuple = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: flax_key_tuple = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(flax_key_tuple) not in pt_model_dict: # conv layer flax_key_tuple = flax_key_tuple[:-1] + ("weight",) flax_tensor = jnp.transpose(flax_tensor, (3, 2, 0, 1)) elif flax_key_tuple[-1] == "kernel" and ".".join(flax_key_tuple) not in pt_model_dict: # linear layer flax_key_tuple = flax_key_tuple[:-1] + ("weight",) flax_tensor = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: flax_key_tuple = flax_key_tuple[:-1] + ("weight",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: flax_key_tuple = flax_key_tuple[:-1] + ("running_mean",) elif "var" in flax_key_tuple[-1]: flax_key_tuple = flax_key_tuple[:-1] + ("running_var",) if "batch_stats" in flax_state: flax_key = ".".join(flax_key_tuple[1:]) # Remove the params/batch_stats header else: flax_key = ".".join(flax_key_tuple) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. special_pt_names = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: key_components = key.split(".") name = None if key_components[-3::2] == ["parametrizations", "original0"]: name = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: name = key_components[-2] + "_v" if name is not None: key_components = key_components[:-3] + [name] key_to_check = ".".join(key_components) special_pt_names[key_to_check] = key if flax_key in special_pt_names: flax_key = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " f"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict flax_tensor = np.asarray(flax_tensor) if not isinstance(flax_tensor, np.ndarray) else flax_tensor pt_model_dict[flax_key] = torch.from_numpy(flax_tensor) # remove from missing keys missing_keys.remove(flax_key) else: # weight is not expected by PyTorch model unexpected_keys.append(flax_key) pt_model.load_state_dict(pt_model_dict) # re-transform missing_keys to list missing_keys = list(missing_keys) if len(unexpected_keys) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" f" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" f" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" f" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) else: logger.warning(f"All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n") if len(missing_keys) > 0: logger.warning( f"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" f" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" " use it for predictions and inference." ) else: logger.warning( f"All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n" "If your task is similar to the task the model of the checkpoint was trained on, " f"you can already use {pt_model.__class__.__name__} for predictions without further training." ) return pt_model
transformers/src/transformers/modeling_flax_pytorch_utils.py/0
{ "file_path": "transformers/src/transformers/modeling_flax_pytorch_utils.py", "repo_id": "transformers", "token_count": 9749 }
97
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for ALBERT model.""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging from ...utils.import_utils import export logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"} SPIECE_UNDERLINE = "▁" @export(backends=("sentencepiece",)) class AlbertTokenizer(PreTrainedTokenizer): """ Construct an ALBERT tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. remove_space (`bool`, *optional*, defaults to `True`): Whether or not to strip the text when tokenizing (removing excess spaces before and after the string). keep_accents (`bool`, *optional*, defaults to `False`): Whether or not to keep accents when tokenizing. bos_token (`str`, *optional*, defaults to `"[CLS]"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"[SEP]"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. Attributes: sp_model (`SentencePieceProcessor`): The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). """ vocab_files_names = VOCAB_FILES_NAMES def __init__( self, vocab_file, do_lower_case=True, remove_space=True, keep_accents=False, bos_token="[CLS]", eos_token="[SEP]", unk_token="<unk>", sep_token="[SEP]", pad_token="<pad>", cls_token="[CLS]", mask_token="[MASK]", sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. mask_token = ( AddedToken(mask_token, lstrip=True, rstrip=False, normalized=False) if isinstance(mask_token, str) else mask_token ) self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs self.do_lower_case = do_lower_case self.remove_space = remove_space self.keep_accents = keep_accents self.vocab_file = vocab_file self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(vocab_file) super().__init__( do_lower_case=do_lower_case, remove_space=remove_space, keep_accents=keep_accents, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, sp_model_kwargs=self.sp_model_kwargs, **kwargs, ) @property def vocab_size(self) -> int: return len(self.sp_model) def get_vocab(self) -> Dict[str, int]: vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def preprocess_text(self, inputs): if self.remove_space: outputs = " ".join(inputs.strip().split()) else: outputs = inputs outputs = outputs.replace("``", '"').replace("''", '"') if not self.keep_accents: outputs = unicodedata.normalize("NFKD", outputs) outputs = "".join([c for c in outputs if not unicodedata.combining(c)]) if self.do_lower_case: outputs = outputs.lower() return outputs def _tokenize(self, text: str) -> List[str]: """Tokenize a string.""" text = self.preprocess_text(text) pieces = self.sp_model.encode(text, out_type=str) new_pieces = [] for piece in pieces: if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit(): # Logic to handle special cases see https://github.com/google-research/bert/blob/master/README.md#tokenization # `9,9` -> ['▁9', ',', '9'] instead of [`_9,`, '9'] cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, "")) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: cur_pieces = cur_pieces[1:] else: cur_pieces[0] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(cur_pieces) else: new_pieces.append(piece) return new_pieces def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.sp_model.PieceToId(token) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.sp_model.IdToPiece(index) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" current_sub_tokens = [] out_string = "" prev_is_special = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(current_sub_tokens) + token prev_is_special = True current_sub_tokens = [] else: current_sub_tokens.append(token) prev_is_special = False out_string += self.sp_model.decode(current_sub_tokens) return out_string.strip() def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An ALBERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return cls + token_ids_0 + sep return cls + token_ids_0 + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,) __all__ = ["AlbertTokenizer"]
transformers/src/transformers/models/albert/tokenization_albert.py/0
{ "file_path": "transformers/src/transformers/models/albert/tokenization_albert.py", "repo_id": "transformers", "token_count": 6280 }
98
# coding=utf-8 # Copyright 2024 The Rhymes-AI Teams Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...activations import ACT2FN from ...configuration_utils import PretrainedConfig from ...generation import GenerationMixin from ...image_processing_utils import BaseImageProcessor, BatchFeature, select_best_resolution from ...image_transforms import PaddingMode, convert_to_rgb, pad, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, get_image_size, infer_channel_dimension_format, to_numpy_array, valid_images, validate_preprocess_arguments, ) from ...modeling_utils import PreTrainedModel from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack from ...tokenization_utils import ( PreTokenizedInput, TextInput, ) from ...utils import ( TensorType, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.deprecation import deprecate_kwarg from ...utils.import_utils import is_torch_available from ..auto import CONFIG_MAPPING, AutoConfig, AutoModel, AutoModelForCausalLM, AutoTokenizer from ..llama.configuration_llama import LlamaConfig from ..llama.modeling_llama import ( LlamaDecoderLayer, LlamaForCausalLM, LlamaMLP, LlamaModel, LlamaPreTrainedModel, LlamaRMSNorm, ) from ..llava.modeling_llava import LlavaCausalLMOutputWithPast from ..llava_next.image_processing_llava_next import divide_to_patches, make_batched_images logger = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn def sequential_experts_gemm(token_states, expert_weights, tokens_per_expert): """ Compute the matrix multiplication (GEMM) for each expert sequentially. This approach is computationally inefficient, especially when dealing with a large number of experts. Args: token_states (torch.Tensor): Input tensor of shape (num_tokens, in_features). expert_weights (torch.Tensor): Weight tensor of shape (num_experts, in_features, out_features). tokens_per_expert (torch.Tensor): Number of tokens assigned to each expert. Returns: torch.Tensor: Output tensor of shape (num_tokens, out_features). """ num_tokens = token_states.shape[0] out_features = expert_weights.shape[-1] output = torch.zeros(num_tokens, out_features, dtype=token_states.dtype, device=token_states.device) cumsum_num_tokens = torch.cumsum(tokens_per_expert, dim=0) # Insert zero at the begining for offset index's convenience zero_tensor = torch.zeros(1, dtype=torch.long, device=cumsum_num_tokens.device) cumsum_num_tokens = torch.cat((zero_tensor, cumsum_num_tokens)) for expert_num in range(expert_weights.shape[0]): start = cumsum_num_tokens[expert_num] end = cumsum_num_tokens[expert_num + 1] tokens = token_states[start:end] out = torch.matmul(tokens, expert_weights[expert_num]) output[start:end] = out return output class AriaTextConfig(LlamaConfig): r""" This class handles the configuration for the text component of the Aria model. Instantiating a configuration with the defaults will yield a similar configuration to that of the model of the Aria [rhymes-ai/Aria](https://huggingface.co/rhymes-ai/Aria) architecture. This class extends the LlamaConfig to include additional parameters specific to the Mixture of Experts (MoE) architecture. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`LlamaModel`] hidden_size (`int`, *optional*, defaults to 4096): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 4096): The size of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer decoder. num_key_value_heads (`int`, *optional*): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens, Llama 2 up to 4096, CodeLlama up to 16384. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. pad_token_id (`int`, *optional*, defaults to 2): Padding token id. bos_token_id (`int`, *optional*, defaults to 1): Beginning of stream token id. eos_token_id (`int`, *optional*, defaults to 2): End of stream token id. pretraining_tp (`int`, *optional*, defaults to 1): Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to understand more about it. This value is necessary to ensure exact reproducibility of the pretraining results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232). tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value accordingly. Expected contents: `rope_type` (`str`): The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', 'llama3'], with 'default' being the original RoPE implementation. `factor` (`float`, *optional*): Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In most scaling types, a `factor` of x will enable the model to handle sequences of length x * original maximum pre-trained length. `original_max_position_embeddings` (`int`, *optional*): Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during pretraining. `attention_factor` (`float`, *optional*): Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention computation. If unspecified, it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value. `beta_fast` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear ramp function. If unspecified, it defaults to 32. `beta_slow` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear ramp function. If unspecified, it defaults to 1. `short_factor` (`List[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to short contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `long_factor` (`List[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to long contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `low_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE `high_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE attention_bias (`bool`, *optional*, defaults to `False`): Whether to use a bias in the query, key, value and output projection layers during self-attention. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. mlp_bias (`bool`, *optional*, defaults to `False`): Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers. head_dim (`int`, *optional*): The attention head dimension. If None, it will default to hidden_size // num_heads moe_num_experts (`int`, *optional*, defaults to 8): The number of experts in the MoE layer. moe_topk (`int`, *optional*, defaults to 2): The number of top experts to route to for each token. moe_num_shared_experts (`int`, *optional*, defaults to 2): The number of shared experts. """ model_type = "aria_text" base_config_key = "text_config" def __init__( self, intermediate_size: int = 4096, moe_num_experts: int = 8, moe_topk: int = 2, moe_num_shared_experts: int = 2, pad_token_id=2, **super_kwargs, ): super().__init__(pad_token_id=pad_token_id, **super_kwargs) self.intermediate_size = intermediate_size self.moe_num_experts = moe_num_experts self.moe_topk = moe_topk self.moe_num_shared_experts = moe_num_shared_experts class AriaConfig(PretrainedConfig): r""" This class handles the configuration for both vision and text components of the Aria model, as well as additional parameters for image token handling and projector mapping. Instantiating a configuration with the defaults will yield a similar configuration to that of the model of the Aria [rhymes-ai/Aria](https://huggingface.co/rhymes-ai/Aria) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vision_config (`AriaVisionConfig` or `dict`, *optional*): Configuration for the vision component. vision_feature_layer (`int`, *optional*, defaults to -1): The index of the layer to select the vision feature. text_config (`AriaTextConfig` or `dict`, *optional*): Configuration for the text component. projector_patch_to_query_dict (`dict`, *optional*): Mapping of patch sizes to query dimensions. image_token_index (`int`, *optional*, defaults to 9): Index used to represent image tokens. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated normal initializer for initializing all weight matrices. Attributes: model_type (`str`): Type of the model, set to `"aria"`. image_token_index (`int`): Index used to represent image tokens. projector_patch_to_query_dict (`dict`): Mapping of patch sizes to query dimensions. vision_config (`AriaVisionConfig`): Configuration for the vision component. text_config (`AriaTextConfig`): Configuration for the text component. """ model_type = "aria" sub_configs = {"text_config": AriaTextConfig, "vision_config": AutoConfig} def __init__( self, vision_config=None, vision_feature_layer: int = -1, text_config: AriaTextConfig = None, projector_patch_to_query_dict: Dict = None, image_token_index: int = 9, initializer_range: float = 0.02, **kwargs, ): self.image_token_index = image_token_index # Convert the keys and values of projector_patch_to_query_dict to integers # This ensures consistency even if they were provided as strings if projector_patch_to_query_dict is None: projector_patch_to_query_dict = { 1225: 128, 4900: 256, } self.projector_patch_to_query_dict = {int(k): int(v) for k, v in projector_patch_to_query_dict.items()} self.max_value_projector_patch_to_query_dict = max(self.projector_patch_to_query_dict.values()) self.vision_feature_layer = vision_feature_layer if isinstance(vision_config, dict): vision_config["model_type"] = "idefics3_vision" vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config) elif vision_config is None: vision_config = CONFIG_MAPPING["idefics3_vision"]() self.vision_config = vision_config self.initializer_range = initializer_range if isinstance(text_config, dict) and "model_type" in text_config: text_config = AriaTextConfig(**text_config) elif text_config is None: text_config = AriaTextConfig() self.text_config = text_config super().__init__(**kwargs) class AriaTextRMSNorm(LlamaRMSNorm): pass class AriaProjectorMLP(nn.Module): """ Feed-Forward Network module for the Aria Projector. Args: in_features (`int`): Input embedding dimension. hidden_features (`int`): Hidden dimension of the feed-forward network. output_dim (`int`): Output dimension. """ def __init__(self, in_features, hidden_features, output_dim): super().__init__() self.linear_in = nn.Linear(in_features, hidden_features, bias=False) self.linear_out = nn.Linear(hidden_features, output_dim, bias=False) self.act = ACT2FN["gelu_new"] def forward(self, hidden_states): hidden_states = self.act(self.linear_in(hidden_states)) hidden_states = self.linear_out(hidden_states) return hidden_states class AriaCrossAttention(nn.Module): """ Aria Cross-Attention module. Args: config (`AriaConfig`): The configuration to use. """ def __init__(self, config: AriaConfig, dropout_rate: float = 0): super().__init__() hidden_size = config.vision_config.hidden_size num_heads = config.vision_config.num_attention_heads self.num_heads = num_heads self.q_proj = nn.Linear(hidden_size, hidden_size, bias=False) self.k_proj = nn.Linear(hidden_size, hidden_size, bias=False) self.v_proj = nn.Linear(hidden_size, hidden_size, bias=False) # Original code here: https://github.com/rhymes-ai/Aria/blob/719ff4e52b727443cba3793b0e27fe64e0244fe1/aria/model/projector.py#L48 self.multihead_attn = nn.MultiheadAttention(hidden_size, num_heads, batch_first=True) self.linear = nn.Linear(hidden_size, hidden_size) self.dropout = nn.Dropout(dropout_rate) self.layer_norm = nn.LayerNorm(hidden_size) self.layer_norm_kv = nn.LayerNorm(hidden_size) def forward(self, key_value_states, hidden_states, attn_mask=None): """ Forward pass of the AriaCrossAttention module. Args: key_value_states (`torch.Tensor`): Input tensor for key and value. hidden_states (`torch.Tensor`): Input tensor for query. attn_mask (`torch.Tensor`, *optional*, defaults to None): Attention mask. Returns: torch.Tensor: Output tensor after cross-attention. """ query = self.q_proj(self.layer_norm(hidden_states)) key_value_states = self.layer_norm_kv(key_value_states) key = self.k_proj(key_value_states) value = self.v_proj(key_value_states) attn_output, _ = self.multihead_attn(query, key, value, attn_mask=attn_mask) attn_output = self.dropout(self.linear(attn_output)) return attn_output class AriaProjector(nn.Module): """ Aria Projector module. This module projects vision features into the language model's embedding space, enabling interaction between vision and language components. Args: config (`AriaConfig`): Configuration object for the model. """ def __init__( self, config: AriaConfig, ): super().__init__() self.patch_to_query_dict = config.projector_patch_to_query_dict self.in_features = config.vision_config.hidden_size self.num_heads = config.vision_config.num_attention_heads self.kv_dim = config.vision_config.hidden_size self.hidden_features = config.text_config.hidden_size self.output_dim = config.text_config.hidden_size self.query = nn.Parameter(torch.zeros(config.max_value_projector_patch_to_query_dict, self.in_features)) self.cross_attn = AriaCrossAttention(config) self.layer_norm = nn.LayerNorm(self.in_features) self.feed_forward = AriaProjectorMLP(self.in_features, self.hidden_features, self.output_dim) def forward(self, key_value_states: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): """ Forward pass of the Projector module. Args: key_value_states (`torch.Tensor`): Input tensor of shape (batch_size, num_patches, kv_dim). attn_mask (`torch.Tensor`, *optional*, default is None): Attention mask. Returns: `torch.Tensor`: Output tensor of shape (batch_size, query_number, output_dim). """ batch_size, num_patches = key_value_states.shape[0], key_value_states.shape[1] if num_patches not in self.patch_to_query_dict.keys(): raise KeyError( f"Number of patches {num_patches} not found in patch_to_query_dict amongst possible values {self.patch_to_query_dict.keys()}." ) query_num = self.patch_to_query_dict[num_patches] queries = self.query[:query_num].unsqueeze(0).repeat(batch_size, 1, 1) if attn_mask is not None: attn_mask = attn_mask.repeat_interleave(self.num_heads, 0) attn_mask = attn_mask.unsqueeze(1).expand(-1, queries.size(1), -1) attention_out = self.cross_attn(key_value_states, queries, attn_mask=attn_mask) out = self.feed_forward(self.layer_norm(attention_out)) return out def _get_patch_output_size(image, target_resolution, input_data_format): original_height, original_width = get_image_size(image, channel_dim=input_data_format) target_height, target_width = target_resolution scale_w = target_width / original_width scale_h = target_height / original_height if scale_w < scale_h: new_width = target_width new_height = min(math.ceil(original_height * scale_w), target_height) else: new_height = target_height new_width = min(math.ceil(original_width * scale_h), target_width) return new_height, new_width class AriaImageProcessor(BaseImageProcessor): """ A vision processor for the Aria model that handles image preprocessing. Initialize the AriaImageProcessor. Args: image_mean (`list`, *optional*, defaults to [0.5, 0.5, 0.5]): Mean values for normalization. image_std (`list`, *optional*, defaults to [0.5, 0.5, 0.5]): Standard deviation values for normalization. max_image_size (`int`, *optional*, defaults to 980): Maximum image size. min_image_size (`int`, *optional*, defaults to 336): Minimum image size. split_resolutions (`list`, *optional*, defaults to a list of optimal,resolutions as tuples): The optimal resolutions for splitting the image. split_image (`bool`, *optional*, defaults to `False`): Whether to split the image. do_convert_rgb (`bool`, *optional*, defaults to `True`): Whether to convert the image to RGB. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. resample (PILImageResampling, *optional*, defaults to `BICUBIC`): The resampling filter to use if resizing the image. """ def __init__( self, image_mean: List[float] = None, image_std: List[float] = None, max_image_size: int = 980, min_image_size: int = 336, split_resolutions: Optional[List[Tuple[int, int]]] = None, split_image: Optional[bool] = False, do_convert_rgb: Optional[bool] = True, do_normalize: Optional[bool] = True, resample: PILImageResampling = PILImageResampling.BICUBIC, **kwargs, ): super().__init__(**kwargs) if image_mean is None: image_mean = [0.5, 0.5, 0.5] if image_std is None: image_std = [0.5, 0.5, 0.5] self.max_image_size = max_image_size self.min_image_size = min_image_size self.image_mean = image_mean self.image_std = image_std self.split_image = split_image if split_resolutions is None: split_resolutions = [(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (2, 4), (2, 3), (2, 2), (2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (5, 1), (6, 1), (7, 1), (8, 1)] # fmt: skip split_resolutions = [(el[0] * 490, el[1] * 490) for el in split_resolutions] self.split_resolutions = split_resolutions self.do_convert_rgb = do_convert_rgb self.do_normalize = do_normalize self.resample = resample def preprocess( self, images: Union[ImageInput, List[ImageInput]], image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, max_image_size: Optional[int] = None, min_image_size: Optional[int] = None, split_image: Optional[bool] = None, do_convert_rgb: Optional[bool] = None, do_normalize: Optional[bool] = None, resample: PILImageResampling = None, return_tensors: Optional[Union[str, TensorType]] = "pt", data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): """ Process a list of images. Args: images (ImageInput or list of ImageInput): The input image or a list of images. image_mean (`list`, *optional*, defaults to [0.5, 0.5, 0.5]): Mean values for normalization. image_std (`list`, *optional*, defaults to [0.5, 0.5, 0.5]): Standard deviation values for normalization. max_image_size (`int`, *optional*, defaults to `self.max_image_size` (980)): Maximum image size. min_image_size (`int`, *optional*, defaults to `self.min_image_size` (336)): Minimum image size. split_image (`bool`, *optional*, defaults to `self.split_image` (False)): Whether to split the image. do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb` (True)): Whether to convert the image to RGB. do_normalize (`bool`, *optional*, defaults to `self.do_normalize` (True)): Whether to normalize the image. resample (PILImageResampling, *optional*, defaults to `self.resample` (BICUBIC)): The resampling filter to use if resizing the image. return_tensors (`str` or `TensorType`, *optional*, defaults to "pt"): The type of tensor to return. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. If unset, will use same as the input image. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. If unset, will use the inferred format of the input image. Returns: BatchFeature: A BatchFeature object containing: - 'pixel_values': Tensor of processed image pixel values. - 'pixel_mask': Boolean pixel mask. This mask is a 2D tensor of shape (max_image_size, max_image_size) where: - True (1) values indicate pixels that belong to the original resized image. - False (0) values indicate pixels that are part of the padding. The mask helps distinguish between actual image content and padded areas in subsequent processing steps. - 'num_crops': The maximum number of crops across all images. """ image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std max_image_size = max_image_size if max_image_size is not None else self.max_image_size min_image_size = min_image_size if min_image_size is not None else self.min_image_size split_image = split_image if split_image is not None else self.split_image do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb do_normalize = do_normalize if do_normalize is not None else self.do_normalize resample = resample if resample is not None else self.resample if max_image_size not in [490, 980]: raise ValueError("max_image_size must be either 490 or 980") images = make_batched_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_preprocess_arguments( do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, resample=resample, ) if do_convert_rgb: images = [convert_to_rgb(image) for image in images] # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) pixel_values = [] pixel_masks = [] num_crops = None for image in images: if split_image: crop_images = self.get_image_patches( image, self.split_resolutions, max_image_size, resample, data_format=input_data_format, input_data_format=input_data_format, ) else: crop_images = [image] if num_crops is None or len(crop_images) > num_crops: num_crops = len(crop_images) for crop_image in crop_images: # At this point the scale is the rescaling factor that would bring the image to max_size in its larger dimension h, w = get_image_size(crop_image) scale = max_image_size / max(h, w) if w >= h: new_size = (max(int(h * scale), min_image_size), max_image_size) # h, w else: new_size = (max_image_size, max(int(w * scale), min_image_size)) # h, w crop_image_resized = resize( crop_image, new_size, resample=resample, data_format=input_data_format, input_data_format=input_data_format, ) padding_bottom, padding_right = max_image_size - new_size[0], max_image_size - new_size[1] crop_image_padded = pad( crop_image_resized, ((0, padding_bottom), (0, padding_right)), data_format=input_data_format, input_data_format=input_data_format, ) # Create a pixel mask pixel_mask = np.zeros((max_image_size, max_image_size), dtype=bool) pixel_mask[: new_size[0], : new_size[1]] = 1 pixel_masks.append(pixel_mask) if do_normalize: crop_image_padded = self.normalize( crop_image_padded / 255.0, self.image_mean, self.image_std, data_format=input_data_format, input_data_format=input_data_format, ) crop_image_padded = ( to_channel_dimension_format(crop_image_padded, data_format, input_data_format) if data_format is not None else crop_image_padded ) pixel_values.append(crop_image_padded) return BatchFeature( data={ "pixel_values": np.stack(pixel_values, axis=0), "pixel_mask": np.stack(pixel_masks, axis=0), "num_crops": num_crops, }, tensor_type=return_tensors, ) def _resize_for_patching( self, image: np.array, target_resolution: tuple, resample, input_data_format: ChannelDimension ) -> np.array: """ Resizes an image to a target resolution while maintaining aspect ratio. Args: image (np.array): The input image. target_resolution (tuple): The target resolution (height, width) of the image. resample (`PILImageResampling`): Resampling filter to use if resizing the image. input_data_format (`ChannelDimension` or `str`): The channel dimension format of the input image. Returns: np.array: The resized and padded image. """ new_height, new_width = _get_patch_output_size(image, target_resolution, input_data_format) # Resize the image resized_image = resize(image, (new_height, new_width), resample=resample, input_data_format=input_data_format) return resized_image def _pad_for_patching( self, image: np.array, target_resolution: tuple, input_data_format: ChannelDimension ) -> np.array: """ Pad an image to a target resolution while maintaining aspect ratio. """ target_height, target_width = target_resolution new_height, new_width = _get_patch_output_size(image, target_resolution, input_data_format) paste_x = (target_width - new_width) // 2 paste_y = (target_height - new_height) // 2 padded_image = self.pad(image, padding=((paste_y, paste_y), (paste_x, paste_x))) return padded_image def pad( self, image: np.ndarray, padding: Union[int, Tuple[int, int], Iterable[Tuple[int, int]]], mode: PaddingMode = PaddingMode.CONSTANT, constant_values: Union[float, Iterable[float]] = 0.0, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """ Pads the `image` with the specified `padding` and `mode`. Padding can be in the (`height`, `width`) dimension of in the (`num_patches`) dimension. In the second case an iterable if tuples is expected as input. Args: image (`np.ndarray`): The image to pad. padding (`int` or `Tuple[int, int]` or `Iterable[Tuple[int, int]]`): Padding to apply to the edges of the height, width axes. Can be one of three formats: - `((before_height, after_height), (before_width, after_width))` unique pad widths for each axis. - `((before, after),)` yields same before and after pad for height and width. - `(pad,)` or int is a shortcut for before = after = pad width for all axes. mode (`PaddingMode`): The padding mode to use. Can be one of: - `"constant"`: pads with a constant value. - `"reflect"`: pads with the reflection of the vector mirrored on the first and last values of the vector along each axis. - `"replicate"`: pads with the replication of the last value on the edge of the array along each axis. - `"symmetric"`: pads with the reflection of the vector mirrored along the edge of the array. constant_values (`float` or `Iterable[float]`, *optional*): The value to use for the padding if `mode` is `"constant"`. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. If unset, will use same as the input image. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. If unset, will use the inferred format of the input image. Returns: `np.ndarray`: The padded image. """ # call the general `pad` if padding on `height/width`, otherwise it's the `num_patched` dim if isinstance(padding, int) or len(padding) != 4: return pad(image, padding, mode, constant_values, data_format, input_data_format) if input_data_format is None: input_data_format = infer_channel_dimension_format(image) padding_mode_mapping = { PaddingMode.CONSTANT: "constant", PaddingMode.REFLECT: "reflect", PaddingMode.REPLICATE: "edge", PaddingMode.SYMMETRIC: "symmetric", } image = np.pad(image, padding, mode=padding_mode_mapping[mode], constant_values=constant_values) image = ( to_channel_dimension_format(image, data_format, input_data_format) if data_format is not None else image ) return image def get_image_patches( self, image: np.array, grid_pinpoints: List[Tuple[int, int]], patch_size: int, resample: PILImageResampling, data_format: ChannelDimension, input_data_format: ChannelDimension, ) -> List[np.array]: """ Process an image with variable resolutions by dividing it into patches. Args: image (`np.array`): The input image to be processed. grid_pinpoints (List[Tuple[int, int]]): A list of possible resolutions as tuples. patch_size (`int`): Size of the patches to divide the image into. resample (`PILImageResampling`): Resampling filter to use if resizing the image. data_format (`ChannelDimension` or `str`): The channel dimension format for the output image. input_data_format (`ChannelDimension` or `str`): The channel dimension format of the input image. Returns: `List[np.array]`: A list of NumPy arrays containing the processed image patches. """ if not isinstance(grid_pinpoints, list): raise TypeError("grid_pinpoints must be a list of possible resolutions.") possible_resolutions = grid_pinpoints image_size = get_image_size(image, channel_dim=input_data_format) best_resolution = select_best_resolution(image_size, possible_resolutions) resized_image = self._resize_for_patching( image, best_resolution, resample=resample, input_data_format=input_data_format ) padded_image = self._pad_for_patching(resized_image, best_resolution, input_data_format=input_data_format) patches = divide_to_patches(padded_image, patch_size=patch_size, input_data_format=input_data_format) # make sure that all patches are in the input data format patches = [ to_channel_dimension_format(patch, channel_dim=data_format, input_channel_dim=input_data_format) for patch in patches ] return patches class AriaProcessorKwargs(ProcessingKwargs, total=False): _defaults = { "text_kwargs": { "padding": False, }, "images_kwargs": { "max_image_size": 980, "split_image": False, }, "return_tensors": TensorType.PYTORCH, } class AriaProcessor(ProcessorMixin): """ AriaProcessor is a processor for the Aria model which wraps the Aria image preprocessor and the LLama slow tokenizer. Args: image_processor (`AriaImageProcessor`, *optional*): The AriaImageProcessor to use for image preprocessing. tokenizer (`PreTrainedTokenizerBase`, *optional*): An instance of [`PreTrainedTokenizerBase`]. This should correspond with the model's text model. The tokenizer is a required input. chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string. size_conversion (`Dict`, *optional*): A dictionary indicating size conversions for images. """ attributes = ["image_processor", "tokenizer"] valid_kwargs = ["chat_template", "size_conversion"] image_processor_class = "AriaImageProcessor" tokenizer_class = "AutoTokenizer" def __init__( self, image_processor=None, tokenizer: Union[AutoTokenizer, str] = None, chat_template: Optional[str] = None, size_conversion: Optional[Dict[Union[float, int], int]] = None, ): if size_conversion is None: size_conversion = {490: 128, 980: 256} self.size_conversion = {int(k): v for k, v in size_conversion.items()} if tokenizer is not None and tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.unk_token super().__init__(image_processor, tokenizer, chat_template=chat_template) def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], images: Optional[ImageInput] = None, audio=None, videos=None, **kwargs: Unpack[AriaProcessorKwargs], ) -> BatchFeature: """ Main method to prepare for the model one or several sequences(s) and image(s). Args: text (`TextInput`, `PreTokenizedInput`, `List[TextInput]`, `List[PreTokenizedInput]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). images (`ImageInput`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. Both channels-first and channels-last formats are supported. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. - **pixel_mask** -- Pixel mask to be fed to a model. Returned when `images` is not `None`. """ output_kwargs = self._merge_kwargs( AriaProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs, ) if isinstance(text, str): text = [text] elif not isinstance(text, list) and not isinstance(text[0], str): raise ValueError("Invalid input text. Please provide a string, or a list of strings") if images is not None: image_inputs = self.image_processor( images, **output_kwargs["images_kwargs"], ) # expand the image_token according to the num_crops and tokens per image tokens_per_image = self.size_conversion[image_inputs.pixel_values.shape[2]] prompt_strings = [] num_crops = image_inputs.pop("num_crops") * tokens_per_image for sample in text: sample = sample.replace(self.tokenizer.image_token, self.tokenizer.image_token * num_crops) prompt_strings.append(sample) else: image_inputs = {} prompt_strings = text text_inputs = self.tokenizer( prompt_strings, **output_kwargs["text_kwargs"], ) return BatchFeature(data={**text_inputs, **image_inputs}) def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) class AriaSharedExpertsMLP(LlamaMLP): """ Shared Expert MLP for shared experts. Unlike routed experts, shared experts process all tokens without routing. This class reconfigures the intermediate size in comparison to the LlamaMLP. Args: config (`AriaTextConfig`): Configuration object for the Aria language model. """ def __init__(self, config: AriaTextConfig): super().__init__(self) self.intermediate_size = config.intermediate_size * config.moe_num_shared_experts class AriaGroupedExpertsGemm(nn.Module): """ Grouped GEMM (General Matrix Multiplication) module for efficient expert computation. This module utilizes the grouped_gemm library (https://github.com/fanshiqing/grouped_gemm) for optimized performance. If the grouped_gemm library is not installed, it gracefully falls back to a sequential GEMM implementation, which may be slower but ensures functionality. Args: in_features (`int`): Number of input features. out_features (`int`): Number of output features. groups (`int`): Number of expert groups. """ def __init__(self, in_features, out_features, groups): super().__init__() self.in_features = in_features self.out_features = out_features self.groups = groups self.weight = nn.Parameter(torch.empty(groups, in_features, out_features)) def forward(self, input, tokens_per_expert): """ Perform grouped matrix multiplication. Args: input (`torch.Tensor`): Input tensor of shape (num_tokens, in_features). tokens_per_expert (`torch.Tensor`): Number of tokens assigned to each expert. Returns: torch.Tensor: Output tensor of shape (num_tokens, out_features). """ return sequential_experts_gemm( input, self.weight, tokens_per_expert.cpu(), ) class AriaGroupedExpertsMLP(nn.Module): """ Grouped MLP module for Mixture of Experts. Args: config (`AriaTextConfig`): Configuration object for the model. """ def __init__(self, config: AriaTextConfig) -> None: super().__init__() self.config = config self.fc1 = AriaGroupedExpertsGemm(config.hidden_size, config.intermediate_size * 2, config.moe_num_experts) self.fc2 = AriaGroupedExpertsGemm(config.intermediate_size, config.hidden_size, config.moe_num_experts) def forward(self, permuted_tokens, tokens_per_expert): """ Forward pass of the Grouped MLP. Args: permuted_tokens (torch.Tensor): Permuted input tokens. tokens_per_expert (torch.Tensor): Number of tokens assigned to each expert. Returns: torch.Tensor: Output tensor after passing through the MLP. """ fc1_output = self.fc1(permuted_tokens, tokens_per_expert) projection, gate = torch.chunk(fc1_output, 2, dim=-1) fc1_output = nn.functional.silu(projection) * gate fc2_output = self.fc2(fc1_output, tokens_per_expert) return fc2_output # Token permutation adapted from https://github.com/NVIDIA/Megatron-LM/blob/54f1f78529cbc2b9cddad313e7f9d96ac0420a27/megatron/core/transformer/moe/token_dispatcher.py#L291-L587 class AriaTextMoELayer(nn.Module): """ Aria Text Mixture of Experts (MoE) Layer. This layer applies a gating mechanism to route input tokens to different experts. Args: config (`AriaTextConfig`): Configuration object for the text component of the model. """ def __init__(self, config: AriaTextConfig): super().__init__() self.router = nn.Linear(config.hidden_size, config.moe_num_experts, bias=False) self.experts = AriaGroupedExpertsMLP(config) self.shared_experts = AriaSharedExpertsMLP(config) self.config = config def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: """ Forward pass of the MoE Layer. Args: hidden_states (`torch.Tensor`): Input tensor of shape (batch_size, sequence_length, hidden_size). Returns: torch.Tensor: Output tensor after passing through the MoE layer. Process: 1. Route tokens to experts using the router. 2. Permute tokens based on routing decisions. 3. Process tokens through experts. 4. Unpermute and combine expert outputs. 5. Add shared expert output to the final result. """ original_shape = hidden_states.shape hidden_states = hidden_states.view(-1, hidden_states.size(-1)) # Top K Routing logits = self.router(hidden_states) top_logits, top_indices = torch.topk(logits, k=self.config.moe_topk, dim=1) scores = nn.functional.softmax(top_logits, dim=-1) original_dtype = top_indices.dtype tokens_per_expert = torch.histc( top_indices.flatten().to(torch.float32), bins=self.config.moe_num_experts, min=0, max=self.config.moe_num_experts - 1, ).to(original_dtype) indices = top_indices # Token permutation flatten_indices = indices.view(-1) sorted_indices = torch.argsort(flatten_indices) permuted_tokens = hidden_states.index_select(0, sorted_indices // self.config.moe_topk) # Process through experts expert_output = self.experts(permuted_tokens, tokens_per_expert) # Token unpermutation unpermuted_tokens = torch.zeros( (scores.shape[0] * self.config.moe_topk, expert_output.size(1)), dtype=expert_output.dtype, device=expert_output.device, ) unpermuted_tokens.index_copy_(0, sorted_indices, expert_output) unpermuted_tokens = unpermuted_tokens.view(-1, self.config.moe_topk, expert_output.size(1)) output = (unpermuted_tokens * scores.unsqueeze(-1)).sum(dim=1).view(original_shape) # Add shared expert output shared_expert_output = self.shared_experts(hidden_states.view(original_shape)) return output + shared_expert_output class AriaTextDecoderLayer(LlamaDecoderLayer): """ Aria Text Decoder Layer. This class defines a single decoder layer in the language model, incorporating self-attention and Mixture of Experts (MoE) feed-forward network. Args: config (`AriaTextConfig`): Configuration object for the text component of the model. layer_idx (`int`): Index of the layer. """ def __init__(self, config: AriaTextConfig, layer_idx: int): super().__init__(self) self.mlp = AriaTextMoELayer(config) class AriaTextPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = AriaConfig base_model_prefix = "model" _no_split_modules = ["AriaTextDecoderLayer", "AriaGroupedExpertsGemm"] supports_gradient_checkpointing = True _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = False _supports_sdpa = True _supports_cache_class = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, AriaGroupedExpertsGemm): module.weight.data.normal_(mean=0.0, std=std) elif isinstance(module, nn.Conv2d): module.weight.data.normal_(mean=0.0, std=std) if hasattr(module, "bias") and module.bias is not None: module.bias.data.zero_() class AriaPreTrainedModel(LlamaPreTrainedModel): _supports_attention_backend = False def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, AriaProjector): nn.init.trunc_normal_(module.query, std=std) class AriaTextModel(LlamaModel): def __init__(self, config: AriaTextConfig): super().__init__(config) self.layers = nn.ModuleList( [AriaTextDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.gradient_checkpointing = False self.post_init() class AriaTextForCausalLM(AriaTextPreTrainedModel, LlamaForCausalLM): """ Aria model for causal language modeling tasks. This class extends `LlamaForCausalLM` to incorporate the Mixture of Experts (MoE) approach, allowing for more efficient and scalable language modeling. Args: config (`AriaTextConfig`): Configuration object for the model. """ _tied_weights_keys = ["lm_head.weight"] config_class = AriaTextConfig def __init__(self, config: AriaTextConfig): super().__init__(config) self.model = AriaTextModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() class AriaCausalLMOutputWithPast(LlavaCausalLMOutputWithPast): pass ARIA_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor`, *optional*): Input token IDs. pixel_values (`torch.FloatTensor`, *optional*): Pixel values of the images. pixel_mask (`torch.LongTensor`, *optional*): Mask for the pixel values. attention_mask (`torch.Tensor`, *optional*): Attention mask. position_ids (`torch.LongTensor`, *optional*): Position IDs. past_key_values (`List[torch.FloatTensor]`, *optional*): Past key values for efficient processing. inputs_embeds (`torch.FloatTensor`, *optional*): Input embeddings. labels (`torch.LongTensor`, *optional*): Labels for computing the language modeling loss. use_cache (`bool`, *optional*): Whether to use the model's cache mechanism. output_attentions (`bool`, *optional*): Whether to output attention weights. output_hidden_states (`bool`, *optional*): Whether to output hidden states. return_dict (`bool`, *optional*): Whether to return a `ModelOutput` object. logits_to_keep (`int` or `torch.Tensor`, *optional*, defaults to 0): If an `int`, calculate logits for the last `logits_to_keep` tokens, or all `input_ids` if `0`. Otherwise, slice according to the 1D tensor in the sequence length dimension cache_position (`torch.LongTensor`, *optional*): Cache positions. **loss_kwargs: Additional keyword arguments for loss calculation. """ ARIA_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config (`AriaConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( """Aria model for conditional generation tasks. This model combines a vision tower, a multi-modal projector, and a language model to perform tasks that involve both image and text inputs.""", ARIA_START_DOCSTRING, ) class AriaForConditionalGeneration(AriaPreTrainedModel, GenerationMixin): config_class = AriaConfig _supports_flash_attn_2 = False _supports_sdpa = False _tied_weights_keys = ["language_model.lm_head.weight"] def __init__(self, config: AriaConfig): super().__init__(config) self.vision_tower = AutoModel.from_config(config.vision_config) self.multi_modal_projector = AriaProjector(config) self.vocab_size = config.text_config.vocab_size self.language_model = AutoModelForCausalLM.from_config(config.text_config) self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1 self._use_flash_attention_2 = config.text_config._attn_implementation == "flash_attention_2" self.post_init() def _create_patch_attention_mask(self, pixel_mask): if pixel_mask is None: return None patches_subgrid = pixel_mask.unfold( dimension=1, size=self.vision_tower.config.patch_size, step=self.vision_tower.config.patch_size, ) patches_subgrid = patches_subgrid.unfold( dimension=2, size=self.vision_tower.config.patch_size, step=self.vision_tower.config.patch_size, ) return (patches_subgrid.sum(dim=(-1, -2)) > 0).bool() def get_input_embeddings(self): return self.language_model.get_input_embeddings() def set_input_embeddings(self, value): self.language_model.set_input_embeddings(value) def get_output_embeddings(self): return self.language_model.get_output_embeddings() def set_output_embeddings(self, new_embeddings): self.language_model.set_output_embeddings(new_embeddings) def set_decoder(self, decoder): self.language_model.set_decoder(decoder) def get_decoder(self): return self.language_model.get_decoder() def get_image_features( self, pixel_values: torch.FloatTensor, pixel_mask: torch.FloatTensor = None, vision_feature_layer: int = -1, ): patch_attention_mask = self._create_patch_attention_mask(pixel_mask) image_outputs = self.vision_tower( pixel_values, patch_attention_mask=patch_attention_mask, output_hidden_states=True ) image_attn_mask = None if patch_attention_mask is not None: flattened_mask = patch_attention_mask.flatten(1) image_attn_mask = torch.logical_not(flattened_mask) selected_image_feature = image_outputs.hidden_states[vision_feature_layer] image_features = self.multi_modal_projector(selected_image_feature, attn_mask=image_attn_mask) return image_features @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep") @add_start_docstrings_to_model_forward(ARIA_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=AriaCausalLMOutputWithPast, config_class=AriaConfig) def forward( self, input_ids: torch.LongTensor = None, pixel_values: torch.FloatTensor = None, pixel_mask: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, logits_to_keep: Union[int, torch.Tensor] = 0, cache_position: Optional[torch.LongTensor] = None, **loss_kwargs, ) -> Union[Tuple, AriaCausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or `model.image_token_id` (where `model` is your instance of `Idefics3ForConditionalGeneration`). Tokens with indices set to `model.image_token_id` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> import requests >>> import torch >>> from PIL import Image >>> from io import BytesIO >>> from transformers import AutoProcessor, AutoModel >>> from transformers.image_utils import load_image >>> # Note that passing the image urls (instead of the actual pil images) to the processor is also possible >>> image1 = load_image("https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg") >>> image2 = load_image("https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg") >>> image3 = load_image("https://cdn.britannica.com/68/170868-050-8DDE8263/Golden-Gate-Bridge-San-Francisco.jpg") >>> processor = AutoProcessor.from_pretrained("Rhymes-AI/Aria") >>> model = AutoModel.from_pretrained("Rhymes-AI/Aria", torch_dtype=torch.bfloat16, device_map="auto") >>> # Create inputs >>> messages = [ ... { ... "role": "user", ... "content": [ ... {"type": "image"}, ... {"type": "text", "text": "In this image, we can see the city of New York, and more specifically the Statue of Liberty."}, ... {"type": "image"}, ... {"type": "text", "text": "What can we see in this image?"}, ... ] ... }, ... { ... "role": "user", ... "content": [ ... {"type": "image"}, ... {"type": "text", "text": "In which city is that bridge located?"}, ... ] ... } ... ] >>> prompts = [processor.apply_chat_template([message], add_generation_prompt=True) for message in messages] >>> images = [[image1, image2], [image3]] >>> inputs = processor(text=prompts, images=images, padding=True, return_tensors="pt").to(model.device) >>> # Generate >>> generated_ids = model.generate(**inputs, max_new_tokens=256) >>> generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True) >>> print(generated_texts[0]) Assistant: There are buildings, trees, lights, and water visible in this image. >>> print(generated_texts[1]) Assistant: The bridge is in San Francisco. ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if inputs_embeds is None: inputs_embeds = self.get_input_embeddings()(input_ids) # 2. Merge text and images if pixel_values is not None and inputs_embeds.shape[1] != 1: if input_ids is None: special_image_mask = inputs_embeds == self.get_input_embeddings()( torch.tensor(self.config.image_token_index, dtype=torch.long, device=inputs_embeds.device) ) n_image_tokens = (special_image_mask).sum(dim=1).sum(dim=0)[0] else: image_embeds = input_ids == self.config.image_token_index special_image_mask = image_embeds.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device) n_image_tokens = (image_embeds).sum(dim=1).sum(dim=0) image_features = self.get_image_features( pixel_values=pixel_values, pixel_mask=pixel_mask, vision_feature_layer=self.config.vision_feature_layer, ) n_images, n_features_per_image = image_features.shape[0], image_features.shape[1] n_image_features = n_images * n_features_per_image if n_image_tokens != n_image_features: raise ValueError( f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}" ) image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype) inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features) outputs = self.language_model( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, logits_to_keep=logits_to_keep, ) logits = outputs[0] loss = None if labels is not None: loss = self.loss_function( logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **loss_kwargs ) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return AriaCausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, inputs_embeds=None, pixel_values=None, pixel_mask=None, attention_mask=None, cache_position=None, logits_to_keep=None, **kwargs, ): model_inputs = self.language_model.prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, attention_mask=attention_mask, cache_position=cache_position, logits_to_keep=logits_to_keep, **kwargs, ) if cache_position[0] == 0: # If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore # Otherwise we need pixel values to be passed to model model_inputs["pixel_values"] = pixel_values model_inputs["pixel_mask"] = pixel_mask return model_inputs __all__ = [ "AriaConfig", "AriaTextConfig", "AriaImageProcessor", "AriaProcessor", "AriaForConditionalGeneration", "AriaPreTrainedModel", "AriaTextPreTrainedModel", "AriaTextModel", "AriaTextForCausalLM", ]
transformers/src/transformers/models/aria/modular_aria.py/0
{ "file_path": "transformers/src/transformers/models/aria/modular_aria.py", "repo_id": "transformers", "token_count": 29875 }
99
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Auto Tokenizer class.""" import importlib import json import os import warnings from collections import OrderedDict from typing import TYPE_CHECKING, Dict, Optional, Tuple, Union from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...modeling_gguf_pytorch_utils import load_gguf_checkpoint from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import TOKENIZER_CONFIG_FILE from ...utils import ( cached_file, extract_commit_hash, is_g2p_en_available, is_sentencepiece_available, is_tokenizers_available, logging, ) from ..encoder_decoder import EncoderDecoderConfig from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, config_class_to_model_type, model_type_to_module_name, replace_list_option_in_docstrings, ) if is_tokenizers_available(): from ...tokenization_utils_fast import PreTrainedTokenizerFast else: PreTrainedTokenizerFast = None logger = logging.get_logger(__name__) if TYPE_CHECKING: # This significantly improves completion suggestion performance when # the transformers package is used with Microsoft's Pylance language server. TOKENIZER_MAPPING_NAMES: OrderedDict[str, Tuple[Optional[str], Optional[str]]] = OrderedDict() else: TOKENIZER_MAPPING_NAMES = OrderedDict( [ ( "albert", ( "AlbertTokenizer" if is_sentencepiece_available() else None, "AlbertTokenizerFast" if is_tokenizers_available() else None, ), ), ("align", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), ("aria", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)), ("bark", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), ("bart", ("BartTokenizer", "BartTokenizerFast")), ( "barthez", ( "BarthezTokenizer" if is_sentencepiece_available() else None, "BarthezTokenizerFast" if is_tokenizers_available() else None, ), ), ("bartpho", ("BartphoTokenizer", None)), ("bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), ("bert-generation", ("BertGenerationTokenizer" if is_sentencepiece_available() else None, None)), ("bert-japanese", ("BertJapaneseTokenizer", None)), ("bertweet", ("BertweetTokenizer", None)), ( "big_bird", ( "BigBirdTokenizer" if is_sentencepiece_available() else None, "BigBirdTokenizerFast" if is_tokenizers_available() else None, ), ), ("bigbird_pegasus", ("PegasusTokenizer", "PegasusTokenizerFast" if is_tokenizers_available() else None)), ("biogpt", ("BioGptTokenizer", None)), ("blenderbot", ("BlenderbotTokenizer", "BlenderbotTokenizerFast")), ("blenderbot-small", ("BlenderbotSmallTokenizer", None)), ("blip", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), ("blip-2", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), ("bloom", (None, "BloomTokenizerFast" if is_tokenizers_available() else None)), ("bridgetower", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)), ("bros", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), ("byt5", ("ByT5Tokenizer", None)), ( "camembert", ( "CamembertTokenizer" if is_sentencepiece_available() else None, "CamembertTokenizerFast" if is_tokenizers_available() else None, ), ), ("canine", ("CanineTokenizer", None)), ( "chameleon", ( "LlamaTokenizer" if is_sentencepiece_available() else None, "LlamaTokenizerFast" if is_tokenizers_available() else None, ), ), ("chinese_clip", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), ( "clap", ( "RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None, ), ), ( "clip", ( "CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None, ), ), ( "clipseg", ( "CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None, ), ), ("clvp", ("ClvpTokenizer", None)), ( "code_llama", ( "CodeLlamaTokenizer" if is_sentencepiece_available() else None, "CodeLlamaTokenizerFast" if is_tokenizers_available() else None, ), ), ("codegen", ("CodeGenTokenizer", "CodeGenTokenizerFast" if is_tokenizers_available() else None)), ("cohere", (None, "CohereTokenizerFast" if is_tokenizers_available() else None)), ("cohere2", (None, "CohereTokenizerFast" if is_tokenizers_available() else None)), ("colpali", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)), ("convbert", ("ConvBertTokenizer", "ConvBertTokenizerFast" if is_tokenizers_available() else None)), ( "cpm", ( "CpmTokenizer" if is_sentencepiece_available() else None, "CpmTokenizerFast" if is_tokenizers_available() else None, ), ), ("cpmant", ("CpmAntTokenizer", None)), ("ctrl", ("CTRLTokenizer", None)), ("data2vec-audio", ("Wav2Vec2CTCTokenizer", None)), ("data2vec-text", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)), ("dbrx", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), ("deberta", ("DebertaTokenizer", "DebertaTokenizerFast" if is_tokenizers_available() else None)), ( "deberta-v2", ( "DebertaV2Tokenizer" if is_sentencepiece_available() else None, "DebertaV2TokenizerFast" if is_tokenizers_available() else None, ), ), ( "diffllama", ( "LlamaTokenizer" if is_sentencepiece_available() else None, "LlamaTokenizerFast" if is_tokenizers_available() else None, ), ), ("distilbert", ("DistilBertTokenizer", "DistilBertTokenizerFast" if is_tokenizers_available() else None)), ( "dpr", ( "DPRQuestionEncoderTokenizer", "DPRQuestionEncoderTokenizerFast" if is_tokenizers_available() else None, ), ), ("electra", ("ElectraTokenizer", "ElectraTokenizerFast" if is_tokenizers_available() else None)), ("emu3", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), ("ernie", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), ("ernie_m", ("ErnieMTokenizer" if is_sentencepiece_available() else None, None)), ("esm", ("EsmTokenizer", None)), ("falcon", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)), ("falcon_mamba", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)), ( "fastspeech2_conformer", ("FastSpeech2ConformerTokenizer" if is_g2p_en_available() else None, None), ), ("flaubert", ("FlaubertTokenizer", None)), ("fnet", ("FNetTokenizer", "FNetTokenizerFast" if is_tokenizers_available() else None)), ("fsmt", ("FSMTTokenizer", None)), ("funnel", ("FunnelTokenizer", "FunnelTokenizerFast" if is_tokenizers_available() else None)), ( "gemma", ( "GemmaTokenizer" if is_sentencepiece_available() else None, "GemmaTokenizerFast" if is_tokenizers_available() else None, ), ), ( "gemma2", ( "GemmaTokenizer" if is_sentencepiece_available() else None, "GemmaTokenizerFast" if is_tokenizers_available() else None, ), ), ("git", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), ("glm", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)), ("gpt-sw3", ("GPTSw3Tokenizer" if is_sentencepiece_available() else None, None)), ("gpt2", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), ("gpt_bigcode", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), ("gpt_neo", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), ("gpt_neox", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)), ("gpt_neox_japanese", ("GPTNeoXJapaneseTokenizer", None)), ("gptj", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), ("gptsan-japanese", ("GPTSanJapaneseTokenizer", None)), ("grounding-dino", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), ("groupvit", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)), ("helium", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)), ("herbert", ("HerbertTokenizer", "HerbertTokenizerFast" if is_tokenizers_available() else None)), ("hubert", ("Wav2Vec2CTCTokenizer", None)), ("ibert", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)), ("idefics", (None, "LlamaTokenizerFast" if is_tokenizers_available() else None)), ("idefics2", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)), ("idefics3", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)), ("instructblip", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), ("instructblipvideo", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), ( "jamba", ( "LlamaTokenizer" if is_sentencepiece_available() else None, "LlamaTokenizerFast" if is_tokenizers_available() else None, ), ), ( "jetmoe", ( "LlamaTokenizer" if is_sentencepiece_available() else None, "LlamaTokenizerFast" if is_tokenizers_available() else None, ), ), ("jukebox", ("JukeboxTokenizer", None)), ( "kosmos-2", ( "XLMRobertaTokenizer" if is_sentencepiece_available() else None, "XLMRobertaTokenizerFast" if is_tokenizers_available() else None, ), ), ("layoutlm", ("LayoutLMTokenizer", "LayoutLMTokenizerFast" if is_tokenizers_available() else None)), ("layoutlmv2", ("LayoutLMv2Tokenizer", "LayoutLMv2TokenizerFast" if is_tokenizers_available() else None)), ("layoutlmv3", ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast" if is_tokenizers_available() else None)), ("layoutxlm", ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast" if is_tokenizers_available() else None)), ("led", ("LEDTokenizer", "LEDTokenizerFast" if is_tokenizers_available() else None)), ("lilt", ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast" if is_tokenizers_available() else None)), ( "llama", ( "LlamaTokenizer" if is_sentencepiece_available() else None, "LlamaTokenizerFast" if is_tokenizers_available() else None, ), ), ("llava", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)), ("llava_next", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)), ("llava_next_video", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)), ("llava_onevision", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)), ("longformer", ("LongformerTokenizer", "LongformerTokenizerFast" if is_tokenizers_available() else None)), ( "longt5", ( "T5Tokenizer" if is_sentencepiece_available() else None, "T5TokenizerFast" if is_tokenizers_available() else None, ), ), ("luke", ("LukeTokenizer", None)), ("lxmert", ("LxmertTokenizer", "LxmertTokenizerFast" if is_tokenizers_available() else None)), ("m2m_100", ("M2M100Tokenizer" if is_sentencepiece_available() else None, None)), ("mamba", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)), ("mamba2", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)), ("marian", ("MarianTokenizer" if is_sentencepiece_available() else None, None)), ( "mbart", ( "MBartTokenizer" if is_sentencepiece_available() else None, "MBartTokenizerFast" if is_tokenizers_available() else None, ), ), ( "mbart50", ( "MBart50Tokenizer" if is_sentencepiece_available() else None, "MBart50TokenizerFast" if is_tokenizers_available() else None, ), ), ("mega", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)), ("megatron-bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), ("mgp-str", ("MgpstrTokenizer", None)), ( "mistral", ( "LlamaTokenizer" if is_sentencepiece_available() else None, "LlamaTokenizerFast" if is_tokenizers_available() else None, ), ), ( "mixtral", ( "LlamaTokenizer" if is_sentencepiece_available() else None, "LlamaTokenizerFast" if is_tokenizers_available() else None, ), ), ("mllama", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)), ("mluke", ("MLukeTokenizer" if is_sentencepiece_available() else None, None)), ("mobilebert", ("MobileBertTokenizer", "MobileBertTokenizerFast" if is_tokenizers_available() else None)), ("modernbert", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)), ("moonshine", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)), ("moshi", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)), ("mpnet", ("MPNetTokenizer", "MPNetTokenizerFast" if is_tokenizers_available() else None)), ("mpt", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)), ("mra", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)), ( "mt5", ( "MT5Tokenizer" if is_sentencepiece_available() else None, "MT5TokenizerFast" if is_tokenizers_available() else None, ), ), ("musicgen", ("T5Tokenizer", "T5TokenizerFast" if is_tokenizers_available() else None)), ("musicgen_melody", ("T5Tokenizer", "T5TokenizerFast" if is_tokenizers_available() else None)), ("mvp", ("MvpTokenizer", "MvpTokenizerFast" if is_tokenizers_available() else None)), ("myt5", ("MyT5Tokenizer", None)), ("nemotron", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)), ("nezha", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), ( "nllb", ( "NllbTokenizer" if is_sentencepiece_available() else None, "NllbTokenizerFast" if is_tokenizers_available() else None, ), ), ( "nllb-moe", ( "NllbTokenizer" if is_sentencepiece_available() else None, "NllbTokenizerFast" if is_tokenizers_available() else None, ), ), ( "nystromformer", ( "AlbertTokenizer" if is_sentencepiece_available() else None, "AlbertTokenizerFast" if is_tokenizers_available() else None, ), ), ("olmo", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)), ("olmo2", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)), ("olmoe", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)), ( "omdet-turbo", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None), ), ("oneformer", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)), ( "openai-gpt", ("OpenAIGPTTokenizer", "OpenAIGPTTokenizerFast" if is_tokenizers_available() else None), ), ("opt", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), ("owlv2", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)), ("owlvit", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)), ("paligemma", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)), ( "pegasus", ( "PegasusTokenizer" if is_sentencepiece_available() else None, "PegasusTokenizerFast" if is_tokenizers_available() else None, ), ), ( "pegasus_x", ( "PegasusTokenizer" if is_sentencepiece_available() else None, "PegasusTokenizerFast" if is_tokenizers_available() else None, ), ), ( "perceiver", ( "PerceiverTokenizer", None, ), ), ( "persimmon", ( "LlamaTokenizer" if is_sentencepiece_available() else None, "LlamaTokenizerFast" if is_tokenizers_available() else None, ), ), ("phi", ("CodeGenTokenizer", "CodeGenTokenizerFast" if is_tokenizers_available() else None)), ("phi3", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)), ("phimoe", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)), ("phobert", ("PhobertTokenizer", None)), ("pix2struct", ("T5Tokenizer", "T5TokenizerFast" if is_tokenizers_available() else None)), ("pixtral", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)), ("plbart", ("PLBartTokenizer" if is_sentencepiece_available() else None, None)), ("prophetnet", ("ProphetNetTokenizer", None)), ("qdqbert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), ( "qwen2", ( "Qwen2Tokenizer", "Qwen2TokenizerFast" if is_tokenizers_available() else None, ), ), ("qwen2_5_vl", ("Qwen2Tokenizer", "Qwen2TokenizerFast" if is_tokenizers_available() else None)), ("qwen2_audio", ("Qwen2Tokenizer", "Qwen2TokenizerFast" if is_tokenizers_available() else None)), ( "qwen2_moe", ( "Qwen2Tokenizer", "Qwen2TokenizerFast" if is_tokenizers_available() else None, ), ), ("qwen2_vl", ("Qwen2Tokenizer", "Qwen2TokenizerFast" if is_tokenizers_available() else None)), ("rag", ("RagTokenizer", None)), ("realm", ("RealmTokenizer", "RealmTokenizerFast" if is_tokenizers_available() else None)), ( "recurrent_gemma", ( "GemmaTokenizer" if is_sentencepiece_available() else None, "GemmaTokenizerFast" if is_tokenizers_available() else None, ), ), ( "reformer", ( "ReformerTokenizer" if is_sentencepiece_available() else None, "ReformerTokenizerFast" if is_tokenizers_available() else None, ), ), ( "rembert", ( "RemBertTokenizer" if is_sentencepiece_available() else None, "RemBertTokenizerFast" if is_tokenizers_available() else None, ), ), ("retribert", ("RetriBertTokenizer", "RetriBertTokenizerFast" if is_tokenizers_available() else None)), ("roberta", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)), ( "roberta-prelayernorm", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None), ), ("roc_bert", ("RoCBertTokenizer", None)), ("roformer", ("RoFormerTokenizer", "RoFormerTokenizerFast" if is_tokenizers_available() else None)), ("rwkv", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)), ( "seamless_m4t", ( "SeamlessM4TTokenizer" if is_sentencepiece_available() else None, "SeamlessM4TTokenizerFast" if is_tokenizers_available() else None, ), ), ( "seamless_m4t_v2", ( "SeamlessM4TTokenizer" if is_sentencepiece_available() else None, "SeamlessM4TTokenizerFast" if is_tokenizers_available() else None, ), ), ("siglip", ("SiglipTokenizer" if is_sentencepiece_available() else None, None)), ("speech_to_text", ("Speech2TextTokenizer" if is_sentencepiece_available() else None, None)), ("speech_to_text_2", ("Speech2Text2Tokenizer", None)), ("speecht5", ("SpeechT5Tokenizer" if is_sentencepiece_available() else None, None)), ("splinter", ("SplinterTokenizer", "SplinterTokenizerFast")), ( "squeezebert", ("SqueezeBertTokenizer", "SqueezeBertTokenizerFast" if is_tokenizers_available() else None), ), ("stablelm", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)), ("starcoder2", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), ( "switch_transformers", ( "T5Tokenizer" if is_sentencepiece_available() else None, "T5TokenizerFast" if is_tokenizers_available() else None, ), ), ( "t5", ( "T5Tokenizer" if is_sentencepiece_available() else None, "T5TokenizerFast" if is_tokenizers_available() else None, ), ), ("tapas", ("TapasTokenizer", None)), ("tapex", ("TapexTokenizer", None)), ("transfo-xl", ("TransfoXLTokenizer", None)), ("tvp", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), ( "udop", ( "UdopTokenizer" if is_sentencepiece_available() else None, "UdopTokenizerFast" if is_tokenizers_available() else None, ), ), ( "umt5", ( "T5Tokenizer" if is_sentencepiece_available() else None, "T5TokenizerFast" if is_tokenizers_available() else None, ), ), ("video_llava", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)), ("vilt", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), ("vipllava", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)), ("visual_bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), ("vits", ("VitsTokenizer", None)), ("wav2vec2", ("Wav2Vec2CTCTokenizer", None)), ("wav2vec2-bert", ("Wav2Vec2CTCTokenizer", None)), ("wav2vec2-conformer", ("Wav2Vec2CTCTokenizer", None)), ("wav2vec2_phoneme", ("Wav2Vec2PhonemeCTCTokenizer", None)), ("whisper", ("WhisperTokenizer", "WhisperTokenizerFast" if is_tokenizers_available() else None)), ("xclip", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)), ( "xglm", ( "XGLMTokenizer" if is_sentencepiece_available() else None, "XGLMTokenizerFast" if is_tokenizers_available() else None, ), ), ("xlm", ("XLMTokenizer", None)), ("xlm-prophetnet", ("XLMProphetNetTokenizer" if is_sentencepiece_available() else None, None)), ( "xlm-roberta", ( "XLMRobertaTokenizer" if is_sentencepiece_available() else None, "XLMRobertaTokenizerFast" if is_tokenizers_available() else None, ), ), ( "xlm-roberta-xl", ( "XLMRobertaTokenizer" if is_sentencepiece_available() else None, "XLMRobertaTokenizerFast" if is_tokenizers_available() else None, ), ), ( "xlnet", ( "XLNetTokenizer" if is_sentencepiece_available() else None, "XLNetTokenizerFast" if is_tokenizers_available() else None, ), ), ( "xmod", ( "XLMRobertaTokenizer" if is_sentencepiece_available() else None, "XLMRobertaTokenizerFast" if is_tokenizers_available() else None, ), ), ( "yoso", ( "AlbertTokenizer" if is_sentencepiece_available() else None, "AlbertTokenizerFast" if is_tokenizers_available() else None, ), ), ( "zamba", ( "LlamaTokenizer" if is_sentencepiece_available() else None, "LlamaTokenizerFast" if is_tokenizers_available() else None, ), ), ( "zamba2", ( "LlamaTokenizer" if is_sentencepiece_available() else None, "LlamaTokenizerFast" if is_tokenizers_available() else None, ), ), ] ) TOKENIZER_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, TOKENIZER_MAPPING_NAMES) CONFIG_TO_TYPE = {v: k for k, v in CONFIG_MAPPING_NAMES.items()} def tokenizer_class_from_name(class_name: str): if class_name == "PreTrainedTokenizerFast": return PreTrainedTokenizerFast for module_name, tokenizers in TOKENIZER_MAPPING_NAMES.items(): if class_name in tokenizers: module_name = model_type_to_module_name(module_name) module = importlib.import_module(f".{module_name}", "transformers.models") try: return getattr(module, class_name) except AttributeError: continue for config, tokenizers in TOKENIZER_MAPPING._extra_content.items(): for tokenizer in tokenizers: if getattr(tokenizer, "__name__", None) == class_name: return tokenizer # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. main_module = importlib.import_module("transformers") if hasattr(main_module, class_name): return getattr(main_module, class_name) return None def get_tokenizer_config( pretrained_model_name_or_path: Union[str, os.PathLike], cache_dir: Optional[Union[str, os.PathLike]] = None, force_download: bool = False, resume_download: Optional[bool] = None, proxies: Optional[Dict[str, str]] = None, token: Optional[Union[bool, str]] = None, revision: Optional[str] = None, local_files_only: bool = False, subfolder: str = "", **kwargs, ): """ Loads the tokenizer configuration from a pretrained model tokenizer configuration. Args: pretrained_model_name_or_path (`str` or `os.PathLike`): This can be either: - a string, the *model id* of a pretrained model configuration hosted inside a model repo on huggingface.co. - a path to a *directory* containing a configuration file saved using the [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`. cache_dir (`str` or `os.PathLike`, *optional*): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force to (re-)download the configuration files and override the cached versions if they exist. resume_download: Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. local_files_only (`bool`, *optional*, defaults to `False`): If `True`, will only try to load the tokenizer configuration from local files. subfolder (`str`, *optional*, defaults to `""`): In case the tokenizer config is located inside a subfolder of the model repo on huggingface.co, you can specify the folder name here. <Tip> Passing `token=True` is required when you want to use a private model. </Tip> Returns: `Dict`: The configuration of the tokenizer. Examples: ```python # Download configuration from huggingface.co and cache. tokenizer_config = get_tokenizer_config("google-bert/bert-base-uncased") # This model does not have a tokenizer config so the result will be an empty dict. tokenizer_config = get_tokenizer_config("FacebookAI/xlm-roberta-base") # Save a pretrained tokenizer locally and you can reload its config from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased") tokenizer.save_pretrained("tokenizer-test") tokenizer_config = get_tokenizer_config("tokenizer-test") ```""" use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") token = use_auth_token commit_hash = kwargs.get("_commit_hash", None) resolved_config_file = cached_file( pretrained_model_name_or_path, TOKENIZER_CONFIG_FILE, cache_dir=cache_dir, force_download=force_download, resume_download=resume_download, proxies=proxies, token=token, revision=revision, local_files_only=local_files_only, subfolder=subfolder, _raise_exceptions_for_gated_repo=False, _raise_exceptions_for_missing_entries=False, _raise_exceptions_for_connection_errors=False, _commit_hash=commit_hash, ) if resolved_config_file is None: logger.info("Could not locate the tokenizer configuration file, will try to use the model config instead.") return {} commit_hash = extract_commit_hash(resolved_config_file, commit_hash) with open(resolved_config_file, encoding="utf-8") as reader: result = json.load(reader) result["_commit_hash"] = commit_hash return result class AutoTokenizer: r""" This is a generic tokenizer class that will be instantiated as one of the tokenizer classes of the library when created with the [`AutoTokenizer.from_pretrained`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). """ def __init__(self): raise EnvironmentError( "AutoTokenizer is designed to be instantiated " "using the `AutoTokenizer.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(TOKENIZER_MAPPING_NAMES) def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs): r""" Instantiate one of the tokenizer classes of the library from a pretrained model vocabulary. The tokenizer class to instantiate is selected based on the `model_type` property of the config object (either passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by falling back to using pattern matching on `pretrained_model_name_or_path`: List options Params: pretrained_model_name_or_path (`str` or `os.PathLike`): Can be either: - A string, the *model id* of a predefined tokenizer hosted inside a model repo on huggingface.co. - A path to a *directory* containing vocabulary files required by the tokenizer, for instance saved using the [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`. - A path or url to a single saved vocabulary file if and only if the tokenizer only requires a single vocabulary file (like Bert or XLNet), e.g.: `./my_model_directory/vocab.txt`. (Not applicable to all derived classes) inputs (additional positional arguments, *optional*): Will be passed along to the Tokenizer `__init__()` method. config ([`PretrainedConfig`], *optional*) The configuration object used to determine the tokenizer class to instantiate. cache_dir (`str` or `os.PathLike`, *optional*): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download the model weights and configuration files and override the cached versions if they exist. resume_download: Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. subfolder (`str`, *optional*): In case the relevant files are located inside a subfolder of the model repo on huggingface.co (e.g. for facebook/rag-token-base), specify it here. use_fast (`bool`, *optional*, defaults to `True`): Use a [fast Rust-based tokenizer](https://huggingface.co/docs/tokenizers/index) if it is supported for a given model. If a fast tokenizer is not available for a given model, a normal Python-based tokenizer is returned instead. tokenizer_type (`str`, *optional*): Tokenizer type to be loaded. trust_remote_code (`bool`, *optional*, defaults to `False`): Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set to `True` for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. kwargs (additional keyword arguments, *optional*): Will be passed to the Tokenizer `__init__()` method. Can be used to set special tokens like `bos_token`, `eos_token`, `unk_token`, `sep_token`, `pad_token`, `cls_token`, `mask_token`, `additional_special_tokens`. See parameters in the `__init__()` for more details. Examples: ```python >>> from transformers import AutoTokenizer >>> # Download vocabulary from huggingface.co and cache. >>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased") >>> # Download vocabulary from huggingface.co (user-uploaded) and cache. >>> tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-german-cased") >>> # If vocabulary files are in a directory (e.g. tokenizer was saved using *save_pretrained('./test/saved_model/')*) >>> # tokenizer = AutoTokenizer.from_pretrained("./test/bert_saved_model/") >>> # Download vocabulary from huggingface.co and define model-specific arguments >>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base", add_prefix_space=True) ```""" use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if kwargs.get("token", None) is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) kwargs["token"] = use_auth_token config = kwargs.pop("config", None) kwargs["_from_auto"] = True use_fast = kwargs.pop("use_fast", True) tokenizer_type = kwargs.pop("tokenizer_type", None) trust_remote_code = kwargs.pop("trust_remote_code", None) gguf_file = kwargs.get("gguf_file", None) # First, let's see whether the tokenizer_type is passed so that we can leverage it if tokenizer_type is not None: tokenizer_class = None tokenizer_class_tuple = TOKENIZER_MAPPING_NAMES.get(tokenizer_type, None) if tokenizer_class_tuple is None: raise ValueError( f"Passed `tokenizer_type` {tokenizer_type} does not exist. `tokenizer_type` should be one of " f"{', '.join(c for c in TOKENIZER_MAPPING_NAMES.keys())}." ) tokenizer_class_name, tokenizer_fast_class_name = tokenizer_class_tuple if use_fast: if tokenizer_fast_class_name is not None: tokenizer_class = tokenizer_class_from_name(tokenizer_fast_class_name) else: logger.warning( "`use_fast` is set to `True` but the tokenizer class does not have a fast version. " " Falling back to the slow version." ) if tokenizer_class is None: tokenizer_class = tokenizer_class_from_name(tokenizer_class_name) if tokenizer_class is None: raise ValueError(f"Tokenizer class {tokenizer_class_name} is not currently imported.") return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) # Next, let's try to use the tokenizer_config file to get the tokenizer class. tokenizer_config = get_tokenizer_config(pretrained_model_name_or_path, **kwargs) if "_commit_hash" in tokenizer_config: kwargs["_commit_hash"] = tokenizer_config["_commit_hash"] config_tokenizer_class = tokenizer_config.get("tokenizer_class") tokenizer_auto_map = None if "auto_map" in tokenizer_config: if isinstance(tokenizer_config["auto_map"], (tuple, list)): # Legacy format for dynamic tokenizers tokenizer_auto_map = tokenizer_config["auto_map"] else: tokenizer_auto_map = tokenizer_config["auto_map"].get("AutoTokenizer", None) # If that did not work, let's try to use the config. if config_tokenizer_class is None: if not isinstance(config, PretrainedConfig): if gguf_file: gguf_path = cached_file(pretrained_model_name_or_path, gguf_file, **kwargs) config_dict = load_gguf_checkpoint(gguf_path, return_tensors=False)["config"] config = AutoConfig.for_model(**config_dict) else: config = AutoConfig.from_pretrained( pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs ) config_tokenizer_class = config.tokenizer_class if hasattr(config, "auto_map") and "AutoTokenizer" in config.auto_map: tokenizer_auto_map = config.auto_map["AutoTokenizer"] has_remote_code = tokenizer_auto_map is not None has_local_code = type(config) in TOKENIZER_MAPPING or ( config_tokenizer_class is not None and ( tokenizer_class_from_name(config_tokenizer_class) is not None or tokenizer_class_from_name(config_tokenizer_class + "Fast") is not None ) ) trust_remote_code = resolve_trust_remote_code( trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code ) if has_remote_code and trust_remote_code: if use_fast and tokenizer_auto_map[1] is not None: class_ref = tokenizer_auto_map[1] else: class_ref = tokenizer_auto_map[0] tokenizer_class = get_class_from_dynamic_module(class_ref, pretrained_model_name_or_path, **kwargs) _ = kwargs.pop("code_revision", None) if os.path.isdir(pretrained_model_name_or_path): tokenizer_class.register_for_auto_class() return tokenizer_class.from_pretrained( pretrained_model_name_or_path, *inputs, trust_remote_code=trust_remote_code, **kwargs ) elif config_tokenizer_class is not None: tokenizer_class = None if use_fast and not config_tokenizer_class.endswith("Fast"): tokenizer_class_candidate = f"{config_tokenizer_class}Fast" tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate) if tokenizer_class is None: tokenizer_class_candidate = config_tokenizer_class tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate) if tokenizer_class is None: raise ValueError( f"Tokenizer class {tokenizer_class_candidate} does not exist or is not currently imported." ) return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) # Otherwise we have to be creative. # if model is an encoder decoder, the encoder tokenizer class is used by default if isinstance(config, EncoderDecoderConfig): if type(config.decoder) is not type(config.encoder): # noqa: E721 logger.warning( f"The encoder model config class: {config.encoder.__class__} is different from the decoder model " f"config class: {config.decoder.__class__}. It is not recommended to use the " "`AutoTokenizer.from_pretrained()` method in this case. Please use the encoder and decoder " "specific tokenizer classes." ) config = config.encoder model_type = config_class_to_model_type(type(config).__name__) if model_type is not None: tokenizer_class_py, tokenizer_class_fast = TOKENIZER_MAPPING[type(config)] if tokenizer_class_fast and (use_fast or tokenizer_class_py is None): return tokenizer_class_fast.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) else: if tokenizer_class_py is not None: return tokenizer_class_py.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) else: raise ValueError( "This tokenizer cannot be instantiated. Please make sure you have `sentencepiece` installed " "in order to use this tokenizer." ) raise ValueError( f"Unrecognized configuration class {config.__class__} to build an AutoTokenizer.\n" f"Model type should be one of {', '.join(c.__name__ for c in TOKENIZER_MAPPING.keys())}." ) def register(config_class, slow_tokenizer_class=None, fast_tokenizer_class=None, exist_ok=False): """ Register a new tokenizer in this mapping. Args: config_class ([`PretrainedConfig`]): The configuration corresponding to the model to register. slow_tokenizer_class ([`PretrainedTokenizer`], *optional*): The slow tokenizer to register. fast_tokenizer_class ([`PretrainedTokenizerFast`], *optional*): The fast tokenizer to register. """ if slow_tokenizer_class is None and fast_tokenizer_class is None: raise ValueError("You need to pass either a `slow_tokenizer_class` or a `fast_tokenizer_class") if slow_tokenizer_class is not None and issubclass(slow_tokenizer_class, PreTrainedTokenizerFast): raise ValueError("You passed a fast tokenizer in the `slow_tokenizer_class`.") if fast_tokenizer_class is not None and issubclass(fast_tokenizer_class, PreTrainedTokenizer): raise ValueError("You passed a slow tokenizer in the `fast_tokenizer_class`.") if ( slow_tokenizer_class is not None and fast_tokenizer_class is not None and issubclass(fast_tokenizer_class, PreTrainedTokenizerFast) and fast_tokenizer_class.slow_tokenizer_class != slow_tokenizer_class ): raise ValueError( "The fast tokenizer class you are passing has a `slow_tokenizer_class` attribute that is not " "consistent with the slow tokenizer class you passed (fast tokenizer has " f"{fast_tokenizer_class.slow_tokenizer_class} and you passed {slow_tokenizer_class}. Fix one of those " "so they match!" ) # Avoid resetting a set slow/fast tokenizer if we are passing just the other ones. if config_class in TOKENIZER_MAPPING._extra_content: existing_slow, existing_fast = TOKENIZER_MAPPING[config_class] if slow_tokenizer_class is None: slow_tokenizer_class = existing_slow if fast_tokenizer_class is None: fast_tokenizer_class = existing_fast TOKENIZER_MAPPING.register(config_class, (slow_tokenizer_class, fast_tokenizer_class), exist_ok=exist_ok)
transformers/src/transformers/models/auto/tokenization_auto.py/0
{ "file_path": "transformers/src/transformers/models/auto/tokenization_auto.py", "repo_id": "transformers", "token_count": 24145 }
100
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for Beit.""" from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import INIT_SERVICE_KWARGS, BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, validate_preprocess_arguments, ) from ...utils import ( TensorType, filter_out_non_signature_kwargs, is_torch_available, is_torch_tensor, is_vision_available, logging, ) from ...utils.deprecation import deprecate_kwarg if is_vision_available(): import PIL if is_torch_available(): import torch logger = logging.get_logger(__name__) class BeitImageProcessor(BaseImageProcessor): r""" Constructs a BEiT image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the `do_resize` parameter in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"height": 256, "width": 256}`): Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`): Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the `preprocess` method. do_center_crop (`bool`, *optional*, defaults to `True`): Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image is padded with 0's and then center cropped. Can be overridden by the `do_center_crop` parameter in the `preprocess` method. crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`): Desired output size when applying center-cropping. Only has an effect if `do_center_crop` is set to `True`. Can be overridden by the `crop_size` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): The mean to use if normalizing the image. This is a float or list of floats of length of the number of channels of the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): The standard deviation to use if normalizing the image. This is a float or list of floats of length of the number of channels of the image. Can be overridden by the `image_std` parameter in the `preprocess` method. do_reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Can be overridden by the `do_reduce_labels` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] @deprecate_kwarg("reduce_labels", new_name="do_reduce_labels", version="4.41.0") @filter_out_non_signature_kwargs(extra=INIT_SERVICE_KWARGS) def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BICUBIC, do_center_crop: bool = True, crop_size: Dict[str, int] = None, rescale_factor: Union[int, float] = 1 / 255, do_rescale: bool = True, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_reduce_labels: bool = False, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"height": 256, "width": 256} size = get_size_dict(size) crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} crop_size = get_size_dict(crop_size, param_name="crop_size") self.do_resize = do_resize self.size = size self.resample = resample self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD self.do_reduce_labels = do_reduce_labels @classmethod def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs): """ Overrides the `from_dict` method from the base class to save support of deprecated `reduce_labels` in old configs """ image_processor_dict = image_processor_dict.copy() if "reduce_labels" in image_processor_dict: image_processor_dict["do_reduce_labels"] = image_processor_dict.pop("reduce_labels") return super().from_dict(image_processor_dict, **kwargs) def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image to (size["height"], size["width"]). Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the output image. resample (`PILImageResampling`, *optional*, defaults to `PIL.Image.BICUBIC`): Resampling filter to use when resiizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ size = get_size_dict(size, default_to_square=True, param_name="size") if "height" not in size or "width" not in size: raise ValueError(f"The `size` argument must contain `height` and `width` keys. Got {size.keys()}") return resize( image, size=(size["height"], size["width"]), resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) def reduce_label(self, label: ImageInput) -> np.ndarray: label = to_numpy_array(label) # Avoid using underflow conversion label[label == 0] = 255 label = label - 1 label[label == 254] = 255 return label def _preprocess( self, image: ImageInput, do_reduce_labels: bool = None, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_center_crop: bool = None, crop_size: Dict[str, int] = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): if do_reduce_labels: image = self.reduce_label(image) if do_resize: image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) if do_center_crop: image = self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) if do_rescale: image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) if do_normalize: image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) return image def _preprocess_image( self, image: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_center_crop: bool = None, crop_size: Dict[str, int] = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """Preprocesses a single image.""" # All transformations expect numpy arrays. image = to_numpy_array(image) if do_rescale and is_scaled_image(image): logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: input_data_format = infer_channel_dimension_format(image) image = self._preprocess( image, do_reduce_labels=False, do_resize=do_resize, size=size, resample=resample, do_center_crop=do_center_crop, crop_size=crop_size, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, input_data_format=input_data_format, ) if data_format is not None: image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) return image def _preprocess_segmentation_map( self, segmentation_map: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_center_crop: bool = None, crop_size: Dict[str, int] = None, do_reduce_labels: bool = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): """Preprocesses a single segmentation map.""" # All transformations expect numpy arrays. segmentation_map = to_numpy_array(segmentation_map) # Add an axis to the segmentation maps for transformations. if segmentation_map.ndim == 2: segmentation_map = segmentation_map[None, ...] added_dimension = True input_data_format = ChannelDimension.FIRST else: added_dimension = False if input_data_format is None: input_data_format = infer_channel_dimension_format(segmentation_map, num_channels=1) segmentation_map = self._preprocess( image=segmentation_map, do_reduce_labels=do_reduce_labels, do_resize=do_resize, resample=resample, size=size, do_center_crop=do_center_crop, crop_size=crop_size, do_normalize=False, do_rescale=False, input_data_format=ChannelDimension.FIRST, ) # Remove extra axis if added if added_dimension: segmentation_map = np.squeeze(segmentation_map, axis=0) segmentation_map = segmentation_map.astype(np.int64) return segmentation_map def __call__(self, images, segmentation_maps=None, **kwargs): # Overrides the `__call__` method of the `Preprocessor` class such that the images and segmentation maps can both # be passed in as positional arguments. return super().__call__(images, segmentation_maps=segmentation_maps, **kwargs) @deprecate_kwarg("reduce_labels", new_name="do_reduce_labels", version="4.41.0") @filter_out_non_signature_kwargs() def preprocess( self, images: ImageInput, segmentation_maps: Optional[ImageInput] = None, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_center_crop: bool = None, crop_size: Dict[str, int] = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_reduce_labels: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: ChannelDimension = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. segmentation_maps (`ImageInput`, *optional*) Segmentation maps to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after resizing. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only has an effect if `do_resize` is set to `True`. do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): Whether to center crop the image. crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): Size of the image after center crop. If one edge the image is smaller than `crop_size`, it will be padded with zeros and then cropped do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation. do_reduce_labels (`bool`, *optional*, defaults to `self.do_reduce_labels`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size size = get_size_dict(size, default_to_square=True, param_name="size") resample = resample if resample is not None else self.resample do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop crop_size = crop_size if crop_size is not None else self.crop_size crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size") do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std do_reduce_labels = do_reduce_labels if do_reduce_labels is not None else self.do_reduce_labels images = make_list_of_images(images) if segmentation_maps is not None: segmentation_maps = make_list_of_images(segmentation_maps, expected_ndims=2) if segmentation_maps is not None and not valid_images(segmentation_maps): raise ValueError( "Invalid segmentation_maps type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_center_crop=do_center_crop, crop_size=crop_size, do_resize=do_resize, size=size, resample=resample, ) images = [ self._preprocess_image( image=img, do_resize=do_resize, do_center_crop=do_center_crop, do_rescale=do_rescale, do_normalize=do_normalize, resample=resample, size=size, rescale_factor=rescale_factor, crop_size=crop_size, image_mean=image_mean, image_std=image_std, data_format=data_format, input_data_format=input_data_format, ) for img in images ] data = {"pixel_values": images} if segmentation_maps is not None: segmentation_maps = [ self._preprocess_segmentation_map( segmentation_map=segmentation_map, do_reduce_labels=do_reduce_labels, do_resize=do_resize, resample=resample, size=size, do_center_crop=do_center_crop, crop_size=crop_size, ) for segmentation_map in segmentation_maps ] data["labels"] = segmentation_maps return BatchFeature(data=data, tensor_type=return_tensors) def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None): """ Converts the output of [`BeitForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch. Args: outputs ([`BeitForSemanticSegmentation`]): Raw outputs of the model. target_sizes (`List[Tuple]` of length `batch_size`, *optional*): List of tuples corresponding to the requested final size (height, width) of each prediction. If unset, predictions will not be resized. Returns: semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each `torch.Tensor` correspond to a semantic class id. """ # TODO: add support for other frameworks logits = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(logits) != len(target_sizes): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(target_sizes): target_sizes = target_sizes.numpy() semantic_segmentation = [] for idx in range(len(logits)): resized_logits = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False ) semantic_map = resized_logits[0].argmax(dim=0) semantic_segmentation.append(semantic_map) else: semantic_segmentation = logits.argmax(dim=1) semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation __all__ = ["BeitImageProcessor"]
transformers/src/transformers/models/beit/image_processing_beit.py/0
{ "file_path": "transformers/src/transformers/models/beit/image_processing_beit.py", "repo_id": "transformers", "token_count": 10668 }
101
# coding=utf-8 # Copyright 2020 The Google AI Language Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """BertGeneration model configuration""" from ...configuration_utils import PretrainedConfig class BertGenerationConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`BertGenerationPreTrainedModel`]. It is used to instantiate a BertGeneration model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the BertGeneration [google/bert_for_seq_generation_L-24_bbc_encoder](https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50358): Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`BertGeneration`]. hidden_size (`int`, *optional*, defaults to 1024): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 4096): Dimensionality of the "intermediate" (often called feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. pad_token_id (`int`, *optional*, defaults to 0): Padding token id. bos_token_id (`int`, *optional*, defaults to 2): Beginning of stream token id. eos_token_id (`int`, *optional*, defaults to 1): End of stream token id. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. Examples: ```python >>> from transformers import BertGenerationConfig, BertGenerationEncoder >>> # Initializing a BertGeneration config >>> configuration = BertGenerationConfig() >>> # Initializing a model (with random weights) from the config >>> model = BertGenerationEncoder(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "bert-generation" def __init__( self, vocab_size=50358, hidden_size=1024, num_hidden_layers=24, num_attention_heads=16, intermediate_size=4096, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, bos_token_id=2, eos_token_id=1, position_embedding_type="absolute", use_cache=True, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.use_cache = use_cache __all__ = ["BertGenerationConfig"]
transformers/src/transformers/models/bert_generation/configuration_bert_generation.py/0
{ "file_path": "transformers/src/transformers/models/bert_generation/configuration_bert_generation.py", "repo_id": "transformers", "token_count": 2328 }
102
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration INIT_COMMON = [ # tf -> hf ("/", "."), ("layer_", "layers."), ("kernel", "weight"), ("beta", "bias"), ("gamma", "weight"), ("pegasus", "model"), ] END_COMMON = [ (".output.dense", ".fc2"), ("intermediate.LayerNorm", "final_layer_norm"), ("intermediate.dense", "fc1"), ] DECODER_PATTERNS = ( INIT_COMMON + [ ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.out_proj"), ("attention.self", "self_attn"), ("attention.encdec.LayerNorm", "encoder_attn_layer_norm"), ("attention.encdec_output.dense", "encoder_attn.out_proj"), ("attention.encdec", "encoder_attn"), ("key", "k_proj"), ("value", "v_proj"), ("query", "q_proj"), ("decoder.LayerNorm", "decoder.layernorm_embedding"), ] + END_COMMON ) REMAINING_PATTERNS = ( INIT_COMMON + [ ("embeddings.word_embeddings", "shared.weight"), ("embeddings.position_embeddings", "embed_positions.weight"), ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.output"), ("attention.self", "self_attn.self"), ("encoder.LayerNorm", "encoder.layernorm_embedding"), ] + END_COMMON ) KEYS_TO_IGNORE = [ "encdec/key/bias", "encdec/query/bias", "encdec/value/bias", "self/key/bias", "self/query/bias", "self/value/bias", "encdec_output/dense/bias", "attention/output/dense/bias", ] def rename_state_dict_key(k, patterns): for tf_name, hf_name in patterns: k = k.replace(tf_name, hf_name) return k def convert_bigbird_pegasus(tf_weights: dict, config_update: dict) -> BigBirdPegasusForConditionalGeneration: cfg = BigBirdPegasusConfig(**config_update) torch_model = BigBirdPegasusForConditionalGeneration(cfg) state_dict = torch_model.state_dict() mapping = {} # separating decoder weights decoder_weights = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder")} remaining_weights = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder")} for k, v in tqdm(decoder_weights.items(), "tf -> hf conversion"): conditions = [k.endswith(ending) for ending in KEYS_TO_IGNORE] if any(conditions): continue patterns = DECODER_PATTERNS new_k = rename_state_dict_key(k, patterns) if new_k not in state_dict: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})") if any(True if i in k else False for i in ["dense", "query", "key", "value"]): v = v.T mapping[new_k] = torch.from_numpy(v) assert v.shape == state_dict[new_k].shape, f"{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}" for k, v in tqdm(remaining_weights.items(), "tf -> hf conversion"): conditions = [k.endswith(ending) for ending in KEYS_TO_IGNORE] if any(conditions): continue patterns = REMAINING_PATTERNS new_k = rename_state_dict_key(k, patterns) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})") if any(True if i in k else False for i in ["dense", "query", "key", "value"]): v = v.T mapping[new_k] = torch.from_numpy(v) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f"{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}" mapping["model.encoder.embed_positions.weight"] = mapping["model.embed_positions.weight"] mapping["model.decoder.embed_positions.weight"] = mapping.pop("model.embed_positions.weight") missing, extra = torch_model.load_state_dict(mapping, strict=False) unexpected_missing = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def get_tf_weights_as_numpy(path) -> Dict: init_vars = tf.train.list_variables(path) tf_weights = {} ignore_name = ["global_step"] for name, shape in tqdm(init_vars, desc="converting tf checkpoint to dict"): skip_key = any(pat in name for pat in ignore_name) if skip_key: continue array = tf.train.load_variable(path, name) tf_weights[name] = array return tf_weights def convert_bigbird_pegasus_ckpt_to_pytorch(ckpt_path: str, save_dir: str, config_update: dict): tf_weights = get_tf_weights_as_numpy(ckpt_path) torch_model = convert_bigbird_pegasus(tf_weights, config_update) torch_model.save_pretrained(save_dir) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.") args = parser.parse_args() config_update = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
transformers/src/transformers/models/bigbird_pegasus/convert_bigbird_pegasus_tf_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/bigbird_pegasus/convert_bigbird_pegasus_tf_to_pytorch.py", "repo_id": "transformers", "token_count": 2618 }
103
# coding=utf-8 # Copyright 2021 The Fairseq Authors and The Google Flax Team Authors And The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Flax Blenderbot model.""" import math import random from functools import partial from typing import Callable, Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from jax.random import PRNGKey from ...modeling_flax_outputs import ( FlaxBaseModelOutput, FlaxBaseModelOutputWithPastAndCrossAttentions, FlaxCausalLMOutputWithCrossAttentions, FlaxSeq2SeqLMOutput, FlaxSeq2SeqModelOutput, ) from ...modeling_flax_utils import ( ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, append_replace_return_docstrings, overwrite_call_docstring, ) from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_blenderbot import BlenderbotConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "BlenderbotConfig" _CHECKPOINT_FOR_DOC = "facebook/blenderbot-400M-distill" BLENDERBOT_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Flax Linen [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`BlenderbotConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. """ BLENDERBOT_INPUTS_DOCSTRING = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) For translation and summarization training, `decoder_input_ids` should be provided. If no `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right for denoising pre-training following the paper. decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ BLENDERBOT_ENCODE_INPUTS_DOCSTRING = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ BLENDERBOT_DECODE_INPUTS_DOCSTRING = r""" Args: decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) For translation and summarization training, `decoder_input_ids` should be provided. If no `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right for denoising pre-training following the paper. encoder_outputs (`tuple(tuple(jnp.ndarray)`): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray: """ Shift input ids one token to the right. """ shifted_input_ids = jnp.zeros_like(input_ids) shifted_input_ids = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1]) shifted_input_ids = shifted_input_ids.at[:, 0].set(decoder_start_token_id) shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids) return shifted_input_ids # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention with Bart->Blenderbot class FlaxBlenderbotAttention(nn.Module): config: BlenderbotConfig embed_dim: int num_heads: int dropout: float = 0.0 causal: bool = False bias: bool = True dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self) -> None: self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {self.num_heads})." ) dense = partial( nn.Dense, self.embed_dim, use_bias=self.bias, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() self.out_proj = dense() self.dropout_layer = nn.Dropout(rate=self.dropout) if self.causal: self.causal_mask = make_causal_mask( jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool" ) def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) @nn.compact def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slighly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None batch_size = hidden_states.shape[0] # get query proj query_states = self.q_proj(hidden_states) # get key, value proj if is_cross_attention: # cross_attentions key_states = self.k_proj(key_value_states) value_states = self.v_proj(key_value_states) else: # self_attention key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) # handle cache prepare causal attention mask if self.causal: query_length, key_length = query_states.shape[1], key_states.shape[1] if self.has_variable("cache", "cached_key"): mask_shift = self.variables["cache"]["cache_index"] max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_mask = lax.dynamic_slice( self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) return attn_output, attn_weights # Copied from transformers.models.mbart.modeling_flax_mbart.FlaxMBartEncoderLayer with MBart->Blenderbot class FlaxBlenderbotEncoderLayer(nn.Module): config: BlenderbotConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxBlenderbotAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.encoder_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) self.fc1 = nn.Dense( self.config.encoder_ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartEncoderLayerCollection with Bart->Blenderbot class FlaxBlenderbotEncoderLayerCollection(nn.Module): config: BlenderbotConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxBlenderbotEncoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.encoder_layers) ] self.layerdrop = self.config.encoder_layerdrop def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for encoder_layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if not deterministic and (dropout_probability < self.layerdrop): # skip the layer layer_outputs = (None, None) else: layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions, deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states += (hidden_states,) outputs = (hidden_states, all_hidden_states, all_attentions) if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) # Copied from transformers.models.mbart.modeling_flax_mbart.FlaxMBartDecoderLayer with MBart->Blenderbot class FlaxBlenderbotDecoderLayer(nn.Module): config: BlenderbotConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxBlenderbotAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, causal=True, dtype=self.dtype, ) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.encoder_attn = FlaxBlenderbotAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.fc1 = nn.Dense( self.config.decoder_ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) hidden_states, cross_attn_weights = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderLayerCollection with Bart->Blenderbot class FlaxBlenderbotDecoderLayerCollection(nn.Module): config: BlenderbotConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxBlenderbotDecoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.decoder_layers) ] self.layerdrop = self.config.decoder_layerdrop def __call__( self, hidden_states, attention_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if not deterministic and (dropout_probability < self.layerdrop): layer_outputs = (None, None, None) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, init_cache=init_cache, output_attentions=output_attentions, deterministic=deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) class FlaxBlenderbotEncoder(nn.Module): config: BlenderbotConfig embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.padding_idx = self.config.pad_token_id self.max_source_positions = self.config.max_position_embeddings self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0 self.embed_positions = nn.Embed( self.config.max_position_embeddings, embed_dim, embedding_init=jax.nn.initializers.normal(self.config.init_std), ) self.layers = FlaxBlenderbotEncoderLayerCollection(self.config, self.dtype) self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, input_ids, attention_mask, position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): input_shape = input_ids.shape input_ids = input_ids.reshape(-1, input_shape[-1]) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale embed_pos = self.embed_positions(position_ids) hidden_states = inputs_embeds + embed_pos hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_states = outputs[0] last_hidden_states = self.layer_norm(last_hidden_states) # update the last element in `hidden_states` after applying `layernorm` above hidden_states = None if output_hidden_states: hidden_states = outputs[1] hidden_states = hidden_states[:-1] + (last_hidden_states,) if not return_dict: outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:]) return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=last_hidden_states, hidden_states=hidden_states, attentions=outputs.attentions, ) class FlaxBlenderbotDecoder(nn.Module): config: BlenderbotConfig embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.padding_idx = self.config.pad_token_id self.max_target_positions = self.config.max_position_embeddings self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0 self.embed_positions = nn.Embed( self.config.max_position_embeddings, embed_dim, embedding_init=jax.nn.initializers.normal(self.config.init_std), ) self.layers = FlaxBlenderbotDecoderLayerCollection(self.config, self.dtype) self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, input_ids, attention_mask, position_ids, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): input_shape = input_ids.shape input_ids = input_ids.reshape(-1, input_shape[-1]) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale # embed positions positions = self.embed_positions(position_ids) hidden_states = inputs_embeds + positions hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_states = outputs[0] last_hidden_states = self.layer_norm(last_hidden_states) # update the last element in `hidden_states` after applying `layernorm` above hidden_states = None if output_hidden_states: hidden_states = outputs[1] hidden_states = hidden_states[:-1] + (last_hidden_states,) if not return_dict: outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:]) return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=last_hidden_states, hidden_states=hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartModule with Bart->Blenderbot class FlaxBlenderbotModule(nn.Module): config: BlenderbotConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.shared = nn.Embed( self.config.vocab_size, self.config.d_model, embedding_init=jax.nn.initializers.normal(self.config.init_std), dtype=self.dtype, ) self.encoder = FlaxBlenderbotEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared) self.decoder = FlaxBlenderbotDecoder(self.config, dtype=self.dtype, embed_tokens=self.shared) def _get_encoder_module(self): return self.encoder def _get_decoder_module(self): return self.decoder def __call__( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) if not return_dict: return decoder_outputs + encoder_outputs return FlaxSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) class FlaxBlenderbotPreTrainedModel(FlaxPreTrainedModel): config_class = BlenderbotConfig base_model_prefix: str = "model" module_class: nn.Module = None def __init__( self, config: BlenderbotConfig, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") # make sure initialization pass will work for FlaxBlenderbotForSequenceClassificationModule input_ids = input_ids.at[(..., -1)].set(self.config.eos_token_id) attention_mask = jnp.ones_like(input_ids) decoder_input_ids = input_ids decoder_attention_mask = jnp.ones_like(input_ids) batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init( rngs, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, )["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params def init_cache(self, batch_size, max_length, encoder_outputs): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`): `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. """ # init input variables to retrieve cache decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4") decoder_attention_mask = jnp.ones_like(decoder_input_ids) decoder_position_ids = jnp.broadcast_to( jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape ) def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) init_variables = self.module.init( jax.random.PRNGKey(0), decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], init_cache=True, method=_decoder_forward, # we only need to call the decoder to init the cache ) return unfreeze(init_variables["cache"]) @add_start_docstrings(BLENDERBOT_ENCODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=BlenderbotConfig) def encode( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxBlenderbotForConditionalGeneration >>> model = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=1024, return_tensors="jax") >>> encoder_outputs = model.encode(**inputs) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if position_ids is None: batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs): encode_module = module._get_encoder_module() return encode_module(input_ids, attention_mask, position_ids, **kwargs) return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, method=_encoder_forward, ) @add_start_docstrings(BLENDERBOT_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings( output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=BlenderbotConfig ) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> import jax.numpy as jnp >>> from transformers import AutoTokenizer, FlaxBlenderbotForConditionalGeneration >>> model = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=1024, return_tensors="jax") >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> last_decoder_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxBlenderbotAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past = outputs outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past = outputs outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs @add_start_docstrings_to_model_forward(BLENDERBOT_INPUTS_DOCSTRING) def __call__( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, decoder_input_ids: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # prepare encoder inputs if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if position_ids is None: batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) # prepare decoder inputs if decoder_input_ids is None: decoder_input_ids = shift_tokens_right( input_ids, self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id ) if decoder_attention_mask is None: decoder_attention_mask = jnp.ones_like(decoder_input_ids) if decoder_position_ids is None: batch_size, sequence_length = decoder_input_ids.shape decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, ) @add_start_docstrings( "The bare MBart Model transformer outputting raw hidden-states without any specific head on top.", BLENDERBOT_START_DOCSTRING, ) class FlaxBlenderbotModel(FlaxBlenderbotPreTrainedModel): config: BlenderbotConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation module_class = FlaxBlenderbotModule append_call_sample_docstring(FlaxBlenderbotModel, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC) # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartForConditionalGenerationModule with Bart->Blenderbot class FlaxBlenderbotForConditionalGenerationModule(nn.Module): config: BlenderbotConfig dtype: jnp.dtype = jnp.float32 bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros def setup(self): self.model = FlaxBlenderbotModule(config=self.config, dtype=self.dtype) self.lm_head = nn.Dense( self.model.shared.num_embeddings, use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.model.shared.num_embeddings)) def _get_encoder_module(self): return self.model.encoder def _get_decoder_module(self): return self.model.decoder def __call__( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, position_ids=position_ids, decoder_position_ids=decoder_position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = self.model.variables["params"]["shared"]["embedding"] lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = self.lm_head(hidden_states) lm_logits += jax.lax.stop_gradient(self.final_logits_bias.astype(self.dtype)) if not return_dict: output = (lm_logits,) + outputs[1:] return output return FlaxSeq2SeqLMOutput( logits=lm_logits, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) @add_start_docstrings( "The Blenderbot Model with a language modeling head. Can be used for summarization.", BLENDERBOT_START_DOCSTRING ) class FlaxBlenderbotForConditionalGeneration(FlaxBlenderbotPreTrainedModel): module_class = FlaxBlenderbotForConditionalGenerationModule dtype: jnp.dtype = jnp.float32 @add_start_docstrings(BLENDERBOT_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=BlenderbotConfig) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> import jax.numpy as jnp >>> from transformers import AutoTokenizer, FlaxBlenderbotForConditionalGeneration >>> model = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=1024, return_tensors="jax") >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> logits = outputs.logits ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxBlenderbotAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() outputs = decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = module.model.variables["params"]["shared"]["embedding"] lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = module.lm_head(hidden_states) lm_logits += module.final_logits_bias return lm_logits, outputs outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) if past_key_values is None: lm_logits, decoder_outputs = outputs else: (lm_logits, decoder_outputs), past = outputs if return_dict: outputs = FlaxCausalLMOutputWithCrossAttentions( logits=lm_logits, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, ) else: outputs = (lm_logits,) + decoder_outputs[1:] # add updated cache to model output if past_key_values is not None and return_dict: outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs def prepare_inputs_for_generation( self, decoder_input_ids, max_length, attention_mask: Optional[jax.Array] = None, decoder_attention_mask: Optional[jax.Array] = None, encoder_outputs=None, **kwargs, ): # initializing the cache batch_size, seq_length = decoder_input_ids.shape past_key_values = self.init_cache(batch_size, max_length, encoder_outputs) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if decoder_attention_mask is not None: position_ids = decoder_attention_mask.cumsum(axis=-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0)) else: position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) return { "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "encoder_attention_mask": attention_mask, "decoder_attention_mask": extended_attention_mask, "decoder_position_ids": position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1 return model_kwargs FLAX_BLENDERBOT_CONDITIONAL_GENERATION_DOCSTRING = r""" Returns: Conversation example:: ```py >>> from transformers import AutoTokenizer, FlaxBlenderbotForConditionalGeneration >>> model = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill") >>> UTTERANCE = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer([UTTERANCE], max_length=1024, return_tensors="np") >>> # Generate Reply >>> reply_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=5, early_stopping=True).sequences >>> print([tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in reply_ids]) ``` """ overwrite_call_docstring( FlaxBlenderbotForConditionalGeneration, BLENDERBOT_INPUTS_DOCSTRING + FLAX_BLENDERBOT_CONDITIONAL_GENERATION_DOCSTRING, ) append_replace_return_docstrings( FlaxBlenderbotForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC ) __all__ = ["FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel"]
transformers/src/transformers/models/blenderbot/modeling_flax_blenderbot.py/0
{ "file_path": "transformers/src/transformers/models/blenderbot/modeling_flax_blenderbot.py", "repo_id": "transformers", "token_count": 28383 }
104
# coding=utf-8 # Copyright 2022 The Salesforce Team Authors and The HuggingFace Team. All rights reserved. # # Licensed under the BSD-3-clause license (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import Tensor, device, nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...generation import GenerationMixin from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, CausalLMOutputWithCrossAttentions, ) from ...modeling_utils import ( PreTrainedModel, apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer, ) from ...utils import logging from .configuration_blip import BlipTextConfig logger = logging.get_logger(__name__) # Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L52 class BlipTextEmbeddings(nn.Module): """Construct the embeddings from word and position embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.config = config def forward( self, input_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, past_key_values_length: int = 0, ) -> torch.Tensor: if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) embeddings = inputs_embeds if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings # Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L97 class BlipTextSelfAttention(nn.Module): def __init__(self, config, is_cross_attention): super().__init__() self.config = config if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( "The hidden size (%d) is not a multiple of the number of attention heads (%d)" % (config.hidden_size, config.num_attention_heads) ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) if is_cross_attention: self.key = nn.Linear(config.encoder_hidden_size, self.all_head_size) self.value = nn.Linear(config.encoder_hidden_size, self.all_head_size) else: self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) def save_attn_gradients(self, attn_gradients): self.attn_gradients = attn_gradients def get_attn_gradients(self): return self.attn_gradients def save_attention_map(self, attention_map): self.attention_map = attention_map def get_attention_map(self): return self.attention_map def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": seq_length = hidden_states.size()[1] position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BlipTextModel forward() function) attention_scores = attention_scores + attention_mask.to(attention_scores.device) # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs_dropped = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs_dropped = attention_probs_dropped * head_mask context_layer = torch.matmul(attention_probs_dropped, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) outputs = outputs + (past_key_value,) return outputs # Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert -> BlipText class BlipTextSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#242 class BlipTextAttention(nn.Module): def __init__(self, config, is_cross_attention=False): super().__init__() self.self = BlipTextSelfAttention(config, is_cross_attention) self.output = BlipTextSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert -> BlipText class BlipTextIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert -> BlipText class BlipTextOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BlipTextLayer(nn.Module): def __init__(self, config, layer_num): super().__init__() self.config = config self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = BlipTextAttention(config) self.layer_num = layer_num if self.config.is_decoder: self.crossattention = BlipTextAttention(config, is_cross_attention=self.config.is_decoder) self.intermediate = BlipTextIntermediate(config) self.output = BlipTextOutput(config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] if encoder_hidden_states is not None: cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, output_attentions=output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output # Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L386 class BlipTextEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([BlipTextLayer(config, i) for i in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: if self.gradient_checkpointing and self.training: if use_cache: logger.warning( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.is_decoder else None next_decoder_cache = () if use_cache else None for i in range(self.config.num_hidden_layers): layer_module = self.layer[i] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->BlipText class BlipTextPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output # Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->BlipText class BlipTextPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->BlipText class BlipTextLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = BlipTextPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def _tie_weights(self): self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->BlipText class BlipTextOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = BlipTextLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores # Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L548 class BlipTextPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BlipTextConfig base_model_prefix = "bert" _no_split_modules = [] def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() # Adapted from https://github.com/salesforce/BLIP/blob/3a29b7410476bf5f2ba0955827390eb6ea1f4f9d/models/med.py#L571 class BlipTextModel(BlipTextPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in [Attention is all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. argument and `is_decoder` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = BlipTextEmbeddings(config) self.encoder = BlipTextEncoder(config) self.pooler = BlipTextPooler(config) if add_pooling_layer else None self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value # Copied from transformers.models.bert.modeling_bert.BertModel._prune_heads def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) def get_extended_attention_mask( self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool ) -> Tensor: """ Makes broadcastable attention and causal masks so that future and masked tokens are ignored. Arguments: attention_mask (`torch.Tensor`): Mask with ones indicating tokens to attend to, zeros for tokens to ignore. input_shape (`Tuple[int]`): The shape of the input to the model. device (`torch.device`): The device of the input to the model. Returns: `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`. """ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. if attention_mask.dim() == 3: extended_attention_mask = attention_mask[:, None, :, :] elif attention_mask.dim() == 2: # Provided a padding mask of dimensions [batch_size, seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] if is_decoder: batch_size, seq_length = input_shape seq_ids = torch.arange(seq_length, device=device) causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None] # in case past_key_values are used we need to add a prefix ones mask to the causal mask # causal and attention masks must have same type with pytorch version < 1.3 causal_mask = causal_mask.to(attention_mask.dtype) if causal_mask.shape[1] < attention_mask.shape[1]: prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1] causal_mask = torch.cat( [ torch.ones( (batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype ), causal_mask, ], axis=-1, ) extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :] else: extended_attention_mask = attention_mask[:, None, None, :] else: raise ValueError( "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( input_shape, attention_mask.shape ) ) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 return extended_attention_mask def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, is_decoder: Optional[bool] = False, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() batch_size, seq_length = input_shape device = input_ids.device elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size, seq_length = input_shape device = inputs_embeds.device elif encoder_embeds is not None: input_shape = encoder_embeds.size()[:-1] batch_size, seq_length = input_shape device = encoder_embeds.device else: raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds") # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length))).to(device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask( attention_mask, input_shape, device, is_decoder ) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_hidden_states is not None: if isinstance(encoder_hidden_states, list): encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size() else: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if isinstance(encoder_attention_mask, list): encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask] elif encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) if encoder_embeds is None: embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) else: embedding_output = encoder_embeds encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) # Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L811 class BlipTextLMHeadModel(BlipTextPreTrainedModel, GenerationMixin): def __init__(self, config): super().__init__(config) self.bert = BlipTextModel(config, add_pooling_layer=False) self.cls = BlipTextOnlyMLMHead(config) self.label_smoothing = config.label_smoothing def get_input_embeddings(self): return self.bert.get_input_embeddings() def set_input_embeddings(self, new_embeddings): self.bert.set_input_embeddings(new_embeddings) def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.Tensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, return_logits: Optional[bool] = False, is_decoder: Optional[bool] = True, reduction: Optional[str] = "mean", ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (`torch.LongTensor`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]` past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False outputs = self.bert( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, is_decoder=is_decoder, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) if return_logits: return prediction_scores[:, :-1, :].contiguous() lm_loss = None if labels is not None: # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous().to(shifted_prediction_scores.device) loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=self.label_smoothing) lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if reduction == "none": lm_loss = lm_loss.view(prediction_scores.size(0), -1).sum(1) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs): # Overwrite -- hardcoded key return (`is_decoder=True`) input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) # cut decoder_input_ids if past_key_values is used if past_key_values is not None: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = input_ids.shape[1] - 1 input_ids = input_ids[:, remove_prefix_length:] return { "input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values, "encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None), "encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None), "is_decoder": True, } def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past
transformers/src/transformers/models/blip/modeling_blip_text.py/0
{ "file_path": "transformers/src/transformers/models/blip/modeling_blip_text.py", "repo_id": "transformers", "token_count": 18892 }
105
# coding=utf-8 # Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License=, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing=, software # distributed under the License is distributed on an "AS IS" BASIS=, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND=, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """BridgeTower model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class BridgeTowerVisionConfig(PretrainedConfig): r""" This is the configuration class to store the vision configuration of a [`BridgeTowerModel`]. Instantiating a configuration with the defaults will yield a similar configuration to that of the bridgetower-base [BridgeTower/bridgetower-base](https://huggingface.co/BridgeTower/bridgetower-base/) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in visual encoder model. patch_size (`int`, *optional*, defaults to 16): The size (resolution) of each patch. image_size (`int`, *optional*, defaults to 288): The size (resolution) of each image. initializer_factor (`float`, *optional*, defaults to 1): A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. stop_gradient (`bool`, *optional*, defaults to `False`): Whether to stop gradient for training. share_layernorm (`bool`, *optional*, defaults to `True`): Whether LayerNorm layers are shared. remove_last_layer (`bool`, *optional*, defaults to `False`): Whether to remove the last layer from the vision encoder. Example: ```python >>> from transformers import BridgeTowerVisionConfig >>> # Initializing a BridgeTower BridgeTower/bridgetower-base style configuration for the vision model >>> configuration = BridgeTowerVisionConfig() >>> # Accessing the configuration >>> configuration ```""" model_type = "bridgetower_vision_model" base_config_key = "vision_config" def __init__( self, hidden_size=768, num_hidden_layers=12, num_channels=3, patch_size=16, image_size=288, initializer_factor=1, layer_norm_eps=1e-05, stop_gradient=False, share_layernorm=True, remove_last_layer=False, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_channels = num_channels self.patch_size = patch_size self.image_size = image_size self.initializer_factor = initializer_factor self.layer_norm_eps = layer_norm_eps self.stop_gradient = stop_gradient self.share_layernorm = share_layernorm self.remove_last_layer = remove_last_layer class BridgeTowerTextConfig(PretrainedConfig): r""" This is the configuration class to store the text configuration of a [`BridgeTowerModel`]. The default values here are copied from RoBERTa. Instantiating a configuration with the defaults will yield a similar configuration to that of the bridgetower-base [BridegTower/bridgetower-base](https://huggingface.co/BridgeTower/bridgetower-base/) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50265): Vocabulary size of the text part of the model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`BridgeTowerModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 514): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids`. initializer_factor (`float`, *optional*, defaults to 1): A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). is_decoder (`bool`, *optional*, defaults to `False`): Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. Example: ```python >>> from transformers import BridgeTowerTextConfig >>> # Initializing a BridgeTower BridgeTower/bridgetower-base style configuration for the text model >>> configuration = BridgeTowerTextConfig() >>> # Accessing the configuration >>> configuration ```""" model_type = "bridgetower_text_model" base_config_key = "text_config" def __init__( self, vocab_size=50265, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, initializer_factor=1, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=514, type_vocab_size=1, layer_norm_eps=1e-05, pad_token_id=1, bos_token_id=0, eos_token_id=2, position_embedding_type="absolute", use_cache=True, **kwargs, ): super().__init__(**kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.initializer_factor = initializer_factor self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.use_cache = use_cache self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id class BridgeTowerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`BridgeTowerModel`]. It is used to instantiate a BridgeTower model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the bridgetower-base [BridgeTower/bridgetower-base](https://huggingface.co/BridgeTower/bridgetower-base/) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: share_cross_modal_transformer_layers (`bool`, *optional*, defaults to `True`): Whether cross modal transformer layers are shared. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. initializer_factor (`float`, *optional*, defaults to 1): A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. share_link_tower_layers (`bool`, *optional*, defaults to `False`): Whether the bride/link tower layers are shared. link_tower_type (`str`, *optional*, defaults to `"add"`): Type of the bridge/link layer. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 6): Number of hidden layers in the Transformer encoder. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie input and output embeddings. init_layernorm_from_vision_encoder (`bool`, *optional*, defaults to `False`): Whether to init LayerNorm from the vision encoder. text_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`BridgeTowerTextConfig`]. vision_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`BridgeTowerVisionConfig`]. Example: ```python >>> from transformers import BridgeTowerModel, BridgeTowerConfig >>> # Initializing a BridgeTower BridgeTower/bridgetower-base style configuration >>> configuration = BridgeTowerConfig() >>> # Initializing a model from the BridgeTower/bridgetower-base style configuration >>> model = BridgeTowerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "bridgetower" sub_configs = {"text_config": BridgeTowerTextConfig, "vision_config": BridgeTowerVisionConfig} def __init__( self, share_cross_modal_transformer_layers=True, hidden_act="gelu", hidden_size=768, initializer_factor=1, layer_norm_eps=1e-05, share_link_tower_layers=False, link_tower_type="add", num_attention_heads=12, num_hidden_layers=6, tie_word_embeddings=False, init_layernorm_from_vision_encoder=False, text_config=None, vision_config=None, **kwargs, ): # TODO: remove this once the Hub files are updated. _ = kwargs.pop("text_config_dict", None) _ = kwargs.pop("vision_config_dict", None) super().__init__(**kwargs) self.share_cross_modal_transformer_layers = share_cross_modal_transformer_layers self.hidden_act = hidden_act self.hidden_size = hidden_size self.initializer_factor = initializer_factor self.layer_norm_eps = layer_norm_eps self.share_link_tower_layers = share_link_tower_layers self.link_tower_type = link_tower_type self.num_attention_heads = num_attention_heads self.num_hidden_layers = num_hidden_layers self.tie_word_embeddings = tie_word_embeddings self.init_layernorm_from_vision_encoder = init_layernorm_from_vision_encoder if text_config is None: text_config = {} logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.") if vision_config is None: vision_config = {} logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.") self.text_config = BridgeTowerTextConfig(**text_config) self.vision_config = BridgeTowerVisionConfig(**vision_config) @classmethod def from_text_vision_configs( cls, text_config: BridgeTowerTextConfig, vision_config: BridgeTowerVisionConfig, **kwargs ): r""" Instantiate a [`BridgeTowerConfig`] (or a derived class) from BridgeTower text model configuration. Returns: [`BridgeTowerConfig`]: An instance of a configuration object """ return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs) __all__ = ["BridgeTowerConfig", "BridgeTowerTextConfig", "BridgeTowerVisionConfig"]
transformers/src/transformers/models/bridgetower/configuration_bridgetower.py/0
{ "file_path": "transformers/src/transformers/models/bridgetower/configuration_bridgetower.py", "repo_id": "transformers", "token_count": 5541 }
106
# coding=utf-8 # Copyright 2021 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Feature extractor class for Chinese-CLIP.""" import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor logger = logging.get_logger(__name__) class ChineseCLIPFeatureExtractor(ChineseCLIPImageProcessor): def __init__(self, *args, **kwargs) -> None: warnings.warn( "The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ChineseCLIPImageProcessor instead.", FutureWarning, ) super().__init__(*args, **kwargs) __all__ = ["ChineseCLIPFeatureExtractor"]
transformers/src/transformers/models/chinese_clip/feature_extraction_chinese_clip.py/0
{ "file_path": "transformers/src/transformers/models/chinese_clip/feature_extraction_chinese_clip.py", "repo_id": "transformers", "token_count": 393 }
107
# coding=utf-8 # Copyright 2021 The OpenAI Team Authors, The Google Flax Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxBaseModelOutputWithPooling from ...modeling_flax_utils import ( ACT2FN, FlaxPreTrainedModel, append_replace_return_docstrings, overwrite_call_docstring, ) from ...utils import ModelOutput, add_start_docstrings, logging from .configuration_clip import CLIPConfig, CLIPTextConfig, CLIPVisionConfig logger = logging.get_logger(__name__) CLIP_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models) This model is also a [flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`CLIPConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ CLIP_TEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ CLIP_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ CLIP_INPUTS_DOCSTRING = r""" Args: input_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @flax.struct.dataclass class FlaxCLIPTextModelOutput(ModelOutput): """ Base class for text model's outputs that also contains a pooling of the last hidden states. Args: text_embeds (`jnp.ndarray` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`FlaxCLIPTextModel`]. last_hidden_state (`jnp.ndarray` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ text_embeds: jnp.ndarray = None last_hidden_state: jnp.ndarray = None hidden_states: Optional[Tuple[jnp.ndarray, ...]] = None attentions: Optional[Tuple[jnp.ndarray, ...]] = None @flax.struct.dataclass class FlaxCLIPOutput(ModelOutput): """ Args: logits_per_image:(`jnp.ndarray` of shape `(image_batch_size, text_batch_size)`): The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text similarity scores. logits_per_text:(`jnp.ndarray` of shape `(text_batch_size, image_batch_size)`): The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image similarity scores. text_embeds(`jnp.ndarray` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`FlaxCLIPTextModel`]. image_embeds(`jnp.ndarray` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`FlaxCLIPVisionModel`]. text_model_output(`FlaxBaseModelOutputWithPooling`): The output of the [`FlaxCLIPTextModel`]. vision_model_output(`FlaxBaseModelOutputWithPooling`): The output of the [`FlaxCLIPVisionModel`]. """ logits_per_image: jnp.ndarray = None logits_per_text: jnp.ndarray = None text_embeds: jnp.ndarray = None image_embeds: jnp.ndarray = None text_model_output: FlaxBaseModelOutputWithPooling = None vision_model_output: FlaxBaseModelOutputWithPooling = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() for k in self.keys() ) class FlaxCLIPVisionEmbeddings(nn.Module): config: CLIPVisionConfig dtype: jnp.dtype = jnp.float32 def setup(self): embed_dim = self.config.hidden_size image_size = self.config.image_size patch_size = self.config.patch_size self.class_embedding = self.param("class_embedding", jax.nn.initializers.normal(stddev=0.02), (embed_dim,)) self.patch_embedding = nn.Conv( embed_dim, kernel_size=(patch_size, patch_size), strides=(patch_size, patch_size), padding="VALID", use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(), ) self.num_patches = (image_size // patch_size) ** 2 num_positions = self.num_patches + 1 self.position_embedding = nn.Embed(num_positions, embed_dim, embedding_init=jax.nn.initializers.normal()) self.position_ids = jnp.expand_dims(jnp.arange(0, num_positions, dtype="i4"), axis=0) def __call__(self, pixel_values): patch_embeds = self.patch_embedding(pixel_values) batch_size, height, width, channels = patch_embeds.shape patch_embeds = jnp.reshape(patch_embeds, (batch_size, height * width, channels)) class_embeds = jnp.expand_dims(self.class_embedding, axis=(0, 1)) class_embeds = jnp.tile(class_embeds, (batch_size, 1, 1)) embeddings = jnp.concatenate([class_embeds, patch_embeds], axis=1) embeddings = embeddings + self.position_embedding(self.position_ids) return embeddings class FlaxCLIPTextEmbeddings(nn.Module): config: CLIPTextConfig dtype: jnp.dtype = jnp.float32 def setup(self): embed_dim = self.config.hidden_size self.token_embedding = nn.Embed(self.config.vocab_size, embed_dim, embedding_init=jax.nn.initializers.normal()) self.position_embedding = nn.Embed( self.config.max_position_embeddings, embed_dim, embedding_init=jax.nn.initializers.normal() ) self.position_ids = jnp.expand_dims( jnp.arange(0, self.config.max_position_embeddings, dtype="i4"), axis=(0, 1) ) def __call__(self, input_ids, position_ids): input_embeds = self.token_embedding(input_ids.astype("i4")) position_embeds = self.position_embedding(position_ids.astype("i4")) embeddings = input_embeds + position_embeds return embeddings class FlaxCLIPAttention(nn.Module): config: Union[CLIPTextConfig, CLIPVisionConfig] dtype: jnp.dtype = jnp.float32 def setup(self): self.embed_dim = self.config.hidden_size self.num_heads = self.config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = self.config.attention_dropout self.k_proj = nn.Dense(self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.01)) self.v_proj = nn.Dense(self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.01)) self.q_proj = nn.Dense(self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.01)) self.out_proj = nn.Dense(self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.01)) self.causal = isinstance(self.config, CLIPTextConfig) if self.causal: self.causal_mask = make_causal_mask(jnp.ones((1, self.config.max_position_embeddings), dtype="i4")) def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) def __call__( self, hidden_states, attention_mask=None, deterministic: bool = True, output_attentions: bool = False, ): query = self.q_proj(hidden_states) key = self.k_proj(hidden_states) value = self.v_proj(hidden_states) query = self._split_heads(query) key = self._split_heads(key) value = self._split_heads(value) causal_attention_mask = None if self.causal: query_length, key_length = query.shape[1], key.shape[1] causal_attention_mask = self.causal_mask[:, :, key_length - query_length : key_length, :key_length] if attention_mask is not None and causal_attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) attention_mask = combine_masks(attention_mask, causal_attention_mask, dtype="i4") elif causal_attention_mask is not None: attention_mask = causal_attention_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) if attention_mask is not None: attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") attn_weights = dot_product_attention_weights( query, key, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value) attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) return outputs class FlaxCLIPMLP(nn.Module): config: Union[CLIPTextConfig, CLIPVisionConfig] dtype: jnp.dtype = jnp.float32 def setup(self): self.activation_fn = ACT2FN[self.config.hidden_act] self.fc1 = nn.Dense( self.config.intermediate_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.01), ) self.fc2 = nn.Dense(self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.01)) def __call__(self, hidden_states): hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states class FlaxCLIPEncoderLayer(nn.Module): config: Union[CLIPTextConfig, CLIPVisionConfig] dtype: jnp.dtype = jnp.float32 def setup(self): self.self_attn = FlaxCLIPAttention(self.config, dtype=self.dtype) self.layer_norm1 = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.mlp = FlaxCLIPMLP(self.config, dtype=self.dtype) self.layer_norm2 = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, ): residual = hidden_states hidden_states = self.layer_norm1(hidden_states) attn_outputs = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, deterministic=deterministic, output_attentions=output_attentions, ) hidden_states = attn_outputs[0] hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += attn_outputs[1:] return outputs class FlaxCLIPLayerCollection(nn.Module): config: Union[CLIPTextConfig, CLIPVisionConfig] dtype: jnp.dtype = jnp.float32 def setup(self): self.layers = [ FlaxCLIPEncoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers) ] def __call__( self, hidden_states, attention_mask=None, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = layer( hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions ) hidden_states = layer_outputs[0] if output_attentions: all_attentions += (layer_outputs[1],) if output_hidden_states: all_hidden_states += (hidden_states,) outputs = (hidden_states,) if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) class FlaxCLIPEncoder(nn.Module): config: Union[CLIPTextConfig, CLIPVisionConfig] dtype: jnp.dtype = jnp.float32 def setup(self): self.layers = FlaxCLIPLayerCollection(self.config, dtype=self.dtype) def __call__( self, inputs_embeds, attention_mask=None, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): return self.layers( hidden_states=inputs_embeds, attention_mask=attention_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) class FlaxCLIPTextTransformer(nn.Module): config: CLIPTextConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.embeddings = FlaxCLIPTextEmbeddings(self.config, dtype=self.dtype) self.encoder = FlaxCLIPEncoder(self.config, dtype=self.dtype) self.final_layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) # For `pooled_output` computation self.eos_token_id = self.config.eos_token_id def __call__( self, input_ids, attention_mask, position_ids, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids) encoder_outputs = self.encoder( inputs_embeds=hidden_states, attention_mask=attention_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.final_layer_norm(last_hidden_state) if self.eos_token_id == 2: # The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here. # A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added # ------------------------------------------------------------ # text_embeds.shape = [batch_size, sequence_length, transformer.width] # take features from the EOS embedding (eos_token_id is the highest number in each sequence) pooled_output = last_hidden_state[jnp.arange(last_hidden_state.shape[0]), input_ids.argmax(axis=-1)] else: # (no need to cast from bool to int after comparing to `eos_token_id`) pooled_output = last_hidden_state[ jnp.arange(last_hidden_state.shape[0]), (input_ids == self.eos_token_id).argmax(axis=-1) ] if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return FlaxBaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class FlaxCLIPVisionTransformer(nn.Module): config: CLIPVisionConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.embeddings = FlaxCLIPVisionEmbeddings(self.config, dtype=self.dtype) self.pre_layrnorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.encoder = FlaxCLIPEncoder(self.config, dtype=self.dtype) self.post_layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) def __call__( self, pixel_values=None, deterministic: bool = True, output_attentions=None, output_hidden_states=None, return_dict: bool = True, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict hidden_states = self.embeddings(pixel_values) hidden_states = self.pre_layrnorm(hidden_states) encoder_outputs = self.encoder( inputs_embeds=hidden_states, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] pooled_output = last_hidden_state[:, 0, :] pooled_output = self.post_layernorm(pooled_output) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return FlaxBaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class FlaxCLIPTextPreTrainedModel(FlaxPreTrainedModel): config_class = CLIPTextConfig module_class: nn.Module = None def __init__( self, config: CLIPTextConfig, input_shape=(1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensor input_ids = jnp.zeros(input_shape, dtype="i4") position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape) attention_mask = jnp.ones_like(input_ids) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init(rngs, input_ids, attention_mask, position_ids)["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params def __call__( self, input_ids, attention_mask=None, position_ids=None, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if position_ids is None: position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) if attention_mask is None: attention_mask = jnp.ones_like(input_ids) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng return self.module.apply( {"params": params or self.params}, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), jnp.array(position_ids, dtype="i4"), not train, output_attentions, output_hidden_states, return_dict, rngs=rngs, ) class FlaxCLIPVisionPreTrainedModel(FlaxPreTrainedModel): config_class = CLIPVisionConfig main_input_name = "pixel_values" module_class: nn.Module = None def __init__( self, config: CLIPVisionConfig, input_shape: Optional[Tuple] = None, seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): if input_shape is None: input_shape = (1, config.image_size, config.image_size, 3) module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensor pixel_values = jax.random.normal(rng, input_shape) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init(rngs, pixel_values)["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params def __call__( self, pixel_values, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng return self.module.apply( {"params": params or self.params}, jnp.array(pixel_values, dtype=jnp.float32), not train, output_attentions, output_hidden_states, return_dict, rngs=rngs, ) class FlaxCLIPPreTrainedModel(FlaxPreTrainedModel): config_class = CLIPConfig module_class: nn.Module = None def __init__( self, config: CLIPConfig, input_shape: Optional[Tuple] = None, seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): if input_shape is None: input_shape = ((1, 1), (1, config.vision_config.image_size, config.vision_config.image_size, 3)) module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensor input_ids = jnp.zeros(input_shape[0], dtype="i4") position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape[0]) attention_mask = jnp.ones_like(input_ids) pixel_values = jax.random.normal(rng, input_shape[1]) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init(rngs, input_ids, pixel_values, attention_mask, position_ids)["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params def __call__( self, input_ids, pixel_values, attention_mask=None, position_ids=None, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if position_ids is None: position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) if attention_mask is None: attention_mask = jnp.ones_like(input_ids) pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng return self.module.apply( {"params": params or self.params}, jnp.array(input_ids, dtype="i4"), jnp.array(pixel_values, dtype=jnp.float32), jnp.array(attention_mask, dtype="i4"), jnp.array(position_ids, dtype="i4"), not train, output_attentions, output_hidden_states, return_dict, rngs=rngs, ) def get_text_features( self, input_ids, attention_mask=None, position_ids=None, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train=False, ): r""" Args: input_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) Returns: text_features (`jnp.ndarray` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`FlaxCLIPTextModel`]. Examples: ```python >>> from transformers import AutoTokenizer, FlaxCLIPModel >>> model = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32") >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="np") >>> text_features = model.get_text_features(**inputs) ```""" if position_ids is None: position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) if attention_mask is None: attention_mask = jnp.ones_like(input_ids) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _get_features(module, input_ids, attention_mask, position_ids, deterministic): text_outputs = module.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, deterministic=deterministic, ) pooled_output = text_outputs[1] text_features = module.text_projection(pooled_output) return text_features return self.module.apply( {"params": params or self.params}, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), jnp.array(position_ids, dtype="i4"), not train, method=_get_features, rngs=rngs, ) def get_image_features( self, pixel_values, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train=False ): r""" Args: pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. Returns: image_features (`jnp.ndarray` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`FlaxCLIPVisionModel`] Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, FlaxCLIPModel >>> model = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32") >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="np") >>> image_features = model.get_image_features(**inputs) ```""" pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _get_features(module, pixel_values, deterministic): vision_outputs = module.vision_model(pixel_values=pixel_values, deterministic=deterministic) pooled_output = vision_outputs[1] # pooled_output image_features = module.visual_projection(pooled_output) return image_features return self.module.apply( {"params": params or self.params}, jnp.array(pixel_values, dtype=jnp.float32), not train, method=_get_features, rngs=rngs, ) class FlaxCLIPTextModule(nn.Module): config: CLIPTextConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.text_model = FlaxCLIPTextTransformer(self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask, position_ids, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): return self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) class FlaxCLIPTextModel(FlaxCLIPTextPreTrainedModel): module_class = FlaxCLIPTextModule FLAX_CLIP_TEXT_MODEL_DOCSTRING = """ Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxCLIPTextModel >>> model = FlaxCLIPTextModel.from_pretrained("openai/clip-vit-base-patch32") >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="np") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooler_output = outputs.pooler_output # pooled (EOS token) states ``` """ overwrite_call_docstring(FlaxCLIPTextModel, CLIP_TEXT_INPUTS_DOCSTRING + FLAX_CLIP_TEXT_MODEL_DOCSTRING) append_replace_return_docstrings( FlaxCLIPTextModel, output_type=FlaxBaseModelOutputWithPooling, config_class=CLIPTextConfig ) class FlaxCLIPTextModelWithProjectionModule(nn.Module): config: CLIPTextConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.text_model = FlaxCLIPTextTransformer(self.config, dtype=self.dtype) self.text_projection = nn.Dense(self.config.projection_dim, use_bias=False, dtype=self.dtype) def __call__( self, input_ids, attention_mask, position_ids, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = text_outputs[1] text_embeds = self.text_projection(pooled_output) if not return_dict: return (text_embeds, text_outputs[0]) + text_outputs[2:] return FlaxCLIPTextModelOutput( text_embeds=text_embeds, last_hidden_state=text_outputs.last_hidden_state, hidden_states=text_outputs.hidden_states, attentions=text_outputs.attentions, ) class FlaxCLIPTextModelWithProjection(FlaxCLIPTextPreTrainedModel): module_class = FlaxCLIPTextModelWithProjectionModule FLAX_CLIP_TEXT_MODEL_WITH_PROJECTION_DOCSTRING = """ Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxCLIPTextModelWithProjection >>> model = FlaxCLIPTextModelWithProjection.from_pretrained("openai/clip-vit-base-patch32") >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="np") >>> outputs = model(**inputs) >>> text_embeds = outputs.text_embeds ``` """ overwrite_call_docstring( FlaxCLIPTextModelWithProjection, CLIP_TEXT_INPUTS_DOCSTRING + FLAX_CLIP_TEXT_MODEL_WITH_PROJECTION_DOCSTRING ) append_replace_return_docstrings( FlaxCLIPTextModelWithProjection, output_type=FlaxCLIPTextModelOutput, config_class=CLIPTextConfig ) class FlaxCLIPVisionModule(nn.Module): config: CLIPVisionConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.vision_model = FlaxCLIPVisionTransformer(self.config, dtype=self.dtype) def __call__( self, pixel_values, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): return self.vision_model( pixel_values=pixel_values, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) class FlaxCLIPVisionModel(FlaxCLIPVisionPreTrainedModel): module_class = FlaxCLIPVisionModule FLAX_CLIP_VISION_MODEL_DOCSTRING = """ Returns: Example: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, FlaxCLIPVisionModel >>> model = FlaxCLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32") >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="np") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooler_output = outputs.pooler_output # pooled CLS states ``` """ overwrite_call_docstring(FlaxCLIPVisionModel, CLIP_VISION_INPUTS_DOCSTRING + FLAX_CLIP_VISION_MODEL_DOCSTRING) append_replace_return_docstrings( FlaxCLIPVisionModel, output_type=FlaxBaseModelOutputWithPooling, config_class=CLIPVisionConfig ) class FlaxCLIPModule(nn.Module): config: CLIPConfig dtype: jnp.dtype = jnp.float32 def setup(self): text_config = self.config.text_config vision_config = self.config.vision_config self.projection_dim = self.config.projection_dim self.text_embed_dim = text_config.hidden_size self.vision_embed_dim = vision_config.hidden_size self.text_model = FlaxCLIPTextTransformer(text_config, dtype=self.dtype) self.vision_model = FlaxCLIPVisionTransformer(vision_config, dtype=self.dtype) self.visual_projection = nn.Dense( self.projection_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.02), use_bias=False, ) self.text_projection = nn.Dense( self.projection_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.02), use_bias=False, ) self.logit_scale = self.param( "logit_scale", lambda _, shape: jnp.ones(shape) * self.config.logit_scale_init_value, [] ) def __call__( self, input_ids=None, pixel_values=None, attention_mask=None, position_ids=None, deterministic: bool = True, output_attentions=None, output_hidden_states=None, return_dict=None, ): return_dict = return_dict if return_dict is not None else self.config.return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeds = vision_outputs[1] image_embeds = self.visual_projection(image_embeds) text_embeds = text_outputs[1] text_embeds = self.text_projection(text_embeds) # normalized features image_embeds = image_embeds / jnp.linalg.norm(image_embeds, axis=-1, keepdims=True) text_embeds = text_embeds / jnp.linalg.norm(text_embeds, axis=-1, keepdims=True) # cosine similarity as logits logit_scale = jnp.exp(self.logit_scale) logits_per_text = jnp.matmul(text_embeds, image_embeds.T) * logit_scale logits_per_image = logits_per_text.T if not return_dict: return (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) return FlaxCLIPOutput( logits_per_image=logits_per_image, logits_per_text=logits_per_text, text_embeds=text_embeds, image_embeds=image_embeds, text_model_output=text_outputs, vision_model_output=vision_outputs, ) @add_start_docstrings(CLIP_START_DOCSTRING) class FlaxCLIPModel(FlaxCLIPPreTrainedModel): module_class = FlaxCLIPModule FLAX_CLIP_MODEL_DOCSTRING = """ Returns: Example: ```python >>> import jax >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, FlaxCLIPModel >>> model = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32") >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor( ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="np", padding=True ... ) >>> outputs = model(**inputs) >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score >>> probs = jax.nn.softmax(logits_per_image, axis=1) # we can take the softmax to get the label probabilities ``` """ overwrite_call_docstring(FlaxCLIPModel, CLIP_INPUTS_DOCSTRING + FLAX_CLIP_MODEL_DOCSTRING) append_replace_return_docstrings(FlaxCLIPModel, output_type=FlaxCLIPOutput, config_class=CLIPConfig) __all__ = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPTextModelWithProjection", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ]
transformers/src/transformers/models/clip/modeling_flax_clip.py/0
{ "file_path": "transformers/src/transformers/models/clip/modeling_flax_clip.py", "repo_id": "transformers", "token_count": 22031 }
108
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for CLVP """ from ...processing_utils import ProcessorMixin class ClvpProcessor(ProcessorMixin): r""" Constructs a CLVP processor which wraps a CLVP Feature Extractor and a CLVP Tokenizer into a single processor. [`ClvpProcessor`] offers all the functionalities of [`ClvpFeatureExtractor`] and [`ClvpTokenizer`]. See the [`~ClvpProcessor.__call__`], [`~ClvpProcessor.decode`] and [`~ClvpProcessor.batch_decode`] for more information. Args: feature_extractor (`ClvpFeatureExtractor`): An instance of [`ClvpFeatureExtractor`]. The feature extractor is a required input. tokenizer (`ClvpTokenizer`): An instance of [`ClvpTokenizer`]. The tokenizer is a required input. """ feature_extractor_class = "ClvpFeatureExtractor" tokenizer_class = "ClvpTokenizer" model_input_names = [ "input_ids", "input_features", "attention_mask", ] def __init__(self, feature_extractor, tokenizer): super().__init__(feature_extractor, tokenizer) def __call__(self, *args, **kwargs): """ Forwards the `audio` and `sampling_rate` arguments to [`~ClvpFeatureExtractor.__call__`] and the `text` argument to [`~ClvpTokenizer.__call__`]. Please refer to the doctsring of the above two methods for more information. """ raw_speech = kwargs.pop("raw_speech", None) sampling_rate = kwargs.pop("sampling_rate", None) text = kwargs.pop("text", None) if raw_speech is None and text is None: raise ValueError("You need to specify either an `raw_speech` or `text` input to process.") if raw_speech is not None: inputs = self.feature_extractor(raw_speech, sampling_rate=sampling_rate, **kwargs) if text is not None: encodings = self.tokenizer(text, **kwargs) if text is None: return inputs elif raw_speech is None: return encodings else: inputs["input_ids"] = encodings["input_ids"] inputs["attention_mask"] = encodings["attention_mask"] return inputs # Copied from transformers.models.whisper.processing_whisper.WhisperProcessor.batch_decode with Whisper->Clvp def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to ClvpTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) # Copied from transformers.models.whisper.processing_whisper.WhisperProcessor.decode with Whisper->Clvp def decode(self, *args, **kwargs): """ This method forwards all its arguments to ClvpTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) __all__ = ["ClvpProcessor"]
transformers/src/transformers/models/clvp/processing_clvp.py/0
{ "file_path": "transformers/src/transformers/models/clvp/processing_clvp.py", "repo_id": "transformers", "token_count": 1363 }
109
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from src/transformers/models/cohere2/modular_cohere2.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_cohere2.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # coding=utf-8 # Copyright 2024 Cohere Inc. HuggingFace Inc. team. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ...configuration_utils import PretrainedConfig from ...modeling_rope_utils import rope_config_validation class Cohere2Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`CohereModel`]. It is used to instantiate an Cohere model according to the specified arguments, defining the model architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Instantiating a configuration with the defaults will yield a similar configuration to that of the [CohereForAI/c4ai-command-r-v01](https://huggingface.co/CohereForAI/c4ai-command-r-v01) model. Args: vocab_size (`int`, *optional*, defaults to 256000): Vocabulary size of the Cohere model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`CohereModel`] hidden_size (`int`, *optional*, defaults to 8192): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 22528): Dimension of the MLP representations. logit_scale (`float`, *optional*, defaults to 0.0625): The scaling factor for the output logits. num_hidden_layers (`int`, *optional*, defaults to 40): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 64): Number of attention heads for each attention layer in the Transformer decoder. num_key_value_heads (`int`, *optional*): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 8192): The maximum sequence length that this model might ever be used with. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. pad_token_id (`int`, *optional*, defaults to 0): Padding token id. bos_token_id (`int`, *optional*, defaults to 5): Beginning of stream token id. eos_token_id (`int`, *optional*, defaults to 255001): End of stream token id. tie_word_embeddings (`bool`, *optional*, defaults to `True`): Whether to tie weight embeddings rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value accordingly. Expected contents: `rope_type` (`str`): The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', 'llama3'], with 'default' being the original RoPE implementation. `factor` (`float`, *optional*): Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In most scaling types, a `factor` of x will enable the model to handle sequences of length x * original maximum pre-trained length. `original_max_position_embeddings` (`int`, *optional*): Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during pretraining. `attention_factor` (`float`, *optional*): Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention computation. If unspecified, it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value. `beta_fast` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear ramp function. If unspecified, it defaults to 32. `beta_slow` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear ramp function. If unspecified, it defaults to 1. `short_factor` (`List[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to short contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `long_factor` (`List[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to long contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `low_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE `high_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): Whether to use a bias in the query, key, value and output projection layers during self-attention. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. sliding_window (`int`, *optional*, defaults to 4096): Size of the sliding window attention context. sliding_window_pattern (`int`, *optional*, defaults to 4): Pattern for the sliding window attention. cache_implementation (`str`, *optional*, defaults to `"hybrid"`): the cache type to be used with `generate`. ```python >>> from transformers import Cohere2Model, Cohere2Config >>> # Initializing a Cohere Nextmodel configuration >>> configuration = Cohere2Config() >>> # Initializing a model from the Cohere2 configuration >>> model = Cohere2Model(configuration) # doctest: +SKIP >>> # Accessing the model configuration >>> configuration = model.config # doctest: +SKIP ``` """ model_type = "cohere2" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=256000, hidden_size=8192, intermediate_size=22528, logit_scale=0.0625, num_hidden_layers=40, num_attention_heads=64, num_key_value_heads=None, hidden_act="silu", max_position_embeddings=8192, initializer_range=0.02, layer_norm_eps=1e-5, use_cache=True, pad_token_id=0, bos_token_id=5, eos_token_id=255001, tie_word_embeddings=True, rope_theta=10000.0, rope_scaling=None, attention_bias=False, attention_dropout=0.0, sliding_window=4096, sliding_window_pattern=4, cache_implementation="hybrid", **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.logit_scale = logit_scale self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.attention_bias = attention_bias self.attention_dropout = attention_dropout self.sliding_window = sliding_window self.sliding_window_pattern = sliding_window_pattern # Need to specify head_dim in the config so it can be used in the attention forward functions self.head_dim = hidden_size // num_attention_heads self.cache_implementation = cache_implementation # Validate the correctness of rotary position embeddings parameters rope_config_validation(self) super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) __all__ = ["Cohere2Config"]
transformers/src/transformers/models/cohere2/configuration_cohere2.py/0
{ "file_path": "transformers/src/transformers/models/cohere2/configuration_cohere2.py", "repo_id": "transformers", "token_count": 4709 }
110
# coding=utf-8 # Copyright The HuggingFace team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ConvBERT model configuration""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) class ConvBertConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ConvBertModel`]. It is used to instantiate an ConvBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ConvBERT [YituTech/conv-bert-base](https://huggingface.co/YituTech/conv-bert-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the ConvBERT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`ConvBertModel`] or [`TFConvBertModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`ConvBertModel`] or [`TFConvBertModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. head_ratio (`int`, *optional*, defaults to 2): Ratio gamma to reduce the number of attention heads. num_groups (`int`, *optional*, defaults to 1): The number of groups for grouped linear layers for ConvBert model conv_kernel_size (`int`, *optional*, defaults to 9): The size of the convolutional kernel. classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. Example: ```python >>> from transformers import ConvBertConfig, ConvBertModel >>> # Initializing a ConvBERT convbert-base-uncased style configuration >>> configuration = ConvBertConfig() >>> # Initializing a model (with random weights) from the convbert-base-uncased style configuration >>> model = ConvBertModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "convbert" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=1, bos_token_id=0, eos_token_id=2, embedding_size=768, head_ratio=2, conv_kernel_size=9, num_groups=1, classifier_dropout=None, **kwargs, ): super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs, ) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.embedding_size = embedding_size self.head_ratio = head_ratio self.conv_kernel_size = conv_kernel_size self.num_groups = num_groups self.classifier_dropout = classifier_dropout # Copied from transformers.models.bert.configuration_bert.BertOnnxConfig class ConvBertOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] ) __all__ = ["ConvBertConfig", "ConvBertOnnxConfig"]
transformers/src/transformers/models/convbert/configuration_convbert.py/0
{ "file_path": "transformers/src/transformers/models/convbert/configuration_convbert.py", "repo_id": "transformers", "token_count": 2675 }
111
# coding=utf-8 # Copyright 2023 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch ConvNextV2 model.""" from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_convnextv2 import ConvNextV2Config logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "ConvNextV2Config" # Base docstring _CHECKPOINT_FOR_DOC = "facebook/convnextv2-tiny-1k-224" _EXPECTED_OUTPUT_SHAPE = [1, 768, 7, 7] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "facebook/convnextv2-tiny-1k-224" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" # Copied from transformers.models.beit.modeling_beit.drop_path def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->ConvNextV2 class ConvNextV2DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) class ConvNextV2GRN(nn.Module): """GRN (Global Response Normalization) layer""" def __init__(self, dim: int): super().__init__() self.weight = nn.Parameter(torch.zeros(1, 1, 1, dim)) self.bias = nn.Parameter(torch.zeros(1, 1, 1, dim)) def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: # Compute and normalize global spatial feature maps global_features = torch.norm(hidden_states, p=2, dim=(1, 2), keepdim=True) norm_features = global_features / (global_features.mean(dim=-1, keepdim=True) + 1e-6) hidden_states = self.weight * (hidden_states * norm_features) + self.bias + hidden_states return hidden_states # Copied from transformers.models.convnext.modeling_convnext.ConvNextLayerNorm with ConvNext->ConvNextV2 class ConvNextV2LayerNorm(nn.Module): r"""LayerNorm that supports two data formats: channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width). """ def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): super().__init__() self.weight = nn.Parameter(torch.ones(normalized_shape)) self.bias = nn.Parameter(torch.zeros(normalized_shape)) self.eps = eps self.data_format = data_format if self.data_format not in ["channels_last", "channels_first"]: raise NotImplementedError(f"Unsupported data format: {self.data_format}") self.normalized_shape = (normalized_shape,) def forward(self, x: torch.Tensor) -> torch.Tensor: if self.data_format == "channels_last": x = torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) elif self.data_format == "channels_first": input_dtype = x.dtype x = x.float() u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) x = x.to(dtype=input_dtype) x = self.weight[:, None, None] * x + self.bias[:, None, None] return x # Copied from transformers.models.convnext.modeling_convnext.ConvNextEmbeddings with ConvNext->ConvNextV2 class ConvNextV2Embeddings(nn.Module): """This class is comparable to (and inspired by) the SwinEmbeddings class found in src/transformers/models/swin/modeling_swin.py. """ def __init__(self, config): super().__init__() self.patch_embeddings = nn.Conv2d( config.num_channels, config.hidden_sizes[0], kernel_size=config.patch_size, stride=config.patch_size ) self.layernorm = ConvNextV2LayerNorm(config.hidden_sizes[0], eps=1e-6, data_format="channels_first") self.num_channels = config.num_channels def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: num_channels = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) embeddings = self.patch_embeddings(pixel_values) embeddings = self.layernorm(embeddings) return embeddings class ConvNextV2Layer(nn.Module): """This corresponds to the `Block` class in the original implementation. There are two equivalent implementations: [DwConv, LayerNorm (channels_first), Conv, GELU,1x1 Conv]; all in (N, C, H, W) (2) [DwConv, Permute to (N, H, W, C), LayerNorm (channels_last), Linear, GELU, Linear]; Permute back The authors used (2) as they find it slightly faster in PyTorch. Args: config ([`ConvNextV2Config`]): Model configuration class. dim (`int`): Number of input channels. drop_path (`float`): Stochastic depth rate. Default: 0.0. """ def __init__(self, config, dim, drop_path=0): super().__init__() # depthwise conv self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) self.layernorm = ConvNextV2LayerNorm(dim, eps=1e-6) # pointwise/1x1 convs, implemented with linear layers self.pwconv1 = nn.Linear(dim, 4 * dim) self.act = ACT2FN[config.hidden_act] self.grn = ConvNextV2GRN(4 * dim) self.pwconv2 = nn.Linear(4 * dim, dim) self.drop_path = ConvNextV2DropPath(drop_path) if drop_path > 0.0 else nn.Identity() def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor: input = hidden_states x = self.dwconv(hidden_states) # (batch_size, num_channels, height, width) -> (batch_size, height, width, num_channels) x = x.permute(0, 2, 3, 1) x = self.layernorm(x) x = self.pwconv1(x) x = self.act(x) x = self.grn(x) x = self.pwconv2(x) # (batch_size, height, width, num_channels) -> (batch_size, num_channels, height, width) x = x.permute(0, 3, 1, 2) x = input + self.drop_path(x) return x # Copied from transformers.models.convnext.modeling_convnext.ConvNextStage with ConvNeXT->ConvNeXTV2, ConvNext->ConvNextV2 class ConvNextV2Stage(nn.Module): """ConvNeXTV2 stage, consisting of an optional downsampling layer + multiple residual blocks. Args: config ([`ConvNextV2Config`]): Model configuration class. in_channels (`int`): Number of input channels. out_channels (`int`): Number of output channels. depth (`int`): Number of residual blocks. drop_path_rates(`List[float]`): Stochastic depth rates for each layer. """ def __init__(self, config, in_channels, out_channels, kernel_size=2, stride=2, depth=2, drop_path_rates=None): super().__init__() if in_channels != out_channels or stride > 1: self.downsampling_layer = nn.Sequential( ConvNextV2LayerNorm(in_channels, eps=1e-6, data_format="channels_first"), nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride), ) else: self.downsampling_layer = nn.Identity() drop_path_rates = drop_path_rates or [0.0] * depth self.layers = nn.Sequential( *[ConvNextV2Layer(config, dim=out_channels, drop_path=drop_path_rates[j]) for j in range(depth)] ) def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor: hidden_states = self.downsampling_layer(hidden_states) hidden_states = self.layers(hidden_states) return hidden_states # Copied from transformers.models.convnext.modeling_convnext.ConvNextEncoder with ConvNext->ConvNextV2 class ConvNextV2Encoder(nn.Module): def __init__(self, config): super().__init__() self.stages = nn.ModuleList() drop_path_rates = [ x.tolist() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths)).split(config.depths) ] prev_chs = config.hidden_sizes[0] for i in range(config.num_stages): out_chs = config.hidden_sizes[i] stage = ConvNextV2Stage( config, in_channels=prev_chs, out_channels=out_chs, stride=2 if i > 0 else 1, depth=config.depths[i], drop_path_rates=drop_path_rates[i], ) self.stages.append(stage) prev_chs = out_chs def forward( self, hidden_states: torch.FloatTensor, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple, BaseModelOutputWithNoAttention]: all_hidden_states = () if output_hidden_states else None for i, layer_module in enumerate(self.stages): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) hidden_states = layer_module(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return BaseModelOutputWithNoAttention( last_hidden_state=hidden_states, hidden_states=all_hidden_states, ) # Copied from transformers.models.convnext.modeling_convnext.ConvNextPreTrainedModel with ConvNext->ConvNextV2, convnext->convnextv2 class ConvNextV2PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ConvNextV2Config base_model_prefix = "convnextv2" main_input_name = "pixel_values" _no_split_modules = ["ConvNextV2Layer"] def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) CONVNEXTV2_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ConvNextV2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ CONVNEXTV2_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`ConvNextImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare ConvNextV2 model outputting raw features without any specific head on top.", CONVNEXTV2_START_DOCSTRING, ) # Copied from transformers.models.convnext.modeling_convnext.ConvNextModel with CONVNEXT->CONVNEXTV2, ConvNext->ConvNextV2 class ConvNextV2Model(ConvNextV2PreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.embeddings = ConvNextV2Embeddings(config) self.encoder = ConvNextV2Encoder(config) # final layernorm layer self.layernorm = nn.LayerNorm(config.hidden_sizes[-1], eps=config.layer_norm_eps) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndNoAttention, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: torch.FloatTensor = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") embedding_output = self.embeddings(pixel_values) encoder_outputs = self.encoder( embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] # global average pooling, (N, C, H, W) -> (N, C) pooled_output = self.layernorm(last_hidden_state.mean([-2, -1])) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, ) @add_start_docstrings( """ ConvNextV2 Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """, CONVNEXTV2_START_DOCSTRING, ) # Copied from transformers.models.convnext.modeling_convnext.ConvNextForImageClassification with CONVNEXT->CONVNEXTV2,ConvNext->ConvNextV2,convnext->convnextv2 class ConvNextV2ForImageClassification(ConvNextV2PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.convnextv2 = ConvNextV2Model(config) # Classifier head self.classifier = ( nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: torch.FloatTensor = None, labels: Optional[torch.LongTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.convnextv2(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=loss, logits=logits, hidden_states=outputs.hidden_states, ) @add_start_docstrings( """ ConvNeXT V2 backbone, to be used with frameworks like DETR and MaskFormer. """, CONVNEXTV2_START_DOCSTRING, ) # Copied from transformers.models.convnext.modeling_convnext.ConvNextBackbone with CONVNEXT->CONVNEXTV2,ConvNext->ConvNextV2,facebook/convnext-tiny-224->facebook/convnextv2-tiny-1k-224 class ConvNextV2Backbone(ConvNextV2PreTrainedModel, BackboneMixin): def __init__(self, config): super().__init__(config) super()._init_backbone(config) self.embeddings = ConvNextV2Embeddings(config) self.encoder = ConvNextV2Encoder(config) self.num_features = [config.hidden_sizes[0]] + config.hidden_sizes # Add layer norms to hidden states of out_features hidden_states_norms = {} for stage, num_channels in zip(self._out_features, self.channels): hidden_states_norms[stage] = ConvNextV2LayerNorm(num_channels, data_format="channels_first") self.hidden_states_norms = nn.ModuleDict(hidden_states_norms) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> BackboneOutput: """ Returns: Examples: ```python >>> from transformers import AutoImageProcessor, AutoBackbone >>> import torch >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> processor = AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224") >>> model = AutoBackbone.from_pretrained("facebook/convnextv2-tiny-1k-224") >>> inputs = processor(image, return_tensors="pt") >>> outputs = model(**inputs) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) embedding_output = self.embeddings(pixel_values) outputs = self.encoder( embedding_output, output_hidden_states=True, return_dict=return_dict, ) hidden_states = outputs.hidden_states if return_dict else outputs[1] feature_maps = () for stage, hidden_state in zip(self.stage_names, hidden_states): if stage in self.out_features: hidden_state = self.hidden_states_norms[stage](hidden_state) feature_maps += (hidden_state,) if not return_dict: output = (feature_maps,) if output_hidden_states: output += (hidden_states,) return output return BackboneOutput( feature_maps=feature_maps, hidden_states=hidden_states if output_hidden_states else None, attentions=None, ) __all__ = ["ConvNextV2ForImageClassification", "ConvNextV2Model", "ConvNextV2PreTrainedModel", "ConvNextV2Backbone"]
transformers/src/transformers/models/convnextv2/modeling_convnextv2.py/0
{ "file_path": "transformers/src/transformers/models/convnextv2/modeling_convnextv2.py", "repo_id": "transformers", "token_count": 9828 }
112
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert CvT checkpoints from the original repository. URL: https://github.com/microsoft/CvT""" import argparse import json from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def embeddings(idx): """ The function helps in renaming embedding layer weights. Args: idx: stage number in original model """ embed = [] embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", f"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", f"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", f"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", f"stage{idx}.patch_embed.norm.bias", ) ) return embed def attention(idx, cnt): """ The function helps in renaming attention block layers weights. Args: idx: stage number in original model cnt: count of blocks in each stage """ attention_weights = [] attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", f"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", f"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", f"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", f"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", f"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", f"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", f"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", f"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", f"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", f"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", f"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", f"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", f"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", f"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", f"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", f"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def cls_token(idx): """ Function helps in renaming cls_token weights """ token = [] token.append((f"cvt.encoder.stages.{idx}.cls_token", "stage2.cls_token")) return token def final(): """ Function helps in renaming final classification layer """ head = [] head.append(("layernorm.weight", "norm.weight")) head.append(("layernorm.bias", "norm.bias")) head.append(("classifier.weight", "head.weight")) head.append(("classifier.bias", "head.bias")) return head def convert_cvt_checkpoint(cvt_model, image_size, cvt_file_name, pytorch_dump_folder): """ Fucntion to convert the microsoft cvt checkpoint to huggingface checkpoint """ img_labels_file = "imagenet-1k-id2label.json" num_labels = 1000 repo_id = "huggingface/label-files" num_labels = num_labels id2label = json.loads(Path(hf_hub_download(repo_id, img_labels_file, repo_type="dataset")).read_text()) id2label = {int(k): v for k, v in id2label.items()} id2label = id2label label2id = {v: k for k, v in id2label.items()} config = config = CvtConfig(num_labels=num_labels, id2label=id2label, label2id=label2id) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("/", 1)[-1][4:6] == "13": config.depth = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("/", 1)[-1][4:6] == "21": config.depth = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: config.depth = [2, 2, 20] config.num_heads = [3, 12, 16] config.embed_dim = [192, 768, 1024] model = CvtForImageClassification(config) image_processor = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k") image_processor.size["shortest_edge"] = image_size original_weights = torch.load(cvt_file_name, map_location=torch.device("cpu")) huggingface_weights = OrderedDict() list_of_state_dict = [] for idx in range(len(config.depth)): if config.cls_token[idx]: list_of_state_dict = list_of_state_dict + cls_token(idx) list_of_state_dict = list_of_state_dict + embeddings(idx) for cnt in range(config.depth[idx]): list_of_state_dict = list_of_state_dict + attention(idx, cnt) list_of_state_dict = list_of_state_dict + final() for gg in list_of_state_dict: print(gg) for i in range(len(list_of_state_dict)): huggingface_weights[list_of_state_dict[i][0]] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(huggingface_weights) model.save_pretrained(pytorch_dump_folder) image_processor.save_pretrained(pytorch_dump_folder) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=384, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) args = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
transformers/src/transformers/models/cvt/convert_cvt_original_pytorch_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/cvt/convert_cvt_original_pytorch_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 6353 }
113
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch Data2VecText model.""" import math from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN, gelu from ...generation import GenerationMixin from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, CausalLMOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_data2vec_text import Data2VecTextConfig logger = logging.get_logger(__name__) _HIDDEN_STATES_START_POSITION = 2 # General docstring _CHECKPOINT_FOR_DOC = "facebook/data2vec-text-base" _CONFIG_FOR_DOC = "Data2VecTextConfig" # Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->Data2VecText class Data2VecTextForTextEmbeddings(nn.Module): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False ) # End copy self.padding_idx = config.pad_token_id self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx ) def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 ): if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) else: position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape) # Copied from transformers.models.roberta.modeling_roberta.RobertaSelfAttention with Roberta->Data2VecText class Data2VecTextSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) use_cache = past_key_value is not None if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": query_length, key_length = query_layer.shape[2], key_layer.shape[2] if use_cache: position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( -1, 1 ) else: position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in Data2VecTextModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs # Copied from transformers.models.bert.modeling_bert.BertSelfOutput class Data2VecTextSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states DATA2VEC_TEXT_SELF_ATTENTION_CLASSES = { "eager": Data2VecTextSelfAttention, } # Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Data2VecText,BERT->DATA2VEC_TEXT class Data2VecTextAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = DATA2VEC_TEXT_SELF_ATTENTION_CLASSES[config._attn_implementation]( config, position_embedding_type=position_embedding_type ) self.output = Data2VecTextSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate class Data2VecTextIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput class Data2VecTextOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Data2VecText class Data2VecTextLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = Data2VecTextAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = Data2VecTextAttention(config, position_embedding_type="absolute") self.intermediate = Data2VecTextIntermediate(config) self.output = Data2VecTextOutput(config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output # Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Data2VecText class Data2VecTextEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([Data2VecTextLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertPooler class Data2VecTextPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class Data2VecTextPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = Data2VecTextConfig base_model_prefix = "data2vec_text" supports_gradient_checkpointing = True _no_split_modules = ["Data2VecTextForTextEmbeddings", "Data2VecTextLayer"] def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): if hasattr(module, "bias") and module.bias is not None: module.bias.data.zero_() if hasattr(module, "weight") and module.weight is not None: module.weight.data.fill_(1.0) DATA2VECTEXT_START_DOCSTRING = r""" Data2VecText was proposed in [data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/pdf/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu and Michael Auli. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Data2VecTextConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ DATA2VECTEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Data2VecText Model for text transformer outputting raw hidden-states without any specific head on top.", DATA2VECTEXT_START_DOCSTRING, ) class Data2VecTextModel(Data2VecTextPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in *Attention is all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. .. _*Attention is all you need*: https://arxiv.org/abs/1706.03762 """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = Data2VecTextForTextEmbeddings(config) self.encoder = Data2VecTextEncoder(config) self.pooler = Data2VecTextPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) # Copied from transformers.models.clap.modeling_clap.ClapTextModel.forward def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings( """Data2VecText Model with a `language modeling` head on top for CLM fine-tuning.""", DATA2VECTEXT_START_DOCSTRING ) class Data2VecTextForCausalLM(Data2VecTextPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] def __init__(self, config): super().__init__(config) if not config.is_decoder: logger.warning("If you want to use `Data2VecTextLMHeadModel` as a standalone, add `is_decoder=True.`") self.data2vec_text = Data2VecTextModel(config, add_pooling_layer=False) self.lm_head = Data2VecTextLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings @add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Returns: Example: ```python >>> from transformers import AutoTokenizer, Data2VecTextForCausalLM, Data2VecTextConfig >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("facebook/data2vec-text-base") >>> config = Data2VecTextConfig.from_pretrained("facebook/data2vec-text-base") >>> config.is_decoder = True >>> model = Data2VecTextForCausalLM.from_pretrained("facebook/data2vec-text-base", config=config) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False outputs = self.data2vec_text( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) lm_loss = None if labels is not None: # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() labels = labels.to(shifted_prediction_scores.device) lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past @add_start_docstrings("""data2vec Model with a `language modeling` head on top.""", DATA2VECTEXT_START_DOCSTRING) class Data2VecTextForMaskedLM(Data2VecTextPreTrainedModel): _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `Data2VecTextForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.data2vec_text = Data2VecTextModel(config, add_pooling_layer=False) self.lm_head = Data2VecTextLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings @add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, mask="<mask>", ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` kwargs (`Dict[str, any]`, *optional*, defaults to *{}*): Used to hide legacy arguments that have been deprecated. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.data2vec_text( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() labels = labels.to(prediction_scores.device) masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaLMHead with Roberta->Data2VecText class Data2VecTextLMHead(nn.Module): """Data2VecText Head for masked language modeling.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.decoder = nn.Linear(config.hidden_size, config.vocab_size) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) self.decoder.bias = self.bias def forward(self, features, **kwargs): x = self.dense(features) x = gelu(x) x = self.layer_norm(x) # project back to size of vocabulary with bias x = self.decoder(x) return x def _tie_weights(self): # To tie those two weights if they get disconnected (on TPU or when the bias is resized) # For accelerate compatibility and to not break backward compatibility if self.decoder.bias.device.type == "meta": self.decoder.bias = self.bias else: self.bias = self.decoder.bias @add_start_docstrings( """ Data2VecText Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, DATA2VECTEXT_START_DOCSTRING, ) class Data2VecTextForSequenceClassification(Data2VecTextPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.data2vec_text = Data2VecTextModel(config, add_pooling_layer=False) self.classifier = Data2VecTextClassificationHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.data2vec_text( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Data2VecText Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, DATA2VECTEXT_START_DOCSTRING, ) class Data2VecTextForMultipleChoice(Data2VecTextPreTrainedModel): def __init__(self, config): super().__init__(config) self.data2vec_text = Data2VecTextModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward( DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None flat_inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.data2vec_text( flat_input_ids, position_ids=flat_position_ids, token_type_ids=flat_token_type_ids, attention_mask=flat_attention_mask, head_mask=head_mask, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() labels = labels.to(reshaped_logits.device) loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Data2VecText Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, DATA2VECTEXT_START_DOCSTRING, ) class Data2VecTextForTokenClassification(Data2VecTextPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.data2vec_text = Data2VecTextModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.data2vec_text( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() labels = labels.to(logits.device) loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead with Roberta->Data2VecText class Data2VecTextClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x @add_start_docstrings( """ Data2VecText Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, DATA2VECTEXT_START_DOCSTRING, ) class Data2VecTextForQuestionAnswering(Data2VecTextPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.data2vec_text = Data2VecTextModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.data2vec_text( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: torch.Tensor x: Returns: torch.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask return incremental_indices.long() + padding_idx __all__ = [ "Data2VecTextForCausalLM", "Data2VecTextForMaskedLM", "Data2VecTextForMultipleChoice", "Data2VecTextForQuestionAnswering", "Data2VecTextForSequenceClassification", "Data2VecTextForTokenClassification", "Data2VecTextModel", "Data2VecTextPreTrainedModel", ]
transformers/src/transformers/models/data2vec/modeling_data2vec_text.py/0
{ "file_path": "transformers/src/transformers/models/data2vec/modeling_data2vec_text.py", "repo_id": "transformers", "token_count": 29973 }
114
# coding=utf-8 # Copyright 2020 Microsoft and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization class for model DeBERTa.""" import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as sp from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "spm.model"} class DebertaV2Tokenizer(PreTrainedTokenizer): r""" Constructs a DeBERTa-v2 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. do_lower_case (`bool`, *optional*, defaults to `False`): Whether or not to lowercase the input when tokenizing. bos_token (`string`, *optional*, defaults to `"[CLS]"`): The beginning of sequence token that was used during pre-training. Can be used a sequence classifier token. When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. eos_token (`string`, *optional*, defaults to `"[SEP]"`): The end of sequence token. When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. """ vocab_files_names = VOCAB_FILES_NAMES def __init__( self, vocab_file, do_lower_case=False, split_by_punct=False, bos_token="[CLS]", eos_token="[SEP]", unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs if not os.path.isfile(vocab_file): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) self.do_lower_case = do_lower_case self.split_by_punct = split_by_punct self.vocab_file = vocab_file self._tokenizer = SPMTokenizer( vocab_file, None, split_by_punct=split_by_punct, sp_model_kwargs=self.sp_model_kwargs ) unk_token = AddedToken(unk_token, normalized=True, special=True) if isinstance(unk_token, str) else unk_token super().__init__( do_lower_case=do_lower_case, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, split_by_punct=split_by_punct, sp_model_kwargs=self.sp_model_kwargs, **kwargs, ) self._tokenizer.special_tokens = self.all_special_tokens @property def vocab_size(self): return len(self.vocab) @property def vocab(self): return self._tokenizer.vocab def get_vocab(self): vocab = self.vocab.copy() vocab.update(self.get_added_vocab()) return vocab def _tokenize(self, text: str) -> List[str]: """Take as input a string and return a list of strings (tokens) for words/sub-words""" if self.do_lower_case: text = text.lower() return self._tokenizer.tokenize(text) def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self._tokenizer.spm.PieceToId(token) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self._tokenizer.spm.IdToPiece(index) if index < self.vocab_size else self.unk_token def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" return self._tokenizer.decode(tokens) def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A DeBERTa sequence has the following format: - single sequence: [CLS] X [SEP] - pair of sequences: [CLS] A [SEP] B [SEP] Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + token_ids_1 + sep def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False): """ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None): """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A DeBERTa sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): add_prefix_space = kwargs.pop("add_prefix_space", False) if is_split_into_words or add_prefix_space: text = " " + text return (text, kwargs) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: return self._tokenizer.save_pretrained(save_directory, filename_prefix=filename_prefix) class SPMTokenizer: r""" Constructs a tokenizer based on [SentencePiece](https://github.com/google/sentencepiece). Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. """ def __init__( self, vocab_file, special_tokens, split_by_punct=False, sp_model_kwargs: Optional[Dict[str, Any]] = None ): self.split_by_punct = split_by_punct self.vocab_file = vocab_file self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs spm = sp.SentencePieceProcessor(**self.sp_model_kwargs) if not os.path.exists(vocab_file): raise FileNotFoundError(f"{vocab_file} does not exist!") spm.load(vocab_file) bpe_vocab_size = spm.GetPieceSize() # Token map # <unk> 0+1 # <s> 1+1 # </s> 2+1 self.vocab = {spm.IdToPiece(i): i for i in range(bpe_vocab_size)} self.ids_to_tokens = [spm.IdToPiece(i) for i in range(bpe_vocab_size)] # self.vocab['[PAD]'] = 0 # self.vocab['[CLS]'] = 1 # self.vocab['[SEP]'] = 2 # self.vocab['[UNK]'] = 3 self.spm = spm self.special_tokens = special_tokens def __getstate__(self): state = self.__dict__.copy() state["spm"] = None return state def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.spm = sp.SentencePieceProcessor(**self.sp_model_kwargs) self.spm.Load(self.vocab_file) def tokenize(self, text): return self._encode_as_pieces(text) def convert_ids_to_tokens(self, ids): tokens = [] for i in ids: tokens.append(self.ids_to_tokens[i]) return tokens def decode(self, tokens, start=-1, end=-1, raw_text=None): if raw_text is None: current_sub_tokens = [] out_string = "" prev_is_special = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.special_tokens: if not prev_is_special: out_string += " " out_string += self.spm.decode_pieces(current_sub_tokens) + token prev_is_special = True current_sub_tokens = [] else: current_sub_tokens.append(token) prev_is_special = False out_string += self.spm.decode_pieces(current_sub_tokens) return out_string.strip() else: words = self.split_to_words(raw_text) word_tokens = [self.tokenize(w) for w in words] token2words = [0] * len(tokens) tid = 0 for i, w in enumerate(word_tokens): for k, t in enumerate(w): token2words[tid] = i tid += 1 word_start = token2words[start] word_end = token2words[end] if end < len(tokens) else len(words) text = "".join(words[word_start:word_end]) return text # TODO add a deprecation cycle as this can have different behaviour from our API def add_special_token(self, token): if token not in self.special_tokens: self.special_tokens.append(token) if token not in self.vocab: self.vocab[token] = len(self.vocab) - 1 self.ids_to_tokens.append(token) return self.id(token) def part_of_whole_word(self, token, is_bos=False): logger.warning_once( "The `DebertaTokenizer.part_of_whole_word` method is deprecated and will be removed in `transformers==4.35`" ) if is_bos: return True if ( len(token) == 1 and (_is_whitespace(list(token)[0]) or _is_control(list(token)[0]) or _is_punctuation(list(token)[0])) ) or token in self.special_tokens: return False word_start = b"\xe2\x96\x81".decode("utf-8") return not token.startswith(word_start) def pad(self): return "[PAD]" def bos(self): return "[CLS]" def eos(self): return "[SEP]" def unk(self): return "[UNK]" def mask(self): return "[MASK]" def sym(self, id): return self.ids_to_tokens[id] def id(self, sym): logger.warning_once( "The `DebertaTokenizer.id` method is deprecated and will be removed in `transformers==4.35`" ) return self.vocab[sym] if sym in self.vocab else 1 def _encode_as_pieces(self, text): text = convert_to_unicode(text) if self.split_by_punct: words = self._run_split_on_punc(text) pieces = [self.spm.encode(w, out_type=str) for w in words] return [p for w in pieces for p in w] else: return self.spm.encode(text, out_type=str) def split_to_words(self, text): pieces = self._encode_as_pieces(text) word_start = b"\xe2\x96\x81".decode("utf-8") words = [] offset = 0 prev_end = 0 for i, p in enumerate(pieces): if p.startswith(word_start): if offset > prev_end: words.append(text[prev_end:offset]) prev_end = offset w = p.replace(word_start, "") else: w = p try: s = text.index(w, offset) pn = "" k = i + 1 while k < len(pieces): pn = pieces[k].replace(word_start, "") if len(pn) > 0: break k += 1 if len(pn) > 0 and pn in text[offset:s]: offset = offset + 1 else: offset = s + len(w) except Exception: offset = offset + 1 if prev_end < offset: words.append(text[prev_end:offset]) return words def _run_split_on_punc(self, text): """Splits punctuation on a piece of text.""" chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def save_pretrained(self, path: str, filename_prefix: str = None): filename = VOCAB_FILES_NAMES[list(VOCAB_FILES_NAMES.keys())[0]] if filename_prefix is not None: filename = filename_prefix + "-" + filename full_path = os.path.join(path, filename) with open(full_path, "wb") as fs: fs.write(self.spm.serialized_model_proto()) return (full_path,) def _is_whitespace(char): """Checks whether `chars` is a whitespace character.""" # \t, \n, and \r are technically control characters but we treat them # as whitespace since they are generally considered as such. if char == " " or char == "\t" or char == "\n" or char == "\r": return True cat = unicodedata.category(char) if cat == "Zs": return True return False def _is_control(char): """Checks whether `chars` is a control character.""" # These are technically control characters but we count them as whitespace # characters. if char == "\t" or char == "\n" or char == "\r": return False cat = unicodedata.category(char) if cat.startswith("C"): return True return False def _is_punctuation(char): """Checks whether `chars` is a punctuation character.""" cp = ord(char) # We treat all non-letter/number ASCII as punctuation. # Characters such as "^", "$", and "`" are not in the Unicode # Punctuation class but we treat them as punctuation anyways, for # consistency. if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True cat = unicodedata.category(char) if cat.startswith("P"): return True return False def convert_to_unicode(text): """Converts `text` to Unicode (if it's not already), assuming utf-8 input.""" if isinstance(text, str): return text elif isinstance(text, bytes): return text.decode("utf-8", "ignore") else: raise TypeError(f"Unsupported string type: {type(text)}") __all__ = ["DebertaV2Tokenizer"]
transformers/src/transformers/models/deberta_v2/tokenization_deberta_v2.py/0
{ "file_path": "transformers/src/transformers/models/deberta_v2/tokenization_deberta_v2.py", "repo_id": "transformers", "token_count": 9334 }
115
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert DeiT distilled checkpoints from the timm library.""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) def create_rename_keys(config, base_model=False): rename_keys = [] for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"deit.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((f"blocks.{i}.norm1.bias", f"deit.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"deit.encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"deit.encoder.layer.{i}.attention.output.dense.bias")) rename_keys.append((f"blocks.{i}.norm2.weight", f"deit.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((f"blocks.{i}.norm2.bias", f"deit.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"deit.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"deit.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"deit.encoder.layer.{i}.output.dense.weight")) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"deit.encoder.layer.{i}.output.dense.bias")) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" rename_keys = [(pair[0], pair[1][4:]) if pair[1].startswith("deit") else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys # we split up the matrix of each encoder layer into queries, keys and values def read_in_q_k_v(state_dict, config, base_model=False): for i in range(config.num_hidden_layers): if base_model: prefix = "" else: prefix = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight") in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[ : config.hidden_size, : ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[ -config.hidden_size :, : ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :] def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_deit_checkpoint(deit_name, pytorch_dump_folder_path): """ Copy/paste/tweak model's weights to our DeiT structure. """ # define default DeiT configuration config = DeiTConfig() # all deit models have fine-tuned heads base_model = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size config.num_labels = 1000 repo_id = "huggingface/label-files" filename = "imagenet-1k-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} config.patch_size = int(deit_name[-6:-4]) config.image_size = int(deit_name[-3:]) # size of the architecture if deit_name[9:].startswith("tiny"): config.hidden_size = 192 config.intermediate_size = 768 config.num_hidden_layers = 12 config.num_attention_heads = 3 elif deit_name[9:].startswith("small"): config.hidden_size = 384 config.intermediate_size = 1536 config.num_hidden_layers = 12 config.num_attention_heads = 6 if deit_name[9:].startswith("base"): pass elif deit_name[4:].startswith("large"): config.hidden_size = 1024 config.intermediate_size = 4096 config.num_hidden_layers = 24 config.num_attention_heads = 16 # load original model from timm timm_model = timm.create_model(deit_name, pretrained=True) timm_model.eval() # load state_dict of original model, remove and rename some keys state_dict = timm_model.state_dict() rename_keys = create_rename_keys(config, base_model) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_q_k_v(state_dict, config, base_model) # load HuggingFace model model = DeiTForImageClassificationWithTeacher(config).eval() model.load_state_dict(state_dict) # Check outputs on an image, prepared by DeiTImageProcessor size = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 image_processor = DeiTImageProcessor(size=size, crop_size=config.image_size) encoding = image_processor(images=prepare_img(), return_tensors="pt") pixel_values = encoding["pixel_values"] outputs = model(pixel_values) timm_logits = timm_model(pixel_values) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(timm_logits, outputs.logits, atol=1e-3) Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model {deit_name} to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) args = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
transformers/src/transformers/models/deit/convert_deit_timm_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/deit/convert_deit_timm_to_pytorch.py", "repo_id": "transformers", "token_count": 3875 }
116
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert EfficientFormer checkpoints from the original repository. URL: https://github.com/snap-research/EfficientFormer """ import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def rename_key(old_name, num_meta4D_last_stage): new_name = old_name if "patch_embed" in old_name: _, layer, param = old_name.split(".") if layer == "0": new_name = old_name.replace("0", "convolution1") elif layer == "1": new_name = old_name.replace("1", "batchnorm_before") elif layer == "3": new_name = old_name.replace("3", "convolution2") else: new_name = old_name.replace("4", "batchnorm_after") if "network" in old_name and re.search(r"\d\.\d", old_name): two_digit_num = r"\b\d{2}\b" if bool(re.search(two_digit_num, old_name)): match = re.search(r"\d\.\d\d.", old_name).group() else: match = re.search(r"\d\.\d.", old_name).group() if int(match[0]) < 6: trimmed_name = old_name.replace(match, "") trimmed_name = trimmed_name.replace("network", match[0] + ".meta4D_layers.blocks." + match[2:-1]) new_name = "intermediate_stages." + trimmed_name else: trimmed_name = old_name.replace(match, "") if int(match[2]) < num_meta4D_last_stage: trimmed_name = trimmed_name.replace("network", "meta4D_layers.blocks." + match[2]) else: layer_index = str(int(match[2]) - num_meta4D_last_stage) trimmed_name = trimmed_name.replace("network", "meta3D_layers.blocks." + layer_index) if "norm1" in old_name: trimmed_name = trimmed_name.replace("norm1", "layernorm1") elif "norm2" in old_name: trimmed_name = trimmed_name.replace("norm2", "layernorm2") elif "fc1" in old_name: trimmed_name = trimmed_name.replace("fc1", "linear_in") elif "fc2" in old_name: trimmed_name = trimmed_name.replace("fc2", "linear_out") new_name = "last_stage." + trimmed_name elif "network" in old_name and re.search(r".\d.", old_name): new_name = old_name.replace("network", "intermediate_stages") if "fc" in new_name: new_name = new_name.replace("fc", "convolution") elif ("norm1" in new_name) and ("layernorm1" not in new_name): new_name = new_name.replace("norm1", "batchnorm_before") elif ("norm2" in new_name) and ("layernorm2" not in new_name): new_name = new_name.replace("norm2", "batchnorm_after") if "proj" in new_name: new_name = new_name.replace("proj", "projection") if "dist_head" in new_name: new_name = new_name.replace("dist_head", "distillation_classifier") elif "head" in new_name: new_name = new_name.replace("head", "classifier") elif "patch_embed" in new_name: new_name = "efficientformer." + new_name elif new_name == "norm.weight" or new_name == "norm.bias": new_name = new_name.replace("norm", "layernorm") new_name = "efficientformer." + new_name else: new_name = "efficientformer.encoder." + new_name return new_name def convert_torch_checkpoint(checkpoint, num_meta4D_last_stage): for key in checkpoint.copy().keys(): val = checkpoint.pop(key) checkpoint[rename_key(key, num_meta4D_last_stage)] = val return checkpoint # We will verify our results on a COCO image def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) return image def convert_efficientformer_checkpoint( checkpoint_path: Path, efficientformer_config_file: Path, pytorch_dump_path: Path, push_to_hub: bool ): orig_state_dict = torch.load(checkpoint_path, map_location="cpu")["model"] config = EfficientFormerConfig.from_json_file(efficientformer_config_file) model = EfficientFormerForImageClassificationWithTeacher(config) model_name = "_".join(checkpoint_path.split("/")[-1].split(".")[0].split("_")[:-1]) num_meta4D_last_stage = config.depths[-1] - config.num_meta3d_blocks + 1 new_state_dict = convert_torch_checkpoint(orig_state_dict, num_meta4D_last_stage) model.load_state_dict(new_state_dict) model.eval() pillow_resamplings = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } # prepare image image = prepare_img() image_size = 256 crop_size = 224 processor = EfficientFormerImageProcessor( size={"shortest_edge": image_size}, crop_size={"height": crop_size, "width": crop_size}, resample=pillow_resamplings["bicubic"], ) pixel_values = processor(images=image, return_tensors="pt").pixel_values # original processing pipeline image_transforms = Compose( [ Resize(image_size, interpolation=pillow_resamplings["bicubic"]), CenterCrop(crop_size), ToTensor(), Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD), ] ) original_pixel_values = image_transforms(image).unsqueeze(0) assert torch.allclose(original_pixel_values, pixel_values) outputs = model(pixel_values) logits = outputs.logits expected_shape = (1, 1000) if "l1" in model_name: expected_logits = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10], expected_logits, atol=1e-3) assert logits.shape == expected_shape elif "l3" in model_name: expected_logits = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10], expected_logits, atol=1e-3) assert logits.shape == expected_shape elif "l7" in model_name: expected_logits = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( f"Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7" ) # Save Checkpoints Path(pytorch_dump_path).mkdir(exist_ok=True) model.save_pretrained(pytorch_dump_path) print(f"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}") processor.save_pretrained(pytorch_dump_path) print(f"Processor successfuly saved at {pytorch_dump_path}") if push_to_hub: print("Pushing model to the hub...") model.push_to_hub( repo_id=f"Bearnardd/{pytorch_dump_path}", commit_message="Add model", use_temp_dir=True, ) processor.push_to_hub( repo_id=f"Bearnardd/{pytorch_dump_path}", commit_message="Add image processor", use_temp_dir=True, ) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to EfficientFormer pytorch checkpoint.", ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for EfficientFormer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) parser.set_defaults(push_to_hub=True) args = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
transformers/src/transformers/models/deprecated/efficientformer/convert_efficientformer_original_pytorch_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/deprecated/efficientformer/convert_efficientformer_original_pytorch_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 4066 }
117
# coding=utf-8 # Copyright 2022 Microsoft, clefourrier and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Graphormer model configuration""" from ....configuration_utils import PretrainedConfig from ....utils import logging logger = logging.get_logger(__name__) class GraphormerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`~GraphormerModel`]. It is used to instantiate an Graphormer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Graphormer [graphormer-base-pcqm4mv1](https://huggingface.co/graphormer-base-pcqm4mv1) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_classes (`int`, *optional*, defaults to 1): Number of target classes or labels, set to n for binary classification of n tasks. num_atoms (`int`, *optional*, defaults to 512*9): Number of node types in the graphs. num_edges (`int`, *optional*, defaults to 512*3): Number of edges types in the graph. num_in_degree (`int`, *optional*, defaults to 512): Number of in degrees types in the input graphs. num_out_degree (`int`, *optional*, defaults to 512): Number of out degrees types in the input graphs. num_edge_dis (`int`, *optional*, defaults to 128): Number of edge dis in the input graphs. multi_hop_max_dist (`int`, *optional*, defaults to 20): Maximum distance of multi hop edges between two nodes. spatial_pos_max (`int`, *optional*, defaults to 1024): Maximum distance between nodes in the graph attention bias matrices, used during preprocessing and collation. edge_type (`str`, *optional*, defaults to multihop): Type of edge relation chosen. max_nodes (`int`, *optional*, defaults to 512): Maximum number of nodes which can be parsed for the input graphs. share_input_output_embed (`bool`, *optional*, defaults to `False`): Shares the embedding layer between encoder and decoder - careful, True is not implemented. num_layers (`int`, *optional*, defaults to 12): Number of layers. embedding_dim (`int`, *optional*, defaults to 768): Dimension of the embedding layer in encoder. ffn_embedding_dim (`int`, *optional*, defaults to 768): Dimension of the "intermediate" (often named feed-forward) layer in encoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads in the encoder. self_attention (`bool`, *optional*, defaults to `True`): Model is self attentive (False not implemented). activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for the attention weights. activation_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for the activation of the linear transformer layer. layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. bias (`bool`, *optional*, defaults to `True`): Uses bias in the attention module - unsupported at the moment. embed_scale(`float`, *optional*, defaults to None): Scaling factor for the node embeddings. num_trans_layers_to_freeze (`int`, *optional*, defaults to 0): Number of transformer layers to freeze. encoder_normalize_before (`bool`, *optional*, defaults to `False`): Normalize features before encoding the graph. pre_layernorm (`bool`, *optional*, defaults to `False`): Apply layernorm before self attention and the feed forward network. Without this, post layernorm will be used. apply_graphormer_init (`bool`, *optional*, defaults to `False`): Apply a custom graphormer initialisation to the model before training. freeze_embeddings (`bool`, *optional*, defaults to `False`): Freeze the embedding layer, or train it along the model. encoder_normalize_before (`bool`, *optional*, defaults to `False`): Apply the layer norm before each encoder block. q_noise (`float`, *optional*, defaults to 0.0): Amount of quantization noise (see "Training with Quantization Noise for Extreme Model Compression"). (For more detail, see fairseq's documentation on quant_noise). qn_block_size (`int`, *optional*, defaults to 8): Size of the blocks for subsequent quantization with iPQ (see q_noise). kdim (`int`, *optional*, defaults to None): Dimension of the key in the attention, if different from the other values. vdim (`int`, *optional*, defaults to None): Dimension of the value in the attention, if different from the other values. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). traceable (`bool`, *optional*, defaults to `False`): Changes return value of the encoder's inner_state to stacked tensors. Example: ```python >>> from transformers import GraphormerForGraphClassification, GraphormerConfig >>> # Initializing a Graphormer graphormer-base-pcqm4mv2 style configuration >>> configuration = GraphormerConfig() >>> # Initializing a model from the graphormer-base-pcqm4mv1 style configuration >>> model = GraphormerForGraphClassification(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "graphormer" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, num_classes: int = 1, num_atoms: int = 512 * 9, num_edges: int = 512 * 3, num_in_degree: int = 512, num_out_degree: int = 512, num_spatial: int = 512, num_edge_dis: int = 128, multi_hop_max_dist: int = 5, # sometimes is 20 spatial_pos_max: int = 1024, edge_type: str = "multi_hop", max_nodes: int = 512, share_input_output_embed: bool = False, num_hidden_layers: int = 12, embedding_dim: int = 768, ffn_embedding_dim: int = 768, num_attention_heads: int = 32, dropout: float = 0.1, attention_dropout: float = 0.1, activation_dropout: float = 0.1, layerdrop: float = 0.0, encoder_normalize_before: bool = False, pre_layernorm: bool = False, apply_graphormer_init: bool = False, activation_fn: str = "gelu", embed_scale: float = None, freeze_embeddings: bool = False, num_trans_layers_to_freeze: int = 0, traceable: bool = False, q_noise: float = 0.0, qn_block_size: int = 8, kdim: int = None, vdim: int = None, bias: bool = True, self_attention: bool = True, pad_token_id=0, bos_token_id=1, eos_token_id=2, **kwargs, ): self.num_classes = num_classes self.num_atoms = num_atoms self.num_in_degree = num_in_degree self.num_out_degree = num_out_degree self.num_edges = num_edges self.num_spatial = num_spatial self.num_edge_dis = num_edge_dis self.edge_type = edge_type self.multi_hop_max_dist = multi_hop_max_dist self.spatial_pos_max = spatial_pos_max self.max_nodes = max_nodes self.num_hidden_layers = num_hidden_layers self.embedding_dim = embedding_dim self.hidden_size = embedding_dim self.ffn_embedding_dim = ffn_embedding_dim self.num_attention_heads = num_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.layerdrop = layerdrop self.encoder_normalize_before = encoder_normalize_before self.pre_layernorm = pre_layernorm self.apply_graphormer_init = apply_graphormer_init self.activation_fn = activation_fn self.embed_scale = embed_scale self.freeze_embeddings = freeze_embeddings self.num_trans_layers_to_freeze = num_trans_layers_to_freeze self.share_input_output_embed = share_input_output_embed self.traceable = traceable self.q_noise = q_noise self.qn_block_size = qn_block_size # These parameters are here for future extensions # atm, the model only supports self attention self.kdim = kdim self.vdim = vdim self.self_attention = self_attention self.bias = bias super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs, )
transformers/src/transformers/models/deprecated/graphormer/configuration_graphormer.py/0
{ "file_path": "transformers/src/transformers/models/deprecated/graphormer/configuration_graphormer.py", "repo_id": "transformers", "token_count": 4097 }
118
# coding=utf-8 # Copyright 2022 The REALM authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """REALM model configuration.""" from ....configuration_utils import PretrainedConfig from ....utils import logging logger = logging.get_logger(__name__) class RealmConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of 1. [`RealmEmbedder`] 2. [`RealmScorer`] 3. [`RealmKnowledgeAugEncoder`] 4. [`RealmRetriever`] 5. [`RealmReader`] 6. [`RealmForOpenQA`] It is used to instantiate an REALM model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the REALM [google/realm-cc-news-pretrained-embedder](https://huggingface.co/google/realm-cc-news-pretrained-embedder) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the REALM model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`RealmEmbedder`], [`RealmScorer`], [`RealmKnowledgeAugEncoder`], or [`RealmReader`]. hidden_size (`int`, *optional*, defaults to 768): Dimension of the encoder layers and the pooler layer. retriever_proj_size (`int`, *optional*, defaults to 128): Dimension of the retriever(embedder) projection. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. num_candidates (`int`, *optional*, defaults to 8): Number of candidates inputted to the RealmScorer or RealmKnowledgeAugEncoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`RealmEmbedder`], [`RealmScorer`], [`RealmKnowledgeAugEncoder`], or [`RealmReader`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. span_hidden_size (`int`, *optional*, defaults to 256): Dimension of the reader's spans. max_span_width (`int`, *optional*, defaults to 10): Max span width of the reader. reader_layer_norm_eps (`float`, *optional*, defaults to 1e-3): The epsilon used by the reader's layer normalization layers. reader_beam_size (`int`, *optional*, defaults to 5): Beam size of the reader. reader_seq_len (`int`, *optional*, defaults to 288+32): Maximum sequence length of the reader. num_block_records (`int`, *optional*, defaults to 13353718): Number of block records. searcher_beam_size (`int`, *optional*, defaults to 5000): Beam size of the searcher. Note that when eval mode is enabled, *searcher_beam_size* will be the same as *reader_beam_size*. Example: ```python >>> from transformers import RealmConfig, RealmEmbedder >>> # Initializing a REALM realm-cc-news-pretrained-* style configuration >>> configuration = RealmConfig() >>> # Initializing a model (with random weights) from the google/realm-cc-news-pretrained-embedder style configuration >>> model = RealmEmbedder(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "realm" def __init__( self, vocab_size=30522, hidden_size=768, retriever_proj_size=128, num_hidden_layers=12, num_attention_heads=12, num_candidates=8, intermediate_size=3072, hidden_act="gelu_new", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, span_hidden_size=256, max_span_width=10, reader_layer_norm_eps=1e-3, reader_beam_size=5, reader_seq_len=320, # 288 + 32 num_block_records=13353718, searcher_beam_size=5000, pad_token_id=1, bos_token_id=0, eos_token_id=2, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) # Common config self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.retriever_proj_size = retriever_proj_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_candidates = num_candidates self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.type_vocab_size = type_vocab_size self.layer_norm_eps = layer_norm_eps # Reader config self.span_hidden_size = span_hidden_size self.max_span_width = max_span_width self.reader_layer_norm_eps = reader_layer_norm_eps self.reader_beam_size = reader_beam_size self.reader_seq_len = reader_seq_len # Retrieval config self.num_block_records = num_block_records self.searcher_beam_size = searcher_beam_size
transformers/src/transformers/models/deprecated/realm/configuration_realm.py/0
{ "file_path": "transformers/src/transformers/models/deprecated/realm/configuration_realm.py", "repo_id": "transformers", "token_count": 2947 }
119
# coding=utf-8 # Copyright 2022 Microsoft Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for TAPEX.""" import json import os import random from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ....file_utils import ExplicitEnum, PaddingStrategy, TensorType, add_end_docstrings, is_pandas_available from ....tokenization_utils import AddedToken, PreTrainedTokenizer from ....tokenization_utils_base import ENCODE_KWARGS_DOCSTRING, BatchEncoding, TextInput, TruncationStrategy from ....utils import logging if is_pandas_available(): import pandas as pd logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} class TapexTruncationStrategy(ExplicitEnum): """ Possible values for the `truncation` argument in [`~TapasTokenizer.__call__`]. Useful for tab-completion in an IDE. """ DROP_ROWS_TO_FIT = "drop_rows_to_fit" TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r""" add_special_tokens (`bool`, *optional*, defaults to `True`): Whether or not to encode the sequences with the special tokens relative to their model. padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str`, [`TapexTruncationStrategy`] or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `'drop_rows_to_fit'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate row by row, removing rows from the table. - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. stride (`int`, *optional*, defaults to 0): If set to a number along with `max_length`, the overflowing tokens returned when `return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence returned to provide some overlap between truncated and overflowing sequences. The value of this argument defines the number of overlapping tokens. pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_tensors (`str` or [`~file_utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. """ @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. """ bs = ( list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) ) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs class IndexedRowTableLinearize: """ FORMAT: col: col1 | col2 | col 3 row 1 : val1 | val2 | val3 row 2 : ... """ def process_table(self, table_content: Dict): """ Given a table, TableLinearize aims at converting it into a flatten sequence with special symbols. """ assert "header" in table_content and "rows" in table_content, self.PROMPT_MESSAGE # process header table_str = self.process_header(table_content["header"]) + " " # process rows for i, row_example in enumerate(table_content["rows"]): # NOTE: the row should start from row 1 instead of 0 table_str += self.process_row(row_example, row_index=i + 1) + " " return table_str.strip() def process_header(self, headers: List): """ Given a list of headers, TableLinearize aims at converting it into a flatten sequence with special symbols. """ return "col : " + " | ".join(headers) def process_row(self, row: List, row_index: int): """ Given a row, TableLinearize aims at converting it into a flatten sequence with special symbols. """ row_str = "" row_cell_values = [] for cell_value in row: if isinstance(cell_value, int): row_cell_values.append(str(cell_value)) else: row_cell_values.append(cell_value) row_str += " | ".join(row_cell_values) return "row " + str(row_index) + " : " + row_str class TapexTokenizer(PreTrainedTokenizer): r""" Construct a TAPEX tokenizer. Based on byte-level Byte-Pair-Encoding (BPE). This tokenizer can be used to flatten one or more table(s) and concatenate them with one or more related sentences to be used by TAPEX models. The format that the TAPEX tokenizer creates is the following: sentence col: col1 | col2 | col 3 row 1 : val1 | val2 | val3 row 2 : ... The tokenizer supports a single table + single query, a single table and multiple queries (in which case the table will be duplicated for every query), a single query and multiple tables (in which case the query will be duplicated for every table), and multiple tables and queries. In other words, you can provide a batch of tables + questions to the tokenizer for instance to prepare them for the model. Tokenization itself is based on the BPE algorithm. It is identical to the one used by BART, RoBERTa and GPT-2. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (BART tokenizer detect beginning of words by the preceding space). max_cell_length (`int`, *optional*, defaults to 15): Maximum number of characters per cell when linearizing a table. If this number is exceeded, truncation takes place. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, merges_file, do_lower_case=True, errors="replace", bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", add_prefix_space=False, max_cell_length=15, **kwargs, ): bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: bpe_merges = merges_handle.read().split("\n")[1:-1] bpe_merges = [tuple(merge.split()) for merge in bpe_merges] self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) self.cache = {} self.add_prefix_space = add_prefix_space self.do_lower_case = do_lower_case # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") # additional properties super().__init__( vocab_file=vocab_file, merges_file=merges_file, do_lower_case=do_lower_case, errors=errors, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, add_prefix_space=add_prefix_space, max_cell_length=max_cell_length, **kwargs, ) self.max_cell_length = max_cell_length self.table_linearize = IndexedRowTableLinearize() def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A TAPEX sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Args: Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Args: Create a mask from the two sequences passed to be used in a sequence-pair classification task. TAPEX does not: make use of token type ids, therefore a list of zeros is returned. token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()): text = " " + text return (text, kwargs) @property def vocab_size(self): return len(self.encoder) def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word def _tokenize(self, text): """Tokenize a string.""" bpe_tokens = [] for token in re.findall(self.pat, text): token = "".join( self.byte_encoder[b] for b in token.encode("utf-8") ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) return bpe_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" text = "".join(tokens) text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) return text def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def __call__( self, table: Union["pd.DataFrame", List["pd.DataFrame"]] = None, query: Optional[Union[TextInput, List[TextInput]]] = None, answer: Union[str, List[str]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Main method to tokenize and prepare for the model one or several table-sequence pair(s). Args: table (`pd.DataFrame`, `List[pd.DataFrame]`): Table(s) containing tabular data. query (`str` or `List[str]`, *optional*): Sentence or batch of sentences related to one or more table(s) to be encoded. Note that the number of sentences must match the number of tables. answer (`str` or `List[str]`, *optional*): Optionally, the corresponding answer to the questions as supervision. """ if table is not None: return self.source_call_func( table=table, query=query, answer=answer, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) elif answer is not None: return self.target_call_func( answer=answer, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) else: raise ValueError("You need to provide either a `table` or an `answer`.") def source_call_func( self, table: Union["pd.DataFrame", List["pd.DataFrame"]], query: Optional[Union[TextInput, List[TextInput]]] = None, answer: Union[str, List[str]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: # Input type checking for clearer error valid_table = False valid_query = False # Check that table have a valid type if isinstance(table, pd.DataFrame): valid_table = True elif isinstance(table, (list, tuple)) and isinstance(table[0], pd.DataFrame): valid_table = True # Check that query have a valid type if query is None or isinstance(query, str): valid_query = True elif isinstance(query, (list, tuple)): if len(query) == 0 or isinstance(query[0], str): valid_query = True if not valid_table: raise ValueError( "table input must of type `pd.DataFrame` (single example), `List[pd.DataFrame]` (batch of examples). " ) if not valid_query: raise ValueError("query input must of type `str` (single example), `List[str]` (batch of examples). ") is_batched = isinstance(table, (list, tuple)) or isinstance(query, (list, tuple)) if is_batched: return self.batch_encode_plus( table=table, query=query, answer=answer, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) else: return self.encode_plus( table=table, query=query, answer=answer, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def batch_encode_plus( self, table: Union["pd.DataFrame", List["pd.DataFrame"]], query: Optional[List[TextInput]] = None, answer: List[str] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str] = None, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ <Tip warning={true}> This method is deprecated, `__call__` should be used instead. </Tip> """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._batch_encode_plus( table=table, query=query, answer=answer, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _batch_encode_plus( self, table: Union["pd.DataFrame", List["pd.DataFrame"]], query: Optional[List[TextInput]] = None, answer: Optional[List[str]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast." ) if isinstance(table, pd.DataFrame) and isinstance(query, (list, tuple)): # single table, many queries case # duplicate table for every query table = [table] * len(query) if isinstance(table, (list, tuple)) and isinstance(query, str): # many tables, single query case # duplicate query for every table query = [query] * len(table) batch_outputs = self._batch_prepare_for_model( table=table, query=query, answer=answer, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=return_tensors, verbose=verbose, ) return BatchEncoding(batch_outputs) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def _batch_prepare_for_model( self, table: Union["pd.DataFrame", List["pd.DataFrame"]], query: Optional[Union[TextInput, List[TextInput]]] = None, answer: Optional[Union[str, List[str]]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[str] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_length: bool = False, verbose: bool = True, ) -> BatchEncoding: """ This method adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a moving window (with user defined stride) for overflowing tokens. """ batch_outputs = {} if answer is None: answer = [None] * len(table) for _table, _query, _answer in zip(table, query, answer): text = self.prepare_table_query( _table, _query, _answer, truncation_strategy=truncation_strategy, max_length=max_length ) if self.do_lower_case: text = text.lower() tokens = self.tokenize(text) outputs = self.prepare_for_model( ids=self.convert_tokens_to_ids(tokens), add_special_tokens=add_special_tokens, padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterwards truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=None, # we pad in batch afterwards return_attention_mask=False, # we pad in batch afterwards return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=None, # We convert the whole batch to tensors at the end prepend_batch_axis=False, verbose=verbose, ) for key, value in outputs.items(): if key not in batch_outputs: batch_outputs[key] = [] batch_outputs[key].append(value) batch_outputs = self.pad( batch_outputs, padding=padding_strategy.value, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) return batch_outputs @add_end_docstrings(ENCODE_KWARGS_DOCSTRING) def encode( self, table: "pd.DataFrame", query: Optional[TextInput] = None, answer: Optional[str] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy, TapexTruncationStrategy] = None, max_length: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs, ) -> List[int]: """ Prepare a table, a string and possible answer for the model. This method does not return token type IDs, attention masks, etc. which are necessary for the model to work correctly. Use this method if you want to build your processing on your own, otherwise refer to `__call__`. """ encoded_inputs = self.encode_plus( table, query=query, answer=answer, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors, **kwargs, ) return encoded_inputs["input_ids"] @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def encode_plus( self, table: "pd.DataFrame", query: Optional[TextInput] = None, answer: Optional[str] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str] = None, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._encode_plus( table=table, query=query, answer=answer, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _encode_plus( self, table: "pd.DataFrame", query: Optional[TextInput] = None, answer: Optional[str] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast. " "More information on available tokenizers at " "https://github.com/huggingface/transformers/pull/2674" ) text = self.prepare_table_query( table, query, answer, truncation_strategy=truncation_strategy, max_length=max_length ) # if necessary, perform lower case if self.do_lower_case: text = text.lower() tokens = self.tokenize(text) return self.prepare_for_model( ids=self.convert_tokens_to_ids(tokens), add_special_tokens=add_special_tokens, padding=padding_strategy.value, truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, prepend_batch_axis=True, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, verbose=verbose, ) def target_call_func( self, answer: Union[str, List[str]], add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ The method tokenizes and prepares the answer label for the model. Args: answer (`str` or `List[str]`): Corresponding answer supervision to the queries for training the model. """ is_batched = isinstance(answer, (list, tuple)) if is_batched: return self.target_batch_encode_plus( answer=answer, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) else: return self.target_encode_plus( answer=answer, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def target_batch_encode_plus( self, answer: List[str], add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str] = None, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Prepare answer strings for the model. Args: answer `List[str]`: Corresponding answer supervision to the queries for training the model. """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._target_batch_encode_plus( answer=answer, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _target_batch_encode_plus( self, answer: List[str], add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: batch_outputs = {} for text in answer: if self.do_lower_case: text = text.lower() tokens = self.tokenize(text) outputs = self.prepare_for_model( ids=self.convert_tokens_to_ids(tokens), add_special_tokens=add_special_tokens, padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterwards truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=None, # we pad in batch afterwards return_attention_mask=False, # we pad in batch afterwards return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=None, # We convert the whole batch to tensors at the end prepend_batch_axis=False, verbose=verbose, ) for key, value in outputs.items(): if key not in batch_outputs: batch_outputs[key] = [] batch_outputs[key].append(value) batch_outputs = self.pad( batch_outputs, padding=padding_strategy.value, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) return BatchEncoding(batch_outputs) def target_encode( self, answer: str, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy, TapexTruncationStrategy] = None, max_length: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs, ) -> List[int]: """ Prepare the answer string for the model. This method does not return token type IDs, attention masks, etc. which are necessary for the model to work correctly. Use this method if you want to build your processing on your own, otherwise refer to `__call__`. Args: answer `str`: Corresponding answer supervision to the queries for training the model """ encoded_outputs = self.target_encode_plus( answer=answer, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors, **kwargs, ) return encoded_outputs["input_ids"] def target_encode_plus( self, answer: str, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str] = None, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Prepare a answer string for the model. Args: answer `str`: Corresponding answer supervision to the queries for training the model. """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._target_encode_plus( answer=answer, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _target_encode_plus( self, answer: str, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast. " "More information on available tokenizers at " "https://github.com/huggingface/transformers/pull/2674" ) text = answer # if necessary, perform lower case if self.do_lower_case: text = text.lower() tokens = self.tokenize(text) return self.prepare_for_model( ids=self.convert_tokens_to_ids(tokens), add_special_tokens=add_special_tokens, padding=padding_strategy.value, truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, prepend_batch_axis=True, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, verbose=verbose, ) def prepare_table_query( self, table, query, answer=None, truncation_strategy=Union[str, TruncationStrategy, TapexTruncationStrategy], max_length=None, ): """ This method can be used to linearize a table and add a corresponding query. Optionally, it also handles truncation of the table (cells). An answer can be provided for more precise truncation. """ if not table.empty: # step 1: create table dictionary table_content = {"header": list(table.columns), "rows": [list(row.values) for i, row in table.iterrows()]} # step 2: modify table internally # always truncate table cells based on self.max_cell_length # optionally truncate rows if truncation_strategy is set to it self.truncate_table_cells(table_content, query, answer) if truncation_strategy == TapexTruncationStrategy.DROP_ROWS_TO_FIT: self.truncate_table_rows(table_content, query, answer, max_length=max_length) # step 3: linearize table linear_table = self.table_linearize.process_table(table_content) else: linear_table = "" if linear_table == "": logger.warning( "You provide an empty table, or all cells contain much tokens (e.g., >= 1024 tokens). " + f"Please carefully check the corresponding table with the query : {query}." ) if query == "": logger.warning("You provide nothing to query with respect to the table.") # step 4: concatenate query with linear_table separator = " " if query and linear_table else "" joint_input = (query + separator + linear_table) if query else linear_table return joint_input def truncate_table_cells(self, table_content: Dict, question: str, answer: List): # TODO (Qian): is it possible to revert the original cell if it is in the final answer? cell_mapping = {} for row in table_content["rows"]: for i, cell in enumerate(row): truncate_cell = self.truncate_cell(cell) if truncate_cell is not None: cell_mapping[cell] = truncate_cell row[i] = truncate_cell # modify the answer list if answer is not None: for i, case in enumerate(answer): if case in cell_mapping.keys(): answer[i] = cell_mapping[case] def truncate_cell(self, cell_value): # do not process on these cases if isinstance(cell_value, int) or isinstance(cell_value, float): return cell_value if cell_value.strip() != "": try_tokens = self.tokenize(cell_value) if len(try_tokens) >= self.max_cell_length: retain_tokens = try_tokens[: self.max_cell_length] retain_cell_value = self.convert_tokens_to_string(retain_tokens) return retain_cell_value else: return None else: return cell_value def truncate_table_rows( self, table_content: Dict, question: str, answer: Optional[Union[str, List[str]]] = None, max_length=None ): """ Args: table_content: {"header": xxx, "rows": xxx, "id" (Optionally): xxx} question: natural language sentence answer: if for training, is the supervision; otherwise will be empty """ delete_ratio, remain_token_len = self.estimate_delete_ratio(table_content, question, max_length) # randomly delete unrelated rows self.delete_unrelated_rows(table_content, question, answer, delete_ratio) # guarantee the result < max_length maximum_keep_rows = 0 for ind, row_example in enumerate(table_content["rows"]): value_string = self.table_linearize.process_row(row_example, ind + 1) value_token_len = len(self.tokenize(value_string)) # over the size limit, and take action if value_token_len > remain_token_len: break remain_token_len -= value_token_len maximum_keep_rows += 1 del table_content["rows"][maximum_keep_rows:] def estimate_delete_ratio(self, table_content: Dict, question: str, max_length=None): if "header" not in table_content or "rows" not in table_content: raise ValueError("The table content should contain both 'header' and 'rows' keys.") # calculate the tokens of header, special tokens will only be pre-prepended into question question_tokens = self.tokenize(question, add_special_tokens=True) # calculate the tokens of header header_string = self.table_linearize.process_header(table_content["header"]) header_tokens = self.tokenize(header_string, add_special_tokens=False) # split all cell values into tokens and see how many can be accommodated used_token_len = len(question_tokens) + len(header_tokens) # remaining token space for rows remain_token_len = max_length - used_token_len value_string = "" for _, row_example in enumerate(table_content["rows"]): # use a general index to roughly estimate the overall token len value_string += self.table_linearize.process_row(row_example, 100) + " " value_token_len = len(self.tokenize(value_string)) if value_token_len < remain_token_len: # no row will be deleted return 0.0, remain_token_len else: # calc a roughly delete rate return 1.0 - remain_token_len / value_token_len, remain_token_len def delete_unrelated_rows(self, table_content: Dict, question: str, answer: List, delete_ratio: float): """ The argument answer is used only during training. """ truncated_unrelated_indices = [] related_indices = [] if answer is None or len(answer) == 0: answer_set = set() else: answer_set = {ans_ex.lower() for ans_ex in answer} # add question key words into answer set if question is not None: answer_set.update(question.split()) question_set = set(question.strip("?!.,").split(" ")) row_max_len = len(table_content["rows"]) for _row_idx, row in enumerate(table_content["rows"]): lower_row = {str(cell).lower() for cell in row} if len(lower_row & answer_set) == 0 and len(lower_row & question_set) == 0: truncated_unrelated_indices.append(_row_idx) else: # add neighbours to preserve information aggressively related_indices.extend([_row_idx - 2, _row_idx - 1, _row_idx, _row_idx + 1, _row_idx + 2]) # remove the neighbours truncated_unrelated_indices = [ _row_idx for _row_idx in truncated_unrelated_indices if _row_idx not in related_indices ] # select some cases to drop drop_items = min(len(truncated_unrelated_indices), int(len(table_content["rows"]) * delete_ratio)) drop_row_indices = random.choices(truncated_unrelated_indices, k=drop_items) for _row_idx in reversed(range(row_max_len)): if _row_idx in drop_row_indices: del table_content["rows"][_row_idx] # only when the drop ratio is too large, logging for warning. if "id" in table_content and len(drop_row_indices) > 0: logger.warning("Delete {:.2f} rows in table {}".format(len(drop_row_indices), table_content["id"]))
transformers/src/transformers/models/deprecated/tapex/tokenization_tapex.py/0
{ "file_path": "transformers/src/transformers/models/deprecated/tapex/tokenization_tapex.py", "repo_id": "transformers", "token_count": 29313 }
120
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for TVLT.""" from typing import Dict, List, Optional, Union import numpy as np from ....image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ....image_transforms import ( get_resize_output_image_size, resize, to_channel_dimension_format, ) from ....image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, infer_channel_dimension_format, is_scaled_image, is_valid_image, to_numpy_array, valid_images, validate_kwargs, validate_preprocess_arguments, ) from ....utils import TensorType, logging logger = logging.get_logger(__name__) def make_batched(videos) -> List[List[ImageInput]]: if isinstance(videos, (list, tuple)) and isinstance(videos[0], (list, tuple)): return videos elif isinstance(videos, (list, tuple)) and is_valid_image(videos[0]): videos_dim = np.array(videos[0]).ndim if videos_dim == 3: return [videos] elif videos_dim == 4: return videos elif is_valid_image(videos): videos_dim = np.array(videos).ndim if videos_dim == 3: return [[videos]] elif videos_dim == 4: return [videos] elif videos_dim == 5: return videos raise ValueError(f"Could not make batched video from {videos}") class TvltImageProcessor(BaseImageProcessor): r""" Constructs a TVLT image processor. This processor can be used to prepare either videos or images for the model by converting images to 1-frame videos. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the `do_resize` parameter in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`): Size of the output image after resizing. The shortest edge of the image will be resized to `size["shortest_edge"]` while maintaining the aspect ratio of the original image. Can be overriden by `size` in the `preprocess` method. patch_size (`List[int]` *optional*, defaults to [16,16]): The patch size of image patch embedding. num_frames (`int` *optional*, defaults to 8): The maximum number of video frames. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the `preprocess` method. do_center_crop (`bool`, *optional*, defaults to `True`): Whether to center crop the image to the specified `crop_size`. Can be overridden by the `do_center_crop` parameter in the `preprocess` method. crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`): Size of the image after applying the center crop. Can be overridden by the `crop_size` parameter in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to 1/255): Defines the scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. """ model_input_names = [ "pixel_values", "pixel_mask", "pixel_values_mixed", "pixel_mask_mixed", ] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, patch_size: List[int] = [16, 16], num_frames: int = 8, resample: PILImageResampling = PILImageResampling.BILINEAR, do_center_crop: bool = True, crop_size: Dict[str, int] = None, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = IMAGENET_STANDARD_MEAN, image_std: Optional[Union[float, List[float]]] = IMAGENET_STANDARD_STD, init_mask_generator=False, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"shortest_edge": 224} size = get_size_dict(size, default_to_square=False) crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} crop_size = get_size_dict(crop_size, param_name="crop_size") self.do_resize = do_resize self.size = size self.patch_size = patch_size self.num_frames = num_frames self.do_center_crop = do_center_crop self.crop_size = crop_size self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std self._valid_processor_keys = [ "videos", "do_resize", "size", "patch_size", "num_frames", "resample", "do_center_crop", "crop_size", "do_rescale", "rescale_factor", "do_normalize", "image_mean", "image_std", "is_mixed", "return_tensors", "data_format", "input_data_format", ] def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BILINEAR, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the output image. If `size` is of the form `{"height": h, "width": w}`, the output image will have the size `(h, w)`. If `size` is of the form `{"shortest_edge": s}`, the output image will have its shortest edge of length `s` while keeping the aspect ratio of the original image. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): Resampling filter to use when resiizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ size = get_size_dict(size, default_to_square=False) if "shortest_edge" in size: output_size = get_resize_output_image_size( image, size["shortest_edge"], default_to_square=False, input_data_format=input_data_format ) elif "height" in size and "width" in size: output_size = (size["height"], size["width"]) else: raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}") return resize( image, size=output_size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) def _preprocess_image( self, image: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_center_crop: bool = None, crop_size: Dict[str, int] = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """Preprocesses a single image.""" validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_center_crop=do_center_crop, crop_size=crop_size, do_resize=do_resize, size=size, resample=resample, ) # All transformations expect numpy arrays. image = to_numpy_array(image) if do_rescale and is_scaled_image(image): logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: input_data_format = infer_channel_dimension_format(image) if do_resize: image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) if do_center_crop: image = self.center_crop(image, size=crop_size, input_data_format=input_data_format) if do_rescale: image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) if do_normalize: image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) return image def preprocess( self, videos: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, patch_size: List[int] = None, num_frames: int = None, resample: PILImageResampling = None, do_center_crop: bool = None, crop_size: Dict[str, int] = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, is_mixed: bool = False, return_tensors: Optional[Union[str, TensorType]] = None, data_format: ChannelDimension = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> BatchFeature: """ Preprocess an videos or image or batch of videos or images. Args: videos (`ImageInput`): Images or videos to preprocess. Expects a single or batch of frames with pixel values ranging from 0 to 255. If passing in frames with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after applying resize. patch_size (`List[int]` *optional*, defaults to self.patch_size): The patch size of image patch embedding. num_frames (`int` *optional*, defaults to self.num_frames): The maximum number of video frames. resample (`PILImageResampling`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only has an effect if `do_resize` is set to `True`. do_center_crop (`bool`, *optional*, defaults to `self.do_centre_crop`): Whether to centre crop the image. crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): Size of the image after applying the centre crop. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation. is_mixed (`bool`, *optional*): If the input video has negative samples. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the inferred channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **pixel_values** -- Pixel values to be fed to a model, of shape (batch_size, num_channels, height, width). - **pixel_mask** -- Pixel masks to be fed to a model, of shape (batch_size, num_pixel_patches). - **pixel_values_mixed** -- Pixel values with both postive or negative to be fed to a model, of shape (batch_size, num_channels, height, width). - **pixel_mask_mixed** -- Pixel masks with both postive or negative to be fed to a model, of shape (batch_size, num_pixel_patches). """ do_resize = do_resize if do_resize is not None else self.do_resize resample = resample if resample is not None else self.resample do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std size = size if size is not None else self.size size = get_size_dict(size, default_to_square=False) crop_size = crop_size if crop_size is not None else self.crop_size crop_size = get_size_dict(crop_size, param_name="crop_size") patch_size = patch_size if patch_size is not None else self.patch_size num_frames = num_frames if patch_size is not None else self.num_frames validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys) if not valid_images(videos): raise ValueError( "Invalid image or video type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) videos = make_batched(videos) # Check number of frames is fewer than maximum frames for video in videos: if len(video) > self.num_frames: raise ValueError( f"number of frames must not be greater than the maximum frames of the model {self.num_frames}." ) max_num_frames = max([len(video) for video in videos]) num_patches_per_image = (size["shortest_edge"] // patch_size[0]) ** 2 video_masks = np.array( [ len(video) * num_patches_per_image * [1] + (max_num_frames - len(video)) * num_patches_per_image * [0] for video in videos ] ) videos = [ [ self._preprocess_image( image=img, do_resize=do_resize, size=size, resample=resample, do_center_crop=do_center_crop, crop_size=crop_size, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, data_format=data_format, input_data_format=input_data_format, ) for img in video ] for video in videos ] # If videos contain both positive/negative, use mixed key for video-audio matching task if is_mixed: data = {"pixel_values_mixed": videos, "pixel_mask_mixed": video_masks} else: data = {"pixel_values": videos, "pixel_mask": video_masks} return BatchFeature(data=data, tensor_type=return_tensors)
transformers/src/transformers/models/deprecated/tvlt/image_processing_tvlt.py/0
{ "file_path": "transformers/src/transformers/models/deprecated/tvlt/image_processing_tvlt.py", "repo_id": "transformers", "token_count": 8803 }
121
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from src/transformers/models/diffllama/modular_diffllama.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_diffllama.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # coding=utf-8 # Copyright 2024 weak-kajuma and the HuggingFace Inc. team. All rights reserved. # # This code is based on Llama implementations in this library and Microsoft's # Differential Transformer implementations. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import List, Optional, Tuple, Union import torch from torch import nn from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache, StaticCache from ...generation import GenerationMixin from ...modeling_attn_mask_utils import AttentionMaskConverter from ...modeling_flash_attention_utils import FlashAttentionKwargs, _flash_attention_forward from ...modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, QuestionAnsweringModelOutput, SequenceClassifierOutputWithPast, TokenClassifierOutput, ) from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS from ...modeling_utils import PreTrainedModel from ...processing_utils import Unpack from ...utils import ( LossKwargs, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, is_flash_attn_greater_or_equal_2_10, logging, replace_return_docstrings, ) from ...utils.deprecation import deprecate_kwarg from .configuration_diffllama import DiffLlamaConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "kajuma/DiffLlama-0.3B-handcut" _CONFIG_FOR_DOC = "DiffLlamaConfig" class DiffLlamaMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def lambda_init_fn(layer_idx): return 0.8 - 0.6 * math.exp(-0.3 * layer_idx) class DiffLlamaAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: DiffLlamaConfig, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx if layer_idx is None: logger.warning_once( f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) self.attention_dropout = config.attention_dropout self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = getattr(config, "head_dim", self.hidden_size // self.num_heads) self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads # under this are not used self.max_position_embeddings = config.max_position_embeddings self.rope_theta = config.rope_theta self.is_causal = True self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias) self.lambda_init = lambda_init_fn(layer_idx) self.lambda_q1 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,))) self.lambda_k1 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,))) self.lambda_q2 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,))) self.lambda_k2 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,))) self.groupnorm = nn.RMSNorm(2 * self.head_dim, eps=config.rms_norm_eps, elementwise_affine=False) def forward( self, hidden_states: torch.Tensor, position_embeddings: Tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, target_len, _ = hidden_states.size() q_len = target_len query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) value_states = torch.cat(torch.chunk(value_states, 2, dim=1), dim=-1) value_states = value_states.repeat(1, 2, 1, 1) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) lambda_1 = torch.exp(torch.sum(self.lambda_q1 * self.lambda_k1, dim=-1, dtype=torch.float32)).to( query_states.dtype ) lambda_2 = torch.exp(torch.sum(self.lambda_q2 * self.lambda_k2, dim=-1, dtype=torch.float32)).to( query_states.dtype ) lambda_full = lambda_1 - lambda_2 + self.lambda_init attn_output = torch.matmul(attn_weights, value_states) attn_output1, attn_output2 = torch.chunk(attn_output, 2, dim=1) attn_output = attn_output1 - lambda_full * attn_output2 attn_output = (1 - self.lambda_init) * self.groupnorm(attn_output) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, -1) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights class DiffLlamaFlashAttention2(DiffLlamaAttention): """ DiffLlama flash attention module. This module inherits from `DiffLlamaAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def forward( self, hidden_states: torch.Tensor, position_embeddings: Tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if isinstance(past_key_value, StaticCache): raise ValueError( "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` " "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers" ) output_attentions = False bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) # Flash attention requires the input to have the shape # batch_size x seq_length x head_dim x hidden_dim # therefore we just need to keep the original shape query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) if position_embeddings is None: logger.warning_once( "The attention layers in this model are transitioning from computing the RoPE embeddings internally " "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed " "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be " "removed and `position_embeddings` will be mandatory." ) cos, sin = self.rotary_emb(value_states, position_ids) else: cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache # to be able to avoid many of these transpose/reshape/view. query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) dropout_rate = self.attention_dropout if self.training else 0.0 # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in the correct dtype just to be sure everything works as expected. # This might slowdown training & inference so it is recommended to not cast the LayerNorms # in fp32. (DiffLlamaRMSNorm handles it correctly) input_dtype = query_states.dtype if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.q_proj.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) value_states1, value_states2 = torch.chunk(value_states, 2, dim=2) value_states1 = value_states1.repeat(1, 1, 2, 1) value_states2 = value_states2.repeat(1, 1, 2, 1) attn_output1 = _flash_attention_forward( query_states, key_states, value_states1, attention_mask, q_len, position_ids=position_ids, dropout=dropout_rate, sliding_window=getattr(self, "sliding_window", None), use_top_left_mask=self._flash_attn_uses_top_left_mask, is_causal=self.is_causal, ) attn_output2 = _flash_attention_forward( query_states, key_states, value_states2, attention_mask, q_len, position_ids=position_ids, dropout=dropout_rate, sliding_window=getattr(self, "sliding_window", None), use_top_left_mask=self._flash_attn_uses_top_left_mask, is_causal=self.is_causal, ) attn_output = torch.cat([attn_output1, attn_output2], dim=-1) attn_output1, attn_output2 = torch.chunk(attn_output, 2, dim=2) lambda_1 = torch.exp(torch.sum(self.lambda_q1 * self.lambda_k1, dim=-1, dtype=torch.float32)).to( query_states.dtype ) lambda_2 = torch.exp(torch.sum(self.lambda_q2 * self.lambda_k2, dim=-1, dtype=torch.float32)).to( query_states.dtype ) lambda_full = lambda_1 - lambda_2 + self.lambda_init attn_output = attn_output1 - lambda_full * attn_output2 attn_output = (1 - self.lambda_init) * self.groupnorm(attn_output) attn_output = attn_output.reshape(bsz, q_len, -1).contiguous() attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights class DiffLlamaSdpaAttention(DiffLlamaAttention): """ DiffLlama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from `DiffLlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to SDPA API. """ # Adapted from DiffLlamaAttention.forward def forward( self, hidden_states: torch.Tensor, position_embeddings: Tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if output_attentions: # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. logger.warning_once( "DiffLlamaModel is using DiffLlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, ) bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) value_states = torch.cat(torch.chunk(value_states, 2, dim=1), dim=-1) value_states = value_states.repeat(1, 2, 1, 1) causal_mask = attention_mask if attention_mask is not None: causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, # Reference: https://github.com/pytorch/pytorch/issues/112577. if query_states.device.type == "cuda" and causal_mask is not None: query_states = query_states.contiguous() key_states = key_states.contiguous() value_states = value_states.contiguous() # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. is_causal = True if causal_mask is None and q_len > 1 else False attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=causal_mask, dropout_p=self.attention_dropout if self.training else 0.0, is_causal=is_causal, ) attn_output1, attn_output2 = torch.chunk(attn_output, 2, dim=1) lambda_1 = torch.exp(torch.sum(self.lambda_q1 * self.lambda_k1, dim=-1, dtype=torch.float32)).to( query_states.dtype ) lambda_2 = torch.exp(torch.sum(self.lambda_q2 * self.lambda_k2, dim=-1, dtype=torch.float32)).to( query_states.dtype ) lambda_full = lambda_1 - lambda_2 + self.lambda_init attn_output = attn_output1 - lambda_full * attn_output2 attn_output = (1 - self.lambda_init) * self.groupnorm(attn_output) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.view(bsz, q_len, -1) attn_output = self.o_proj(attn_output) return attn_output, None class DiffLlamaRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ DiffLlamaRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" DIFFLLAMA_ATTENTION_CLASSES = { "eager": DiffLlamaAttention, "flash_attention_2": DiffLlamaFlashAttention2, "sdpa": DiffLlamaSdpaAttention, } class DiffLlamaDecoderLayer(nn.Module): def __init__(self, config: DiffLlamaConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = DIFFLLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) self.mlp = DiffLlamaMLP(config) self.input_layernorm = DiffLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = DiffLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs DIFFLLAMA_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`DiffLlamaConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare DiffLlama Model outputting raw hidden-states without any specific head on top.", DIFFLLAMA_START_DOCSTRING, ) class DiffLlamaPreTrainedModel(PreTrainedModel): config_class = DiffLlamaConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["DiffLlamaDecoderLayer"] _skip_keys_device_placement = ["past_key_values"] _supports_flash_attn_2 = True _supports_sdpa = True _supports_flex_attn = False _supports_cache_class = True _supports_quantized_cache = True _supports_static_cache = True _supports_attention_backend = False def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() class DiffLlamaRotaryEmbedding(nn.Module): def __init__(self, config: DiffLlamaConfig, device=None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and config.rope_scaling is not None: self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq def _dynamic_frequency_update(self, position_ids, device): """ dynamic RoPE layers should recompute `inv_freq` in the following situations: 1 - growing beyond the cached sequence length (allow scaling) 2 - the current sequence length is in the original scale (avoid losing precision with small sequences) """ seq_len = torch.max(position_ids) + 1 if seq_len > self.max_seq_len_cached: # growth inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len) self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation self.max_seq_len_cached = seq_len if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset # This .to() is needed if the model has been moved to a device after being initialized (because # the buffer is automatically moved, but not the original copy) self.original_inv_freq = self.original_inv_freq.to(device) self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) self.max_seq_len_cached = self.original_max_seq_len @torch.no_grad() def forward(self, x, position_ids): if "dynamic" in self.rope_type: self._dynamic_frequency_update(position_ids, device=x.device) # Core RoPE block inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) position_ids_expanded = position_ids[:, None, :].float() # Force float32 (see https://github.com/huggingface/transformers/pull/29285) device_type = x.device.type device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() sin = emb.sin() # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention cos = cos * self.attention_scaling sin = sin * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) DIFFLLAMA_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Two formats are allowed: - a [`~cache_utils.Cache`] instance, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache); - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy cache format. The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the legacy cache format will be returned. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. """ @add_start_docstrings( "The bare DiffLlama Model outputting raw hidden-states without any specific head on top.", DIFFLLAMA_START_DOCSTRING, ) class DiffLlamaModel(DiffLlamaPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DiffLlamaDecoderLayer`] Args: config: DiffLlamaConfig """ def __init__(self, config: DiffLlamaConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [DiffLlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = DiffLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.rotary_emb = DiffLlamaRotaryEmbedding(config=config) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(DIFFLLAMA_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **flash_attn_kwargs: Unpack[FlashAttentionKwargs], ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if use_cache and past_key_values is None: past_key_values = DynamicCache() if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for decoder_layer in self.layers[: self.config.num_hidden_layers]: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, causal_mask, position_ids, past_key_values, output_attentions, use_cache, cache_position, position_embeddings, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **flash_attn_kwargs, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) output = BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values if use_cache else None, hidden_states=all_hidden_states, attentions=all_self_attns, ) return output if return_dict else output.to_tuple() def _update_causal_mask( self, attention_mask: torch.Tensor, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool, ): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and (attention_mask == 0.0).any(): return attention_mask return None # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 using_static_cache = isinstance(past_key_values, StaticCache) # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: if AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens, is_training=self.training, ): return None dtype, device = input_tensor.dtype, input_tensor.device sequence_length = input_tensor.shape[1] if using_static_cache: target_length = past_key_values.get_max_cache_shape() else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length + 1 ) # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, device=device, cache_position=cache_position, batch_size=input_tensor.shape[0], ) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type == "cuda" and not output_attentions ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 min_dtype = torch.finfo(dtype).min causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask @staticmethod def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, device: torch.device, cache_position: torch.Tensor, batch_size: int, **kwargs, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. device (`torch.device`): The device to plcae the 4D attention mask on. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: min_dtype = torch.finfo(dtype).min causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device ) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ... class DiffLlamaForCausalLM(DiffLlamaPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] _tp_plan = {"lm_head": "colwise_rep"} def __init__(self, config): super().__init__(config) self.model = DiffLlamaModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep") @add_start_docstrings_to_model_forward(DIFFLLAMA_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **kwargs: Unpack[KwargsForCausalLM], ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. logits_to_keep (`int` or `torch.Tensor`, *optional*): If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. This is useful when using packed tensor format (single dimension for batch and sequence length). Returns: Example: ```python >>> from transformers import AutoTokenizer, DiffLlamaForCausalLM >>> model = DiffLlamaForCausalLM.from_pretrained("google/diffllama-7b") >>> tokenizer = AutoTokenizer.from_pretrained("google/diffllama-7b") >>> prompt = "What is your favorite condiment?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "What is your favorite condiment?" ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, **kwargs, ) hidden_states = outputs[0] # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ The DiffLlama Model transformer with a sequence classification head on top (linear layer). [`DiffLlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, DIFFLLAMA_START_DOCSTRING, ) class DiffLlamaForSequenceClassification(DiffLlamaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = DiffLlamaModel(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(DIFFLLAMA_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(logits.device) else: sequence_lengths = -1 pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ The DiffLlama Model transformer with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). """, DIFFLLAMA_START_DOCSTRING, ) class DiffLlamaForQuestionAnswering(DiffLlamaPreTrainedModel): base_model_prefix = "transformer" def __init__(self, config): super().__init__(config) self.transformer = DiffLlamaModel(config) self.qa_outputs = nn.Linear(config.hidden_size, 2) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.transformer.embed_tokens def set_input_embeddings(self, value): self.transformer.embed_tokens = value @add_start_docstrings_to_model_forward(DIFFLLAMA_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.transformer( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() loss = None if start_positions is not None and end_positions is not None: loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs) if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((loss,) + output) if loss is not None else output return QuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ The DiffLlama Model transformer with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, DIFFLLAMA_START_DOCSTRING, ) class DiffLlamaForTokenClassification(DiffLlamaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = DiffLlamaModel(config) if getattr(config, "classifier_dropout", None) is not None: classifier_dropout = config.classifier_dropout elif getattr(config, "hidden_dropout", None) is not None: classifier_dropout = config.hidden_dropout else: classifier_dropout = 0.1 self.dropout = nn.Dropout(classifier_dropout) self.score = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(DIFFLLAMA_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.score(sequence_output) loss = None if labels is not None: loss = self.loss_function(logits, labels, self.config) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) __all__ = [ "DiffLlamaPreTrainedModel", "DiffLlamaModel", "DiffLlamaForCausalLM", "DiffLlamaForSequenceClassification", "DiffLlamaForQuestionAnswering", "DiffLlamaForTokenClassification", ]
transformers/src/transformers/models/diffllama/modeling_diffllama.py/0
{ "file_path": "transformers/src/transformers/models/diffllama/modeling_diffllama.py", "repo_id": "transformers", "token_count": 28085 }
122
# coding=utf-8 # Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DistilBERT model configuration""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) class DistilBertConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`DistilBertModel`] or a [`TFDistilBertModel`]. It is used to instantiate a DistilBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the DistilBERT [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the DistilBERT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`DistilBertModel`] or [`TFDistilBertModel`]. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). sinusoidal_pos_embds (`boolean`, *optional*, defaults to `False`): Whether to use sinusoidal positional embeddings. n_layers (`int`, *optional*, defaults to 6): Number of hidden layers in the Transformer encoder. n_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. dim (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. hidden_dim (`int`, *optional*, defaults to 3072): The size of the "intermediate" (often named feed-forward) layer in the Transformer encoder. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. activation (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. qa_dropout (`float`, *optional*, defaults to 0.1): The dropout probabilities used in the question answering model [`DistilBertForQuestionAnswering`]. seq_classif_dropout (`float`, *optional*, defaults to 0.2): The dropout probabilities used in the sequence classification and the multiple choice model [`DistilBertForSequenceClassification`]. Examples: ```python >>> from transformers import DistilBertConfig, DistilBertModel >>> # Initializing a DistilBERT configuration >>> configuration = DistilBertConfig() >>> # Initializing a model (with random weights) from the configuration >>> model = DistilBertModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "distilbert" attribute_map = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__( self, vocab_size=30522, max_position_embeddings=512, sinusoidal_pos_embds=False, n_layers=6, n_heads=12, dim=768, hidden_dim=4 * 768, dropout=0.1, attention_dropout=0.1, activation="gelu", initializer_range=0.02, qa_dropout=0.1, seq_classif_dropout=0.2, pad_token_id=0, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.sinusoidal_pos_embds = sinusoidal_pos_embds self.n_layers = n_layers self.n_heads = n_heads self.dim = dim self.hidden_dim = hidden_dim self.dropout = dropout self.attention_dropout = attention_dropout self.activation = activation self.initializer_range = initializer_range self.qa_dropout = qa_dropout self.seq_classif_dropout = seq_classif_dropout super().__init__(**kwargs, pad_token_id=pad_token_id) class DistilBertOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] ) __all__ = ["DistilBertConfig", "DistilBertOnnxConfig"]
transformers/src/transformers/models/distilbert/configuration_distilbert.py/0
{ "file_path": "transformers/src/transformers/models/distilbert/configuration_distilbert.py", "repo_id": "transformers", "token_count": 2284 }
123
# coding=utf-8 # Copyright 2010, DPR authors, The Hugging Face Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DPR model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class DPRConfig(PretrainedConfig): r""" [`DPRConfig`] is the configuration class to store the configuration of a *DPRModel*. This is the configuration class to store the configuration of a [`DPRContextEncoder`], [`DPRQuestionEncoder`], or a [`DPRReader`]. It is used to instantiate the components of the DPR model according to the specified arguments, defining the model component architectures. Instantiating a configuration with the defaults will yield a similar configuration to that of the DPRContextEncoder [facebook/dpr-ctx_encoder-single-nq-base](https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base) architecture. This class is a subclass of [`BertConfig`]. Please check the superclass for the documentation of all kwargs. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the DPR model. Defines the different tokens that can be represented by the *inputs_ids* passed to the forward method of [`BertModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the *token_type_ids* passed into [`BertModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. pad_token_id (`int`, *optional*, defaults to 0): Padding token id. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). projection_dim (`int`, *optional*, defaults to 0): Dimension of the projection for the context and question encoders. If it is set to zero (default), then no projection is done. Example: ```python >>> from transformers import DPRConfig, DPRContextEncoder >>> # Initializing a DPR facebook/dpr-ctx_encoder-single-nq-base style configuration >>> configuration = DPRConfig() >>> # Initializing a model (with random weights) from the facebook/dpr-ctx_encoder-single-nq-base style configuration >>> model = DPRContextEncoder(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "dpr" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, position_embedding_type="absolute", projection_dim: int = 0, **kwargs, ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.projection_dim = projection_dim self.position_embedding_type = position_embedding_type __all__ = ["DPRConfig"]
transformers/src/transformers/models/dpr/configuration_dpr.py/0
{ "file_path": "transformers/src/transformers/models/dpr/configuration_dpr.py", "repo_id": "transformers", "token_count": 2342 }
124
# coding=utf-8 # Copyright 2024 HuggingFace Inc. team. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, pad, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, VideoInput, get_image_size, infer_channel_dimension_format, is_scaled_image, is_valid_image, make_list_of_images, to_numpy_array, valid_images, validate_preprocess_arguments, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): from PIL import Image logger = logging.get_logger(__name__) def make_batched_images(images) -> List[List[ImageInput]]: """ Accepts images in list or nested list format, and makes a list of images for preprocessing. Args: images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`): The input image. Returns: list: A list of images. """ if isinstance(images, (list, tuple)) and isinstance(images[0], (list, tuple)) and is_valid_image(images[0][0]): return [img for img_list in images for img in img_list] elif isinstance(images, (list, tuple)) and is_valid_image(images[0]): return images elif is_valid_image(images): return [images] raise ValueError(f"Could not make batched images from {images}") def smart_resize( height: int, width: int, factor: int = 28, min_pixels: int = 56 * 56, max_pixels: int = 14 * 14 * 4 * 1280 ): """Rescales the image so that the following conditions are met: 1. Both dimensions (height and width) are divisible by 'factor'. 2. The total number of pixels is within the range ['min_pixels', 'max_pixels']. 3. The aspect ratio of the image is maintained as closely as possible. """ if height < factor or width < factor: raise ValueError(f"height:{height} or width:{width} must be larger than factor:{factor}") elif max(height, width) / min(height, width) > 200: raise ValueError( f"absolute aspect ratio must be smaller than 200, got {max(height, width) / min(height, width)}" ) h_bar = round(height / factor) * factor w_bar = round(width / factor) * factor if h_bar * w_bar > max_pixels: beta = math.sqrt((height * width) / max_pixels) h_bar = math.floor(height / beta / factor) * factor w_bar = math.floor(width / beta / factor) * factor elif h_bar * w_bar < min_pixels: beta = math.sqrt(min_pixels / (height * width)) h_bar = math.ceil(height * beta / factor) * factor w_bar = math.ceil(width * beta / factor) * factor return h_bar, w_bar class Emu3ImageProcessor(BaseImageProcessor): r""" Constructs a Emu3 image processor that dynamically resizes images based on the original images. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`): Resampling filter to use when resizing the image. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`): Mean to use if normalizing the image. This is a float or list of floats for each channel in the image. image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`): Standard deviation to use if normalizing the image. This is a float or list of floats for each channel in the image. do_convert_rgb (`bool`, *optional*, defaults to `True`): Whether to convert the image to RGB. do_pad (`bool`, *optional*, defaults to `True`): Whether to pad the image. If `True`, will pad the patch dimension of the images in the batch to the largest number of patches in the batch. Padding will be applied to the bottom and right with zeros. min_pixels (`int`, *optional*, defaults to `512 * 512`): The min pixels of the image to resize the image. max_pixels (`int`, *optional*, defaults to `1024 * 1024`): The max pixels of the image to resize the image. spatial_factor (`int`, *optional*, defaults to 8): The spatial downsample factor the image will be downsampled in feature extracting phase """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, resample: PILImageResampling = PILImageResampling.BICUBIC, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: bool = True, do_pad: bool = True, min_pixels: int = 512 * 512, max_pixels: int = 1024 * 1024, spatial_factor: int = 8, **kwargs, ) -> None: super().__init__(**kwargs) self.do_resize = do_resize self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD self.min_pixels = min_pixels self.max_pixels = max_pixels self.spatial_factor = spatial_factor self.size = {"min_pixels": min_pixels, "max_pixels": max_pixels} self.do_convert_rgb = do_convert_rgb def _preprocess( self, images: Union[ImageInput, VideoInput], do_resize: bool = None, resample: PILImageResampling = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: bool = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`. vision_info (`List[Dict]`, *optional*): Optional list of dictionaries containing additional information about vision inputs. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. resample (`PILImageResampling`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Scale factor to use if rescaling the image. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image. do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): Whether to convert the image to RGB. data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ images = make_list_of_images(images) if do_convert_rgb: images = [convert_to_rgb(image) for image in images] # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if is_scaled_image(images[0]) and do_rescale: logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) height, width = get_image_size(images[0], channel_dim=input_data_format) resized_height, resized_width = height, width processed_images = [] for image in images: if do_resize: resized_height, resized_width = smart_resize( height, width, factor=self.spatial_factor, min_pixels=self.min_pixels, max_pixels=self.max_pixels, ) image = resize( image, size=(resized_height, resized_width), resample=resample, input_data_format=input_data_format ) if do_rescale: image = self.rescale(image, scale=rescale_factor, input_data_format=input_data_format) if do_normalize: image = self.normalize( image=image, mean=image_mean, std=image_std, input_data_format=input_data_format ) image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) processed_images.append(image) images = np.array(processed_images) return images def _pad_for_batching( self, pixel_values: List[np.ndarray], image_sizes: List[List[int]], data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): """ Pads images on the `num_of_patches` dimension with zeros to form a batch of same number of patches. Args: pixel_values (`List[np.ndarray]`): An array of pixel values of each images of shape (`batch_size`, `num_patches`, `image_in_3D`) image_sizes (`List[List[int]]`): A list of sizes for each image in `pixel_values` in (height, width) format. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. If unset, will use same as the input image. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. If unset, will use the inferred format of the input image. Returns: List[`np.ndarray`]: The padded images. """ max_shape = ( max([size[0] for size in image_sizes]), max([size[1] for size in image_sizes]), ) pixel_values = [ pad( image, padding=((0, max_shape[0] - size[0]), (0, max_shape[1] - size[1])), data_format=data_format, input_data_format=input_data_format, ) for image, size in zip(pixel_values, image_sizes) ] return pixel_values def preprocess( self, images: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: bool = None, do_pad: bool = True, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): """ Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to `True`. do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): Whether to convert the image to RGB. do_pad (`bool`, *optional*, defaults to `True`): Whether to pad the image. If `True`, will pad the patch dimension of the images in the batch to the largest number of patches in the batch. Padding will be applied to the bottom and right with zeros. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size resample = resample if resample is not None else self.resample do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb do_pad = do_pad if do_pad is not None else self.do_pad if images is not None: images = make_batched_images(images) if images is not None and not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_preprocess_arguments( rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_resize=do_resize, size=size, resample=resample, ) pixel_values = [] for image in images: image = self._preprocess( image, do_resize=do_resize, resample=resample, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, data_format=data_format, do_convert_rgb=do_convert_rgb, input_data_format=input_data_format, ) pixel_values.extend(image) image_sizes = [image.shape[-2:] for image in pixel_values] if do_pad: pixel_values = self._pad_for_batching(pixel_values, image_sizes) pixel_values = np.array(pixel_values) return BatchFeature( data={"pixel_values": pixel_values, "image_sizes": image_sizes}, tensor_type=return_tensors ) def postprocess( self, images: ImageInput, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, return_tensors: Union[str, TensorType] = "PIL.Image.Image", input_data_format: Optional[Union[str, ChannelDimension]] = None, ): """ Postprocess an image or batch of images tensor. Postprocess is the reverse process of preprocess. The parameters should be same as in preprocess. Args: images (`ImageInput`): Image to postprocess. Expects a single or batch of images with pixel values ranging from -1 to 1. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to `True`. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = 1.0 / self.rescale_factor if rescale_factor is None else rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std images = make_list_of_images(images) if isinstance(images[0], Image.Image): return images if len(images) > 1 else images[0] if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) pixel_values = [] for image in images: image = to_numpy_array(image) if do_normalize: image = self.unnormalize( image=image, image_mean=image_mean, image_std=image_std, input_data_format=input_data_format ) if do_rescale: image = self.rescale(image, scale=rescale_factor, input_data_format=input_data_format) image = image.clip(0, 255).astype(np.uint8) if do_normalize and do_rescale and return_tensors == "PIL.Image.Image": image = to_channel_dimension_format(image, ChannelDimension.LAST, input_channel_dim=input_data_format) pixel_values.append(Image.fromarray(image)) else: pixel_values.extend(image) data = {"pixel_values": pixel_values} return_tensors = return_tensors if return_tensors != "PIL.Image.Image" else None return BatchFeature(data=data, tensor_type=return_tensors) def unnormalize( self, image: np.array, image_mean: Union[float, Iterable[float]], image_std: Union[float, Iterable[float]], input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.array: """ Unnormalizes `image` using the mean and standard deviation specified by `mean` and `std`. image = (image * image_std) + image_mean Args: image (`torch.Tensor` of shape `(batch_size, num_channels, image_size, image_size)` or `(num_channels, image_size, image_size)`): Batch of pixel values to postprocess. image_mean (`float` or `Iterable[float]`): The mean to use for unnormalization. image_std (`float` or `Iterable[float]`): The standard deviation to use for unnormalization. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ num_channels = 3 if isinstance(image_mean, Iterable): if len(image_mean) != num_channels: raise ValueError(f"mean must have {num_channels} elements if it is an iterable, got {len(image_mean)}") else: image_mean = [image_mean] * num_channels if isinstance(image_std, Iterable): if len(image_std) != num_channels: raise ValueError(f"std must have {num_channels} elements if it is an iterable, got {len(image_std)}") else: image_std = [image_std] * num_channels rev_image_mean = tuple(-mean / std for mean, std in zip(image_mean, image_std)) rev_image_std = tuple(1 / std for std in image_std) image = self.normalize( image=image, mean=rev_image_mean, std=rev_image_std, input_data_format=input_data_format ) return image __all__ = ["Emu3ImageProcessor"]
transformers/src/transformers/models/emu3/image_processing_emu3.py/0
{ "file_path": "transformers/src/transformers/models/emu3/image_processing_emu3.py", "repo_id": "transformers", "token_count": 11950 }
125
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch ERNIE model.""" import math import warnings from dataclasses import dataclass from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...generation import GenerationMixin from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, CausalLMOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, NextSentencePredictorOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_ernie import ErnieConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "nghuyong/ernie-1.0-base-zh" _CONFIG_FOR_DOC = "ErnieConfig" class ErnieEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) self.use_task_id = config.use_task_id if config.use_task_id: self.task_type_embeddings = nn.Embedding(config.task_type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False ) def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, task_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, past_key_values_length: int = 0, ) -> torch.Tensor: if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings # add `task_type_id` for ERNIE model if self.use_task_id: if task_type_ids is None: task_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) task_type_embeddings = self.task_type_embeddings(task_type_ids) embeddings += task_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Ernie class ErnieSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) use_cache = past_key_value is not None if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": query_length, key_length = query_layer.shape[2], key_layer.shape[2] if use_cache: position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( -1, 1 ) else: position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in ErnieModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs # Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->Ernie class ErnieSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states ERNIE_SELF_ATTENTION_CLASSES = { "eager": ErnieSelfAttention, } # Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Ernie,BERT->ERNIE class ErnieAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = ERNIE_SELF_ATTENTION_CLASSES[config._attn_implementation]( config, position_embedding_type=position_embedding_type ) self.output = ErnieSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Ernie class ErnieIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->Ernie class ErnieOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Ernie class ErnieLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = ErnieAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = ErnieAttention(config, position_embedding_type="absolute") self.intermediate = ErnieIntermediate(config) self.output = ErnieOutput(config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output # Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Ernie class ErnieEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([ErnieLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->Ernie class ErniePooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output # Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->Ernie class ErniePredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Ernie class ErnieLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = ErniePredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def _tie_weights(self): self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Ernie class ErnieOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = ErnieLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores # Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert->Ernie class ErnieOnlyNSPHead(nn.Module): def __init__(self, config): super().__init__() self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, pooled_output): seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score # Copied from transformers.models.bert.modeling_bert.BertPreTrainingHeads with Bert->Ernie class ErniePreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = ErnieLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class ErniePreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ErnieConfig base_model_prefix = "ernie" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) @dataclass # Copied from transformers.models.bert.modeling_bert.BertForPreTrainingOutput with Bert->Ernie class ErnieForPreTrainingOutput(ModelOutput): """ Output type of [`ErnieForPreTraining`]. Args: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None prediction_logits: torch.FloatTensor = None seq_relationship_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None ERNIE_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ErnieConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ ERNIE_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) task_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Task type embedding is a special embedding to represent the characteristic of different tasks, such as word-aware pre-training task, structure-aware pre-training task and semantic-aware pre-training task. We assign a `task_type_id` to each task and the `task_type_id` is in the range `[0, config.task_type_vocab_size-1] position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Ernie Model transformer outputting raw hidden-states without any specific head on top.", ERNIE_START_DOCSTRING, ) class ErnieModel(ErniePreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in [Attention is all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. """ # Copied from transformers.models.clap.modeling_clap.ClapTextModel.__init__ with ClapText->Ernie def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = ErnieEmbeddings(config) self.encoder = ErnieEncoder(config) self.pooler = ErniePooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.bert.modeling_bert.BertModel.get_input_embeddings def get_input_embeddings(self): return self.embeddings.word_embeddings # Copied from transformers.models.bert.modeling_bert.BertModel.set_input_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value # Copied from transformers.models.bert.modeling_bert.BertModel._prune_heads def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, task_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, task_type_ids=task_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings( """ Ernie Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next sentence prediction (classification)` head. """, ERNIE_START_DOCSTRING, ) class ErnieForPreTraining(ErniePreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"] # Copied from transformers.models.bert.modeling_bert.BertForPreTraining.__init__ with Bert->Ernie,bert->ernie def __init__(self, config): super().__init__(config) self.ernie = ErnieModel(config) self.cls = ErniePreTrainingHeads(config) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.bert.modeling_bert.BertForPreTraining.get_output_embeddings def get_output_embeddings(self): return self.cls.predictions.decoder # Copied from transformers.models.bert.modeling_bert.BertForPreTraining.set_output_embeddings def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=ErnieForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, task_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, next_sentence_label: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], ErnieForPreTrainingOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. kwargs (`Dict[str, any]`, *optional*, defaults to `{}`): Used to hide legacy arguments that have been deprecated. Returns: Example: ```python >>> from transformers import AutoTokenizer, ErnieForPreTraining >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh") >>> model = ErnieForPreTraining.from_pretrained("nghuyong/ernie-1.0-base-zh") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.ernie( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, task_type_ids=task_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output, pooled_output = outputs[:2] prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) total_loss = None if labels is not None and next_sentence_label is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) total_loss = masked_lm_loss + next_sentence_loss if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return ErnieForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """Ernie Model with a `language modeling` head on top for CLM fine-tuning.""", ERNIE_START_DOCSTRING ) class ErnieForCausalLM(ErniePreTrainedModel, GenerationMixin): _tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"] # Copied from transformers.models.bert.modeling_bert.BertLMHeadModel.__init__ with BertLMHeadModel->ErnieForCausalLM,Bert->Ernie,bert->ernie def __init__(self, config): super().__init__(config) if not config.is_decoder: logger.warning("If you want to use `ErnieForCausalLM` as a standalone, add `is_decoder=True.`") self.ernie = ErnieModel(config, add_pooling_layer=False) self.cls = ErnieOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.bert.modeling_bert.BertLMHeadModel.get_output_embeddings def get_output_embeddings(self): return self.cls.predictions.decoder # Copied from transformers.models.bert.modeling_bert.BertLMHeadModel.set_output_embeddings def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, task_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.Tensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]` past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False outputs = self.ernie( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, task_type_ids=task_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) lm_loss = None if labels is not None: # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertLMHeadModel._reorder_cache def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past @add_start_docstrings("""Ernie Model with a `language modeling` head on top.""", ERNIE_START_DOCSTRING) class ErnieForMaskedLM(ErniePreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"] # Copied from transformers.models.bert.modeling_bert.BertForMaskedLM.__init__ with Bert->Ernie,bert->ernie def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `ErnieForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.ernie = ErnieModel(config, add_pooling_layer=False) self.cls = ErnieOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.bert.modeling_bert.BertForMaskedLM.get_output_embeddings def get_output_embeddings(self): return self.cls.predictions.decoder # Copied from transformers.models.bert.modeling_bert.BertForMaskedLM.set_output_embeddings def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, expected_output="'paris'", expected_loss=0.88, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, task_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.ernie( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, task_type_ids=task_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.bert.modeling_bert.BertForMaskedLM.prepare_inputs_for_generation def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs): input_shape = input_ids.shape effective_batch_size = input_shape[0] # add a dummy token if self.config.pad_token_id is None: raise ValueError("The PAD token should be defined for generation") attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1) dummy_token = torch.full( (effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device ) input_ids = torch.cat([input_ids, dummy_token], dim=1) return {"input_ids": input_ids, "attention_mask": attention_mask} @add_start_docstrings( """Ernie Model with a `next sentence prediction (classification)` head on top.""", ERNIE_START_DOCSTRING, ) class ErnieForNextSentencePrediction(ErniePreTrainedModel): # Copied from transformers.models.bert.modeling_bert.BertForNextSentencePrediction.__init__ with Bert->Ernie,bert->ernie def __init__(self, config): super().__init__(config) self.ernie = ErnieModel(config) self.cls = ErnieOnlyNSPHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, task_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple[torch.Tensor], NextSentencePredictorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring). Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. Returns: Example: ```python >>> from transformers import AutoTokenizer, ErnieForNextSentencePrediction >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh") >>> model = ErnieForNextSentencePrediction.from_pretrained("nghuyong/ernie-1.0-base-zh") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt") >>> outputs = model(**encoding, labels=torch.LongTensor([1])) >>> logits = outputs.logits >>> assert logits[0, 0] < logits[0, 1] # next sentence was random ``` """ if "next_sentence_label" in kwargs: warnings.warn( "The `next_sentence_label` argument is deprecated and will be removed in a future version, use" " `labels` instead.", FutureWarning, ) labels = kwargs.pop("next_sentence_label") return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.ernie( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, task_type_ids=task_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] seq_relationship_scores = self.cls(pooled_output) next_sentence_loss = None if labels is not None: loss_fct = CrossEntropyLoss() next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1)) if not return_dict: output = (seq_relationship_scores,) + outputs[2:] return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output return NextSentencePredictorOutput( loss=next_sentence_loss, logits=seq_relationship_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Ernie Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, ERNIE_START_DOCSTRING, ) class ErnieForSequenceClassification(ErniePreTrainedModel): # Copied from transformers.models.bert.modeling_bert.BertForSequenceClassification.__init__ with Bert->Ernie,bert->ernie def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.ernie = ErnieModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, task_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.ernie( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, task_type_ids=task_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Ernie Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, ERNIE_START_DOCSTRING, ) class ErnieForMultipleChoice(ErniePreTrainedModel): # Copied from transformers.models.bert.modeling_bert.BertForMultipleChoice.__init__ with Bert->Ernie,bert->ernie def __init__(self, config): super().__init__(config) self.ernie = ErnieModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, task_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.ernie( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, task_type_ids=task_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Ernie Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, ERNIE_START_DOCSTRING, ) class ErnieForTokenClassification(ErniePreTrainedModel): # Copied from transformers.models.bert.modeling_bert.BertForTokenClassification.__init__ with Bert->Ernie,bert->ernie def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.ernie = ErnieModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, task_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.ernie( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, task_type_ids=task_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Ernie Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, ERNIE_START_DOCSTRING, ) class ErnieForQuestionAnswering(ErniePreTrainedModel): # Copied from transformers.models.bert.modeling_bert.BertForQuestionAnswering.__init__ with Bert->Ernie,bert->ernie def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.ernie = ErnieModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, task_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.ernie( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, task_type_ids=task_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) __all__ = [ "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ]
transformers/src/transformers/models/ernie/modeling_ernie.py/0
{ "file_path": "transformers/src/transformers/models/ernie/modeling_ernie.py", "repo_id": "transformers", "token_count": 35128 }
126
# coding=utf-8 # Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for ESM.""" import os from typing import List, Optional from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} def load_vocab_file(vocab_file): with open(vocab_file, "r") as f: lines = f.read().splitlines() return [l.strip() for l in lines] class EsmTokenizer(PreTrainedTokenizer): """ Constructs an ESM tokenizer. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, unk_token="<unk>", cls_token="<cls>", pad_token="<pad>", mask_token="<mask>", eos_token="<eos>", **kwargs, ): self.all_tokens = load_vocab_file(vocab_file) self._id_to_token = dict(enumerate(self.all_tokens)) self._token_to_id = {tok: ind for ind, tok in enumerate(self.all_tokens)} super().__init__( unk_token=unk_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, eos_token=eos_token, **kwargs, ) # TODO, all the tokens are added? But they are also part of the vocab... bit strange. # none of them are special, but they all need special splitting. self.unique_no_split_tokens = self.all_tokens self._update_trie(self.unique_no_split_tokens) def _convert_id_to_token(self, index: int) -> str: return self._id_to_token.get(index, self.unk_token) def _convert_token_to_id(self, token: str) -> int: return self._token_to_id.get(token, self._token_to_id.get(self.unk_token)) def _tokenize(self, text, **kwargs): return text.split() def get_vocab(self): base_vocab = self._token_to_id.copy() base_vocab.update(self.added_tokens_encoder) return base_vocab def token_to_id(self, token: str) -> int: return self._token_to_id.get(token, self._token_to_id.get(self.unk_token)) def id_to_token(self, index: int) -> str: return self._id_to_token.get(index, self.unk_token) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: cls = [self.cls_token_id] sep = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_1 is None: if self.eos_token_id is None: return cls + token_ids_0 else: return cls + token_ids_0 + sep elif self.eos_token_id is None: raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!") return cls + token_ids_0 + sep + token_ids_1 + sep # Multiple inputs always have an EOS token def get_special_tokens_mask( self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods. Args: token_ids_0 (`List[int]`): List of ids of the first sequence. token_ids_1 (`List[int]`, *optional*): List of ids of the second sequence. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: if token_ids_1 is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if token in self.all_special_ids else 0 for token in token_ids_0] mask = [1] + ([0] * len(token_ids_0)) + [1] if token_ids_1 is not None: mask += [0] * len(token_ids_1) + [1] return mask def save_vocabulary(self, save_directory, filename_prefix): vocab_file = os.path.join(save_directory, (filename_prefix + "-" if filename_prefix else "") + "vocab.txt") with open(vocab_file, "w") as f: f.write("\n".join(self.all_tokens)) return (vocab_file,) @property def vocab_size(self) -> int: return len(self.all_tokens) __all__ = ["EsmTokenizer"]
transformers/src/transformers/models/esm/tokenization_esm.py/0
{ "file_path": "transformers/src/transformers/models/esm/tokenization_esm.py", "repo_id": "transformers", "token_count": 2328 }
127
# coding=utf-8 # Copyright 2019-present CNRS, Facebook Inc. and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Flaubert configuration""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) class FlaubertConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`FlaubertModel`] or a [`TFFlaubertModel`]. It is used to instantiate a FlauBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the FlauBERT [flaubert/flaubert_base_uncased](https://huggingface.co/flaubert/flaubert_base_uncased) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: pre_norm (`bool`, *optional*, defaults to `False`): Whether to apply the layer normalization before or after the feed forward layer following the attention in each layer (Vaswani et al., Tensor2Tensor for Neural Machine Translation. 2018) layerdrop (`float`, *optional*, defaults to 0.0): Probability to drop layers during training (Fan et al., Reducing Transformer Depth on Demand with Structured Dropout. ICLR 2020) vocab_size (`int`, *optional*, defaults to 30145): Vocabulary size of the FlauBERT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`FlaubertModel`] or [`TFFlaubertModel`]. emb_dim (`int`, *optional*, defaults to 2048): Dimensionality of the encoder layers and the pooler layer. n_layer (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. n_head (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for the attention mechanism gelu_activation (`bool`, *optional*, defaults to `True`): Whether or not to use a *gelu* activation instead of *relu*. sinusoidal_embeddings (`bool`, *optional*, defaults to `False`): Whether or not to use sinusoidal positional embeddings instead of absolute positional embeddings. causal (`bool`, *optional*, defaults to `False`): Whether or not the model should behave in a causal manner. Causal models use a triangular attention mask in order to only attend to the left-side context instead if a bidirectional context. asm (`bool`, *optional*, defaults to `False`): Whether or not to use an adaptive log softmax projection layer instead of a linear layer for the prediction layer. n_langs (`int`, *optional*, defaults to 1): The number of languages the model handles. Set to 1 for monolingual models. use_lang_emb (`bool`, *optional*, defaults to `True`) Whether to use language embeddings. Some models use additional language embeddings, see [the multilingual models page](http://huggingface.co/transformers/multilingual.html#xlm-language-embeddings) for information on how to use them. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). embed_init_std (`float`, *optional*, defaults to 2048^-0.5): The standard deviation of the truncated_normal_initializer for initializing the embedding matrices. init_std (`int`, *optional*, defaults to 50257): The standard deviation of the truncated_normal_initializer for initializing all weight matrices except the embedding matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. bos_index (`int`, *optional*, defaults to 0): The index of the beginning of sentence token in the vocabulary. eos_index (`int`, *optional*, defaults to 1): The index of the end of sentence token in the vocabulary. pad_index (`int`, *optional*, defaults to 2): The index of the padding token in the vocabulary. unk_index (`int`, *optional*, defaults to 3): The index of the unknown token in the vocabulary. mask_index (`int`, *optional*, defaults to 5): The index of the masking token in the vocabulary. is_encoder(`bool`, *optional*, defaults to `True`): Whether or not the initialized model should be a transformer encoder or decoder as seen in Vaswani et al. summary_type (`string`, *optional*, defaults to "first"): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Has to be one of the following options: - `"last"`: Take the last token hidden state (like XLNet). - `"first"`: Take the first token hidden state (like BERT). - `"mean"`: Take the mean of all tokens hidden states. - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2). - `"attn"`: Not implemented now, use multi-head attention. summary_use_proj (`bool`, *optional*, defaults to `True`): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Whether or not to add a projection after the vector extraction. summary_activation (`str`, *optional*): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation. summary_proj_to_labels (`bool`, *optional*, defaults to `True`): Used in the sequence classification and multiple choice models. Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes. summary_first_dropout (`float`, *optional*, defaults to 0.1): Used in the sequence classification and multiple choice models. The dropout ratio to be used after the projection and activation. start_n_top (`int`, *optional*, defaults to 5): Used in the SQuAD evaluation script. end_n_top (`int`, *optional*, defaults to 5): Used in the SQuAD evaluation script. mask_token_id (`int`, *optional*, defaults to 0): Model agnostic parameter to identify masked tokens when generating text in an MLM context. lang_id (`int`, *optional*, defaults to 1): The ID of the language used by the model. This parameter is used when generating text in a given language. """ model_type = "flaubert" attribute_map = { "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__( self, pre_norm=False, layerdrop=0.0, vocab_size=30145, emb_dim=2048, n_layers=12, n_heads=16, dropout=0.1, attention_dropout=0.1, gelu_activation=True, sinusoidal_embeddings=False, causal=False, asm=False, n_langs=1, use_lang_emb=True, max_position_embeddings=512, embed_init_std=2048**-0.5, layer_norm_eps=1e-12, init_std=0.02, bos_index=0, eos_index=1, pad_index=2, unk_index=3, mask_index=5, is_encoder=True, summary_type="first", summary_use_proj=True, summary_activation=None, summary_proj_to_labels=True, summary_first_dropout=0.1, start_n_top=5, end_n_top=5, mask_token_id=0, lang_id=0, pad_token_id=2, bos_token_id=0, **kwargs, ): """Constructs FlaubertConfig.""" self.pre_norm = pre_norm self.layerdrop = layerdrop self.vocab_size = vocab_size self.emb_dim = emb_dim self.n_layers = n_layers self.n_heads = n_heads self.dropout = dropout self.attention_dropout = attention_dropout self.gelu_activation = gelu_activation self.sinusoidal_embeddings = sinusoidal_embeddings self.causal = causal self.asm = asm self.n_langs = n_langs self.use_lang_emb = use_lang_emb self.layer_norm_eps = layer_norm_eps self.bos_index = bos_index self.eos_index = eos_index self.pad_index = pad_index self.unk_index = unk_index self.mask_index = mask_index self.is_encoder = is_encoder self.max_position_embeddings = max_position_embeddings self.embed_init_std = embed_init_std self.init_std = init_std self.summary_type = summary_type self.summary_use_proj = summary_use_proj self.summary_activation = summary_activation self.summary_proj_to_labels = summary_proj_to_labels self.summary_first_dropout = summary_first_dropout self.start_n_top = start_n_top self.end_n_top = end_n_top self.mask_token_id = mask_token_id self.lang_id = lang_id if "n_words" in kwargs: self.n_words = kwargs["n_words"] super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, **kwargs) class FlaubertOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] ) __all__ = ["FlaubertConfig", "FlaubertOnnxConfig"]
transformers/src/transformers/models/flaubert/configuration_flaubert.py/0
{ "file_path": "transformers/src/transformers/models/flaubert/configuration_flaubert.py", "repo_id": "transformers", "token_count": 4413 }
128
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization class for Funnel Transformer.""" import collections import os import unicodedata from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} _model_names = [ "small", "small-base", "medium", "medium-base", "intermediate", "intermediate-base", "large", "large-base", "xlarge", "xlarge-base", ] # Copied from transformers.models.bert.tokenization_bert.load_vocab def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() with open(vocab_file, "r", encoding="utf-8") as reader: tokens = reader.readlines() for index, token in enumerate(tokens): token = token.rstrip("\n") vocab[token] = index return vocab # Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokens class FunnelTokenizer(PreTrainedTokenizer): r""" Construct a Funnel Transformer tokenizer. Based on WordPiece. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. do_basic_tokenize (`bool`, *optional*, defaults to `True`): Whether or not to do basic tokenization before WordPiece. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"<sep>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"<cls>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sentence token. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sentence token. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`): Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like extra spaces. """ vocab_files_names = VOCAB_FILES_NAMES cls_token_type_id: int = 2 def __init__( self, vocab_file, do_lower_case=True, do_basic_tokenize=True, never_split=None, unk_token="<unk>", sep_token="<sep>", pad_token="<pad>", cls_token="<cls>", mask_token="<mask>", bos_token="<s>", eos_token="</s>", tokenize_chinese_chars=True, strip_accents=None, clean_up_tokenization_spaces=True, **kwargs, ): if not os.path.isfile(vocab_file): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = FunnelTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) self.vocab = load_vocab(vocab_file) self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) self.do_basic_tokenize = do_basic_tokenize if do_basic_tokenize: self.basic_tokenizer = BasicTokenizer( do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, ) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token)) super().__init__( do_lower_case=do_lower_case, do_basic_tokenize=do_basic_tokenize, never_split=never_split, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, bos_token=bos_token, eos_token=eos_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs, ) @property # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.do_lower_case def do_lower_case(self): return self.basic_tokenizer.do_lower_case @property # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.vocab_size def vocab_size(self): return len(self.vocab) # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_vocab def get_vocab(self): return dict(self.vocab, **self.added_tokens_encoder) # Copied from transformers.models.bert.tokenization_bert.BertTokenizer._tokenize def _tokenize(self, text, split_special_tokens=False): split_tokens = [] if self.do_basic_tokenize: for token in self.basic_tokenizer.tokenize( text, never_split=self.all_special_tokens if not split_special_tokens else None ): # If the token is part of the never_split set if token in self.basic_tokenizer.never_split: split_tokens.append(token) else: split_tokens += self.wordpiece_tokenizer.tokenize(token) else: split_tokens = self.wordpiece_tokenizer.tokenize(text) return split_tokens # Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_token_to_id def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.vocab.get(token, self.vocab.get(self.unk_token)) # Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_id_to_token def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.ids_to_tokens.get(index, self.unk_token) # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.convert_tokens_to_string def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = " ".join(tokens).replace(" ##", "").strip() return out_string # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.build_inputs_with_special_tokens def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + token_ids_1 + sep # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_special_tokens_mask def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A Funnel Transformer sequence pair mask has the following format: ``` 2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0] return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: index = 0 if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(token + "\n") index += 1 return (vocab_file,) # Copied from transformers.models.bert.tokenization_bert.BasicTokenizer class BasicTokenizer: """ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). Args: do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). do_split_on_punc (`bool`, *optional*, defaults to `True`): In some instances we want to skip the basic punctuation splitting so that later tokenization can capture the full context of the words, such as contractions. """ def __init__( self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None, do_split_on_punc=True, ): if never_split is None: never_split = [] self.do_lower_case = do_lower_case self.never_split = set(never_split) self.tokenize_chinese_chars = tokenize_chinese_chars self.strip_accents = strip_accents self.do_split_on_punc = do_split_on_punc def tokenize(self, text, never_split=None): """ Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. Args: never_split (`List[str]`, *optional*) Kept for backward compatibility purposes. Now implemented directly at the base class level (see [`PreTrainedTokenizer.tokenize`]) List of token not to split. """ # union() returns a new set by concatenating the two sets. never_split = self.never_split.union(set(never_split)) if never_split else self.never_split text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). if self.tokenize_chinese_chars: text = self._tokenize_chinese_chars(text) # prevents treating the same character with different unicode codepoints as different characters unicode_normalized_text = unicodedata.normalize("NFC", text) orig_tokens = whitespace_tokenize(unicode_normalized_text) split_tokens = [] for token in orig_tokens: if token not in never_split: if self.do_lower_case: token = token.lower() if self.strip_accents is not False: token = self._run_strip_accents(token) elif self.strip_accents: token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token, never_split)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text, never_split=None): """Splits punctuation on a piece of text.""" if not self.do_split_on_punc or (never_split is not None and text in never_split): return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xFFFD or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) # Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer class WordpieceTokenizer: """Runs WordPiece tokenization.""" def __init__(self, vocab, unk_token, max_input_chars_per_word=100): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. Args: text: A single token or whitespace separated tokens. This should have already been passed through *BasicTokenizer*. Returns: A list of wordpiece tokens. """ output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens __all__ = ["FunnelTokenizer"]
transformers/src/transformers/models/funnel/tokenization_funnel.py/0
{ "file_path": "transformers/src/transformers/models/funnel/tokenization_funnel.py", "repo_id": "transformers", "token_count": 9986 }
129
# coding=utf-8 # Copyright 2022 KAIST and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """GLPN model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class GLPNConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`GLPNModel`]. It is used to instantiate an GLPN model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the GLPN [vinvino02/glpn-kitti](https://huggingface.co/vinvino02/glpn-kitti) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_channels (`int`, *optional*, defaults to 3): The number of input channels. num_encoder_blocks (`int`, *optional*, defaults to 4): The number of encoder blocks (i.e. stages in the Mix Transformer encoder). depths (`List[int]`, *optional*, defaults to `[2, 2, 2, 2]`): The number of layers in each encoder block. sr_ratios (`List[int]`, *optional*, defaults to `[8, 4, 2, 1]`): Sequence reduction ratios in each encoder block. hidden_sizes (`List[int]`, *optional*, defaults to `[32, 64, 160, 256]`): Dimension of each of the encoder blocks. patch_sizes (`List[int]`, *optional*, defaults to `[7, 3, 3, 3]`): Patch size before each encoder block. strides (`List[int]`, *optional*, defaults to `[4, 2, 2, 2]`): Stride before each encoder block. num_attention_heads (`List[int]`, *optional*, defaults to `[1, 2, 5, 8]`): Number of attention heads for each attention layer in each block of the Transformer encoder. mlp_ratios (`List[int]`, *optional*, defaults to `[4, 4, 4, 4]`): Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the encoder blocks. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. drop_path_rate (`float`, *optional*, defaults to 0.1): The dropout probability for stochastic depth, used in the blocks of the Transformer encoder. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. decoder_hidden_size (`int`, *optional*, defaults to 64): The dimension of the decoder. max_depth (`int`, *optional*, defaults to 10): The maximum depth of the decoder. head_in_index (`int`, *optional*, defaults to -1): The index of the features to use in the head. Example: ```python >>> from transformers import GLPNModel, GLPNConfig >>> # Initializing a GLPN vinvino02/glpn-kitti style configuration >>> configuration = GLPNConfig() >>> # Initializing a model from the vinvino02/glpn-kitti style configuration >>> model = GLPNModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "glpn" def __init__( self, num_channels=3, num_encoder_blocks=4, depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1], hidden_sizes=[32, 64, 160, 256], patch_sizes=[7, 3, 3, 3], strides=[4, 2, 2, 2], num_attention_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, drop_path_rate=0.1, layer_norm_eps=1e-6, decoder_hidden_size=64, max_depth=10, head_in_index=-1, **kwargs, ): super().__init__(**kwargs) self.num_channels = num_channels self.num_encoder_blocks = num_encoder_blocks self.depths = depths self.sr_ratios = sr_ratios self.hidden_sizes = hidden_sizes self.patch_sizes = patch_sizes self.strides = strides self.mlp_ratios = mlp_ratios self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.drop_path_rate = drop_path_rate self.layer_norm_eps = layer_norm_eps self.decoder_hidden_size = decoder_hidden_size self.max_depth = max_depth self.head_in_index = head_in_index __all__ = ["GLPNConfig"]
transformers/src/transformers/models/glpn/configuration_glpn.py/0
{ "file_path": "transformers/src/transformers/models/glpn/configuration_glpn.py", "repo_id": "transformers", "token_count": 2355 }
130
# coding=utf-8 # Copyright 2023 The BigCode team and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """GPTBigCode configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class GPTBigCodeConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`GPTBigCodeModel`]. It is used to instantiate a GPTBigCode model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the GPTBigCode [gpt_bigcode](https://huggingface.co/gpt_bigcode) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50257): Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`GPTBigCodeModel`]. n_positions (`int`, *optional*, defaults to 1024): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). n_embd (`int`, *optional*, defaults to 768): Dimensionality of the embeddings and hidden states. n_layer (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. n_head (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. n_inner (`int`, *optional*, defaults to None): Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd activation_function (`str`, *optional*, defaults to `"gelu_pytorch_tanh"`): Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new", "gelu_pytorch_tanh"]`. resid_pdrop (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. embd_pdrop (`float`, *optional*, defaults to 0.1): The dropout ratio for the embeddings. attn_pdrop (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention. layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): The epsilon to use in the layer normalization layers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. scale_attn_weights (`bool`, *optional*, defaults to `True`): Scale attention weights by dividing by sqrt(hidden_size).. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). attention_softmax_in_fp32 (`bool`, *optional*, defaults to `True`): Whether to call the fused softmax in float32. scale_attention_softmax_in_fp32 (`bool`, *optional*, defaults to `True`): Whether to scale the attention softmax in float32. attention_type (`bool`, *optional*, defaults to `True`): Whether to use Multi-Query Attion (`True`) or Multi-Head Attention (`False`). Example: ```python >>> from transformers import GPTBigCodeConfig, GPTBigCodeModel >>> # Initializing a GPTBigCode configuration >>> configuration = GPTBigCodeConfig() >>> # Initializing a model (with random weights) from the configuration >>> model = GPTBigCodeModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "gpt_bigcode" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, vocab_size=50257, n_positions=1024, n_embd=768, n_layer=12, n_head=12, n_inner=None, activation_function="gelu_pytorch_tanh", resid_pdrop=0.1, embd_pdrop=0.1, attn_pdrop=0.1, layer_norm_epsilon=1e-5, initializer_range=0.02, scale_attn_weights=True, use_cache=True, bos_token_id=50256, eos_token_id=50256, attention_softmax_in_fp32=True, scale_attention_softmax_in_fp32=True, multi_query=True, **kwargs, ): self.vocab_size = vocab_size self.n_positions = n_positions self.n_embd = n_embd self.n_layer = n_layer self.n_head = n_head self.n_inner = n_inner self.activation_function = activation_function self.resid_pdrop = resid_pdrop self.embd_pdrop = embd_pdrop self.attn_pdrop = attn_pdrop self.layer_norm_epsilon = layer_norm_epsilon self.initializer_range = initializer_range self.scale_attn_weights = scale_attn_weights self.use_cache = use_cache self.attention_softmax_in_fp32 = attention_softmax_in_fp32 self.scale_attention_softmax_in_fp32 = scale_attention_softmax_in_fp32 self.multi_query = multi_query self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) __all__ = ["GPTBigCodeConfig"]
transformers/src/transformers/models/gpt_bigcode/configuration_gpt_bigcode.py/0
{ "file_path": "transformers/src/transformers/models/gpt_bigcode/configuration_gpt_bigcode.py", "repo_id": "transformers", "token_count": 2468 }
131
# Copyright 2022 The HuggingFace Inc. team and the AI-Sweden team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert GPT-SW3 megatron checkpoints to pytorch""" import argparse import os from os.path import isfile import torch from transformers import GPT2Config def recursive_print(name, val, spaces=0): # Format the message. if name is None: msg = None else: fmt = "." * max(0, spaces - 2) + "# {:" + str(50 - spaces) + "s}" msg = fmt.format(name) # Print and recurse (if needed). if isinstance(val, dict): if msg is not None: print(msg) for k in val.keys(): recursive_print(k, val[k], spaces + 2) elif isinstance(val, torch.Tensor): print(msg, ":", val.size()) else: print(msg, ":", val) def fix_query_key_value_ordering(param, num_splits, num_heads, hidden_size): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. input_shape = param.size() # other versions store [num_heads * num_splits * hidden_size, :] saved_shape = (num_heads, num_splits, hidden_size) + input_shape[1:] param = param.view(*saved_shape) param = param.transpose(0, 1).contiguous() param = param.view(*input_shape) return param def convert_megatron_checkpoint(sd_megatron, config): """ Converts a Megatron checkpoint to a HuggingFace GPT-SW3 checkpoint. """ n_positions = config.n_positions layers = config.n_layer vocab_size = config.vocab_size heads = config.n_head hidden_size_per_head = config.n_embd // config.n_head word_embeddings = sd_megatron["model.language_model.embedding.word_embeddings.weight"][:vocab_size, :] sd_hf = { "transformer.wte.weight": word_embeddings, "transformer.wpe.weight": sd_megatron["model.language_model.embedding.position_embeddings.weight"], "transformer.ln_f.weight": sd_megatron["model.language_model.encoder.final_layernorm.weight"], "transformer.ln_f.bias": sd_megatron["model.language_model.encoder.final_layernorm.bias"], } pf = "model.language_model.encoder.layers." for i in range(layers): causal_mask = torch.tril(torch.ones((n_positions, n_positions), dtype=torch.bool)) causal_mask = causal_mask.view(1, 1, n_positions, n_positions) sd_hf[f"transformer.h.{i}.attn.bias"] = causal_mask sd_hf[f"transformer.h.{i}.attn.masked_bias"] = torch.tensor(-1e4, dtype=torch.bfloat16) sd_hf[f"transformer.h.{i}.ln_1.weight"] = sd_megatron[f"{pf}{i}.input_layernorm.weight"] sd_hf[f"transformer.h.{i}.ln_1.bias"] = sd_megatron[f"{pf}{i}.input_layernorm.bias"] val1 = sd_megatron[f"{pf}{i}.self_attention.query_key_value.weight"] val1 = fix_query_key_value_ordering(val1, 3, heads, hidden_size_per_head) sd_hf[f"transformer.h.{i}.attn.c_attn.weight"] = val1.transpose(0, 1).contiguous() val2 = sd_megatron[f"{pf}{i}.self_attention.query_key_value.bias"] val2 = fix_query_key_value_ordering(val2, 3, heads, hidden_size_per_head) sd_hf[f"transformer.h.{i}.attn.c_attn.bias"] = val2 sd_hf[f"transformer.h.{i}.attn.c_proj.weight"] = sd_megatron[f"{pf}{i}.self_attention.dense.weight"].transpose( 0, 1 ) sd_hf[f"transformer.h.{i}.attn.c_proj.bias"] = sd_megatron[f"{pf}{i}.self_attention.dense.bias"] sd_hf[f"transformer.h.{i}.ln_2.weight"] = sd_megatron[f"{pf}{i}.post_attention_layernorm.weight"] sd_hf[f"transformer.h.{i}.ln_2.bias"] = sd_megatron[f"{pf}{i}.post_attention_layernorm.bias"] sd_hf[f"transformer.h.{i}.mlp.c_fc.weight"] = sd_megatron[f"{pf}{i}.mlp.dense_h_to_4h.weight"].transpose(0, 1) sd_hf[f"transformer.h.{i}.mlp.c_fc.bias"] = sd_megatron[f"{pf}{i}.mlp.dense_h_to_4h.bias"] sd_hf[f"transformer.h.{i}.mlp.c_proj.weight"] = sd_megatron[f"{pf}{i}.mlp.dense_4h_to_h.weight"].transpose( 0, 1 ) sd_hf[f"transformer.h.{i}.mlp.c_proj.bias"] = sd_megatron[f"{pf}{i}.mlp.dense_4h_to_h.bias"] # For LM head, transformers' wants the matrix to weight embeddings. sd_hf["lm_head.weight"] = word_embeddings return sd_hf def copy_config(config_hf, config_megatron): """Copy the config from Megatron to hf.""" config_hf.vocab_size = 64000 config_hf.n_positions = config_megatron["encoder_seq_length"] config_hf.n_embd = config_megatron["hidden_size"] config_hf.n_layer = config_megatron["num_layers"] config_hf.n_head = config_megatron["num_attention_heads"] config_hf.n_inner = config_megatron["ffn_hidden_size"] config_hf.activation_function = "gelu" config_hf.resid_pdrop = 0.1 config_hf.embd_pdrop = 0.1 config_hf.attn_pdrop = 0.1 config_hf.layer_norm_epsilon = config_megatron["layernorm_epsilon"] # 1e-5 config_hf.initializer_range = config_megatron["init_method_std"] # 0.02 config_hf.apply_query_key_layer_scaling = config_megatron["apply_query_key_layer_scaling"] # True config_hf.normalize_attention_scores = True config_hf.use_cache = True # This identifies the 6.7B (7B) model which uses a different tokenizer if config_megatron["hidden_size"] == 4096: config_hf.bos_token_id = 1 # <|endoftext|> config_hf.eos_token_id = 1 # <|endoftext|> config_hf.pad_token_id = 0 # <unk> else: config_hf.bos_token_id = 2 # <s> config_hf.eos_token_id = 3 # <|endoftext|> config_hf.pad_token_id = 0 # <pad> return config_hf def main(args): print(args) checkpoint_path = args.checkpoint_path save_path = args.save_path if isfile(checkpoint_path): raise FileNotFoundError(f"ERROR! could not find file {checkpoint_path}") # Load the model. checkpoint = torch.load(checkpoint_path, map_location="cpu") # Load the config. config_megatron = checkpoint["hyper_parameters"]["cfg"] config_hf = GPT2Config() config_hf = copy_config(config_hf=config_hf, config_megatron=config_megatron) config_hf.architectures = ["GPT2LMHeadModel"] sd_megatron = checkpoint["state_dict"] # Convert. print("Converting") sd_hf = convert_megatron_checkpoint(sd_megatron, config_hf) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(None, sd_hf) config_hf.tokenizer_class = "GPTSw3Tokenizer" # Store the config to file. print("Saving config") config_hf.save_pretrained(save_path) # Store the state_dict to file. output_checkpoint_file = os.path.join(save_path, "pytorch_model.bin") print(f'Saving checkpoint to "{output_checkpoint_file}"') torch.save(sd_hf, output_checkpoint_file) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", type=str, required=True, help="e.g. megatron_gpt--val_loss=2.42-step=38000-consumed_samples=54720000", ) parser.add_argument("--save_path", type=str, required=True, help="e.g. /home/user/gpt-sw3/hf") parser.add_argument("--print-checkpoint-structure", action="store_true") _args = parser.parse_args() main(_args)
transformers/src/transformers/models/gpt_sw3/convert_megatron_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/gpt_sw3/convert_megatron_to_pytorch.py", "repo_id": "transformers", "token_count": 3465 }
132
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Grounding DINO checkpoints from the original repository. URL: https://github.com/IDEA-Research/GroundingDINO""" import argparse import requests import torch from PIL import Image from torchvision import transforms as T from transformers import ( AutoTokenizer, GroundingDinoConfig, GroundingDinoForObjectDetection, GroundingDinoImageProcessor, GroundingDinoProcessor, SwinConfig, ) IMAGENET_MEAN = [0.485, 0.456, 0.406] IMAGENET_STD = [0.229, 0.224, 0.225] def get_grounding_dino_config(model_name): if "tiny" in model_name: window_size = 7 embed_dim = 96 depths = (2, 2, 6, 2) num_heads = (3, 6, 12, 24) image_size = 224 elif "base" in model_name: window_size = 12 embed_dim = 128 depths = (2, 2, 18, 2) num_heads = (4, 8, 16, 32) image_size = 384 else: raise ValueError("Model not supported, only supports base and large variants") backbone_config = SwinConfig( window_size=window_size, image_size=image_size, embed_dim=embed_dim, depths=depths, num_heads=num_heads, out_indices=[2, 3, 4], ) config = GroundingDinoConfig(backbone_config=backbone_config) return config def create_rename_keys(state_dict, config): rename_keys = [] # fmt: off ########################################## VISION BACKBONE - START # patch embedding layer rename_keys.append(("backbone.0.patch_embed.proj.weight", "model.backbone.conv_encoder.model.embeddings.patch_embeddings.projection.weight")) rename_keys.append(("backbone.0.patch_embed.proj.bias", "model.backbone.conv_encoder.model.embeddings.patch_embeddings.projection.bias")) rename_keys.append(("backbone.0.patch_embed.norm.weight", "model.backbone.conv_encoder.model.embeddings.norm.weight")) rename_keys.append(("backbone.0.patch_embed.norm.bias", "model.backbone.conv_encoder.model.embeddings.norm.bias")) for layer, depth in enumerate(config.backbone_config.depths): for block in range(depth): # layernorms rename_keys.append((f"backbone.0.layers.{layer}.blocks.{block}.norm1.weight", f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.layernorm_before.weight")) rename_keys.append((f"backbone.0.layers.{layer}.blocks.{block}.norm1.bias", f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.layernorm_before.bias")) rename_keys.append((f"backbone.0.layers.{layer}.blocks.{block}.norm2.weight", f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.layernorm_after.weight")) rename_keys.append((f"backbone.0.layers.{layer}.blocks.{block}.norm2.bias", f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.layernorm_after.bias")) # attention rename_keys.append((f"backbone.0.layers.{layer}.blocks.{block}.attn.relative_position_bias_table", f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.attention.self.relative_position_bias_table")) rename_keys.append((f"backbone.0.layers.{layer}.blocks.{block}.attn.proj.weight", f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.attention.output.dense.weight")) rename_keys.append((f"backbone.0.layers.{layer}.blocks.{block}.attn.proj.bias", f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.attention.output.dense.bias")) # intermediate rename_keys.append((f"backbone.0.layers.{layer}.blocks.{block}.mlp.fc1.weight", f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.intermediate.dense.weight")) rename_keys.append((f"backbone.0.layers.{layer}.blocks.{block}.mlp.fc1.bias", f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.intermediate.dense.bias")) # output rename_keys.append((f"backbone.0.layers.{layer}.blocks.{block}.mlp.fc2.weight", f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.output.dense.weight")) rename_keys.append((f"backbone.0.layers.{layer}.blocks.{block}.mlp.fc2.bias", f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.output.dense.bias")) # downsample if layer!=len(config.backbone_config.depths)-1: rename_keys.append((f"backbone.0.layers.{layer}.downsample.reduction.weight", f"model.backbone.conv_encoder.model.encoder.layers.{layer}.downsample.reduction.weight")) rename_keys.append((f"backbone.0.layers.{layer}.downsample.norm.weight", f"model.backbone.conv_encoder.model.encoder.layers.{layer}.downsample.norm.weight")) rename_keys.append((f"backbone.0.layers.{layer}.downsample.norm.bias", f"model.backbone.conv_encoder.model.encoder.layers.{layer}.downsample.norm.bias")) for out_indice in config.backbone_config.out_indices: # Grounding DINO implementation of out_indices isn't aligned with transformers rename_keys.append((f"backbone.0.norm{out_indice-1}.weight", f"model.backbone.conv_encoder.model.hidden_states_norms.stage{out_indice}.weight")) rename_keys.append((f"backbone.0.norm{out_indice-1}.bias", f"model.backbone.conv_encoder.model.hidden_states_norms.stage{out_indice}.bias")) ########################################## VISION BACKBONE - END ########################################## ENCODER - START deformable_key_mappings = { 'self_attn.sampling_offsets.weight': 'deformable_layer.self_attn.sampling_offsets.weight', 'self_attn.sampling_offsets.bias': 'deformable_layer.self_attn.sampling_offsets.bias', 'self_attn.attention_weights.weight': 'deformable_layer.self_attn.attention_weights.weight', 'self_attn.attention_weights.bias': 'deformable_layer.self_attn.attention_weights.bias', 'self_attn.value_proj.weight': 'deformable_layer.self_attn.value_proj.weight', 'self_attn.value_proj.bias': 'deformable_layer.self_attn.value_proj.bias', 'self_attn.output_proj.weight': 'deformable_layer.self_attn.output_proj.weight', 'self_attn.output_proj.bias': 'deformable_layer.self_attn.output_proj.bias', 'norm1.weight': 'deformable_layer.self_attn_layer_norm.weight', 'norm1.bias': 'deformable_layer.self_attn_layer_norm.bias', 'linear1.weight': 'deformable_layer.fc1.weight', 'linear1.bias': 'deformable_layer.fc1.bias', 'linear2.weight': 'deformable_layer.fc2.weight', 'linear2.bias': 'deformable_layer.fc2.bias', 'norm2.weight': 'deformable_layer.final_layer_norm.weight', 'norm2.bias': 'deformable_layer.final_layer_norm.bias', } text_enhancer_key_mappings = { 'self_attn.in_proj_weight': 'text_enhancer_layer.self_attn.in_proj_weight', 'self_attn.in_proj_bias': 'text_enhancer_layer.self_attn.in_proj_bias', 'self_attn.out_proj.weight': 'text_enhancer_layer.self_attn.out_proj.weight', 'self_attn.out_proj.bias': 'text_enhancer_layer.self_attn.out_proj.bias', 'linear1.weight': 'text_enhancer_layer.fc1.weight', 'linear1.bias': 'text_enhancer_layer.fc1.bias', 'linear2.weight': 'text_enhancer_layer.fc2.weight', 'linear2.bias': 'text_enhancer_layer.fc2.bias', 'norm1.weight': 'text_enhancer_layer.layer_norm_before.weight', 'norm1.bias': 'text_enhancer_layer.layer_norm_before.bias', 'norm2.weight': 'text_enhancer_layer.layer_norm_after.weight', 'norm2.bias': 'text_enhancer_layer.layer_norm_after.bias', } fusion_key_mappings = { 'gamma_v': 'fusion_layer.vision_param', 'gamma_l': 'fusion_layer.text_param', 'layer_norm_v.weight': 'fusion_layer.layer_norm_vision.weight', 'layer_norm_v.bias': 'fusion_layer.layer_norm_vision.bias', 'layer_norm_l.weight': 'fusion_layer.layer_norm_text.weight', 'layer_norm_l.bias': 'fusion_layer.layer_norm_text.bias', 'attn.v_proj.weight': 'fusion_layer.attn.vision_proj.weight', 'attn.v_proj.bias': 'fusion_layer.attn.vision_proj.bias', 'attn.l_proj.weight': 'fusion_layer.attn.text_proj.weight', 'attn.l_proj.bias': 'fusion_layer.attn.text_proj.bias', 'attn.values_v_proj.weight': 'fusion_layer.attn.values_vision_proj.weight', 'attn.values_v_proj.bias': 'fusion_layer.attn.values_vision_proj.bias', 'attn.values_l_proj.weight': 'fusion_layer.attn.values_text_proj.weight', 'attn.values_l_proj.bias': 'fusion_layer.attn.values_text_proj.bias', 'attn.out_v_proj.weight': 'fusion_layer.attn.out_vision_proj.weight', 'attn.out_v_proj.bias': 'fusion_layer.attn.out_vision_proj.bias', 'attn.out_l_proj.weight': 'fusion_layer.attn.out_text_proj.weight', 'attn.out_l_proj.bias': 'fusion_layer.attn.out_text_proj.bias', } for layer in range(config.encoder_layers): # deformable for src, dest in deformable_key_mappings.items(): rename_keys.append((f"transformer.encoder.layers.{layer}.{src}", f"model.encoder.layers.{layer}.{dest}")) # text enhance for src, dest in text_enhancer_key_mappings.items(): rename_keys.append((f"transformer.encoder.text_layers.{layer}.{src}", f"model.encoder.layers.{layer}.{dest}")) # fusion layers for src, dest in fusion_key_mappings.items(): rename_keys.append((f"transformer.encoder.fusion_layers.{layer}.{src}", f"model.encoder.layers.{layer}.{dest}")) ########################################## ENCODER - END ########################################## DECODER - START key_mappings_decoder = { 'cross_attn.sampling_offsets.weight': 'encoder_attn.sampling_offsets.weight', 'cross_attn.sampling_offsets.bias': 'encoder_attn.sampling_offsets.bias', 'cross_attn.attention_weights.weight': 'encoder_attn.attention_weights.weight', 'cross_attn.attention_weights.bias': 'encoder_attn.attention_weights.bias', 'cross_attn.value_proj.weight': 'encoder_attn.value_proj.weight', 'cross_attn.value_proj.bias': 'encoder_attn.value_proj.bias', 'cross_attn.output_proj.weight': 'encoder_attn.output_proj.weight', 'cross_attn.output_proj.bias': 'encoder_attn.output_proj.bias', 'norm1.weight': 'encoder_attn_layer_norm.weight', 'norm1.bias': 'encoder_attn_layer_norm.bias', 'ca_text.in_proj_weight': 'encoder_attn_text.in_proj_weight', 'ca_text.in_proj_bias': 'encoder_attn_text.in_proj_bias', 'ca_text.out_proj.weight': 'encoder_attn_text.out_proj.weight', 'ca_text.out_proj.bias': 'encoder_attn_text.out_proj.bias', 'catext_norm.weight': 'encoder_attn_text_layer_norm.weight', 'catext_norm.bias': 'encoder_attn_text_layer_norm.bias', 'self_attn.in_proj_weight': 'self_attn.in_proj_weight', 'self_attn.in_proj_bias': 'self_attn.in_proj_bias', 'self_attn.out_proj.weight': 'self_attn.out_proj.weight', 'self_attn.out_proj.bias': 'self_attn.out_proj.bias', 'norm2.weight': 'self_attn_layer_norm.weight', 'norm2.bias': 'self_attn_layer_norm.bias', 'linear1.weight': 'fc1.weight', 'linear1.bias': 'fc1.bias', 'linear2.weight': 'fc2.weight', 'linear2.bias': 'fc2.bias', 'norm3.weight': 'final_layer_norm.weight', 'norm3.bias': 'final_layer_norm.bias', } for layer_num in range(config.decoder_layers): source_prefix_decoder = f'transformer.decoder.layers.{layer_num}.' target_prefix_decoder = f'model.decoder.layers.{layer_num}.' for source_name, target_name in key_mappings_decoder.items(): rename_keys.append((source_prefix_decoder + source_name, target_prefix_decoder + target_name)) ########################################## DECODER - END ########################################## Additional - START for layer_name, params in state_dict.items(): #### TEXT BACKBONE if "bert" in layer_name: rename_keys.append((layer_name, layer_name.replace("bert", "model.text_backbone"))) #### INPUT PROJ - PROJECT OUTPUT FEATURES FROM VISION BACKBONE if "input_proj" in layer_name: rename_keys.append((layer_name, layer_name.replace("input_proj", "model.input_proj_vision"))) #### INPUT PROJ - PROJECT OUTPUT FEATURES FROM TEXT BACKBONE if "feat_map" in layer_name: rename_keys.append((layer_name, layer_name.replace("feat_map", "model.text_projection"))) #### DECODER REFERENCE POINT HEAD if "transformer.decoder.ref_point_head" in layer_name: rename_keys.append((layer_name, layer_name.replace("transformer.decoder.ref_point_head", "model.decoder.reference_points_head"))) #### DECODER BBOX EMBED if "transformer.decoder.bbox_embed" in layer_name: rename_keys.append((layer_name, layer_name.replace("transformer.decoder.bbox_embed", "model.decoder.bbox_embed"))) if "transformer.enc_output" in layer_name: rename_keys.append((layer_name, layer_name.replace("transformer", "model"))) if "transformer.enc_out_bbox_embed" in layer_name: rename_keys.append((layer_name, layer_name.replace("transformer.enc_out_bbox_embed", "model.encoder_output_bbox_embed"))) rename_keys.append(("transformer.level_embed", "model.level_embed")) rename_keys.append(("transformer.decoder.norm.weight", "model.decoder.layer_norm.weight")) rename_keys.append(("transformer.decoder.norm.bias", "model.decoder.layer_norm.bias")) rename_keys.append(("transformer.tgt_embed.weight", "model.query_position_embeddings.weight")) ########################################## Additional - END # fmt: on return rename_keys def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val # we split up the matrix of each encoder layer into queries, keys and values def read_in_q_k_v_encoder(state_dict, config): ########################################## VISION BACKBONE - START embed_dim = config.backbone_config.embed_dim for layer, depth in enumerate(config.backbone_config.depths): hidden_size = embed_dim * 2**layer for block in range(depth): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"backbone.0.layers.{layer}.blocks.{block}.attn.qkv.weight") in_proj_bias = state_dict.pop(f"backbone.0.layers.{layer}.blocks.{block}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict state_dict[ f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.attention.self.query.weight" ] = in_proj_weight[:hidden_size, :] state_dict[ f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.attention.self.query.bias" ] = in_proj_bias[:hidden_size] state_dict[ f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.attention.self.key.weight" ] = in_proj_weight[hidden_size : hidden_size * 2, :] state_dict[ f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.attention.self.key.bias" ] = in_proj_bias[hidden_size : hidden_size * 2] state_dict[ f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.attention.self.value.weight" ] = in_proj_weight[-hidden_size:, :] state_dict[ f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.attention.self.value.bias" ] = in_proj_bias[-hidden_size:] ########################################## VISION BACKBONE - END def read_in_q_k_v_text_enhancer(state_dict, config): hidden_size = config.hidden_size for idx in range(config.encoder_layers): # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"model.encoder.layers.{idx}.text_enhancer_layer.self_attn.in_proj_weight") in_proj_bias = state_dict.pop(f"model.encoder.layers.{idx}.text_enhancer_layer.self_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"model.encoder.layers.{idx}.text_enhancer_layer.self_attn.query.weight"] = in_proj_weight[ :hidden_size, : ] state_dict[f"model.encoder.layers.{idx}.text_enhancer_layer.self_attn.query.bias"] = in_proj_bias[:hidden_size] state_dict[f"model.encoder.layers.{idx}.text_enhancer_layer.self_attn.key.weight"] = in_proj_weight[ hidden_size : hidden_size * 2, : ] state_dict[f"model.encoder.layers.{idx}.text_enhancer_layer.self_attn.key.bias"] = in_proj_bias[ hidden_size : hidden_size * 2 ] state_dict[f"model.encoder.layers.{idx}.text_enhancer_layer.self_attn.value.weight"] = in_proj_weight[ -hidden_size:, : ] state_dict[f"model.encoder.layers.{idx}.text_enhancer_layer.self_attn.value.bias"] = in_proj_bias[ -hidden_size: ] def read_in_q_k_v_decoder(state_dict, config): hidden_size = config.hidden_size for idx in range(config.decoder_layers): # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"model.decoder.layers.{idx}.self_attn.in_proj_weight") in_proj_bias = state_dict.pop(f"model.decoder.layers.{idx}.self_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"model.decoder.layers.{idx}.self_attn.query.weight"] = in_proj_weight[:hidden_size, :] state_dict[f"model.decoder.layers.{idx}.self_attn.query.bias"] = in_proj_bias[:hidden_size] state_dict[f"model.decoder.layers.{idx}.self_attn.key.weight"] = in_proj_weight[ hidden_size : hidden_size * 2, : ] state_dict[f"model.decoder.layers.{idx}.self_attn.key.bias"] = in_proj_bias[hidden_size : hidden_size * 2] state_dict[f"model.decoder.layers.{idx}.self_attn.value.weight"] = in_proj_weight[-hidden_size:, :] state_dict[f"model.decoder.layers.{idx}.self_attn.value.bias"] = in_proj_bias[-hidden_size:] # read in weights + bias of cross-attention in_proj_weight = state_dict.pop(f"model.decoder.layers.{idx}.encoder_attn_text.in_proj_weight") in_proj_bias = state_dict.pop(f"model.decoder.layers.{idx}.encoder_attn_text.in_proj_bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"model.decoder.layers.{idx}.encoder_attn_text.query.weight"] = in_proj_weight[:hidden_size, :] state_dict[f"model.decoder.layers.{idx}.encoder_attn_text.query.bias"] = in_proj_bias[:hidden_size] state_dict[f"model.decoder.layers.{idx}.encoder_attn_text.key.weight"] = in_proj_weight[ hidden_size : hidden_size * 2, : ] state_dict[f"model.decoder.layers.{idx}.encoder_attn_text.key.bias"] = in_proj_bias[ hidden_size : hidden_size * 2 ] state_dict[f"model.decoder.layers.{idx}.encoder_attn_text.value.weight"] = in_proj_weight[-hidden_size:, :] state_dict[f"model.decoder.layers.{idx}.encoder_attn_text.value.bias"] = in_proj_bias[-hidden_size:] # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw).convert("RGB") return image def preprocess_caption(caption: str) -> str: result = caption.lower().strip() if result.endswith("."): return result return result + "." @torch.no_grad() def convert_grounding_dino_checkpoint(args): model_name = args.model_name pytorch_dump_folder_path = args.pytorch_dump_folder_path push_to_hub = args.push_to_hub verify_logits = args.verify_logits checkpoint_mapping = { "grounding-dino-tiny": "https://huggingface.co/ShilongLiu/GroundingDino/resolve/main/groundingdino_swint_ogc.pth", "grounding-dino-base": "https://huggingface.co/ShilongLiu/GroundingDino/resolve/main/groundingdino_swinb_cogcoor.pth", } # Define default GroundingDino configuation config = get_grounding_dino_config(model_name) # Load original checkpoint checkpoint_url = checkpoint_mapping[model_name] original_state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")["model"] original_state_dict = {k.replace("module.", ""): v for k, v in original_state_dict.items()} for name, param in original_state_dict.items(): print(name, param.shape) # Rename keys new_state_dict = original_state_dict.copy() rename_keys = create_rename_keys(original_state_dict, config) for src, dest in rename_keys: rename_key(new_state_dict, src, dest) read_in_q_k_v_encoder(new_state_dict, config) read_in_q_k_v_text_enhancer(new_state_dict, config) read_in_q_k_v_decoder(new_state_dict, config) # Load HF model model = GroundingDinoForObjectDetection(config) model.eval() missing_keys, unexpected_keys = model.load_state_dict(new_state_dict, strict=False) print("Missing keys:", missing_keys) print("Unexpected keys:", unexpected_keys) # Load and process test image image = prepare_img() transforms = T.Compose([T.Resize(size=800, max_size=1333), T.ToTensor(), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)]) original_pixel_values = transforms(image).unsqueeze(0) image_processor = GroundingDinoImageProcessor() tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") processor = GroundingDinoProcessor(image_processor=image_processor, tokenizer=tokenizer) text = "a cat" inputs = processor(images=image, text=preprocess_caption(text), return_tensors="pt") assert torch.allclose(original_pixel_values, inputs.pixel_values, atol=1e-4) if verify_logits: # Running forward with torch.no_grad(): outputs = model(**inputs) print(outputs.logits[0, :3, :3]) expected_slice = torch.tensor( [[-4.8913, -0.1900, -0.2161], [-4.9653, -0.3719, -0.3950], [-5.9599, -3.3765, -3.3104]] ) assert torch.allclose(outputs.logits[0, :3, :3], expected_slice, atol=1e-4) print("Looks ok!") if pytorch_dump_folder_path is not None: model.save_pretrained(pytorch_dump_folder_path) processor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: model.push_to_hub(f"EduardoPacheco/{model_name}") processor.push_to_hub(f"EduardoPacheco/{model_name}") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="grounding-dino-tiny", type=str, choices=["grounding-dino-tiny", "grounding-dino-base"], help="Name of the GroundingDino model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) parser.add_argument( "--verify_logits", action="store_false", help="Whether or not to verify logits after conversion." ) args = parser.parse_args() convert_grounding_dino_checkpoint(args)
transformers/src/transformers/models/grounding_dino/convert_grounding_dino_to_hf.py/0
{ "file_path": "transformers/src/transformers/models/grounding_dino/convert_grounding_dino_to_hf.py", "repo_id": "transformers", "token_count": 11476 }
133
# coding=utf-8 # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Idefics model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class IdeficsVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`IdeficsModel`]. It is used to instantiate an Idefics model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Idefics-9B. e.g. [HuggingFaceM4/idefics-9b](https://huggingface.co/HuggingFaceM4/idefics-9b) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: embed_dim (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. (elsewhere referred to as `hidden_size`) image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. intermediate_size (`int`, *optional*, defaults to 5120): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. patch_size (`int`, *optional*, defaults to 14): The size (resolution) of each patch. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. num_channels (`int`, *optional*, defaults to 3): Number of image channels. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. initializer_factor (`float`, *optional*, defaults to 1.0): A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization testing). """ model_type = "idefics_vision" attribute_map = { "hidden_size": "embed_dim", } def __init__( self, embed_dim=768, image_size=224, intermediate_size=5120, patch_size=14, num_hidden_layers=32, num_attention_heads=16, num_channels=3, hidden_act="gelu", layer_norm_eps=1e-5, attention_dropout=0.0, initializer_range=0.02, initializer_factor=1.0, **kwargs, ): self.embed_dim = embed_dim self.image_size = image_size self.intermediate_size = intermediate_size self.patch_size = patch_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_channels = num_channels self.layer_norm_eps = layer_norm_eps self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.initializer_factor = initializer_factor self.hidden_act = hidden_act super().__init__(**kwargs) class IdeficsPerceiverConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`IdeficsModel`]. It is used to instantiate an Idefics model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Idefics-9B. e.g. [HuggingFaceM4/idefics-9b](https://huggingface.co/HuggingFaceM4/idefics-9b) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: use_resampler (`bool`, *optional*, defaults to `False`): Whether or not to use the resampler resampler_n_latents (`int`, *optional*, defaults to 64): Number of latent embeddings to resample ("compress") the input sequence to (usually < 128). resampler_depth (`int`, *optional*, defaults to 6): Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3). resampler_n_heads (`int`, *optional*, defaults to 16): Number of heads in each Transformer block (for multi-headed self-attention). resampler_head_dim (`int`, *optional*, defaults to 96): Dimensionality of each head projection in the Transformer block. qk_layer_norms_perceiver (`bool`, *optional*, defaults to `False`): Whether or not to use qk layer norms in perceiver """ model_type = "idefics_perciever" def __init__( self, use_resampler=False, resampler_n_latents=64, resampler_depth=6, resampler_n_heads=16, resampler_head_dim=96, qk_layer_norms_perceiver=False, **kwargs, ): self.use_resampler = use_resampler self.resampler_n_latents = resampler_n_latents self.resampler_depth = resampler_depth self.resampler_n_heads = resampler_n_heads self.resampler_head_dim = resampler_head_dim self.qk_layer_norms_perceiver = qk_layer_norms_perceiver super().__init__(**kwargs) class IdeficsConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`IdeficsModel`]. It is used to instantiate an Idefics model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Idefics-9B. e.g. [HuggingFaceM4/idefics-9b](https://huggingface.co/HuggingFaceM4/idefics-9b) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: additional_vocab_size (`int`, *optional*, defaults to 0): Additional vocabulary size of the model, typically for the special "<img>" token. Additional vocab tokens are always trainable whereas regular vocab tokens can be frozen or not. vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the Idefics model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`~IdeficsModel`] hidden_size (`int`, *optional*, defaults to 4096): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 11008): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer encoder. dropout (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. alpha_initializer (`str`, *optional*, defaults to `"zeros"`): Initialization type for the alphas. alphas_initializer_range (`float`, *optional*, defaults to 0.0): The standard deviation of the truncated_normal_initializer for initializing the alphas in the Gated Cross Attention. alpha_type (`str`, *optional*, defaults to `"float"`): Whether the gating alphas should be vectors or single floats. rms_norm_eps (`float`, *optional*, defaults to 1e-6): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. pad_token_id (`int`, *optional*, defaults to 0) Padding token id. bos_token_id (`int`, *optional*, defaults to 1) Beginning of stream token id. eos_token_id (`int`, *optional*, defaults to 2) End of stream token id. tie_word_embeddings(`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings cross_layer_interval (`int`, *optional*, default to 1) Interval for cross attention (from text to image) layers. qk_layer_norms (`bool`, *optional*, defaults to `False`): Whether to add layer norm after q and k freeze_text_layers (`bool`, *optional*, defaults to `True`): Whether to freeze text layers freeze_text_module_exceptions (`bool`, *optional*, defaults to `[]`): Exceptions to freezing text layers when `freeze_text_layers` is `True` freeze_lm_head (`bool`, *optional*, defaults to `False`): Whether to freeze lm head freeze_vision_layers (`bool`, *optional*, defaults to `True`): Whether to freeze vision layers freeze_vision_module_exceptions (`bool`, *optional*, defaults to `[]`): Exceptions to freezing vision layers when `freeze_vision_layers` is `True` use_resampler (`bool`, *optional*, defaults to `False`): Whether to use the Resampler vision_config (`IdeficsVisionConfig`, *optional*): Custom vision config or dict perceiver_config (`IdeficsPerceiverConfig`, *optional*): Custom perceiver config or dict Example: ```python >>> from transformers import IdeficsModel, IdeficsConfig >>> # Initializing a Idefics idefics-9b style configuration >>> configuration = IdeficsConfig() >>> # Initializing a model from the idefics-9b style configuration >>> model = IdeficsModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "idefics" sub_configs = {"perceiver_config": IdeficsPerceiverConfig, "vision_config": IdeficsVisionConfig} def __init__( self, vocab_size=32000, additional_vocab_size=0, hidden_size=4096, intermediate_size=11008, num_hidden_layers=32, num_attention_heads=32, dropout=0.0, hidden_act="silu", initializer_range=0.02, alpha_initializer="zeros", alphas_initializer_range=0.0, alpha_type="float", rms_norm_eps=1e-6, use_cache=True, pad_token_id=0, bos_token_id=1, eos_token_id=2, tie_word_embeddings=False, cross_layer_interval=1, qk_layer_norms=False, freeze_text_layers=True, freeze_text_module_exceptions=[], freeze_lm_head=False, freeze_vision_layers=True, freeze_vision_module_exceptions=[], use_resampler=False, vision_config=None, perceiver_config=None, **kwargs, ): self.vocab_size = vocab_size self.additional_vocab_size = additional_vocab_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.dropout = dropout self.hidden_act = hidden_act self.initializer_range = initializer_range self.alpha_initializer = alpha_initializer self.alphas_initializer_range = alphas_initializer_range self.alpha_type = alpha_type self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.cross_layer_interval = cross_layer_interval self.qk_layer_norms = qk_layer_norms self.freeze_vision_layers = freeze_vision_layers self.freeze_text_layers = freeze_text_layers self.freeze_text_module_exceptions = freeze_text_module_exceptions self.freeze_vision_module_exceptions = freeze_vision_module_exceptions self.freeze_lm_head = freeze_lm_head self.use_resampler = use_resampler if perceiver_config is None: self.perceiver_config = IdeficsPerceiverConfig() elif isinstance(perceiver_config, dict): self.perceiver_config = IdeficsPerceiverConfig(**perceiver_config) elif isinstance(perceiver_config, IdeficsPerceiverConfig): self.perceiver_config = perceiver_config if vision_config is None: self.vision_config = IdeficsVisionConfig() elif isinstance(vision_config, dict): self.vision_config = IdeficsVisionConfig(**vision_config) elif isinstance(vision_config, IdeficsVisionConfig): self.vision_config = vision_config super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) # IMPORTANT: Do not do any __init__ args-based checks in the constructor, since # PretrainedConfig.from_dict first instantiates the class with the config dict and only then # updates the config object with `kwargs` from from_pretrained, so during the instantiation # of this object many attributes have default values and haven't yet been overridden. # Do any required checks inside `from_pretrained` once the superclass' `from_pretrained` was run. __all__ = ["IdeficsConfig"]
transformers/src/transformers/models/idefics/configuration_idefics.py/0
{ "file_path": "transformers/src/transformers/models/idefics/configuration_idefics.py", "repo_id": "transformers", "token_count": 5870 }
134
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Idefics3 model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING, AutoConfig logger = logging.get_logger(__name__) class Idefics3VisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Idefics3VisionModel`]. It is used to instantiate a Idefics3 vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the SigLIP checkpoint [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) used in the Idefics3 model [HuggingFaceM4/Idefics3-8B-Llama3](https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 1152): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. num_channels (`int`, *optional*, defaults to 3): Number of channels in the input images. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 32): The size (resolution) of each patch. hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. Example: ```python >>> from transformers.models.idefics3.modeling_idefics3 import Idefics3VisionTransformer >>> from transformers.models.idefics3.configuration_idefics3 import Idefics3VisionConfig >>> # Initializing a Idefics3VisionConfig with google/siglip-base-patch16-224 style configuration >>> configuration = Idefics3VisionConfig() >>> # Initializing a Idefics3VisionTransformer (with random weights) from the google/siglip-base-patch16-224 style configuration >>> model = Idefics3VisionTransformer(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "idefics3_vision" base_config_key = "vision_config" def __init__( self, hidden_size=1152, intermediate_size=3072, num_hidden_layers=12, num_attention_heads=16, num_channels=3, image_size=224, patch_size=32, hidden_act="gelu_pytorch_tanh", layer_norm_eps=1e-6, attention_dropout=0.0, initializer_range=0.02, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_channels = num_channels self.patch_size = patch_size self.image_size = image_size self.attention_dropout = attention_dropout self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.initializer_range = initializer_range class Idefics3Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Idefics3Model`]. It is used to instantiate a Idefics3 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the model of the Idefics3 [HuggingFaceM4/Idefics3-8B-Llama3](https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should cache the key/value pairs of the attention mechanism. Only relevant if `config.is_decoder=True`. image_token_id (`int`, *optional*, defaults to 128257): The id of the "image" token. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether or not to tie the word embeddings with the token embeddings. vision_config (`IdeficsVisionConfig` or `dict`, *optional*, defaults to `IdeficsVisionConfig`): Custom vision config or dict for the vision tower text_config (`PretrainedConfig` or `dict`, *optional*, defaults to `LlamaConfig`): Custom text config or dict for the text model scale_factor (`int`, *optional*, defaults to 2): The scale factor for the image encoder. pad_token_id (`int`, *optional*, defaults to 128002): The id of the padding token. Example: ```python >>> from transformers import Idefics3Model, Idefics3Config >>> # Initializing configuration >>> configuration = Idefics3Config() >>> # Initializing a model from the configuration >>> model = Idefics3Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "idefics3" sub_configs = {"text_config": AutoConfig, "vision_config": Idefics3VisionConfig} def __init__( self, use_cache=True, image_token_id=128257, tie_word_embeddings=False, vision_config=None, text_config=None, scale_factor=2, pad_token_id=128_002, **kwargs, ): self.image_token_id = image_token_id self.use_cache = use_cache self.tie_word_embeddings = tie_word_embeddings if vision_config is None: self.vision_config = Idefics3VisionConfig() logger.info("vision_config is None, using default vision config") elif isinstance(vision_config, dict): self.vision_config = Idefics3VisionConfig(**vision_config) elif isinstance(vision_config, Idefics3VisionConfig): self.vision_config = vision_config if isinstance(text_config, dict): text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama" text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config) elif text_config is None: logger.info("text_config is None, using default text config") text_config = CONFIG_MAPPING["llama"]( rms_norm_eps=1e-5, pad_token_id=pad_token_id, tie_word_embeddings=False, ) self.text_config = text_config self.scale_factor = scale_factor super().__init__(**kwargs, pad_token_id=pad_token_id, tie_word_embeddings=tie_word_embeddings) __all__ = ["Idefics3Config", "Idefics3VisionConfig"]
transformers/src/transformers/models/idefics3/configuration_idefics3.py/0
{ "file_path": "transformers/src/transformers/models/idefics3/configuration_idefics3.py", "repo_id": "transformers", "token_count": 3238 }
135
# coding=utf-8 # Copyright 2024 AI21 Labs Ltd. and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Jamba model configuration""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class JambaConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`JambaModel`]. It is used to instantiate a Jamba model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Jamba-v0.1 model. [ai21labs/Jamba-v0.1](https://huggingface.co/ai21labs/Jamba-v0.1) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 65536): Vocabulary size of the Jamba model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`JambaModel`] tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the model has a output word embedding layer. hidden_size (`int`, *optional*, defaults to 4096): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 14336): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer encoder. num_key_value_heads (`int`, *optional*, defaults to 8): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. num_logits_to_keep (`int` or `None`, *optional*, defaults to 1): Number of prompt logits to calculate during generation. If `None`, all logits will be calculated. If an integer value, only last `num_logits_to_keep` logits will be calculated. Default is 1 because only the logits of the last prompt token are needed for generation. For long sequences, the logits for the entire sequence may use a lot of memory so, setting `num_logits_to_keep=1` will reduce memory footprint significantly. output_router_logits (`bool`, *optional*, defaults to `False`): Whether or not the router logits should be returned by the model. Enabling this will also allow the model to output the auxiliary loss. See [here]() for more details router_aux_loss_coef (`float`, *optional*, defaults to 0.001): The aux loss factor for the total loss. pad_token_id (`int`, *optional*, defaults to 0): The id of the padding token. bos_token_id (`int`, *optional*, defaults to 1): The id of the "beginning-of-sequence" token. eos_token_id (`int`, *optional*, defaults to 2): The id of the "end-of-sequence" token. sliding_window (`int`, *optional*): Sliding window attention window size. If not specified, will default to `None`. max_position_embeddings (`int`, *optional*, defaults to 262144): This value doesn't have any real effect. The maximum sequence length that this model is intended to be used with. It can be used with longer sequences, but performance may degrade. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. num_experts_per_tok (`int`, *optional*, defaults to 2): The number of experts to root per-token, can be also interpreted as the `top-p` routing parameter num_experts (`int`, *optional*, defaults to 16): Number of experts per Sparse MLP layer. expert_layer_period (`int`, *optional*, defaults to 2): Once in this many layers, we will have an expert layer expert_layer_offset (`int`, *optional*, defaults to 1): The first layer index that contains an expert mlp layer attn_layer_period (`int`, *optional*, defaults to 8): Once in this many layers, we will have a vanilla attention layer attn_layer_offset (`int`, *optional*, defaults to 4): The first layer index that contains a vanilla attention mlp layer use_mamba_kernels (`bool`, *optional*, defaults to `True`): Flag indicating whether or not to use the fast mamba kernels. These are available only if `mamba-ssm` and `causal-conv1d` are installed, and the mamba modules are running on a CUDA device. Raises ValueError if `True` and kernels are not available mamba_d_state (`int`, *optional*, defaults to 16): The dimension the mamba state space latents mamba_d_conv (`int`, *optional*, defaults to 4): The size of the mamba convolution kernel mamba_expand (`int`, *optional*, defaults to 2): Expanding factor (relative to hidden_size) used to determine the mamba intermediate size mamba_dt_rank (`Union[int,str]`, *optional*, defaults to `"auto"`): Rank of the mamba discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)` mamba_conv_bias (`bool`, *optional*, defaults to `True`): Flag indicating whether or not to use bias in the convolution layer of the mamba mixer block. mamba_proj_bias (`bool`, *optional*, defaults to `False`): Flag indicating whether or not to use bias in the input and output projections (["in_proj", "out_proj"]) of the mamba mixer block """ model_type = "jamba" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=65536, tie_word_embeddings=False, hidden_size=4096, intermediate_size=14336, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=8, hidden_act="silu", initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, num_logits_to_keep=1, output_router_logits=False, router_aux_loss_coef=0.001, pad_token_id=0, bos_token_id=1, eos_token_id=2, sliding_window=None, max_position_embeddings=262144, attention_dropout=0.0, num_experts_per_tok=2, num_experts=16, expert_layer_period=2, expert_layer_offset=1, attn_layer_period=8, attn_layer_offset=4, use_mamba_kernels=True, mamba_d_state=16, mamba_d_conv=4, mamba_expand=2, mamba_dt_rank="auto", mamba_conv_bias=True, mamba_proj_bias=False, **kwargs, ): self.vocab_size = vocab_size self.tie_word_embeddings = tie_word_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.sliding_window = sliding_window self.max_position_embeddings = max_position_embeddings self.attention_dropout = attention_dropout # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.num_logits_to_keep = num_logits_to_keep self.output_router_logits = output_router_logits self.router_aux_loss_coef = router_aux_loss_coef self.num_experts_per_tok = num_experts_per_tok self.num_experts = num_experts self.expert_layer_period = expert_layer_period self.expert_layer_offset = expert_layer_offset self.attn_layer_period = attn_layer_period self.attn_layer_offset = attn_layer_offset self._check_supported_offset("attention", self.attn_layer_period, self.attn_layer_offset) self._check_supported_offset("expert", self.expert_layer_period, self.expert_layer_offset) self.use_mamba_kernels = use_mamba_kernels self.mamba_d_state = mamba_d_state self.mamba_d_conv = mamba_d_conv self.mamba_expand = mamba_expand self.mamba_dt_rank = math.ceil(self.hidden_size / 16) if mamba_dt_rank == "auto" else mamba_dt_rank self.mamba_conv_bias = mamba_conv_bias self.mamba_proj_bias = mamba_proj_bias super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) @property def layers_block_type(self): return [ "attention" if i % self.attn_layer_period == self.attn_layer_offset else "mamba" for i in range(self.num_hidden_layers) ] @property def layers_num_experts(self): return [ self.num_experts if i % self.expert_layer_period == self.expert_layer_offset else 1 for i in range(self.num_hidden_layers) ] def _check_supported_offset(self, property_: str, period: int, offset: int): if offset >= period: raise ValueError( f"{property_} layer offset ({offset}) must be smaller than {property_} layer period ({period})" ) __all__ = ["JambaConfig"]
transformers/src/transformers/models/jamba/configuration_jamba.py/0
{ "file_path": "transformers/src/transformers/models/jamba/configuration_jamba.py", "repo_id": "transformers", "token_count": 4654 }
136
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fast tokenization class for LayoutLMv3. It overwrites 2 methods of the slow tokenizer class, namely _batch_encode_plus and _encode_plus, in which the Rust tokenizer is used. """ import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import processors from ...tokenization_utils_base import ( BatchEncoding, EncodedInput, PaddingStrategy, PreTokenizedInput, TensorType, TextInput, TextInputPair, TruncationStrategy, ) from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import add_end_docstrings, logging from .tokenization_layoutlmv3 import ( LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING, LayoutLMv3Tokenizer, ) logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} class LayoutLMv3TokenizerFast(PreTrainedTokenizerFast): r""" Construct a "fast" LayoutLMv3 tokenizer (backed by HuggingFace's *tokenizers* library). Based on BPE. This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (RoBERTa tokenizer detect beginning of words by the preceding space). trim_offsets (`bool`, *optional*, defaults to `True`): Whether the post processing step should trim offsets to avoid including whitespaces. cls_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`): The bounding box to use for the special [CLS] token. sep_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`): The bounding box to use for the special [SEP] token. pad_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`): The bounding box to use for the special [PAD] token. pad_token_label (`int`, *optional*, defaults to -100): The label to use for padding tokens. Defaults to -100, which is the `ignore_index` of PyTorch's CrossEntropyLoss. only_label_first_subword (`bool`, *optional*, defaults to `True`): Whether or not to only label the first subword, in case word labels are provided. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = LayoutLMv3Tokenizer def __init__( self, vocab_file=None, merges_file=None, tokenizer_file=None, errors="replace", bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", add_prefix_space=True, trim_offsets=True, cls_token_box=[0, 0, 0, 0], sep_token_box=[0, 0, 0, 0], pad_token_box=[0, 0, 0, 0], pad_token_label=-100, only_label_first_subword=True, **kwargs, ): super().__init__( vocab_file, merges_file, tokenizer_file=tokenizer_file, errors=errors, bos_token=bos_token, eos_token=eos_token, sep_token=sep_token, cls_token=cls_token, unk_token=unk_token, pad_token=pad_token, mask_token=mask_token, add_prefix_space=add_prefix_space, trim_offsets=trim_offsets, cls_token_box=cls_token_box, sep_token_box=sep_token_box, pad_token_box=pad_token_box, pad_token_label=pad_token_label, only_label_first_subword=only_label_first_subword, **kwargs, ) tokenizer_component = "post_processor" tokenizer_component_instance = getattr(self.backend_tokenizer, tokenizer_component, None) if tokenizer_component_instance: state = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: state["sep"] = tuple(state["sep"]) if "cls" in state: state["cls"] = tuple(state["cls"]) changes_to_apply = False if state.get("add_prefix_space", add_prefix_space) != add_prefix_space: state["add_prefix_space"] = add_prefix_space changes_to_apply = True if state.get("trim_offsets", trim_offsets) != trim_offsets: state["trim_offsets"] = trim_offsets changes_to_apply = True if changes_to_apply: component_class = getattr(processors, state.pop("type")) new_value = component_class(**state) setattr(self.backend_tokenizer, tokenizer_component, new_value) # additional properties self.cls_token_box = cls_token_box self.sep_token_box = sep_token_box self.pad_token_box = pad_token_box self.pad_token_label = pad_token_label self.only_label_first_subword = only_label_first_subword @add_end_docstrings(LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast.__call__ def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, boxes: Union[List[List[int]], List[List[List[int]]]] = None, word_labels: Optional[Union[List[int], List[List[int]]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of sequences with word-level normalized bounding boxes and optional labels. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings (words of a single example or questions of a batch of examples) or a list of list of strings (batch of words). text_pair (`List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence should be a list of strings (pretokenized string). boxes (`List[List[int]]`, `List[List[List[int]]]`): Word-level bounding boxes. Each bounding box should be normalized to be on a 0-1000 scale. word_labels (`List[int]`, `List[List[int]]`, *optional*): Word-level integer labels (for token classification tasks such as FUNSD, CORD). """ # Input type checking for clearer error def _is_valid_text_input(t): if isinstance(t, str): # Strings are fine return True elif isinstance(t, (list, tuple)): # List are fine as long as they are... if len(t) == 0: # ... empty return True elif isinstance(t[0], str): # ... list of strings return True elif isinstance(t[0], (list, tuple)): # ... list with an empty list or with a list of strings return len(t[0]) == 0 or isinstance(t[0][0], str) else: return False else: return False if text_pair is not None: # in case text + text_pair are provided, text = questions, text_pair = words if not _is_valid_text_input(text): raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ") if not isinstance(text_pair, (list, tuple)): raise ValueError( "Words must be of type `List[str]` (single pretokenized example), " "or `List[List[str]]` (batch of pretokenized examples)." ) else: # in case only text is provided => must be words if not isinstance(text, (list, tuple)): raise ValueError( "Words must be of type `List[str]` (single pretokenized example), " "or `List[List[str]]` (batch of pretokenized examples)." ) if text_pair is not None: is_batched = isinstance(text, (list, tuple)) else: is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple)) words = text if text_pair is None else text_pair if boxes is None: raise ValueError("You must provide corresponding bounding boxes") if is_batched: if len(words) != len(boxes): raise ValueError("You must provide words and boxes for an equal amount of examples") for words_example, boxes_example in zip(words, boxes): if len(words_example) != len(boxes_example): raise ValueError("You must provide as many words as there are bounding boxes") else: if len(words) != len(boxes): raise ValueError("You must provide as many words as there are bounding boxes") if is_batched: if text_pair is not None and len(text) != len(text_pair): raise ValueError( f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:" f" {len(text_pair)}." ) batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text is_pair = bool(text_pair is not None) return self.batch_encode_plus( batch_text_or_text_pairs=batch_text_or_text_pairs, is_pair=is_pair, boxes=boxes, word_labels=word_labels, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) else: return self.encode_plus( text=text, text_pair=text_pair, boxes=boxes, word_labels=word_labels, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) @add_end_docstrings(LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast.batch_encode_plus def batch_encode_plus( self, batch_text_or_text_pairs: Union[ List[TextInput], List[TextInputPair], List[PreTokenizedInput], ], is_pair: bool = None, boxes: Optional[List[List[List[int]]]] = None, word_labels: Optional[Union[List[int], List[List[int]]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._batch_encode_plus( batch_text_or_text_pairs=batch_text_or_text_pairs, is_pair=is_pair, boxes=boxes, word_labels=word_labels, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast.tokenize def tokenize(self, text: str, pair: Optional[str] = None, add_special_tokens: bool = False, **kwargs) -> List[str]: batched_input = [(text, pair)] if pair else [text] encodings = self._tokenizer.encode_batch( batched_input, add_special_tokens=add_special_tokens, is_pretokenized=False, **kwargs ) return encodings[0].tokens @add_end_docstrings(LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast.encode_plus def encode_plus( self, text: Union[TextInput, PreTokenizedInput], text_pair: Optional[PreTokenizedInput] = None, boxes: Optional[List[List[int]]] = None, word_labels: Optional[List[int]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Tokenize and prepare for the model a sequence or a pair of sequences. .. warning:: This method is deprecated, `__call__` should be used instead. Args: text (`str`, `List[str]`, `List[List[str]]`): The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings. text_pair (`List[str]` or `List[int]`, *optional*): Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a list of list of strings (words of a batch of examples). """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._encode_plus( text=text, boxes=boxes, text_pair=text_pair, word_labels=word_labels, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _batch_encode_plus( self, batch_text_or_text_pairs: Union[ List[TextInput], List[TextInputPair], List[PreTokenizedInput], ], is_pair: bool = None, boxes: Optional[List[List[List[int]]]] = None, word_labels: Optional[List[List[int]]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[str] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, ) -> BatchEncoding: if not isinstance(batch_text_or_text_pairs, list): raise TypeError(f"batch_text_or_text_pairs has to be a list (got {type(batch_text_or_text_pairs)})") # Set the truncation and padding strategy and restore the initial configuration self.set_truncation_and_padding( padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, ) if is_pair: batch_text_or_text_pairs = [(text.split(), text_pair) for text, text_pair in batch_text_or_text_pairs] encodings = self._tokenizer.encode_batch( batch_text_or_text_pairs, add_special_tokens=add_special_tokens, is_pretokenized=True, # we set this to True as LayoutLMv3 always expects pretokenized inputs ) # Convert encoding to dict # `Tokens` has type: Tuple[ # List[Dict[str, List[List[int]]]] or List[Dict[str, 2D-Tensor]], # List[EncodingFast] # ] # with nested dimensions corresponding to batch, overflows, sequence length tokens_and_encodings = [ self._convert_encoding( encoding=encoding, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=True if word_labels is not None else return_offsets_mapping, # we use offsets to create the labels return_length=return_length, verbose=verbose, ) for encoding in encodings ] # Convert the output to have dict[list] from list[dict] and remove the additional overflows dimension # From (variable) shape (batch, overflows, sequence length) to ~ (batch * overflows, sequence length) # (we say ~ because the number of overflow varies with the example in the batch) # # To match each overflowing sample with the original sample in the batch # we add an overflow_to_sample_mapping array (see below) sanitized_tokens = {} for key in tokens_and_encodings[0][0].keys(): stack = [e for item, _ in tokens_and_encodings for e in item[key]] sanitized_tokens[key] = stack sanitized_encodings = [e for _, item in tokens_and_encodings for e in item] # If returning overflowing tokens, we need to return a mapping # from the batch idx to the original sample if return_overflowing_tokens: overflow_to_sample_mapping = [] for i, (toks, _) in enumerate(tokens_and_encodings): overflow_to_sample_mapping += [i] * len(toks["input_ids"]) sanitized_tokens["overflow_to_sample_mapping"] = overflow_to_sample_mapping for input_ids in sanitized_tokens["input_ids"]: self._eventual_warn_about_too_long_sequence(input_ids, max_length, verbose) # create the token boxes token_boxes = [] for batch_index in range(len(sanitized_tokens["input_ids"])): if return_overflowing_tokens: original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index] else: original_index = batch_index token_boxes_example = [] for id, sequence_id, word_id in zip( sanitized_tokens["input_ids"][batch_index], sanitized_encodings[batch_index].sequence_ids, sanitized_encodings[batch_index].word_ids, ): if word_id is not None: if is_pair and sequence_id == 0: token_boxes_example.append(self.pad_token_box) else: token_boxes_example.append(boxes[original_index][word_id]) else: if id == self.cls_token_id: token_boxes_example.append(self.cls_token_box) elif id == self.sep_token_id: token_boxes_example.append(self.sep_token_box) elif id == self.pad_token_id: token_boxes_example.append(self.pad_token_box) else: raise ValueError("Id not recognized") token_boxes.append(token_boxes_example) sanitized_tokens["bbox"] = token_boxes # optionally, create the labels if word_labels is not None: labels = [] for batch_index in range(len(sanitized_tokens["input_ids"])): if return_overflowing_tokens: original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index] else: original_index = batch_index labels_example = [] previous_token_empty = False for id, offset, word_id in zip( sanitized_tokens["input_ids"][batch_index], sanitized_tokens["offset_mapping"][batch_index], sanitized_encodings[batch_index].word_ids, ): if word_id is not None: if self.only_label_first_subword: if offset[0] == 0 and not previous_token_empty: # Use the real label id for the first token of the word, and padding ids for the remaining tokens labels_example.append(word_labels[original_index][word_id]) else: labels_example.append(self.pad_token_label) if offset == (0, 0): previous_token_empty = True else: previous_token_empty = False else: labels_example.append(word_labels[original_index][word_id]) else: labels_example.append(self.pad_token_label) labels.append(labels_example) sanitized_tokens["labels"] = labels # finally, remove offsets if the user didn't want them if not return_offsets_mapping: del sanitized_tokens["offset_mapping"] return BatchEncoding(sanitized_tokens, sanitized_encodings, tensor_type=return_tensors) # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast._encode_plus def _encode_plus( self, text: Union[TextInput, PreTokenizedInput], text_pair: Optional[PreTokenizedInput] = None, boxes: Optional[List[List[int]]] = None, word_labels: Optional[List[int]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[bool] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: # make it a batched input # 2 options: # 1) only text, in case text must be a list of str # 2) text + text_pair, in which case text = str and text_pair a list of str batched_input = [(text, text_pair)] if text_pair else [text] batched_boxes = [boxes] batched_word_labels = [word_labels] if word_labels is not None else None batched_output = self._batch_encode_plus( batched_input, is_pair=bool(text_pair is not None), boxes=batched_boxes, word_labels=batched_word_labels, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) # Return tensor is None, then we can remove the leading batch axis # Overflowing tokens are returned as a batch of output so we keep them in this case if return_tensors is None and not return_overflowing_tokens: batched_output = BatchEncoding( { key: value[0] if len(value) > 0 and isinstance(value[0], list) else value for key, value in batched_output.items() }, batched_output.encodings, ) self._eventual_warn_about_too_long_sequence(batched_output["input_ids"], max_length, verbose) return batched_output # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast._pad def _pad( self, encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], max_length: Optional[int] = None, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_attention_mask: Optional[bool] = None, ) -> dict: """ Pad encoded inputs (on left/right and up to predefined length or max length in the batch) Args: encoded_inputs: Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). max_length: maximum length of the returned list and optionally padding length (see below). Will truncate by taking into account the special tokens. padding_strategy: PaddingStrategy to use for padding. - PaddingStrategy.LONGEST Pad to the longest sequence in the batch - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) - PaddingStrategy.DO_NOT_PAD: Do not pad The tokenizer padding sides are defined in self.padding_side: - 'left': pads on the left of the sequences - 'right': pads on the right of the sequences pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta). padding_side: The side on which the model should have padding applied. Should be selected between ['right', 'left']. Default value is picked from the class attribute of the same name. return_attention_mask: (optional) Set to False to avoid returning attention mask (default: set to model specifics) """ # Load from model defaults if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names required_input = encoded_inputs[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: max_length = len(required_input) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length # Initialize attention mask if not present. if return_attention_mask and "attention_mask" not in encoded_inputs: encoded_inputs["attention_mask"] = [1] * len(required_input) if needs_to_be_padded: difference = max_length - len(required_input) padding_side = padding_side if padding_side is not None else self.padding_side if padding_side == "right": if return_attention_mask: encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = ( encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference ) if "bbox" in encoded_inputs: encoded_inputs["bbox"] = encoded_inputs["bbox"] + [self.pad_token_box] * difference if "labels" in encoded_inputs: encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference elif padding_side == "left": if return_attention_mask: encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[ "token_type_ids" ] if "bbox" in encoded_inputs: encoded_inputs["bbox"] = [self.pad_token_box] * difference + encoded_inputs["bbox"] if "labels" in encoded_inputs: encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"] if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input else: raise ValueError("Invalid padding strategy:" + str(padding_side)) return encoded_inputs # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files) def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): output = [self.bos_token_id] + token_ids_0 + [self.eos_token_id] if token_ids_1 is None: return output return output + [self.eos_token_id] + token_ids_1 + [self.eos_token_id] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Args: Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not: make use of token type ids, therefore a list of zeros is returned. token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] __all__ = ["LayoutLMv3TokenizerFast"]
transformers/src/transformers/models/layoutlmv3/tokenization_layoutlmv3_fast.py/0
{ "file_path": "transformers/src/transformers/models/layoutlmv3/tokenization_layoutlmv3_fast.py", "repo_id": "transformers", "token_count": 18510 }
137
# coding=utf-8 # Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch LeViT model.""" import itertools from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ModelOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_levit import LevitConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "LevitConfig" # Base docstring _CHECKPOINT_FOR_DOC = "facebook/levit-128S" _EXPECTED_OUTPUT_SHAPE = [1, 16, 384] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "facebook/levit-128S" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" @dataclass class LevitForImageClassificationWithTeacherOutput(ModelOutput): """ Output type of [`LevitForImageClassificationWithTeacher`]. Args: logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Prediction scores as the average of the `cls_logits` and `distillation_logits`. cls_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the class token). distillation_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the distillation token). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. """ logits: torch.FloatTensor = None cls_logits: torch.FloatTensor = None distillation_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None class LevitConvEmbeddings(nn.Module): """ LeViT Conv Embeddings with Batch Norm, used in the initial patch embedding layer. """ def __init__( self, in_channels, out_channels, kernel_size, stride, padding, dilation=1, groups=1, bn_weight_init=1 ): super().__init__() self.convolution = nn.Conv2d( in_channels, out_channels, kernel_size, stride, padding, dilation=dilation, groups=groups, bias=False ) self.batch_norm = nn.BatchNorm2d(out_channels) def forward(self, embeddings): embeddings = self.convolution(embeddings) embeddings = self.batch_norm(embeddings) return embeddings class LevitPatchEmbeddings(nn.Module): """ LeViT patch embeddings, for final embeddings to be passed to transformer blocks. It consists of multiple `LevitConvEmbeddings`. """ def __init__(self, config): super().__init__() self.embedding_layer_1 = LevitConvEmbeddings( config.num_channels, config.hidden_sizes[0] // 8, config.kernel_size, config.stride, config.padding ) self.activation_layer_1 = nn.Hardswish() self.embedding_layer_2 = LevitConvEmbeddings( config.hidden_sizes[0] // 8, config.hidden_sizes[0] // 4, config.kernel_size, config.stride, config.padding ) self.activation_layer_2 = nn.Hardswish() self.embedding_layer_3 = LevitConvEmbeddings( config.hidden_sizes[0] // 4, config.hidden_sizes[0] // 2, config.kernel_size, config.stride, config.padding ) self.activation_layer_3 = nn.Hardswish() self.embedding_layer_4 = LevitConvEmbeddings( config.hidden_sizes[0] // 2, config.hidden_sizes[0], config.kernel_size, config.stride, config.padding ) self.num_channels = config.num_channels def forward(self, pixel_values): num_channels = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) embeddings = self.embedding_layer_1(pixel_values) embeddings = self.activation_layer_1(embeddings) embeddings = self.embedding_layer_2(embeddings) embeddings = self.activation_layer_2(embeddings) embeddings = self.embedding_layer_3(embeddings) embeddings = self.activation_layer_3(embeddings) embeddings = self.embedding_layer_4(embeddings) return embeddings.flatten(2).transpose(1, 2) class MLPLayerWithBN(nn.Module): def __init__(self, input_dim, output_dim, bn_weight_init=1): super().__init__() self.linear = nn.Linear(in_features=input_dim, out_features=output_dim, bias=False) self.batch_norm = nn.BatchNorm1d(output_dim) def forward(self, hidden_state): hidden_state = self.linear(hidden_state) hidden_state = self.batch_norm(hidden_state.flatten(0, 1)).reshape_as(hidden_state) return hidden_state class LevitSubsample(nn.Module): def __init__(self, stride, resolution): super().__init__() self.stride = stride self.resolution = resolution def forward(self, hidden_state): batch_size, _, channels = hidden_state.shape hidden_state = hidden_state.view(batch_size, self.resolution, self.resolution, channels)[ :, :: self.stride, :: self.stride ].reshape(batch_size, -1, channels) return hidden_state class LevitAttention(nn.Module): def __init__(self, hidden_sizes, key_dim, num_attention_heads, attention_ratio, resolution): super().__init__() self.num_attention_heads = num_attention_heads self.scale = key_dim**-0.5 self.key_dim = key_dim self.attention_ratio = attention_ratio self.out_dim_keys_values = attention_ratio * key_dim * num_attention_heads + key_dim * num_attention_heads * 2 self.out_dim_projection = attention_ratio * key_dim * num_attention_heads self.queries_keys_values = MLPLayerWithBN(hidden_sizes, self.out_dim_keys_values) self.activation = nn.Hardswish() self.projection = MLPLayerWithBN(self.out_dim_projection, hidden_sizes, bn_weight_init=0) points = list(itertools.product(range(resolution), range(resolution))) len_points = len(points) attention_offsets, indices = {}, [] for p1 in points: for p2 in points: offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1])) if offset not in attention_offsets: attention_offsets[offset] = len(attention_offsets) indices.append(attention_offsets[offset]) self.attention_bias_cache = {} self.attention_biases = torch.nn.Parameter(torch.zeros(num_attention_heads, len(attention_offsets))) self.register_buffer( "attention_bias_idxs", torch.LongTensor(indices).view(len_points, len_points), persistent=False ) @torch.no_grad() def train(self, mode=True): super().train(mode) if mode and self.attention_bias_cache: self.attention_bias_cache = {} # clear ab cache def get_attention_biases(self, device): if self.training: return self.attention_biases[:, self.attention_bias_idxs] else: device_key = str(device) if device_key not in self.attention_bias_cache: self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs] return self.attention_bias_cache[device_key] def forward(self, hidden_state): batch_size, seq_length, _ = hidden_state.shape queries_keys_values = self.queries_keys_values(hidden_state) query, key, value = queries_keys_values.view(batch_size, seq_length, self.num_attention_heads, -1).split( [self.key_dim, self.key_dim, self.attention_ratio * self.key_dim], dim=3 ) query = query.permute(0, 2, 1, 3) key = key.permute(0, 2, 1, 3) value = value.permute(0, 2, 1, 3) attention = query @ key.transpose(-2, -1) * self.scale + self.get_attention_biases(hidden_state.device) attention = attention.softmax(dim=-1) hidden_state = (attention @ value).transpose(1, 2).reshape(batch_size, seq_length, self.out_dim_projection) hidden_state = self.projection(self.activation(hidden_state)) return hidden_state class LevitAttentionSubsample(nn.Module): def __init__( self, input_dim, output_dim, key_dim, num_attention_heads, attention_ratio, stride, resolution_in, resolution_out, ): super().__init__() self.num_attention_heads = num_attention_heads self.scale = key_dim**-0.5 self.key_dim = key_dim self.attention_ratio = attention_ratio self.out_dim_keys_values = attention_ratio * key_dim * num_attention_heads + key_dim * num_attention_heads self.out_dim_projection = attention_ratio * key_dim * num_attention_heads self.resolution_out = resolution_out # resolution_in is the intial resolution, resoloution_out is final resolution after downsampling self.keys_values = MLPLayerWithBN(input_dim, self.out_dim_keys_values) self.queries_subsample = LevitSubsample(stride, resolution_in) self.queries = MLPLayerWithBN(input_dim, key_dim * num_attention_heads) self.activation = nn.Hardswish() self.projection = MLPLayerWithBN(self.out_dim_projection, output_dim) self.attention_bias_cache = {} points = list(itertools.product(range(resolution_in), range(resolution_in))) points_ = list(itertools.product(range(resolution_out), range(resolution_out))) len_points, len_points_ = len(points), len(points_) attention_offsets, indices = {}, [] for p1 in points_: for p2 in points: size = 1 offset = (abs(p1[0] * stride - p2[0] + (size - 1) / 2), abs(p1[1] * stride - p2[1] + (size - 1) / 2)) if offset not in attention_offsets: attention_offsets[offset] = len(attention_offsets) indices.append(attention_offsets[offset]) self.attention_biases = torch.nn.Parameter(torch.zeros(num_attention_heads, len(attention_offsets))) self.register_buffer( "attention_bias_idxs", torch.LongTensor(indices).view(len_points_, len_points), persistent=False ) @torch.no_grad() def train(self, mode=True): super().train(mode) if mode and self.attention_bias_cache: self.attention_bias_cache = {} # clear ab cache def get_attention_biases(self, device): if self.training: return self.attention_biases[:, self.attention_bias_idxs] else: device_key = str(device) if device_key not in self.attention_bias_cache: self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs] return self.attention_bias_cache[device_key] def forward(self, hidden_state): batch_size, seq_length, _ = hidden_state.shape key, value = ( self.keys_values(hidden_state) .view(batch_size, seq_length, self.num_attention_heads, -1) .split([self.key_dim, self.attention_ratio * self.key_dim], dim=3) ) key = key.permute(0, 2, 1, 3) value = value.permute(0, 2, 1, 3) query = self.queries(self.queries_subsample(hidden_state)) query = query.view(batch_size, self.resolution_out**2, self.num_attention_heads, self.key_dim).permute( 0, 2, 1, 3 ) attention = query @ key.transpose(-2, -1) * self.scale + self.get_attention_biases(hidden_state.device) attention = attention.softmax(dim=-1) hidden_state = (attention @ value).transpose(1, 2).reshape(batch_size, -1, self.out_dim_projection) hidden_state = self.projection(self.activation(hidden_state)) return hidden_state class LevitMLPLayer(nn.Module): """ MLP Layer with `2X` expansion in contrast to ViT with `4X`. """ def __init__(self, input_dim, hidden_dim): super().__init__() self.linear_up = MLPLayerWithBN(input_dim, hidden_dim) self.activation = nn.Hardswish() self.linear_down = MLPLayerWithBN(hidden_dim, input_dim) def forward(self, hidden_state): hidden_state = self.linear_up(hidden_state) hidden_state = self.activation(hidden_state) hidden_state = self.linear_down(hidden_state) return hidden_state class LevitResidualLayer(nn.Module): """ Residual Block for LeViT """ def __init__(self, module, drop_rate): super().__init__() self.module = module self.drop_rate = drop_rate def forward(self, hidden_state): if self.training and self.drop_rate > 0: rnd = torch.rand(hidden_state.size(0), 1, 1, device=hidden_state.device) rnd = rnd.ge_(self.drop_rate).div(1 - self.drop_rate).detach() hidden_state = hidden_state + self.module(hidden_state) * rnd return hidden_state else: hidden_state = hidden_state + self.module(hidden_state) return hidden_state class LevitStage(nn.Module): """ LeViT Stage consisting of `LevitMLPLayer` and `LevitAttention` layers. """ def __init__( self, config, idx, hidden_sizes, key_dim, depths, num_attention_heads, attention_ratio, mlp_ratio, down_ops, resolution_in, ): super().__init__() self.layers = [] self.config = config self.resolution_in = resolution_in # resolution_in is the intial resolution, resolution_out is final resolution after downsampling for _ in range(depths): self.layers.append( LevitResidualLayer( LevitAttention(hidden_sizes, key_dim, num_attention_heads, attention_ratio, resolution_in), self.config.drop_path_rate, ) ) if mlp_ratio > 0: hidden_dim = hidden_sizes * mlp_ratio self.layers.append( LevitResidualLayer(LevitMLPLayer(hidden_sizes, hidden_dim), self.config.drop_path_rate) ) if down_ops[0] == "Subsample": self.resolution_out = (self.resolution_in - 1) // down_ops[5] + 1 self.layers.append( LevitAttentionSubsample( *self.config.hidden_sizes[idx : idx + 2], key_dim=down_ops[1], num_attention_heads=down_ops[2], attention_ratio=down_ops[3], stride=down_ops[5], resolution_in=resolution_in, resolution_out=self.resolution_out, ) ) self.resolution_in = self.resolution_out if down_ops[4] > 0: hidden_dim = self.config.hidden_sizes[idx + 1] * down_ops[4] self.layers.append( LevitResidualLayer( LevitMLPLayer(self.config.hidden_sizes[idx + 1], hidden_dim), self.config.drop_path_rate ) ) self.layers = nn.ModuleList(self.layers) def get_resolution(self): return self.resolution_in def forward(self, hidden_state): for layer in self.layers: hidden_state = layer(hidden_state) return hidden_state class LevitEncoder(nn.Module): """ LeViT Encoder consisting of multiple `LevitStage` stages. """ def __init__(self, config): super().__init__() self.config = config resolution = self.config.image_size // self.config.patch_size self.stages = [] self.config.down_ops.append([""]) for stage_idx in range(len(config.depths)): stage = LevitStage( config, stage_idx, config.hidden_sizes[stage_idx], config.key_dim[stage_idx], config.depths[stage_idx], config.num_attention_heads[stage_idx], config.attention_ratio[stage_idx], config.mlp_ratio[stage_idx], config.down_ops[stage_idx], resolution, ) resolution = stage.get_resolution() self.stages.append(stage) self.stages = nn.ModuleList(self.stages) def forward(self, hidden_state, output_hidden_states=False, return_dict=True): all_hidden_states = () if output_hidden_states else None for stage in self.stages: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_state,) hidden_state = stage(hidden_state) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, all_hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=hidden_state, hidden_states=all_hidden_states) class LevitClassificationLayer(nn.Module): """ LeViT Classification Layer """ def __init__(self, input_dim, output_dim): super().__init__() self.batch_norm = nn.BatchNorm1d(input_dim) self.linear = nn.Linear(input_dim, output_dim) def forward(self, hidden_state): hidden_state = self.batch_norm(hidden_state) logits = self.linear(hidden_state) return logits class LevitPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = LevitConfig base_model_prefix = "levit" main_input_name = "pixel_values" _no_split_modules = ["LevitResidualLayer"] def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, (nn.BatchNorm1d, nn.BatchNorm2d)): module.bias.data.zero_() module.weight.data.fill_(1.0) LEVIT_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`LevitConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ LEVIT_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`LevitImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Levit model outputting raw features without any specific head on top.", LEVIT_START_DOCSTRING, ) class LevitModel(LevitPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.patch_embeddings = LevitPatchEmbeddings(config) self.encoder = LevitEncoder(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(LEVIT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndNoAttention, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: torch.FloatTensor = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") embeddings = self.patch_embeddings(pixel_values) encoder_outputs = self.encoder( embeddings, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] # global average pooling, (batch_size, seq_length, hidden_sizes) -> (batch_size, hidden_sizes) pooled_output = last_hidden_state.mean(dim=1) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, ) @add_start_docstrings( """ Levit Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """, LEVIT_START_DOCSTRING, ) class LevitForImageClassification(LevitPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.num_labels = config.num_labels self.levit = LevitModel(config) # Classifier head self.classifier = ( LevitClassificationLayer(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else torch.nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(LEVIT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: torch.FloatTensor = None, labels: Optional[torch.LongTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.levit(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) sequence_output = outputs[0] sequence_output = sequence_output.mean(1) logits = self.classifier(sequence_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=loss, logits=logits, hidden_states=outputs.hidden_states, ) @add_start_docstrings( """ LeViT Model transformer with image classification heads on top (a linear layer on top of the final hidden state and a linear layer on top of the final hidden state of the distillation token) e.g. for ImageNet. .. warning:: This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet supported. """, LEVIT_START_DOCSTRING, ) class LevitForImageClassificationWithTeacher(LevitPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.num_labels = config.num_labels self.levit = LevitModel(config) # Classifier head self.classifier = ( LevitClassificationLayer(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else torch.nn.Identity() ) self.classifier_distill = ( LevitClassificationLayer(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else torch.nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(LEVIT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=LevitForImageClassificationWithTeacherOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: torch.FloatTensor = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, LevitForImageClassificationWithTeacherOutput]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.levit(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) sequence_output = outputs[0] sequence_output = sequence_output.mean(1) cls_logits, distill_logits = self.classifier(sequence_output), self.classifier_distill(sequence_output) logits = (cls_logits + distill_logits) / 2 if not return_dict: output = (logits, cls_logits, distill_logits) + outputs[2:] return output return LevitForImageClassificationWithTeacherOutput( logits=logits, cls_logits=cls_logits, distillation_logits=distill_logits, hidden_states=outputs.hidden_states, ) __all__ = [ "LevitForImageClassification", "LevitForImageClassificationWithTeacher", "LevitModel", "LevitPreTrainedModel", ]
transformers/src/transformers/models/levit/modeling_levit.py/0
{ "file_path": "transformers/src/transformers/models/levit/modeling_levit.py", "repo_id": "transformers", "token_count": 12827 }
138
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for Llava. """ from typing import List, Union from ...feature_extraction_utils import BatchFeature from ...image_utils import ImageInput, get_image_size, to_numpy_array from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack, _validate_images_text_input_order from ...tokenization_utils_base import PreTokenizedInput, TextInput from ...utils import logging logger = logging.get_logger(__name__) class LlavaProcessorKwargs(ProcessingKwargs, total=False): _defaults = { "text_kwargs": { "padding": False, }, "images_kwargs": {}, } class LlavaProcessor(ProcessorMixin): r""" Constructs a LLaVa processor which wraps a LLaVa image processor and a LLaMa tokenizer into a single processor. [`LlavaProcessor`] offers all the functionalities of [`LlavaImageProcessor`] and [`LlamaTokenizerFast`]. See the [`~LlavaProcessor.__call__`] and [`~LlavaProcessor.decode`] for more information. Args: image_processor ([`LlavaImageProcessor`], *optional*): The image processor is a required input. tokenizer ([`LlamaTokenizerFast`], *optional*): The tokenizer is a required input. patch_size (`int`, *optional*): Patch size from the vision tower. vision_feature_select_strategy (`str`, *optional*): The feature selection strategy used to select the vision feature from the vision backbone. Shoudl be same as in model's config chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string. image_token (`str`, *optional*, defaults to `"<image>"`): Special token used to denote image location. num_additional_image_tokens (`int`, *optional*, defaults to 0): Number of additional tokens added to the image embeddings, such as CLS (+1). If the backbone has no CLS or other extra tokens appended, no need to set this arg. """ attributes = ["image_processor", "tokenizer"] valid_kwargs = [ "chat_template", "patch_size", "vision_feature_select_strategy", "image_token", "num_additional_image_tokens", ] image_processor_class = "AutoImageProcessor" tokenizer_class = "AutoTokenizer" def __init__( self, image_processor=None, tokenizer=None, patch_size=None, vision_feature_select_strategy=None, chat_template=None, image_token="<image>", # set the default and let users change if they have peculiar special tokens in rare cases num_additional_image_tokens=0, **kwargs, ): self.patch_size = patch_size self.num_additional_image_tokens = num_additional_image_tokens self.vision_feature_select_strategy = vision_feature_select_strategy self.image_token = tokenizer.image_token if hasattr(tokenizer, "image_token") else image_token super().__init__(image_processor, tokenizer, chat_template=chat_template) def __call__( self, images: ImageInput = None, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, audio=None, videos=None, **kwargs: Unpack[LlavaProcessorKwargs], ) -> BatchFeature: """ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of the above two methods for more information. Args: images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. Both channels-first and channels-last formats are supported. text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. """ if images is None and text is None: raise ValueError("You have to specify at least one of `images` or `text`.") # check if images and text inputs are reversed for BC images, text = _validate_images_text_input_order(images, text) output_kwargs = self._merge_kwargs( LlavaProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs, ) if images is not None: image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"]) else: image_inputs = {} if isinstance(text, str): text = [text] elif not isinstance(text, list) and not isinstance(text[0], str): raise ValueError("Invalid input text. Please provide a string, or a list of strings") # try to expand inputs in processing if we have the necessary parts prompt_strings = text if image_inputs.get("pixel_values") is not None: # Replace the image token with the expanded image token sequence pixel_values = image_inputs["pixel_values"] height, width = get_image_size(to_numpy_array(pixel_values[0])) num_image_tokens = (height // self.patch_size) * ( width // self.patch_size ) + self.num_additional_image_tokens if self.vision_feature_select_strategy == "default": num_image_tokens -= 1 prompt_strings = [] for sample in text: sample = sample.replace(self.image_token, self.image_token * num_image_tokens) prompt_strings.append(sample) text_inputs = self.tokenizer(prompt_strings, **output_kwargs["text_kwargs"]) return BatchFeature(data={**text_inputs, **image_inputs}) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama def decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) __all__ = ["LlavaProcessor"]
transformers/src/transformers/models/llava/processing_llava.py/0
{ "file_path": "transformers/src/transformers/models/llava/processing_llava.py", "repo_id": "transformers", "token_count": 3649 }
139
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert LLaVa-Onevision checkpoints from the original repository. URL: https://github.com/LLaVA-VL/LLaVA-NeXT/tree/main """ import argparse import gc import glob import json from pathlib import Path import requests import torch from accelerate import init_empty_weights from huggingface_hub import hf_hub_download, snapshot_download from PIL import Image from safetensors import safe_open from transformers import ( AddedToken, AutoConfig, AutoTokenizer, LlavaOnevisionConfig, LlavaOnevisionForConditionalGeneration, LlavaOnevisionImageProcessor, LlavaOnevisionProcessor, LlavaOnevisionVideoProcessor, SiglipVisionConfig, ) KEYS_TO_MODIFY_MAPPING = { "model.vision_tower.": "", "model.mm_projector": "multi_modal_projector", "model": "model.model", "vision_model.model": "vision_model", "lm_head": "language_model.lm_head", "model.model": "language_model.model", "multi_modal_projector.0": "multi_modal_projector.linear_1", "multi_modal_projector.2": "multi_modal_projector.linear_2", "language_model.model.image_newline": "image_newline", } chat_template = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n'}}{# Render all images first #}{% for content in message['content'] | selectattr('type', 'equalto', 'image') %}{{ '<image>\n' }}{% endfor %}{# Render all video then #}{% for content in message['content'] | selectattr('type', 'equalto', 'video') %}{{ '<video>\n' }}{% endfor %}{# Render all text next #}{% if message['role'] != 'assistant' %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{{ content['text'] }}{% endfor %}{% else %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{% generation %}{{ content['text'] }}{% endgeneration %}{% endfor %}{% endif %}{{'<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}" def load_original_state_dict(model_id): directory_path = snapshot_download(repo_id=model_id, allow_patterns=["*.safetensors"]) original_state_dict = {} for path in glob.glob(f"{directory_path}/*"): if path.endswith(".safetensors"): with safe_open(path, framework="pt", device="cpu") as f: for key in f.keys(): original_state_dict[key] = f.get_tensor(key) # tied wieghts so lm.head is not saved. Let's clone to load state dict if "lm_head.weight" not in original_state_dict: original_state_dict["lm_head.weight"] = original_state_dict["model.embed_tokens.weight"].clone() return original_state_dict def convert_state_dict_to_hf(state_dict): new_state_dict = {} for key, value in state_dict.items(): if key.endswith(".inv_freq"): continue for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: key = key.replace(key_to_modify, new_key) new_state_dict[key] = value.to(torch.float16) return new_state_dict def load_image(): url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true" image = Image.open(requests.get(url, stream=True).raw) return image def convert_llava_to_hf(model_id, pytorch_dump_folder_path, push_to_hub=False): # load original config filepath = hf_hub_download(repo_id=model_id, filename="config.json", repo_type="model") # read json with open(filepath) as f: data = json.load(f) print(data) if model_id in ["lmms-lab/llava-onevision-qwen2-0.5b-ov", "lmms-lab/llava-onevision-qwen2-0.5b-si"]: text_model_id = "Qwen/Qwen2-0.5B-Instruct" elif model_id in [ "lmms-lab/llava-onevision-qwen2-7b-ov", "lmms-lab/llava-onevision-qwen2-7b-si", "lmms-lab/llava-onevision-qwen2-7b-ov-chat", ]: text_model_id = "Qwen/Qwen2-7B-Instruct" elif model_id in [ "lmms-lab/llava-onevision-qwen2-72b-ov", "lmms-lab/llava-onevision-qwen2-72b-si", "lmms-lab/llava-onevision-qwen2-72b-ov-chat", ]: text_model_id = "Qwen/Qwen2-72B-Instruct" vision_model_id = data["mm_vision_tower"] torch.set_default_dtype(torch.float16) text_config = AutoConfig.from_pretrained(text_model_id) tokenizer = AutoTokenizer.from_pretrained(text_model_id, use_fast=True) tokenizer.add_tokens(AddedToken("<image>", special=True, normalized=False), special_tokens=True) tokenizer.add_tokens(AddedToken("<video>", special=True, normalized=False), special_tokens=True) image_processor = LlavaOnevisionImageProcessor.from_pretrained(vision_model_id) video_processor = LlavaOnevisionVideoProcessor.from_pretrained(vision_model_id) processor = LlavaOnevisionProcessor( tokenizer=tokenizer, video_processor=video_processor, image_processor=image_processor, num_image_tokens=729, vision_feature_select_strategy="full", chat_template=chat_template, ) vision_config = SiglipVisionConfig( hidden_size=1152, image_size=384, intermediate_size=4304, num_attention_heads=16, num_hidden_layers=26, # drop the last layer patch_size=14, vision_use_head=False, # no head ).to_dict() config = LlavaOnevisionConfig( text_config=text_config.to_dict(), vision_config=vision_config, use_image_newline_parameter=True, ) with init_empty_weights(): model = LlavaOnevisionForConditionalGeneration(config) # load original state dict state_dict = load_original_state_dict(model_id) state_dict = convert_state_dict_to_hf(state_dict) model.load_state_dict(state_dict, assign=True) model.eval() pre_expansion_embeddings = model.language_model.model.embed_tokens.weight.data mu = torch.mean(pre_expansion_embeddings, dim=0).float() n = pre_expansion_embeddings.size()[0] sigma = ((pre_expansion_embeddings - mu).T @ (pre_expansion_embeddings - mu)) / n dist = torch.distributions.multivariate_normal.MultivariateNormal(mu, covariance_matrix=1e-5 * sigma) # We add an image token so we resize the model # Pad to 64 for performance reasons # Qwen-based models have extra unused space in the vocab size already, so no need to resize pad_shape = 64 vocab_size = config.text_config.vocab_size num_tokens = vocab_size + 2 model.resize_token_embeddings(num_tokens, pad_to_multiple_of=pad_shape) model.language_model.model.embed_tokens.weight.data[vocab_size:] = torch.stack( tuple( (dist.sample() for _ in range(model.language_model.model.embed_tokens.weight.data[vocab_size:].shape[0])) ), dim=0, ) model.language_model.lm_head.weight.data[vocab_size:] = torch.stack( tuple((dist.sample() for _ in range(model.language_model.lm_head.weight.data[vocab_size:].shape[0]))), dim=0, ) print(f"Saving model and processor for {model_id} to {pytorch_dump_folder_path}") Path(pytorch_dump_folder_path).mkdir(exist_ok=True) model.save_pretrained(pytorch_dump_folder_path) processor.save_pretrained(pytorch_dump_folder_path) # Make space so we can load the model properly now. del state_dict gc.collect() # Load everything back for inference tests in float32 because prev script was written as that # Though it's mostly loaded in fp16 as original weights are in fp16 model = LlavaOnevisionForConditionalGeneration.from_pretrained( pytorch_dump_folder_path, torch_dtype="float16", device_map="auto" ) processor = LlavaOnevisionProcessor.from_pretrained(pytorch_dump_folder_path) device = model.device # prepare inputs image = load_image() prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<image>\nWhat is shown in this image?<|im_end|>\n<|im_start|>assistant\n" inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch.float16) # verify inputs filepath = hf_hub_download( repo_id="RaushanTurganbay/test-image", filename="llava_onevision_pixel_values.pt", repo_type="dataset" ) original_pixel_values = torch.load(filepath, map_location="cpu") assert torch.allclose(original_pixel_values, inputs.pixel_values.half()) image_sizes = torch.tensor([[899, 1024]]) assert image_sizes[0].tolist() == inputs.image_sizes[0].tolist() # verify single forward pass print("Single forward pass") with torch.inference_mode(): inputs = inputs.to(device) outputs = model(**inputs) print("Shape of logits:", outputs.logits.shape) print("First values of logits:", outputs.logits[0, :3, :3]) if model_id == "lmms-lab/llava-onevision-qwen2-0.5b-si": # Not yet checked against reference expected_slice = torch.tensor( [[-12.1953, -14.6797, -12.7891], [0.5840, -0.8467, 1.3799], [3.6055, 4.5430, 9.9062]], dtype=torch.float32, device=device, ) elif model_id == "lmms-lab/llava-onevision-qwen2-0.5b-ov": # Not yet checked against reference expected_slice = torch.tensor( [[-12.0234, -14.3828, -12.7500], [2.3594, 1.0000, 3.9336], [3.6582, 4.7148, 9.1172]], dtype=torch.float32, device=device, ) elif model_id == "lmms-lab/llava-onevision-qwen2-7b-si": # Not yet checked against reference expected_slice = torch.tensor( [[1.7656, 3.3418, 1.4033], [0.0757, 0.7427, 3.5098], [6.7109, 5.6797, 9.3828]], dtype=torch.float32, device=device, ) elif model_id == "lmms-lab/llava-onevision-qwen2-7b-ov": # Not yet checked against reference expected_slice = torch.tensor( [[1.8496, 3.4219, 1.3135], [3.0996, 3.0117, 3.1484], [4.2422, 4.7109, 9.9688]], dtype=torch.float32, device=device, ) elif model_id == "lmms-lab/llava-onevision-qwen2-72b-si": # Not yet checked against reference expected_slice = torch.tensor( [[4.1875, 4.4883, 2.7910], [1.2949, 5.1328, 3.1582], [0.9390, 6.4531, 8.4375]], dtype=torch.float32, device=device, ) elif model_id == "lmms-lab/llava-onevision-qwen2-72b-ov": # Not yet checked against reference expected_slice = torch.tensor( [[4.2930, 4.7305, 2.7363], [1.7529, 5.0742, 3.9590], [1.3936, 6.3438, 9.3984]], dtype=torch.float32, device=device, ) elif model_id == "lmms-lab/llava-onevision-qwen2-7b-ov-chat": # Not yet checked against reference expected_slice = torch.tensor( [[1.8662, 3.4316, 1.3174], [2.7109, 2.5488, 3.0117], [4.4648, 4.9648, 10.3359]], dtype=torch.float32, device=device, ) elif model_id == "lmms-lab/llava-onevision-qwen2-72b-ov-chat": # Not yet checked against reference expected_slice = torch.tensor( [[4.3086, 4.7344, 2.6953], [1.7090, 5.1719, 4.0234], [1.3057, 6.3438, 9.5469]], dtype=torch.float32, device=device, ) else: raise ValueError(f"Model {model_id} not supported") assert torch.allclose(outputs.logits[0, :3, :3], expected_slice, atol=1e-4) print("Logits are ok!") # verify generation output_ids = model.generate( **inputs, max_new_tokens=100, use_cache=True, ) generated_text = processor.batch_decode(output_ids, skip_special_tokens=True)[0].strip() print("Generated text:", repr(generated_text)) if model_id == "lmms-lab/llava-onevision-qwen2-0.5b-si": expected_text = "system\nYou are a helpful assistant.\nuser\n\nWhat is shown in this image?\nassistant\nThe image is a radar chart that shows the performance of different algorithms or models in a specific domain, such as image classification or natural language processing. The chart is color-coded to represent different algorithms, with each color corresponding to a specific algorithm. The algorithms are labeled as BLIP-2, InstructBLIP, Owen-VL-Chat, and LLaVA-1.5. The chart also includes a legend at the bottom that explains the color coding and the algorithms represented." elif model_id == "lmms-lab/llava-onevision-qwen2-0.5b-ov": expected_text = "system\nYou are a helpful assistant.\nuser\n\nWhat is shown in this image?\nassistant\nThe image is a radar chart that compares the performance of different models in a specific task, likely related to natural language processing or machine learning. The chart is divided into different categories, each represented by a different color and labeled with the name of the model or technique used. The models are evaluated based on their performance metrics, such as BLEU-2, InstructBLIP, Qwen-VL-Chat, and LLaVA-1.5. The radar chart helps to visualize the relative" elif model_id == "lmms-lab/llava-onevision-qwen2-7b-si": expected_text = "system\nYou are a helpful assistant.\nuser\n\nWhat is shown in this image?\nassistant\nThis image is a radar chart that compares the performance of different models on various metrics. The models being compared are BLIP-2, InstructBLIP, and Qwen-VL-Chat. The metrics being compared are VQA, QA, GQA, VQA-av2, and VQA-av2. The chart shows that BLIP-2 performs the best on all metrics, followed by InstructBLIP and Qwen-VL-Chat." elif model_id == "lmms-lab/llava-onevision-qwen2-7b-ov": expected_text = "system\nYou are a helpful assistant.\nuser\n\nWhat is shown in this image?\nassistant\nThe image shows a radar chart, also known as a spider chart or a star chart, which is used to compare multiple quantitative variables. Each axis represents a different variable, and the chart is filled with data points that represent the performance or values of different entities across these variables.\n\nIn this particular radar chart, the variables are represented on the axes, and the performance of different models or systems is shown by the lines connecting the data points. The models or systems are labeled along the bottom of the chart," elif model_id == "lmms-lab/llava-onevision-qwen2-72b-si": expected_text = "system\nYou are a helpful assistant.\nuser\n\nWhat is shown in this image?\nassistant\nThe image shows a radar chart, which is a graphical method of displaying multivariate data in the form of a two-dimensional chart of three or more quantitative variables represented on axes starting from the same point. The chart is used to compare the performance of different models or systems across various benchmarks or metrics.\n\nIn this specific radar chart, there are multiple axes, each representing a different benchmark or metric, such as VQA2, GQA, TextVQA, and others. The chart includes several colored lines" elif model_id == "lmms-lab/llava-onevision-qwen2-72b-ov": expected_text = "system\nYou are a helpful assistant.\nuser\n\nWhat is shown in this image?\nassistant\nThe image is a radar chart comparing the performance of different models on various multimodal benchmarks. The models compared are BLIP-2, InstructBLIP, POPE, QWen-VL-Chat, and LLava-1.5. The benchmarks include VQAv2, GQA, TextVQA, SQA-IMG, VizWiz, MM-IMDb, MM-VQA, MM-IMDb-CN, MM-IMDb-EN, MM-" elif model_id == "lmms-lab/llava-onevision-qwen2-7b-ov-chat": expected_text = "system\nYou are a helpful assistant.\nuser\n\nWhat is shown in this image?\nassistant\nThe image shows a radar chart, also known as a spider chart or a star chart, which is used to display multivariate data in the form of a two-dimensional chart of three or more quantitative variables represented on axes starting from the same point. Each axis represents a different variable, and the values are plotted along these axes.\n\nIn this particular radar chart, there are multiple lines representing different models or systems, each distinguished by a different color and labeled with a name such as BLIP-2, In" elif model_id == "lmms-lab/llava-onevision-qwen2-72b-ov-chat": expected_text = "system\nYou are a helpful assistant.\nuser\n\nWhat is shown in this image?\nassistant\nThe image is a radar chart comparing the performance of different models on various multimodal benchmarks. The models compared are BLIP-2, InstructBLIP, POPE, QWen-VL-Chat, and LLava-1.5. The benchmarks include VQAv2, GQA, TextVQA, SQA-IMG, VizWiz, MM-IMDb, MM-VQA, MM-IMDb-CN, MM-IMDb-EN, MM-" else: raise ValueError(f"Model {model_id} not supported") assert generated_text == expected_text print("Generated text is ok!") # verify batched generation print("Batched generation...") url = "http://images.cocodataset.org/val2017/000000039769.jpg" cats_image = Image.open(requests.get(url, stream=True).raw) inputs = processor( images=[image, cats_image], text=[prompt, prompt], padding=True, return_tensors="pt", ).to(device, torch.float16) for k, v in inputs.items(): print(k, v.shape) print("Image sizes:", inputs.image_sizes) # make sure image_sizes are the same # as otherwise batched generation doesn't work inputs.image_sizes[1] = inputs.image_sizes[0] print("Batched generation...") output_ids = model.generate( **inputs, max_new_tokens=20, use_cache=True, ) outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True) print(outputs) if push_to_hub: checkpoint_name = model_id.split("/")[-1] print(f"Pushing to repo llava-hf/{checkpoint_name}-hf") model.push_to_hub(f"llava-hf/{checkpoint_name}-hf") processor.push_to_hub(f"llava-hf/{checkpoint_name}-hf") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--model_id", help="Hub location of the model to convert", default="lmms-lab/llava-onevision-qwen2-0.5b-ov", choices=[ "lmms-lab/llava-onevision-qwen2-0.5b-ov", "lmms-lab/llava-onevision-qwen2-0.5b-si", "lmms-lab/llava-onevision-qwen2-7b-si", "lmms-lab/llava-onevision-qwen2-7b-ov", "lmms-lab/llava-onevision-qwen2-72b-si", "lmms-lab/llava-onevision-qwen2-72b-ov", "lmms-lab/llava-onevision-qwen2-7b-ov-chat", "lmms-lab/llava-onevision-qwen2-72b-ov-chat", ], required=False, ) parser.add_argument( "--pytorch_dump_folder_path", type=str, required=True, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) args = parser.parse_args() convert_llava_to_hf(args.model_id, args.pytorch_dump_folder_path, args.push_to_hub)
transformers/src/transformers/models/llava_onevision/convert_llava_onevision_weights_to_hf.py/0
{ "file_path": "transformers/src/transformers/models/llava_onevision/convert_llava_onevision_weights_to_hf.py", "repo_id": "transformers", "token_count": 8126 }
140
# coding=utf-8 # Copyright 2022 Google LLC., LongT5 Authors and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch LongT5 model.""" import copy import math import warnings from typing import Any, List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache, StaticCache from ...generation import GenerationMixin from ...modeling_attn_mask_utils import AttentionMaskConverter from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, Seq2SeqLMOutput, Seq2SeqModelOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import ALL_LAYERNORM_LAYERS, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( DUMMY_INPUTS, DUMMY_MASK, add_start_docstrings, add_start_docstrings_to_model_forward, is_torch_fx_proxy, is_torchdynamo_compiling, logging, replace_return_docstrings, ) from .configuration_longt5 import LongT5Config logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "LongT5Config" _CHECKPOINT_FOR_DOC = "google/long-t5-local-base" # TODO: Update before the merge def _pad_to_multiple(x: torch.Tensor, block_len: int, dim: int, pad_value: int = 0) -> torch.Tensor: """Pad a tensor so that a sequence length will be a multiple of `block_len`""" pad_len = -x.shape[dim] % block_len # Handle cases when an empty input sequence is given if not all(x.shape): new_shape = list(x.shape) new_shape[dim] += pad_len return torch.zeros(new_shape, dtype=x.dtype) pad = [(0, 0)] * x.ndim pad[dim] = (0, pad_len) pad = sum(pad[::-1], ()) x = nn.functional.pad(x, pad=pad, mode="constant", value=pad_value) return x def _split_into_blocks(x: torch.Tensor, block_len: int, dim: int) -> torch.Tensor: """Split an input tensor into blocks of a given `block_len` along the given `dim`. If the dimension length is not a multiple of `block_len`, it will be padded first with selected `pad_value`. """ # pad tensor to multiple of block_len if x.shape[dim] % block_len != 0: x = _pad_to_multiple(x, block_len, dim, pad_value=0) num_blocks = x.shape[dim] // block_len output_shape = x.shape[:dim] + (num_blocks, block_len) + x.shape[(dim + 1) :] # If 0 is in output_shape, we cannot apply reshape because of incompatibility with ONNX conversion if 0 in output_shape: return torch.empty(output_shape, dtype=x.dtype, device=x.device) return x.reshape(output_shape) def _concatenate_3_blocks(x: torch.Tensor, block_dim: int, sequence_dim: int, pad_value: int = 0) -> torch.Tensor: """Concatenate three consecutive blocks for each input block for local attentiont. For more information, see: https://arxiv.org/pdf/2112.07916.pdf. """ num_blocks = x.shape[block_dim] pad = [(0, 0)] * x.ndim pad[block_dim] = (1, 1) pad = sum(pad[::-1], ()) # [batch_size, num_blocks, block_len] -> [batch_size, num_blocks + 2, block_len] x = nn.functional.pad(x, pad=pad, mode="constant", value=pad_value) blocks_list: List[torch.Tensor] = [] for i in range(3): # We use indexing approach here: # https://numpy.org/doc/stable/user/basics.indexing.html#dealing-with-variable-numbers-of-indices-within-programs indices = [slice(0, None)] * x.ndim indices[block_dim] = slice(i, i + num_blocks) indices = tuple(indices) blocks_list.append(x[indices]) # [batch_size, num_blocks, 3 * block_len, ...] return torch.cat(blocks_list, dim=sequence_dim) def _make_3block_relative_position_ids(block_len: int) -> torch.Tensor: """Makes 3-blocked relative position ids for local attention.""" position_ids = torch.arange(3 * block_len, dtype=torch.int32) center_position_ids = position_ids[block_len:-block_len] # [block_len, 3 * block_len] relative_position_ids = position_ids.unsqueeze(0) - center_position_ids.unsqueeze(1) return relative_position_ids def _mask_local_attention_mask(local_attention_mask: torch.Tensor, block_len: int) -> torch.Tensor: """Mask local attention mask to enforce that tokens are not allowed to attend tokens farther than ``local_radius.""" relative_position_ids = _make_3block_relative_position_ids(block_len) locality_mask = torch.abs(relative_position_ids) < block_len locality_mask = locality_mask[None, None, :, :] locality_mask = locality_mask.to(local_attention_mask.device) return torch.logical_and(local_attention_mask, locality_mask) def _get_local_attention_mask(attention_mask: torch.Tensor, block_len: int, device: torch.device) -> torch.Tensor: """Prepare attention mask to be applied for a local attention.""" # [batch_size, num_blocks, block_len] _blocked_attention_mask = _split_into_blocks(attention_mask, block_len, dim=1) # [batch_size, num_block, 3 * block_len] _3blocked_attention_mask = _concatenate_3_blocks(_blocked_attention_mask, block_dim=1, sequence_dim=2) _blocked_attention_mask = _blocked_attention_mask.unsqueeze(-1) _3blocked_attention_mask = _3blocked_attention_mask.unsqueeze(-2) # [batch_size, num_block, block_len, 3 * block_len] local_attention_mask = torch.logical_and(_blocked_attention_mask, _3blocked_attention_mask) local_attention_mask = _mask_local_attention_mask(local_attention_mask, block_len) # [batch_size, 1, num_block, block_len, 3 * block_len] return local_attention_mask.unsqueeze(1).to(device) def _make_global_fixed_block_ids( attention_mask: torch.Tensor, global_block_size: int ) -> Tuple[torch.Tensor, torch.Tensor]: """Obtain the "fixed block" global id corresponding to each input token. This implementation is a simlified version of the original Flaxformr implementation adopted from: https://github.com/google/flaxformer/blob/main/flaxformer/architectures/longt5/long_attention.py. In our scenario, as we use this strategy only for a decoder, orphan tokens, i.e. those tokens which do not make for the whole fixed block, are assigned to the preceding block. Padding tokens from the original sequence are represented by -1. """ batch_size, seq_len = attention_mask.shape[:2] def handle_orphan_tokens(block_ids: torch.Tensor) -> torch.Tensor: block_ends = (torch.arange(seq_len) % global_block_size) == global_block_size - 1 block_ends = block_ends.to(block_ids.device) true_block_ends = torch.logical_and(block_ends, block_ids >= 0) full_blocks = true_block_ends.sum(-1).unsqueeze(-1).type(block_ids.dtype) - 1 block_ids = torch.where(block_ids < full_blocks, block_ids, full_blocks) return block_ids fixed_block_mask = torch.ones_like(attention_mask, device=attention_mask.device) / global_block_size fixed_block_mask = torch.cumsum(fixed_block_mask, axis=1) - fixed_block_mask mask = torch.where(attention_mask != 0.0, 1.0, -1000.0).type(attention_mask.dtype) global_block_ids = torch.floor(mask + fixed_block_mask - 1.0).type(attention_mask.dtype) _global_block_ids_lower_bound = torch.tensor(-1, dtype=global_block_ids.dtype, device=global_block_ids.device) global_block_ids = torch.where( global_block_ids > _global_block_ids_lower_bound, global_block_ids, _global_block_ids_lower_bound ) # set padding tokens to -1 global_block_ids = (global_block_ids * attention_mask) + (attention_mask - 1) # [batch_size, seq_len] global_block_ids = handle_orphan_tokens(global_block_ids) num_globals = seq_len // global_block_size # [batch_size, seq_len // global_block_size] if num_globals > 0: _sequence_block_ids_max = torch.max(global_block_ids, dim=-1).values.repeat(num_globals, 1).transpose(0, 1) else: _sequence_block_ids_max = torch.zeros( batch_size, 0, dtype=global_block_ids.dtype, device=global_block_ids.device ) global_segment_ids = torch.cumsum(torch.ones(batch_size, num_globals), dim=-1) - 1 global_segment_ids = global_segment_ids.to(attention_mask.device) global_segment_ids = torch.where(global_segment_ids <= _sequence_block_ids_max, 1, 0) return global_block_ids.type(torch.int), global_segment_ids.type(torch.int) def _make_side_relative_position_ids(attention_mask: torch.Tensor, global_block_size: int) -> torch.Tensor: """Create the relative position tensor for local -> global attention.""" block_ids, global_segment_ids = _make_global_fixed_block_ids(attention_mask, global_block_size) global_seq_len = global_segment_ids.shape[-1] global_positions = torch.arange(global_seq_len, device=block_ids.device) side_relative_position = global_positions - block_ids[..., None] return side_relative_position.type(torch.int64) def _create_global_aggregates( hidden_states: torch.Tensor, block_ids: torch.Tensor, global_seq_len: int ) -> torch.Tensor: """Compute individual block aggregates by summing over individual blocks.""" # (batch..., seq_len, global_seq_len)) block_ids = block_ids.where( block_ids >= 0, torch.tensor(global_seq_len, dtype=block_ids.dtype, device=block_ids.device) ) one_hot_block_ids = nn.functional.one_hot(block_ids.type(torch.int64), global_seq_len + 1)[:, :, :-1] return torch.einsum("...nd,...ng->...gd", hidden_states, one_hot_block_ids.type(hidden_states.dtype)) # Copied from transformers.models.t5.modeling_t5.T5LayerNorm with T5->LongT5 class LongT5LayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ Construct a layernorm module in the LongT5 style. No bias and no subtraction of mean. """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): # LongT5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) # convert into half-precision if necessary if self.weight.dtype in [torch.float16, torch.bfloat16]: hidden_states = hidden_states.to(self.weight.dtype) return self.weight * hidden_states try: from apex.normalization import FusedRMSNorm LongT5LayerNorm = FusedRMSNorm # noqa logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of LongT5LayerNorm") except ImportError: # using the normal LongT5LayerNorm pass except Exception: logger.warning("discovered apex but it failed to load, falling back to LongT5LayerNorm") pass ALL_LAYERNORM_LAYERS.append(LongT5LayerNorm) # Copied from transformers.models.t5.modeling_t5.T5DenseActDense with T5->LongT5 class LongT5DenseActDense(nn.Module): def __init__(self, config: LongT5Config): super().__init__() self.wi = nn.Linear(config.d_model, config.d_ff, bias=False) self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) self.dropout = nn.Dropout(config.dropout_rate) self.act = ACT2FN[config.dense_act_fn] def forward(self, hidden_states): hidden_states = self.wi(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.dropout(hidden_states) if ( isinstance(self.wo.weight, torch.Tensor) and hidden_states.dtype != self.wo.weight.dtype and self.wo.weight.dtype != torch.int8 ): hidden_states = hidden_states.to(self.wo.weight.dtype) hidden_states = self.wo(hidden_states) return hidden_states class LongT5DenseGatedActDense(nn.Module): def __init__(self, config: LongT5Config): super().__init__() self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False) self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False) self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) self.dropout = nn.Dropout(config.dropout_rate) self.act = ACT2FN[config.dense_act_fn] def forward(self, hidden_states): hidden_gelu = self.act(self.wi_0(hidden_states)) hidden_linear = self.wi_1(hidden_states) hidden_states = hidden_gelu * hidden_linear hidden_states = self.dropout(hidden_states) hidden_states = self.wo(hidden_states) return hidden_states # Copied from transformers.models.t5.modeling_t5.T5LayerFF with T5->LongT5 class LongT5LayerFF(nn.Module): def __init__(self, config: LongT5Config): super().__init__() if config.is_gated_act: self.DenseReluDense = LongT5DenseGatedActDense(config) else: self.DenseReluDense = LongT5DenseActDense(config) self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) def forward(self, hidden_states): forwarded_states = self.layer_norm(hidden_states) forwarded_states = self.DenseReluDense(forwarded_states) hidden_states = hidden_states + self.dropout(forwarded_states) return hidden_states # Copied from transformers.models.t5.modeling_t5.T5Attention with T5->LongT5 class LongT5Attention(nn.Module): def __init__( self, config: LongT5Config, has_relative_attention_bias=False, layer_idx: Optional[int] = None, ): super().__init__() self.is_decoder = config.is_decoder self.has_relative_attention_bias = has_relative_attention_bias self.relative_attention_num_buckets = config.relative_attention_num_buckets self.relative_attention_max_distance = config.relative_attention_max_distance self.d_model = config.d_model self.key_value_proj_dim = config.d_kv self.n_heads = config.num_heads self.dropout = config.dropout_rate self.inner_dim = self.n_heads * self.key_value_proj_dim self.layer_idx = layer_idx if layer_idx is None and self.is_decoder: logger.warning_once( f"Instantiating a decoder {self.__class__.__name__} without passing `layer_idx` is not recommended and " "will to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) # Mesh TensorFlow initialization to avoid scaling before softmax self.q = nn.Linear(self.d_model, self.inner_dim, bias=False) self.k = nn.Linear(self.d_model, self.inner_dim, bias=False) self.v = nn.Linear(self.d_model, self.inner_dim, bias=False) self.o = nn.Linear(self.inner_dim, self.d_model, bias=False) if self.has_relative_attention_bias: self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) self.pruned_heads = set() self.gradient_checkpointing = False def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads ) # Prune linear layers self.q = prune_linear_layer(self.q, index) self.k = prune_linear_layer(self.k, index) self.v = prune_linear_layer(self.v, index) self.o = prune_linear_layer(self.o, index, dim=1) # Update hyper params self.n_heads = self.n_heads - len(heads) self.inner_dim = self.key_value_proj_dim * self.n_heads self.pruned_heads = self.pruned_heads.union(heads) @staticmethod def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): """ Adapted from Mesh Tensorflow: https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 Translate relative position to a bucket number for relative attention. The relative position is defined as memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should allow for more graceful generalization to longer sequences than the model has been trained on Args: relative_position: an int32 Tensor bidirectional: a boolean - whether the attention is bidirectional num_buckets: an integer max_distance: an integer Returns: a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) """ relative_buckets = 0 if bidirectional: num_buckets //= 2 relative_buckets += (relative_position > 0).to(torch.long) * num_buckets relative_position = torch.abs(relative_position) else: relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) # now relative_position is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = relative_position < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance relative_position_if_large = max_exact + ( torch.log(relative_position.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(torch.long) relative_position_if_large = torch.min( relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) ) relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) return relative_buckets def compute_bias(self, query_length, key_length, device=None, cache_position=None): """Compute binned relative position bias""" if device is None: device = self.relative_attention_bias.weight.device if cache_position is None: context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] else: context_position = cache_position[:, None].to(device) memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] relative_position = memory_position - context_position # shape (query_length, key_length) relative_position_bucket = self._relative_position_bucket( relative_position, # shape (query_length, key_length) bidirectional=(not self.is_decoder), num_buckets=self.relative_attention_num_buckets, max_distance=self.relative_attention_max_distance, ) values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads) values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length) return values def forward( self, hidden_states, mask=None, key_value_states=None, position_bias=None, past_key_value=None, layer_head_mask=None, query_length=None, use_cache=False, output_attentions=False, cache_position=None, ): """ Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). """ # Input is (batch_size, seq_length, dim) # Mask is (batch_size, 1, 1, key_length) (non-causal encoder) or (batch_size, 1, seq_length, key_length) (causal decoder) batch_size, seq_length = hidden_states.shape[:2] # if key_value_states are provided this layer is used as a cross-attention layer for the decoder is_cross_attention = key_value_states is not None query_states = self.q(hidden_states) query_states = query_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) if past_key_value is not None: is_updated = past_key_value.is_updated.get(self.layer_idx) if is_cross_attention: # after the first generated id, we can subsequently re-use all key/value_states from cache curr_past_key_value = past_key_value.cross_attention_cache else: curr_past_key_value = past_key_value.self_attention_cache current_states = key_value_states if is_cross_attention else hidden_states if is_cross_attention and past_key_value is not None and is_updated: # reuse k,v, cross_attentions key_states = curr_past_key_value.key_cache[self.layer_idx] value_states = curr_past_key_value.value_cache[self.layer_idx] else: key_states = self.k(current_states) value_states = self.v(current_states) key_states = key_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) value_states = value_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) if past_key_value is not None: # save all key/value_states to cache to be re-used for fast auto-regressive generation cache_position = cache_position if not is_cross_attention else None key_states, value_states = curr_past_key_value.update( key_states, value_states, self.layer_idx, {"cache_position": cache_position} ) # set flag that curr layer for cross-attn is already updated so we can re-use in subsequent calls if is_cross_attention: past_key_value.is_updated[self.layer_idx] = True # compute scores, equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9 scores = torch.matmul(query_states, key_states.transpose(3, 2)) if position_bias is None: key_length = key_states.shape[-2] # cache position is 0-indexed so we add 1 to get the real length of queries (aka with past) real_seq_length = query_length if query_length is not None else cache_position[-1] + 1 if not self.has_relative_attention_bias: position_bias = torch.zeros( (1, self.n_heads, seq_length, key_length), device=scores.device, dtype=scores.dtype ) if self.gradient_checkpointing and self.training: position_bias.requires_grad = True else: position_bias = self.compute_bias( real_seq_length, key_length, device=scores.device, cache_position=cache_position ) position_bias = position_bias[:, :, -seq_length:, :] if mask is not None: causal_mask = mask[:, :, :, : key_states.shape[-2]] position_bias = position_bias + causal_mask if self.pruned_heads: mask = torch.ones(position_bias.shape[1]) mask[list(self.pruned_heads)] = 0 position_bias_masked = position_bias[:, mask.bool()] else: position_bias_masked = position_bias scores += position_bias_masked # (batch_size, n_heads, seq_length, key_length) attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores) attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) # Mask heads if we want to if layer_head_mask is not None: attn_weights = attn_weights * layer_head_mask attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.view(batch_size, -1, self.inner_dim) attn_output = self.o(attn_output) outputs = (attn_output, past_key_value, position_bias) if output_attentions: outputs = outputs + (attn_weights,) return outputs class LongT5LocalAttention(nn.Module): def __init__(self, config: LongT5Config, has_relative_attention_bias: bool = False) -> None: super().__init__() self.is_decoder = config.is_decoder self.has_relative_attention_bias = has_relative_attention_bias self.relative_attention_num_buckets = config.relative_attention_num_buckets self.relative_attention_max_distance = config.relative_attention_max_distance self.d_model = config.d_model self.key_value_proj_dim = config.d_kv self.n_heads = config.num_heads self.local_radius = config.local_radius self.block_len = self.local_radius + 1 self.dropout = config.dropout_rate self.inner_dim = self.n_heads * self.key_value_proj_dim # Mesh TensorFlow initialization to avoid scaling before softmax self.q = nn.Linear(self.d_model, self.inner_dim, bias=False) self.k = nn.Linear(self.d_model, self.inner_dim, bias=False) self.v = nn.Linear(self.d_model, self.inner_dim, bias=False) self.o = nn.Linear(self.inner_dim, self.d_model, bias=False) if self.has_relative_attention_bias: self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) self.pruned_heads = set() self.gradient_checkpointing = False # Copied from transformers.models.t5.modeling_t5.T5Attention.prune_heads def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads ) # Prune linear layers self.q = prune_linear_layer(self.q, index) self.k = prune_linear_layer(self.k, index) self.v = prune_linear_layer(self.v, index) self.o = prune_linear_layer(self.o, index, dim=1) # Update hyper params self.n_heads = self.n_heads - len(heads) self.inner_dim = self.key_value_proj_dim * self.n_heads self.pruned_heads = self.pruned_heads.union(heads) @staticmethod # Copied from transformers.models.t5.modeling_t5.T5Attention._relative_position_bucket def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): """ Adapted from Mesh Tensorflow: https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 Translate relative position to a bucket number for relative attention. The relative position is defined as memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should allow for more graceful generalization to longer sequences than the model has been trained on Args: relative_position: an int32 Tensor bidirectional: a boolean - whether the attention is bidirectional num_buckets: an integer max_distance: an integer Returns: a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) """ relative_buckets = 0 if bidirectional: num_buckets //= 2 relative_buckets += (relative_position > 0).to(torch.long) * num_buckets relative_position = torch.abs(relative_position) else: relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) # now relative_position is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = relative_position < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance relative_position_if_large = max_exact + ( torch.log(relative_position.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(torch.long) relative_position_if_large = torch.min( relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) ) relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) return relative_buckets def compute_bias(self, block_length: int): """Compute binned relative position bias""" target_device = ( self.relative_attention_bias.weight.device if self.relative_attention_bias.weight.device.type != "meta" else None ) memory_position = torch.arange(3 * block_length, dtype=torch.long, device=target_device) context_position = memory_position[block_length:-block_length] # (block_length, 3 * block_length) relative_position = memory_position[None, :] - context_position[:, None] relative_position_bucket = self._relative_position_bucket( relative_position, # (block_length, 3 * block_length) bidirectional=(not self.is_decoder), num_buckets=self.relative_attention_num_buckets, max_distance=self.relative_attention_max_distance, ) # (block_length, 3 * block_length, num_heads) values = self.relative_attention_bias(relative_position_bucket) # (1, 1, num_heads, block_length, 3 * block_length) values = values.permute([2, 0, 1]).unsqueeze(0).unsqueeze(0) return values def forward( self, hidden_states, mask=None, position_bias=None, layer_head_mask=None, output_attentions=False, ): batch_size, seq_length = hidden_states.shape[:2] def shape(states): """projection""" return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim) def unshape(states): """reshape""" return states.contiguous().view(batch_size, -1, self.inner_dim) # get query/key/value states -> (batch_size, seq_length, n_heads, dim_per_head) query_states = shape(self.q(hidden_states)) key_states = shape(self.k(hidden_states)) value_states = shape(self.v(hidden_states)) # Split into blocks -> (batch_size, num_blocks, block_len, n_heads, dim_per_head) query_states = _split_into_blocks(query_states, self.block_len, dim=1) key_states = _split_into_blocks(key_states, self.block_len, dim=1) value_states = _split_into_blocks(value_states, self.block_len, dim=1) # Concatenate 3 blocks for keys and values -> (batch_size, num_blocks, 3 * block_len, n_heads, dim_per_head) key_states = _concatenate_3_blocks(key_states, block_dim=1, sequence_dim=2) value_states = _concatenate_3_blocks(value_states, block_dim=1, sequence_dim=2) # Compute scores scores = torch.einsum( "...qhd,...khd->...hqk", query_states, key_states ) # (batch_size, num_block, n_heads, block_len, 3 * block_len) if position_bias is None: # position_bias shape: # (1, 1, n_heads, block_len, 3 * block_len) if not self.has_relative_attention_bias: position_bias = torch.zeros( (1, 1, self.n_heads, self.block_len, 3 * self.block_len), device=scores.device, dtype=scores.dtype ) if self.gradient_checkpointing and self.training: position_bias.requires_grad = True else: position_bias = self.compute_bias(self.block_len) if mask is not None: # Replace masked positions with -1e10 (according to the original implementation) mask = torch.where(mask > 0, 0.0, -1e10) # We need to adjust position bias shape to be sum with mask position_bias = position_bias + mask.transpose(1, 2) scores += position_bias # (batch_size, num_blocks, n_heads, block_len, 3 * block_len) attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores) # (batch_size, num_blocks, n_heads, block_len, 3 * block_len) attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) # Mask heads if we want to if layer_head_mask is not None: attn_weights = attn_weights * layer_head_mask attn_weights = attn_weights.type(value_states.dtype) attn_output = unshape(torch.einsum("...hqk,...khd->...qhd", attn_weights, value_states)) attn_output = attn_output[:, :seq_length, :] attn_output = self.o(attn_output) present_key_value_state = None outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) if output_attentions: outputs = outputs + (attn_weights,) return outputs class LongT5TransientGlobalAttention(nn.Module): def __init__(self, config: LongT5Config, has_relative_attention_bias: bool = False) -> None: super().__init__() self.is_decoder = config.is_decoder self.has_relative_attention_bias = has_relative_attention_bias self.relative_attention_num_buckets = config.relative_attention_num_buckets self.relative_attention_max_distance = config.relative_attention_max_distance self.d_model = config.d_model self.key_value_proj_dim = config.d_kv self.n_heads = config.num_heads self.local_radius = config.local_radius self.block_len = self.local_radius + 1 self.global_block_size = config.global_block_size self.dropout = config.dropout_rate self.inner_dim = self.n_heads * self.key_value_proj_dim # Mesh TensorFlow initialization to avoid scaling before softmax self.q = nn.Linear(self.d_model, self.inner_dim, bias=False) self.k = nn.Linear(self.d_model, self.inner_dim, bias=False) self.v = nn.Linear(self.d_model, self.inner_dim, bias=False) self.o = nn.Linear(self.inner_dim, self.d_model, bias=False) if self.has_relative_attention_bias: self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) self.pruned_heads = set() # Relativen attention bias & Layer norm for global attention if self.has_relative_attention_bias: self.global_relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) self.global_input_layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) # Copied from transformers.models.t5.modeling_t5.T5Attention.prune_heads def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads ) # Prune linear layers self.q = prune_linear_layer(self.q, index) self.k = prune_linear_layer(self.k, index) self.v = prune_linear_layer(self.v, index) self.o = prune_linear_layer(self.o, index, dim=1) # Update hyper params self.n_heads = self.n_heads - len(heads) self.inner_dim = self.key_value_proj_dim * self.n_heads self.pruned_heads = self.pruned_heads.union(heads) @staticmethod # Copied from transformers.models.t5.modeling_t5.T5Attention._relative_position_bucket def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): """ Adapted from Mesh Tensorflow: https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 Translate relative position to a bucket number for relative attention. The relative position is defined as memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should allow for more graceful generalization to longer sequences than the model has been trained on Args: relative_position: an int32 Tensor bidirectional: a boolean - whether the attention is bidirectional num_buckets: an integer max_distance: an integer Returns: a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) """ relative_buckets = 0 if bidirectional: num_buckets //= 2 relative_buckets += (relative_position > 0).to(torch.long) * num_buckets relative_position = torch.abs(relative_position) else: relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) # now relative_position is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = relative_position < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance relative_position_if_large = max_exact + ( torch.log(relative_position.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(torch.long) relative_position_if_large = torch.min( relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) ) relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) return relative_buckets def compute_bias(self, block_length: int): """Compute binned relative position bias""" target_device = ( self.relative_attention_bias.weight.device if self.relative_attention_bias.weight.device.type != "meta" else None ) memory_position = torch.arange(3 * block_length, dtype=torch.long, device=target_device) context_position = memory_position[block_length:-block_length] # (block_length, 3 * block_length) relative_position = memory_position[None, :] - context_position[:, None] relative_position_bucket = self._relative_position_bucket( relative_position, # (block_length, 3 * block_length) bidirectional=(not self.is_decoder), num_buckets=self.relative_attention_num_buckets, max_distance=self.relative_attention_max_distance, ) # (block_length, 3 * block_length, num_heads) values = self.relative_attention_bias(relative_position_bucket) # (1, 1, num_heads, block_length, 3 * block_length) values = values.permute([2, 0, 1]).unsqueeze(0).unsqueeze(0) return values def compute_side_bias(self, mask: torch.Tensor, global_segment_ids: torch.Tensor) -> torch.Tensor: # (batch_size, 1, seq_len, global_seq_len) side_attention_mask = torch.eq(mask[..., None], global_segment_ids[:, None, :])[:, None, ...] attention_side_bias = torch.where(side_attention_mask > 0, 0.0, -1e10) # (batch_size, seq_len, global_seq_len) side_relative_position = _make_side_relative_position_ids(mask, self.global_block_size) side_relative_position_bucket = self._relative_position_bucket( side_relative_position, bidirectional=(not self.is_decoder), num_buckets=self.relative_attention_num_buckets, max_distance=self.relative_attention_max_distance, ) # (batch_size, seq_len, global_seq_len, num_heads) side_bias = self.global_relative_attention_bias(side_relative_position_bucket) # (batch_size, num_heads, seq_len, global_seq_len) side_bias = side_bias.permute([0, 3, 1, 2]) # (batch_size, num_heads, seq_len, global_seq_len) attention_side_bias = attention_side_bias + side_bias return attention_side_bias def forward( self, hidden_states, mask=None, position_bias=None, layer_head_mask=None, output_attentions=False, ): batch_size, seq_length = hidden_states.shape[:2] def shape(states): """projection""" return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim) def unshape(states): """reshape""" return states.contiguous().view(batch_size, -1, self.inner_dim) # Prepare components for transient-global attention # Obtain block_ids and global_segment_ids # global_seq_len := seq_len // self.global_block_size # shapes: (batch_size, seq_len) & (batch_size, global_seq_len) block_ids, global_segment_ids = _make_global_fixed_block_ids( mask if mask is not None else torch.ones(hidden_states.shape[:-1]), self.global_block_size, ) # Create global inputs _global_seq_len = global_segment_ids.shape[-1] global_inputs = _create_global_aggregates(hidden_states, block_ids, _global_seq_len) global_inputs = self.global_input_layer_norm(global_inputs) # get query states -> (batch_size, seq_length, n_heads, dim_per_head) query_states = shape(self.q(hidden_states)) key_states = shape(self.k(hidden_states)) value_states = shape(self.v(hidden_states)) # Get global/side key/value states shape: (batch_size, global_seq_len, n_heads, dim_per_head) side_key_states = shape(self.k(global_inputs)) side_value_states = shape(self.v(global_inputs)) # Split into blocks -> (batch_size, num_blocks, block_len, n_heads, dim_per_head) query_states = _split_into_blocks(query_states, self.block_len, dim=1) key_states = _split_into_blocks(key_states, self.block_len, dim=1) value_states = _split_into_blocks(value_states, self.block_len, dim=1) # Concatenate 3 blocks for keys and values -> (batch_size, num_blocks, 3 * block_len, n_heads, dim_per_head) key_states = _concatenate_3_blocks(key_states, block_dim=1, sequence_dim=2) value_states = _concatenate_3_blocks(value_states, block_dim=1, sequence_dim=2) # Tile side inputs across local key/value blocks # New shape: (batch_size, num_blocks, global_seq_len, n_heads, dim_per_head) reps = [1] * (side_key_states.ndim + 1) reps[1] = key_states.shape[1] side_key_states = side_key_states.unsqueeze(1).repeat(reps) side_value_states = side_value_states.unsqueeze(1).repeat(reps) # Concatenate "local" and "side"/"global" key/value states to allow each token to attend global aggregated ones # New shape: (batch_size, num_blocks, 3 * block_len + global_seq_len, n_heads, dim_per_head) key_states = torch.cat([key_states, side_key_states], dim=2) value_states = torch.cat([value_states, side_value_states], dim=2) # Compute scores -> (batch_size, num_block, n_heads, block_len, 3 * block_len + global_seq_len) scores = torch.einsum("...qhd,...khd->...hqk", query_states, key_states) if mask is not None: # We need to adjust position bias shape to be sum with mask local_attention_mask = _get_local_attention_mask(mask, self.block_len, hidden_states.device) # Replace masked positions with -10_000 (according to the original implementation) local_attention_mask = torch.where(local_attention_mask > 0, 0.0, -1e10) else: local_attention_mask = None if position_bias is None: # position_bias shape: # (1, 1, n_heads, block_len, 3 * block_len) if not self.has_relative_attention_bias: position_bias = torch.zeros( (1, 1, self.n_heads, self.block_len, 3 * self.block_len), device=scores.device, dtype=scores.dtype, ) if self.gradient_checkpointing and self.training: position_bias.requires_grad = True else: position_bias = self.compute_bias(self.block_len) if local_attention_mask is not None: # (batch_size, 1, n_heads, block_len, 3 * block_len) position_bias = position_bias + local_attention_mask.transpose(1, 2) position_bias = position_bias.type(scores.dtype) # Calculate global/side bias - shape: # (batch_size, num_heads, seq_len, global_seq_len) if mask is None: mask = torch.ones(batch_size, seq_length) # (batch_size, num_heads, seq_len, global_seq_len) side_position_bias = self.compute_side_bias(mask, global_segment_ids) # (batch_size, num_blocks, num_heads, block_len, global_seq_len) side_position_bias = _split_into_blocks(side_position_bias, self.block_len, dim=-2).transpose(1, 2) side_position_bias = side_position_bias.type(scores.dtype).to(scores.device) # (batch_size, num_blocks, num_heads, block_len, 3 * block_len + global_seq_len) position_bias = torch.cat([position_bias, side_position_bias], dim=-1) scores += position_bias # (batch_size, num_blocks, n_heads, block_len, 3 * block_len + global_seq_len) attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores) attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) # Mask heads if we want to if layer_head_mask is not None: attn_weights = attn_weights * layer_head_mask attn_weights = attn_weights.type(value_states.dtype) attn_output = unshape(torch.einsum("...hqk,...khd->...qhd", attn_weights, value_states)) attn_output = attn_output[:, :seq_length, :] attn_output = self.o(attn_output) present_key_value_state = None outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) if output_attentions: outputs = outputs + (attn_weights,) return outputs # Copied from transformers.models.t5.modeling_t5.T5LayerSelfAttention with T5->LongT5 class LongT5LayerSelfAttention(nn.Module): def __init__(self, config, has_relative_attention_bias=False, layer_idx: Optional[int] = None): super().__init__() self.SelfAttention = LongT5Attention( config, has_relative_attention_bias=has_relative_attention_bias, layer_idx=layer_idx ) self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) def forward( self, hidden_states, attention_mask=None, position_bias=None, layer_head_mask=None, past_key_value=None, use_cache=False, output_attentions=False, cache_position=None, ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.SelfAttention( normed_hidden_states, mask=attention_mask, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, output_attentions=output_attentions, cache_position=cache_position, ) hidden_states = hidden_states + self.dropout(attention_output[0]) outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them return outputs class LongT5LayerLocalSelfAttention(nn.Module): """Local self attention used in encoder""" def __init__(self, config, has_relative_attention_bias=False, layer_idx: Optional[int] = None): super().__init__() self.LocalSelfAttention = LongT5LocalAttention(config, has_relative_attention_bias=has_relative_attention_bias) self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) def forward( self, hidden_states, attention_mask=None, position_bias=None, layer_head_mask=None, output_attentions=False, **kwargs: Any, # to accept past_key_value and use_cache kwargs ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.LocalSelfAttention( normed_hidden_states, mask=attention_mask, position_bias=position_bias, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = hidden_states + self.dropout(attention_output[0]) outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them return outputs class LongT5LayerTransientGlobalSelfAttention(nn.Module): """Transient-Global self attention used in encoder""" def __init__(self, config, has_relative_attention_bias=False, layer_idx: Optional[int] = None): super().__init__() self.TransientGlobalSelfAttention = LongT5TransientGlobalAttention( config, has_relative_attention_bias=has_relative_attention_bias ) self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) def forward( self, hidden_states, attention_mask=None, position_bias=None, layer_head_mask=None, output_attentions=False, **kwargs: Any, # to accept past_key_value and use_cache kwargs ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.TransientGlobalSelfAttention( normed_hidden_states, mask=attention_mask, position_bias=position_bias, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = hidden_states + self.dropout(attention_output[0]) outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them return outputs # Copied from transformers.models.t5.modeling_t5.T5LayerCrossAttention with T5->LongT5 class LongT5LayerCrossAttention(nn.Module): def __init__(self, config, layer_idx: Optional[int] = None): super().__init__() self.EncDecAttention = LongT5Attention(config, has_relative_attention_bias=False, layer_idx=layer_idx) self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) def forward( self, hidden_states, key_value_states, attention_mask=None, position_bias=None, layer_head_mask=None, past_key_value=None, use_cache=False, query_length=None, output_attentions=False, cache_position=None, ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.EncDecAttention( normed_hidden_states, mask=attention_mask, key_value_states=key_value_states, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, query_length=query_length, output_attentions=output_attentions, cache_position=cache_position, ) layer_output = hidden_states + self.dropout(attention_output[0]) outputs = (layer_output,) + attention_output[1:] # add attentions if we output them return outputs class LongT5Block(nn.Module): def __init__(self, config, has_relative_attention_bias=False, layer_idx: Optional[int] = None): super().__init__() self.is_decoder = config.is_decoder if config.is_decoder: attention_layer = LongT5LayerSelfAttention elif config.encoder_attention_type == "local": attention_layer = LongT5LayerLocalSelfAttention elif config.encoder_attention_type == "transient-global": attention_layer = LongT5LayerTransientGlobalSelfAttention else: raise ValueError( "For encoder attention mechanism, either `local` or `transient-global` attention type is expected, " f"but got {config.encoder_attention_type}." ) self.layer = nn.ModuleList() self.layer.append( attention_layer(config, has_relative_attention_bias=has_relative_attention_bias, layer_idx=layer_idx) ) if self.is_decoder: self.layer.append(LongT5LayerCrossAttention(config, layer_idx=layer_idx)) self.layer.append(LongT5LayerFF(config)) def forward( self, hidden_states, attention_mask=None, position_bias=None, encoder_hidden_states=None, encoder_attention_mask=None, encoder_decoder_position_bias=None, layer_head_mask=None, cross_attn_layer_head_mask=None, past_key_value=None, use_cache=False, output_attentions=False, return_dict=True, cache_position=None, ): self_attention_outputs = self.layer[0]( hidden_states, attention_mask=attention_mask, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, output_attentions=output_attentions, cache_position=cache_position, ) hidden_states, past_key_value = self_attention_outputs[:2] attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights # clamp inf values to enable fp16 inference - check https://github.com/huggingface/transformers/pull/19229/ if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) do_cross_attention = self.is_decoder and encoder_hidden_states is not None if do_cross_attention: cross_attention_outputs = self.layer[1]( hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, position_bias=encoder_decoder_position_bias, layer_head_mask=cross_attn_layer_head_mask, past_key_value=past_key_value, query_length=cache_position[-1] + 1, use_cache=use_cache, output_attentions=output_attentions, cache_position=cache_position, ) hidden_states, past_key_value = cross_attention_outputs[:2] # clamp inf values to enable fp16 inference - check https://github.com/huggingface/transformers/pull/19229/ if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) # Keep cross-attention outputs and relative position weights attention_outputs = attention_outputs + cross_attention_outputs[2:] # Apply Feed Forward layer hidden_states = self.layer[-1](hidden_states) # clamp inf values to enable fp16 inference - check https://github.com/huggingface/transformers/pull/19229/ if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if use_cache: outputs = outputs + (past_key_value,) + attention_outputs else: outputs = outputs + attention_outputs return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) class LongT5PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = LongT5Config base_model_prefix = "transformer" supports_gradient_checkpointing = True _no_split_modules = ["LongT5Block"] _supports_cache_class = True _supports_static_cache = False # TODO: @raushan more involved due to local/global attn @property # Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel.dummy_inputs def dummy_inputs(self): input_ids = torch.tensor(DUMMY_INPUTS) input_mask = torch.tensor(DUMMY_MASK) dummy_inputs = { "decoder_input_ids": input_ids, "input_ids": input_ids, "decoder_attention_mask": input_mask, } return dummy_inputs def _init_weights(self, module): """Initialize the weights""" factor = self.config.initializer_factor # Used for testing weights initialization if isinstance(module, LongT5LayerNorm): module.weight.data.fill_(factor * 1.0) elif isinstance(module, (LongT5Model, LongT5ForConditionalGeneration, LongT5EncoderModel)): # Mesh TensorFlow embeddings initialization # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624 module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0) if hasattr(module, "lm_head") and not self.config.tie_word_embeddings: module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0) elif isinstance(module, LongT5DenseActDense): # Mesh TensorFlow FF initialization # See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56 # and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89 module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) if hasattr(module.wi, "bias") and module.wi.bias is not None: module.wi.bias.data.zero_() module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) if hasattr(module.wo, "bias") and module.wo.bias is not None: module.wo.bias.data.zero_() elif isinstance(module, LongT5DenseGatedActDense): module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None: module.wi_0.bias.data.zero_() module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None: module.wi_1.bias.data.zero_() module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) if hasattr(module.wo, "bias") and module.wo.bias is not None: module.wo.bias.data.zero_() elif isinstance(module, (LongT5Attention, LongT5LocalAttention, LongT5TransientGlobalAttention)): # Mesh TensorFlow attention initialization to avoid scaling before softmax # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136 d_model = self.config.d_model key_value_proj_dim = self.config.d_kv n_heads = self.config.num_heads module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5)) module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5)) if module.has_relative_attention_bias: module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5)) if isinstance(module, LongT5TransientGlobalAttention): module.global_relative_attention_bias.weight.data.normal_( mean=0.0, std=factor * ((d_model) ** -0.5) ) # Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel._shift_right with T5->LongT5 def _shift_right(self, input_ids): decoder_start_token_id = self.config.decoder_start_token_id pad_token_id = self.config.pad_token_id if decoder_start_token_id is None: raise ValueError( "self.model.config.decoder_start_token_id has to be defined. In LongT5 it is usually set to the pad_token_id. " "See LongT5 docs for more information." ) # shift inputs to the right if is_torch_fx_proxy(input_ids): # Item assignment is not supported natively for proxies. shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id) shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1) else: shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() shifted_input_ids[..., 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("self.model.config.pad_token_id has to be defined.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids class LongT5Stack(LongT5PreTrainedModel): def __init__(self, config, embed_tokens=None): super().__init__(config) self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model) if embed_tokens is not None: self.embed_tokens.weight = embed_tokens.weight self.is_decoder = config.is_decoder self.local_radius = config.local_radius self.block_len = self.local_radius + 1 self.block = nn.ModuleList( [ LongT5Block(config, has_relative_attention_bias=bool(i == 0), layer_idx=i) for i in range(config.num_layers) ] ) self.final_layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.t5.modeling_t5.T5Stack.get_input_embeddings def get_input_embeddings(self): return self.embed_tokens # Copied from transformers.models.t5.modeling_t5.T5Stack.set_input_embeddings def set_input_embeddings(self, new_embeddings): self.embed_tokens = new_embeddings def forward( self, input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, inputs_embeds=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, cache_position=None, ): use_cache = use_cache if use_cache is not None else self.config.use_cache output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: err_msg_prefix = "decoder_" if self.is_decoder else "" raise ValueError( f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time" ) elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: err_msg_prefix = "decoder_" if self.is_decoder else "" raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds") if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False if inputs_embeds is None: assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings" inputs_embeds = self.embed_tokens(input_ids) batch_size, seq_length = input_shape # initialize past_key_values return_legacy_cache = False return_self_attention_cache = False if self.is_decoder and (use_cache or past_key_values is not None): if isinstance(past_key_values, Cache) and not isinstance(past_key_values, EncoderDecoderCache): return_self_attention_cache = True past_key_values = EncoderDecoderCache(past_key_values, DynamicCache()) elif not isinstance(past_key_values, EncoderDecoderCache): return_legacy_cache = True logger.warning_once( "Passing a tuple of `past_key_values` is deprecated and will be removed in Transformers v4.48.0. " "You should pass an instance of `EncoderDecoderCache` instead, e.g. " "`past_key_values=EncoderDecoderCache.from_legacy_cache(past_key_values)`." ) past_key_values = EncoderDecoderCache.from_legacy_cache(past_key_values) elif past_key_values is None: past_key_values = EncoderDecoderCache(DynamicCache(), DynamicCache()) elif not self.is_decoder: # do not pass cache object down the line for encoder stack # it messes indexing later in decoder-stack because cache object is modified in-place past_key_values = None past_key_values_length = past_key_values.get_seq_length() if past_key_values is not None else 0 if cache_position is None: cache_position = torch.arange( past_key_values_length, past_key_values_length + seq_length, device=inputs_embeds.device ) if attention_mask is None and not is_torchdynamo_compiling(): # required mask seq length can be calculated via length of past mask_seq_length = past_key_values_length + seq_length attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device) if self.is_decoder: causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values.self_attention_cache if past_key_values is not None else None, output_attentions, ) # We use local attention in encoder self-attention, otherwise standard self & cross attentions are used elif self.config.encoder_attention_type == "local": causal_mask = _get_local_attention_mask(attention_mask, self.block_len, inputs_embeds.device) else: # we need to use both local attention mask and standard extended mask for transient-global attention causal_mask = attention_mask # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed head_mask = self.get_head_mask(head_mask, self.config.num_layers) cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers) all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None all_cross_attentions = () if (output_attentions and self.is_decoder) else None position_bias = None encoder_decoder_position_bias = None hidden_states = self.dropout(inputs_embeds) for i, layer_module in enumerate(self.block): layer_head_mask = head_mask[i] cross_attn_layer_head_mask = cross_attn_head_mask[i] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.forward, hidden_states, causal_mask, position_bias, encoder_hidden_states, encoder_extended_attention_mask, encoder_decoder_position_bias, layer_head_mask, cross_attn_layer_head_mask, None, # past_key_value is always None with gradient checkpointing use_cache, output_attentions, return_dict, cache_position, ) else: layer_outputs = layer_module( hidden_states, attention_mask=causal_mask, position_bias=position_bias, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, encoder_decoder_position_bias=encoder_decoder_position_bias, layer_head_mask=layer_head_mask, cross_attn_layer_head_mask=cross_attn_layer_head_mask, past_key_value=past_key_values, use_cache=use_cache, output_attentions=output_attentions, return_dict=return_dict, cache_position=cache_position, ) # layer_outputs is a tuple with: # hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) if use_cache is False: layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:] hidden_states, next_decoder_cache = layer_outputs[:2] # We share the position biases between the layers - the first layer store them # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights), # (cross-attention position bias), (cross-attention weights) position_bias = layer_outputs[2] if self.is_decoder and encoder_hidden_states is not None: encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3] if output_attentions: all_attentions = all_attentions + (layer_outputs[3],) if self.is_decoder: all_cross_attentions = all_cross_attentions + (layer_outputs[5],) hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.dropout(hidden_states) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) next_cache = next_decoder_cache if use_cache else None if return_self_attention_cache: next_cache = past_key_values.self_attention_cache if return_legacy_cache: next_cache = past_key_values.to_legacy_cache() if not return_dict: return tuple( v for v in [ hidden_states, next_cache, all_hidden_states, all_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask def _update_causal_mask( self, attention_mask: torch.Tensor, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool, ): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and (attention_mask == 0.0).any(): return attention_mask return None # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 using_static_cache = isinstance(past_key_values, StaticCache) # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: if AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens, is_training=self.training, ): return None dtype, device = input_tensor.dtype, input_tensor.device sequence_length = input_tensor.shape[1] if using_static_cache: target_length = past_key_values.get_max_cache_shape() else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length + 1 ) # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, device=device, cache_position=cache_position, batch_size=input_tensor.shape[0], ) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type == "cuda" and not output_attentions ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 min_dtype = torch.finfo(dtype).min causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask @staticmethod # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel._prepare_4d_causal_attention_mask_with_cache_position def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, device: torch.device, cache_position: torch.Tensor, batch_size: int, **kwargs, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. device (`torch.device`): The device to plcae the 4D attention mask on. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: min_dtype = torch.finfo(dtype).min causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device ) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask LONGT5_START_DOCSTRING = r""" The LongT5 model was proposed in [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung and Yinfei Yang. It's an encoder-decoder transformer pre-trained in a text-to-text denoising generative setting. LongT5 model is an extension of T5 model, and it enables using one of the two different efficient attention mechanisms - (1) Local attention, or (2) Transient-Global attention. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`LongT5Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ LONGT5_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. LongT5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for detail. [What are input IDs?](../glossary#input-ids) To know more on how to prepare `input_ids` for pretraining take a look a [LONGT5 Training](./longt5#training). attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) LONGT5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). To know more on how to prepare `decoder_input_ids` for pretraining take a look at [LONGT5 Training](./longt5#training). decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of `inputs_embeds`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. It is used to update the cache in the correct position and to infer the complete sequence length. """ LONGT5_ENCODER_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. LongT5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for detail. To know more on how to prepare `input_ids` for pretraining take a look a [LONGT5 Training](./longt5#training). attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask __HEAD_MASK_WARNING_MSG = """ The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently, `decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions. If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers, num_heads)`. """ @add_start_docstrings( "The bare LONGT5 Model transformer outputting raw hidden-states without any specific head on top.", LONGT5_START_DOCSTRING, ) class LongT5Model(LongT5PreTrainedModel): _keys_to_ignore_on_load_unexpected = [ r"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight", ] _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] def __init__(self, config: LongT5Config): super().__init__(config) self.shared = nn.Embedding(config.vocab_size, config.d_model) encoder_config = copy.deepcopy(config) encoder_config.is_decoder = False encoder_config.use_cache = False encoder_config.is_encoder_decoder = False self.encoder = LongT5Stack(encoder_config, self.shared) decoder_config = copy.deepcopy(config) decoder_config.is_decoder = True decoder_config.is_encoder_decoder = False decoder_config.num_layers = config.num_decoder_layers self.decoder = LongT5Stack(decoder_config, self.shared) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.set_input_embeddings(new_embeddings) self.decoder.set_input_embeddings(new_embeddings) def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(LONGT5_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.FloatTensor] = None, decoder_head_mask: Optional[torch.FloatTensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.Tensor] = None, decoder_inputs_embeds: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, LongT5Model >>> tokenizer = AutoTokenizer.from_pretrained("google/long-t5-local-base") >>> model = LongT5Model.from_pretrained("google/long-t5-local-base") >>> # Let's try a very long encoder input. >>> input_ids = tokenizer( ... 100 * "Studies have been shown that owning a dog is good for you", return_tensors="pt" ... ).input_ids # Batch size 1 >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 >>> # forward pass >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> last_hidden_states = outputs.last_hidden_state ```""" use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask if head_mask is not None and decoder_head_mask is None: if self.config.num_layers == self.config.num_decoder_layers: warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) decoder_head_mask = head_mask # Encode if needed (training, first prediction pass) if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) hidden_states = encoder_outputs[0] # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, inputs_embeds=decoder_inputs_embeds, past_key_values=past_key_values, encoder_hidden_states=hidden_states, encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings("""LONGT5 Model with a `language modeling` head on top.""", LONGT5_START_DOCSTRING) class LongT5ForConditionalGeneration(LongT5PreTrainedModel, GenerationMixin): _keys_to_ignore_on_load_unexpected = [ r"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight", ] _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"] def __init__(self, config: LongT5Config): super().__init__(config) self.model_dim = config.d_model self.shared = nn.Embedding(config.vocab_size, config.d_model) encoder_config = copy.deepcopy(config) encoder_config.is_decoder = False encoder_config.use_cache = False encoder_config.is_encoder_decoder = False self.encoder = LongT5Stack(encoder_config, self.shared) decoder_config = copy.deepcopy(config) decoder_config.is_decoder = True decoder_config.is_encoder_decoder = False decoder_config.num_layers = config.num_decoder_layers self.decoder = LongT5Stack(decoder_config, self.shared) self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.set_input_embeddings(new_embeddings) self.decoder.set_input_embeddings(new_embeddings) def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def get_output_embeddings(self): return self.lm_head def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(LONGT5_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.FloatTensor] = None, decoder_head_mask: Optional[torch.FloatTensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` Returns: Examples: ```python >>> from transformers import AutoTokenizer, LongT5ForConditionalGeneration >>> tokenizer = AutoTokenizer.from_pretrained("Stancld/longt5-tglobal-large-16384-pubmed-3k_steps") >>> model = LongT5ForConditionalGeneration.from_pretrained( ... "Stancld/longt5-tglobal-large-16384-pubmed-3k_steps" ... ) >>> # Let's try a very long input. >>> inputs = tokenizer(100 * "studies have shown that owning a dog is good for you ", return_tensors="pt") >>> input_ids = inputs.input_ids >>> outputs = model.generate(input_ids) >>> print(tokenizer.decode(outputs[0], skip_special_tokens=True)) abstractthe aim of this article is to provide an overview of the literature on the role of dog ```""" use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask if head_mask is not None and decoder_head_mask is None: if self.config.num_layers == self.config.num_decoder_layers: warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) decoder_head_mask = head_mask # Encode if needed (training, first prediction pass) if encoder_outputs is None: # Convert encoder inputs in embeddings if needed encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) hidden_states = encoder_outputs[0] if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: # get decoder inputs from shifting lm labels to the right decoder_input_ids = self._shift_right(labels) # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, inputs_embeds=decoder_inputs_embeds, past_key_values=past_key_values, encoder_hidden_states=hidden_states, encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, ) sequence_output = decoder_outputs[0] if self.config.tie_word_embeddings: # Rescale output before projecting on vocab # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586 sequence_output = sequence_output * (self.model_dim**-0.5) lm_logits = self.lm_head(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss(ignore_index=-100) labels = labels.to(lm_logits.device) loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) # TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666 if not return_dict: output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs return ((loss,) + output) if loss is not None else output return Seq2SeqLMOutput( loss=loss, logits=lm_logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): return self._shift_right(labels) def _reorder_cache(self, past_key_values, beam_idx): # if decoder past is not included in output # speedy decoding is disabled and no need to reorder if past_key_values is None: logger.warning("You might want to consider setting `use_cache=True` to speed up decoding") return past_key_values reordered_decoder_past = () for layer_past_states in past_key_values: # get the correct batch idx from layer past batch dim # batch dim of `past` is at 2nd position reordered_layer_past_states = () for layer_past_state in layer_past_states: # need to set correct `past` for each of the four key / value states reordered_layer_past_states = reordered_layer_past_states + ( layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)), ) assert reordered_layer_past_states[0].shape == layer_past_states[0].shape assert len(reordered_layer_past_states) == len(layer_past_states) reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,) return reordered_decoder_past @add_start_docstrings( "The bare LONGT5 Model transformer outputting encoder's raw hidden-states without any specific head on top.", LONGT5_START_DOCSTRING, ) class LongT5EncoderModel(LongT5PreTrainedModel): _tied_weights_keys = ["encoder.embed_tokens.weight"] _keys_to_ignore_on_load_unexpected = [r"decoder"] def __init__(self, config: LongT5Config): super().__init__(config) self.shared = nn.Embedding(config.vocab_size, config.d_model) encoder_config = copy.deepcopy(config) encoder_config.use_cache = False encoder_config.is_encoder_decoder = False self.encoder = LongT5Stack(encoder_config, self.shared) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.set_input_embeddings(new_embeddings) def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) def get_encoder(self): return self.encoder def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(LONGT5_ENCODER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, LongT5ForConditionalGeneration >>> tokenizer = AutoTokenizer.from_pretrained("google/long-t5-local-base") >>> model = LongT5EncoderModel.from_pretrained("google/long-t5-local-base") >>> input_ids = tokenizer( ... 100 * "Studies have been shown that owning a dog is good for you ", return_tensors="pt" ... ).input_ids # Batch size 1 >>> outputs = model(input_ids=input_ids) >>> last_hidden_states = outputs.last_hidden_state ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) return encoder_outputs __all__ = ["LongT5EncoderModel", "LongT5ForConditionalGeneration", "LongT5Model", "LongT5PreTrainedModel"]
transformers/src/transformers/models/longt5/modeling_longt5.py/0
{ "file_path": "transformers/src/transformers/models/longt5/modeling_longt5.py", "repo_id": "transformers", "token_count": 48296 }
141
# coding=utf-8 # Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch M2M100 model.""" import math from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...generation import GenerationMixin from ...integrations.deepspeed import is_deepspeed_zero3_enabled from ...integrations.fsdp import is_fsdp_managed_module from ...modeling_attn_mask_utils import ( _prepare_4d_attention_mask, _prepare_4d_attention_mask_for_sdpa, _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa, ) from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, Seq2SeqLMOutput, Seq2SeqModelOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10, logging, replace_return_docstrings, ) from .configuration_m2m_100 import M2M100Config if is_flash_attn_2_available(): from ...modeling_flash_attention_utils import _flash_attention_forward logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "M2M100Config" _CHECKPOINT_FOR_DOC = "facebook/m2m100_418M" # Copied from transformers.models.bart.modeling_bart.shift_tokens_right def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): """ Shift input ids one token to the right. """ shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() shifted_input_ids[:, 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("self.model.config.pad_token_id has to be defined.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask return incremental_indices.long() + padding_idx # Copied from transformers.models.bart.modeling_bart.BartScaledWordEmbedding with Bart->M2M100 class M2M100ScaledWordEmbedding(nn.Embedding): """ This module overrides nn.Embeddings' forward by multiplying with embeddings scale. """ def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: Optional[float] = 1.0): super().__init__(num_embeddings, embedding_dim, padding_idx) self.embed_scale = embed_scale def forward(self, input_ids: torch.Tensor): return super().forward(input_ids) * self.embed_scale class M2M100SinusoidalPositionalEmbedding(nn.Module): """This module produces sinusoidal positional embeddings of any length.""" def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None): super().__init__() self.offset = 2 self.embedding_dim = embedding_dim self.padding_idx = padding_idx self.make_weights(num_positions + self.offset, embedding_dim, padding_idx) def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx) if hasattr(self, "weights"): # in forward put the weights on the correct dtype and device of the param emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device) self.register_buffer("weights", emb_weights, persistent=False) @staticmethod def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): """ Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb) emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0) emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) if embedding_dim % 2 == 1: # zero pad emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) if padding_idx is not None: emb[padding_idx, :] = 0 return emb.to(torch.get_default_dtype()) @torch.no_grad() def forward( self, input_ids: torch.Tensor = None, inputs_embeds: torch.Tensor = None, past_key_values_length: int = 0 ): if input_ids is not None: bsz, seq_len = input_ids.size() # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to( input_ids.device ) else: bsz, seq_len = inputs_embeds.size()[:-1] position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds, past_key_values_length) # expand embeddings if needed max_pos = self.padding_idx + 1 + seq_len + past_key_values_length if max_pos > self.weights.size(0): self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx) return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, self.weights.shape[-1]).detach() def create_position_ids_from_inputs_embeds(self, inputs_embeds, past_key_values_length): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape).contiguous() + past_key_values_length # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->M2M100 class M2M100Attention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, config: Optional[M2M100Config] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value # Copied from transformers.models.bart.modeling_bart.BartFlashAttention2 with Bart->M2M100 class M2M100FlashAttention2(M2M100Attention): """ M2M100 flash attention module. This module inherits from `M2M100Attention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def _reshape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim) def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: # M2M100FlashAttention2 attention does not support output_attentions if output_attentions: raise ValueError("M2M100FlashAttention2 attention does not support output_attentions") # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, q_len, _ = hidden_states.size() # get query proj query_states = self._reshape(self.q_proj(hidden_states), -1, bsz) # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0].transpose(1, 2) value_states = past_key_value[1].transpose(1, 2) elif is_cross_attention: # cross_attentions key_states = self._reshape(self.k_proj(key_value_states), -1, bsz) value_states = self._reshape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._reshape(self.k_proj(hidden_states), -1, bsz) value_states = self._reshape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0].transpose(1, 2), key_states], dim=1) value_states = torch.cat([past_key_value[1].transpose(1, 2), value_states], dim=1) else: # self_attention key_states = self._reshape(self.k_proj(hidden_states), -1, bsz) value_states = self._reshape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2)) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in the correct dtype just to be sure everything works as expected. # This might slowdown training & inference so it is recommended to not cast the LayerNorms # in fp32. (LlamaRMSNorm handles it correctly) input_dtype = query_states.dtype if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.q_proj.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) attn_output = _flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, dropout=self.dropout if self.training else 0.0, is_causal=self.is_causal, use_top_left_mask=self._flash_attn_uses_top_left_mask, ) attn_output = attn_output.reshape(bsz, q_len, -1) attn_output = self.out_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value # Copied from transformers.models.bart.modeling_bart.BartSdpaAttention with Bart->M2M100 class M2M100SdpaAttention(M2M100Attention): def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" if output_attentions or layer_head_mask is not None: # TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented. logger.warning_once( "M2M100Model is using M2M100SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention" ' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states, key_value_states=key_value_states, past_key_value=past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) query_states = self._shape(query_states, tgt_len, bsz) # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. # The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1. is_causal = True if self.is_causal and attention_mask is None and tgt_len > 1 else False # NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask, # but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577 attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=attention_mask, dropout_p=self.dropout if self.training else 0.0, is_causal=is_causal, ) if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, None, past_key_value # Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->M2M100, MBART->M2M100 class M2M100EncoderLayer(nn.Module): def __init__(self, config: M2M100Config): super().__init__() self.embed_dim = config.d_model self.self_attn = M2M100_ATTENTION_CLASSES[config._attn_implementation]( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, dropout=config.attention_dropout, config=config, ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, layer_head_mask: torch.Tensor, output_attentions: bool = False, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states if hidden_states.dtype == torch.float16 and ( torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() ): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs M2M100_ATTENTION_CLASSES = { "eager": M2M100Attention, "flash_attention_2": M2M100FlashAttention2, "sdpa": M2M100SdpaAttention, } # Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer with MBart->M2M100, MBART->M2M100 class M2M100DecoderLayer(nn.Module): def __init__(self, config: M2M100Config): super().__init__() self.embed_dim = config.d_model self.self_attn = M2M100_ATTENTION_CLASSES[config._attn_implementation]( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, is_causal=True, config=config, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.encoder_attn = M2M100_ATTENTION_CLASSES[config._attn_implementation]( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, config=config, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, cross_attn_layer_head_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of size `(decoder_attention_heads,)`. past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) if use_cache: outputs += (present_key_value,) return outputs class M2M100PreTrainedModel(PreTrainedModel): config_class = M2M100Config base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["M2M100EncoderLayer", "M2M100DecoderLayer"] _supports_flash_attn_2 = True _supports_sdpa = True def _init_weights(self, module): std = self.config.init_std if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() M2M_100_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`M2M100Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ M2M_100_GENERATION_EXAMPLE = r""" Translation example: ```python >>> from transformers import AutoTokenizer, M2M100ForConditionalGeneration >>> model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/m2m100_418M") >>> text_to_translate = "Life is like a box of chocolates" >>> model_inputs = tokenizer(text_to_translate, return_tensors="pt") >>> # translate to French >>> gen_tokens = model.generate(**model_inputs, forced_bos_token_id=tokenizer.get_lang_id("fr")) >>> print(tokenizer.batch_decode(gen_tokens, skip_special_tokens=True)) ``` """ M2M_100_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) M2M100 uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of `inputs_embeds`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class M2M100Encoder(M2M100PreTrainedModel): """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`M2M100EncoderLayer`]. Args: config: M2M100Config embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: M2M100Config, embed_tokens: Optional[nn.Embedding] = None): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.encoder_layerdrop embed_dim = config.d_model self.padding_idx = config.pad_token_id self.max_source_positions = config.max_position_embeddings embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 self.embed_tokens = M2M100ScaledWordEmbedding( config.vocab_size, embed_dim, self.padding_idx, embed_scale=embed_scale ) if embed_tokens is not None: self.embed_tokens.weight = embed_tokens.weight self.embed_positions = M2M100SinusoidalPositionalEmbedding( config.max_position_embeddings, embed_dim, self.padding_idx, ) self.layers = nn.ModuleList([M2M100EncoderLayer(config) for _ in range(config.encoder_layers)]) self.layer_norm = nn.LayerNorm(config.d_model) self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" self._use_sdpa = config._attn_implementation == "sdpa" self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) embed_pos = self.embed_positions(input_ids, inputs_embeds) embed_pos = embed_pos.to(inputs_embeds.device) hidden_states = inputs_embeds + embed_pos hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) # expand attention_mask if attention_mask is not None: if self._use_flash_attention_2: attention_mask = attention_mask if 0 in attention_mask else None elif self._use_sdpa and head_mask is None and not output_attentions: # output_attentions=True & head_mask can not be supported when using SDPA, fall back to # the manual implementation that requires a 4D causal mask in all cases. # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask_for_sdpa(attention_mask, inputs_embeds.dtype) else: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: if head_mask.size()[0] != len(self.layers): raise ValueError( f"The head_mask should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) synced_gpus = is_deepspeed_zero3_enabled() or is_fsdp_managed_module(self) for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = True if self.training and (dropout_probability < self.layerdrop) else False if not skip_the_layer or synced_gpus: # under fsdp or deepspeed zero3 all gpus must run in sync if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, (head_mask[idx] if head_mask is not None else None), output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) class M2M100Decoder(M2M100PreTrainedModel): """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`M2M100DecoderLayer`] Args: config: M2M100Config embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: M2M100Config, embed_tokens: Optional[nn.Embedding] = None): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop self.padding_idx = config.pad_token_id self.max_target_positions = config.max_position_embeddings embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 self.embed_tokens = M2M100ScaledWordEmbedding( config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale ) if embed_tokens is not None: self.embed_tokens.weight = embed_tokens.weight self.embed_positions = M2M100SinusoidalPositionalEmbedding( config.max_position_embeddings, config.d_model, self.padding_idx, ) self.layers = nn.ModuleList([M2M100DecoderLayer(config) for _ in range(config.decoder_layers)]) self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" self._use_sdpa = config._attn_implementation == "sdpa" self.layer_norm = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing cross-attention on hidden heads. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if self._use_flash_attention_2: # 2d mask is passed through the layers combined_attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None elif self._use_sdpa and not output_attentions and cross_attn_head_mask is None: # output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on # the manual implementation that requires a 4D causal mask in all cases. combined_attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( attention_mask, input_shape, inputs_embeds, past_key_values_length, ) else: # 4d mask is passed through the layers combined_attention_mask = _prepare_4d_causal_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: if self._use_flash_attention_2: encoder_attention_mask = encoder_attention_mask if 0 in encoder_attention_mask else None elif self._use_sdpa and cross_attn_head_mask is None and not output_attentions: # output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on # the manual implementation that requires a 4D causal mask in all cases. # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa( encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1], ) else: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _prepare_4d_attention_mask( encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ) # embed positions positions = self.embed_positions(input_ids, inputs_embeds, past_key_values_length) positions = positions.to(inputs_embeds.device) hidden_states = inputs_embeds + positions hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting" " `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if output_attentions else None next_decoder_cache = () if use_cache else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): if attn_mask is not None: if attn_mask.size()[0] != len(self.layers): raise ValueError( f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) synced_gpus = is_deepspeed_zero3_enabled() or is_fsdp_managed_module(self) for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = True if self.training and (dropout_probability < self.layerdrop) else False if not skip_the_layer or synced_gpus: # under fsdp or deepspeed zero3 all gpus must run in sync past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, combined_attention_mask, encoder_hidden_states, encoder_attention_mask, head_mask[idx] if head_mask is not None else None, cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, None, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=combined_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=( cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None ), past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if skip_the_layer: continue if use_cache: next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) all_cross_attentions += (layer_outputs[2],) hidden_states = self.layer_norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) @add_start_docstrings( "The bare M2M100 Model outputting raw hidden-states without any specific head on top.", M2M_100_START_DOCSTRING, ) class M2M100Model(M2M100PreTrainedModel): _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] def __init__(self, config: M2M100Config): super().__init__(config) padding_idx, vocab_size = config.pad_token_id, config.vocab_size embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 self.shared = M2M100ScaledWordEmbedding(vocab_size, config.d_model, padding_idx, embed_scale=embed_scale) self.encoder = M2M100Encoder(config, self.shared) self.decoder = M2M100Decoder(config, self.shared) if config._attn_implementation == "flash_attention_2": logger.warning_once( "Attention with Flash Attention 2 does not support `layer_head_mask`. If you need this feature, please use standard attention." ) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.shared def set_input_embeddings(self, value): self.shared = value self.encoder.embed_tokens = self.shared self.decoder.embed_tokens = self.shared def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(M2M_100_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings( "The M2M100 Model with a language modeling head. Can be used for summarization.", M2M_100_START_DOCSTRING ) class M2M100ForConditionalGeneration(M2M100PreTrainedModel, GenerationMixin): base_model_prefix = "model" _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"] def __init__(self, config: M2M100Config): super().__init__(config) self.model = M2M100Model(config) self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False) # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.model.get_encoder() def get_decoder(self): return self.model.get_decoder() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings @add_start_docstrings_to_model_forward(M2M_100_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @add_end_docstrings(M2M_100_GENERATION_EXAMPLE) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: if decoder_input_ids is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) lm_logits = self.lm_head(outputs[0]) masked_lm_loss = None if labels is not None: # move labels to the correct device to enable PP labels = labels.to(lm_logits.device) loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return Seq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past __all__ = ["M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel"]
transformers/src/transformers/models/m2m_100/modeling_m2m_100.py/0
{ "file_path": "transformers/src/transformers/models/m2m_100/modeling_m2m_100.py", "repo_id": "transformers", "token_count": 34623 }
142
# coding=utf-8 # Copyright 2021 The Marian Team Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TF 2.0 Marian model.""" from __future__ import annotations import random from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutput, TFBaseModelOutputWithPastAndCrossAttentions, TFSeq2SeqLMOutput, TFSeq2SeqModelOutput, ) # Public API from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFPreTrainedModel, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_marian import MarianConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "Helsinki-NLP/opus-mt-en-de" _CONFIG_FOR_DOC = "MarianConfig" LARGE_NEGATIVE = -1e8 # Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int): pad_token_id = tf.cast(pad_token_id, input_ids.dtype) decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype) start_tokens = tf.fill( (shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype) ) shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) # replace possible -100 values in labels by `pad_token_id` shifted_input_ids = tf.where( shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)), shifted_input_ids, ) # "Verify that `labels` has only positive values and -100" assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) # Make sure the assertion op is called by wrapping the result in an identity no-op with tf.control_dependencies([assert_gte0]): shifted_input_ids = tf.identity(shifted_input_ids) return shifted_input_ids # Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0): """ Make causal mask used for bi-directional self-attention. """ bsz = input_ids_shape[0] tgt_len = input_ids_shape[1] mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE mask_cond = tf.range(shape_list(mask)[-1]) mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask) if past_key_values_length > 0: mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1) return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1)) # Copied from transformers.models.bart.modeling_tf_bart._expand_mask def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ src_len = shape_list(mask)[1] tgt_len = tgt_len if tgt_len is not None else src_len one_cst = tf.constant(1.0) mask = tf.cast(mask, dtype=one_cst.dtype) expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) return (one_cst - expanded_mask) * LARGE_NEGATIVE class TFMarianSinusoidalPositionalEmbedding(keras.layers.Layer): """This module produces sinusoidal positional embeddings of any length.""" def __init__(self, num_positions: int, embedding_dim: int, **kwargs): super().__init__(**kwargs) if embedding_dim % 2 != 0: raise NotImplementedError(f"odd embedding_dim {embedding_dim} not supported") self.embedding_dim = embedding_dim self.num_positions = num_positions def build(self, input_shape: tf.TensorShape): """ Build shared token embedding layer Shared weights logic adapted from https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24 """ weight = self._init_weight(self.num_positions, self.embedding_dim) self.weight = self.add_weight( name="embeddings", shape=[self.num_positions, self.embedding_dim], ) weight = tf.cast(weight, dtype=self.weight.dtype) self.weight.assign(weight) super().build(input_shape) @staticmethod def _init_weight(n_pos: int, dim: int): """ Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in the 2nd half of the vector. [dim // 2:] """ position_enc = np.array( [[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)] ) table = np.zeros_like(position_enc) # index 0 is all zero table[:, 0 : dim // 2] = np.sin(position_enc[:, 0::2]) table[:, dim // 2 :] = np.cos(position_enc[:, 1::2]) # convert to tensor table = tf.convert_to_tensor(table) tf.stop_gradient(table) return table def call( self, input_shape: tf.TensorShape, past_key_values_length: int = 0, position_ids: tf.Tensor | None = None ): """Input is expected to be of size [bsz x seqlen].""" if position_ids is None: seq_len = input_shape[1] position_ids = tf.range(past_key_values_length, seq_len + past_key_values_length, delta=1, name="range") return tf.gather(self.weight, position_ids) # Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->Marian class TFMarianAttention(keras.layers.Layer): """Multi-headed attention from "Attention Is All You Need""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, **kwargs, ): super().__init__(**kwargs) self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = keras.layers.Dropout(dropout) self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj") self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) def call( self, hidden_states: tf.Tensor, key_value_states: tf.Tensor | None = None, past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, attention_mask: tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, training: Optional[bool] = False, ) -> Tuple[tf.Tensor, tf.Tensor | None]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, embed_dim = shape_list(hidden_states) # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = tf.concat([past_key_value[0], key_states], axis=2) value_states = tf.concat([past_key_value[1], value_states], axis=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) key_states = tf.reshape(key_states, proj_shape) value_states = tf.reshape(value_states, proj_shape) src_len = shape_list(key_states)[1] attn_weights = tf.matmul(query_states, key_states, transpose_b=True) tf.debugging.assert_equal( shape_list(attn_weights), [bsz * self.num_heads, tgt_len, src_len], message=( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {shape_list(attn_weights)}" ), ) if attention_mask is not None: tf.debugging.assert_equal( shape_list(attention_mask), [bsz, 1, tgt_len, src_len], message=( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {shape_list(attention_mask)}" ), ) attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype) attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_weights = stable_softmax(attn_weights, axis=-1) if layer_head_mask is not None: tf.debugging.assert_equal( shape_list(layer_head_mask), [self.num_heads], message=( f"Head mask for a single layer should be of size {(self.num_heads)}, but is" f" {shape_list(layer_head_mask)}" ), ) attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( attn_weights, (bsz, self.num_heads, tgt_len, src_len) ) attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_probs = self.dropout(attn_weights, training=training) attn_output = tf.matmul(attn_probs, value_states) tf.debugging.assert_equal( shape_list(attn_output), [bsz * self.num_heads, tgt_len, self.head_dim], message=( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {shape_list(attn_output)}" ), ) attn_output = tf.transpose( tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) ) attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) attn_output = self.out_proj(attn_output) attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) return attn_output, attn_weights, past_key_value def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "k_proj", None) is not None: with tf.name_scope(self.k_proj.name): self.k_proj.build([None, None, self.embed_dim]) if getattr(self, "q_proj", None) is not None: with tf.name_scope(self.q_proj.name): self.q_proj.build([None, None, self.embed_dim]) if getattr(self, "v_proj", None) is not None: with tf.name_scope(self.v_proj.name): self.v_proj.build([None, None, self.embed_dim]) if getattr(self, "out_proj", None) is not None: with tf.name_scope(self.out_proj.name): self.out_proj.build([None, None, self.embed_dim]) # Copied from transformers.models.bart.modeling_tf_bart.TFBartEncoderLayer with Bart->Marian class TFMarianEncoderLayer(keras.layers.Layer): def __init__(self, config: MarianConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TFMarianAttention( self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn" ) self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.dropout = keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = keras.layers.Dropout(config.activation_dropout) self.fc1 = keras.layers.Dense(config.encoder_ffn_dim, name="fc1") self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") self.config = config def call( self, hidden_states: tf.Tensor, attention_mask: np.ndarray | tf.Tensor | None, layer_head_mask: tf.Tensor | None, training: Optional[bool] = False, ) -> tf.Tensor: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)` """ residual = hidden_states hidden_states, self_attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask ) tf.debugging.assert_equal( shape_list(hidden_states), shape_list(residual), message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}", ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) return hidden_states, self_attn_weights def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attn", None) is not None: with tf.name_scope(self.self_attn.name): self.self_attn.build(None) if getattr(self, "self_attn_layer_norm", None) is not None: with tf.name_scope(self.self_attn_layer_norm.name): self.self_attn_layer_norm.build([None, None, self.embed_dim]) if getattr(self, "fc1", None) is not None: with tf.name_scope(self.fc1.name): self.fc1.build([None, None, self.embed_dim]) if getattr(self, "fc2", None) is not None: with tf.name_scope(self.fc2.name): self.fc2.build([None, None, self.config.encoder_ffn_dim]) if getattr(self, "final_layer_norm", None) is not None: with tf.name_scope(self.final_layer_norm.name): self.final_layer_norm.build([None, None, self.embed_dim]) # Copied from transformers.models.bart.modeling_tf_bart.TFBartDecoderLayer with Bart->Marian class TFMarianDecoderLayer(keras.layers.Layer): def __init__(self, config: MarianConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TFMarianAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, name="self_attn", is_decoder=True, ) self.dropout = keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = keras.layers.Dropout(config.activation_dropout) self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.encoder_attn = TFMarianAttention( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, name="encoder_attn", is_decoder=True, ) self.encoder_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm") self.fc1 = keras.layers.Dense(config.decoder_ffn_dim, name="fc1") self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") self.config = config def call( self, hidden_states: tf.Tensor, attention_mask: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, cross_attn_layer_head_mask: tf.Tensor | None = None, past_key_value: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, training: Optional[bool] = False, ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`tf.Tensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`tf.Tensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size `(decoder_attention_heads,)` cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module. `(decoder_attention_heads,)` past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states """ residual = hidden_states # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) return ( hidden_states, self_attn_weights, cross_attn_weights, present_key_value, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attn", None) is not None: with tf.name_scope(self.self_attn.name): self.self_attn.build(None) if getattr(self, "self_attn_layer_norm", None) is not None: with tf.name_scope(self.self_attn_layer_norm.name): self.self_attn_layer_norm.build([None, None, self.embed_dim]) if getattr(self, "encoder_attn", None) is not None: with tf.name_scope(self.encoder_attn.name): self.encoder_attn.build(None) if getattr(self, "encoder_attn_layer_norm", None) is not None: with tf.name_scope(self.encoder_attn_layer_norm.name): self.encoder_attn_layer_norm.build([None, None, self.embed_dim]) if getattr(self, "fc1", None) is not None: with tf.name_scope(self.fc1.name): self.fc1.build([None, None, self.embed_dim]) if getattr(self, "fc2", None) is not None: with tf.name_scope(self.fc2.name): self.fc2.build([None, None, self.config.decoder_ffn_dim]) if getattr(self, "final_layer_norm", None) is not None: with tf.name_scope(self.final_layer_norm.name): self.final_layer_norm.build([None, None, self.embed_dim]) class TFMarianPreTrainedModel(TFPreTrainedModel): config_class = MarianConfig base_model_prefix = "model" MARIAN_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Args: config ([`MarianConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ MARIAN_GENERATION_EXAMPLE = r""" TF version of marian-nmt's transformer.h (c++). Designed for the OPUS-NMT translation checkpoints. Available models are listed [here](https://huggingface.co/models?search=Helsinki-NLP). Examples: ```python >>> from transformers import AutoTokenizer, TFMarianMTModel >>> from typing import List >>> src = "fr" # source language >>> trg = "en" # target language >>> sample_text = "où est l'arrêt de bus ?" >>> model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}" >>> model = TFMarianMTModel.from_pretrained(model_name) >>> tokenizer = AutoTokenizer.from_pretrained(model_name) >>> batch = tokenizer([sample_text], return_tensors="tf") >>> gen = model.generate(**batch) >>> tokenizer.batch_decode(gen, skip_special_tokens=True) "Where is the bus stop ?" ``` """ MARIAN_INPUTS_DOCSTRING = r""" Args: input_ids (`tf.Tensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) Marian uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): will be made by default and ignore pad tokens. It is not recommended to set this for most use cases. decoder_position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tf.FloatTensor`, *optional*): hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. of shape `(batch_size, sequence_length, hidden_size)` is a sequence of past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Set to `False` during training, `True` during generation output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @keras_serializable class TFMarianEncoder(keras.layers.Layer): config_class = MarianConfig """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`TFMarianEncoderLayer`]. Args: config: MarianConfig """ def __init__(self, config: MarianConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs): super().__init__(**kwargs) self.config = config self.dropout = keras.layers.Dropout(config.dropout) self.layerdrop = config.encoder_layerdrop self.padding_idx = config.pad_token_id self.max_source_positions = config.max_position_embeddings self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 self.embed_tokens = embed_tokens self.embed_positions = TFMarianSinusoidalPositionalEmbedding( config.max_position_embeddings, config.d_model, name="embed_positions", ) self.layers = [TFMarianEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)] def get_embed_tokens(self): return self.embed_tokens def set_embed_tokens(self, embed_tokens): self.embed_tokens = embed_tokens @unpack_inputs def call( self, input_ids: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ): """ Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale embed_pos = self.embed_positions(input_shape) hidden_states = inputs_embeds + embed_pos hidden_states = self.dropout(hidden_states, training=training) # check attention mask and invert if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _expand_mask(attention_mask) else: attention_mask = None encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: tf.debugging.assert_equal( shape_list(head_mask)[0], len(self.layers), message=( f"The head_mask should be specified for {len(self.layers)} layers, but it is for" f" {shape_list(head_mask)[0]}." ), ) # encoder layers for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): # skip the layer continue hidden_states, attn = encoder_layer( hidden_states, attention_mask, head_mask[idx] if head_mask is not None else None, ) if output_attentions: all_attentions += (attn,) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embed_positions", None) is not None: with tf.name_scope(self.embed_positions.name): self.embed_positions.build(None) if getattr(self, "layers", None) is not None: for layer in self.layers: with tf.name_scope(layer.name): layer.build(None) @keras_serializable class TFMarianDecoder(keras.layers.Layer): config_class = MarianConfig """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFMarianDecoderLayer`] Args: config: MarianConfig embed_tokens: output embedding """ def __init__(self, config: MarianConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs): super().__init__(**kwargs) self.config = config self.padding_idx = config.pad_token_id self.embed_tokens = embed_tokens self.layerdrop = config.decoder_layerdrop self.embed_positions = TFMarianSinusoidalPositionalEmbedding( config.max_position_embeddings, config.d_model, name="embed_positions", ) self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 self.layers = [TFMarianDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)] self.dropout = keras.layers.Dropout(config.dropout) def get_embed_tokens(self): return self.embed_tokens def set_embed_tokens(self, embed_tokens): self.embed_tokens = embed_tokens @unpack_inputs def call( self, input_ids: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, position_ids: tf.Tensor | None = None, encoder_hidden_states: tf.Tensor | None = None, encoder_attention_mask: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, cross_attn_head_mask: tf.Tensor | None = None, past_key_values: Tuple[Tuple[tf.Tensor]] | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ): r""" Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0 # embed positions if position_ids is None: positions = self.embed_positions(input_shape, past_key_values_length) else: positions = self.embed_positions(input_shape, position_ids=position_ids) if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale hidden_states = inputs_embeds # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length) else: combined_attention_mask = _expand_mask( tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1] ) if attention_mask is not None: combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1]) if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1]) hidden_states = self.dropout(hidden_states + positions, training=training) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None present_key_values = () if use_cache else None # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired for attn_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: if attn_mask is not None: tf.debugging.assert_equal( shape_list(attn_mask)[0], len(self.layers), message=( f"The {attn_name} should be specified for {len(self.layers)} layers, but it is for" f" {shape_list(attn_mask)[0]}." ), ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): continue past_key_value = past_key_values[idx] if past_key_values is not None else None hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer( hidden_states, attention_mask=combined_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=head_mask[idx] if head_mask is not None else None, cross_attn_layer_head_mask=cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, past_key_value=past_key_value, ) if use_cache: present_key_values += (present_key_value,) if output_attentions: all_self_attns += (layer_self_attn,) if encoder_hidden_states is not None: all_cross_attns += (layer_cross_attn,) if output_hidden_states: all_hidden_states += (hidden_states,) if not return_dict: return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns else: return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=present_key_values, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attns, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embed_positions", None) is not None: with tf.name_scope(self.embed_positions.name): self.embed_positions.build(None) if getattr(self, "layers", None) is not None: for layer in self.layers: with tf.name_scope(layer.name): layer.build(None) @keras_serializable class TFMarianMainLayer(keras.layers.Layer): config_class = MarianConfig def __init__(self, config: MarianConfig, **kwargs): super().__init__(**kwargs) self.config = config self.shared = keras.layers.Embedding( input_dim=config.vocab_size, output_dim=config.d_model, embeddings_initializer=keras.initializers.TruncatedNormal(stddev=self.config.init_std), name="model.shared", ) # Additional attribute to specify the expected name scope of the layer (for loading/storing weights) self.shared.load_weight_prefix = "model.shared" self.encoder = TFMarianEncoder(config, self.shared, name="encoder") self.decoder = TFMarianDecoder(config, self.shared, name="decoder") def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.embed_tokens = self.shared self.decoder.embed_tokens = self.shared @unpack_inputs def call( self, input_ids: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, decoder_input_ids: tf.Tensor | None = None, decoder_attention_mask: tf.Tensor | None = None, decoder_position_ids: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, decoder_head_mask: tf.Tensor | None = None, cross_attn_head_mask: tf.Tensor | None = None, encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, past_key_values: Tuple[Tuple[tf.Tensor]] = None, inputs_embeds: tf.Tensor | None = None, decoder_inputs_embeds: tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, **kwargs, ): if decoder_input_ids is None and decoder_inputs_embeds is None: use_cache = False output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) # If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput): encoder_outputs = TFBaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False elif not return_dict and not isinstance(encoder_outputs, tuple): encoder_outputs = encoder_outputs.to_tuple() decoder_outputs = self.decoder( decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if not return_dict: return decoder_outputs + encoder_outputs return TFSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True # The shared/tied weights expect to be in the model base namespace # Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than # the current one. with tf.name_scope(self.shared.load_weight_prefix + "/" + self.shared.name + "/"): self.shared.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "decoder", None) is not None: with tf.name_scope(self.decoder.name): self.decoder.build(None) @add_start_docstrings( "The bare MARIAN Model outputting raw hidden-states without any specific head on top.", MARIAN_START_DOCSTRING, ) class TFMarianModel(TFMarianPreTrainedModel): def __init__(self, config: MarianConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.model = TFMarianMainLayer(config, name="model") def get_encoder(self): return self.model.encoder def get_decoder(self): return self.model.decoder @unpack_inputs @add_start_docstrings_to_model_forward(MARIAN_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, decoder_input_ids: tf.Tensor | None = None, decoder_attention_mask: tf.Tensor | None = None, decoder_position_ids: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, decoder_head_mask: tf.Tensor | None = None, cross_attn_head_mask: tf.Tensor | None = None, encoder_outputs: tf.Tensor | None = None, past_key_values: Tuple[Tuple[tf.Tensor]] | None = None, inputs_embeds: tf.Tensor | None = None, decoder_inputs_embeds: tf.Tensor | None = None, use_cache: bool | None = None, output_attentions: bool | None = None, output_hidden_states: bool | None = None, return_dict: bool | None = None, training: bool = False, **kwargs, ) -> Tuple[tf.Tensor] | TFSeq2SeqModelOutput: outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs # Copied from transformers.models.bart.modeling_tf_bart.TFBartModel.serving_output def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None return TFSeq2SeqModelOutput( last_hidden_state=output.last_hidden_state, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, cross_attentions=cross_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "model", None) is not None: with tf.name_scope(self.model.name): self.model.build(None) # Copied from transformers.models.bart.modeling_tf_bart.BiasLayer class BiasLayer(keras.layers.Layer): """ Bias as a layer. It is used for serialization purposes: `keras.Model.save_weights` stores on a per-layer basis, so all weights have to be registered in a layer. """ def __init__(self, shape, initializer, trainable, name, **kwargs): super().__init__(name=name, **kwargs) # Note: the name of this variable will NOT be scoped when serialized, i.e. it will not be in the format of # "outer_layer/inner_layer/.../name:0". Instead, it will be "name:0". For further details, see: # https://github.com/huggingface/transformers/pull/18833#issuecomment-1233090214 self.bias = self.add_weight(name=name, shape=shape, initializer=initializer, trainable=trainable) def call(self, x): return x + self.bias @add_start_docstrings( "The MARIAN Model with a language modeling head. Can be used for summarization.", MARIAN_START_DOCSTRING, ) class TFMarianMTModel(TFMarianPreTrainedModel, TFCausalLanguageModelingLoss): _keys_to_ignore_on_load_unexpected = [ r"model.encoder.embed_tokens.weight", r"model.decoder.embed_tokens.weight", ] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.model = TFMarianMainLayer(config, name="model") self.use_cache = config.use_cache # final_bias_logits is registered as a buffer in pytorch, so not trainable for the sake of consistency. self.bias_layer = BiasLayer( name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False ) def get_decoder(self): return self.model.decoder def get_encoder(self): return self.model.encoder def get_output_embeddings(self): return self.get_input_embeddings() def set_output_embeddings(self, value): self.set_input_embeddings(value) def get_bias(self): return {"final_logits_bias": self.bias_layer.bias} def set_bias(self, value): # Replaces the existing layers containing bias for correct (de)serialization. vocab_size = value["final_logits_bias"].shape[-1] self.bias_layer = BiasLayer( name="final_logits_bias", shape=[1, vocab_size], initializer="zeros", trainable=False ) self.bias_layer.bias.assign(value["final_logits_bias"]) @unpack_inputs @add_start_docstrings_to_model_forward(MARIAN_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @add_end_docstrings(MARIAN_GENERATION_EXAMPLE) def call( self, input_ids: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, decoder_input_ids: tf.Tensor | None = None, decoder_attention_mask: tf.Tensor | None = None, decoder_position_ids: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, decoder_head_mask: tf.Tensor | None = None, cross_attn_head_mask: tf.Tensor | None = None, encoder_outputs: TFBaseModelOutput | None = None, past_key_values: Tuple[Tuple[tf.Tensor]] | None = None, inputs_embeds: tf.Tensor | None = None, decoder_inputs_embeds: tf.Tensor | None = None, use_cache: bool | None = None, output_attentions: bool | None = None, output_hidden_states: bool | None = None, return_dict: bool | None = None, labels: tf.Tensor | None = None, training: bool = False, ) -> Tuple[tf.Tensor] | TFSeq2SeqLMOutput: r""" labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: """ if labels is not None: labels = tf.where( labels == self.config.pad_token_id, tf.fill(shape_list(labels), tf.cast(-100, labels.dtype)), labels, ) use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) lm_logits = tf.matmul(outputs[0], self.model.shared.weights, transpose_b=True) lm_logits = self.bias_layer(lm_logits) masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits) if not return_dict: output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return TFSeq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, # index 1 of d outputs decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs cross_attentions=outputs.cross_attentions, # index 4 of d outputs encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out encoder_attentions=outputs.encoder_attentions, # 2 of e out ) # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.serving_output def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None return TFSeq2SeqLMOutput( logits=output.logits, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, cross_attentions=cross_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, ) # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.prepare_inputs_for_generation def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): # cut decoder_input_ids if past_key_values is used if past_key_values is not None: decoder_input_ids = decoder_input_ids[:, -1:] if decoder_attention_mask is not None: # xla decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:] elif past_key_values is not None: # no xla + past_key_values decoder_position_ids = past_key_values[0][0].shape[2] else: # no xla + no past_key_values decoder_position_ids = tf.range(decoder_input_ids.shape[1]) return { "input_ids": None, # encoder_outputs is defined. input_ids not needed "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "decoder_position_ids": decoder_position_ids, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, # change this to avoid caching (presumably for debugging) } def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor): return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "model", None) is not None: with tf.name_scope(self.model.name): self.model.build(None) if getattr(self, "bias_layer", None) is not None: with tf.name_scope(self.bias_layer.name): self.bias_layer.build(None) __all__ = ["TFMarianModel", "TFMarianMTModel", "TFMarianPreTrainedModel"]
transformers/src/transformers/models/marian/modeling_tf_marian.py/0
{ "file_path": "transformers/src/transformers/models/marian/modeling_tf_marian.py", "repo_id": "transformers", "token_count": 31884 }
143
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MaskFormer Swin Transformer model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices logger = logging.get_logger(__name__) class MaskFormerSwinConfig(BackboneConfigMixin, PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MaskFormerSwinModel`]. It is used to instantiate a Donut model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Swin [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 4): The size (resolution) of each patch. num_channels (`int`, *optional*, defaults to 3): The number of input channels. embed_dim (`int`, *optional*, defaults to 96): Dimensionality of patch embedding. depths (`List[int]`, *optional*, defaults to `[2, 2, 6, 2]`): Depth of each layer in the Transformer encoder. num_heads (`List[int]`, *optional*, defaults to `[3, 6, 12, 24]`): Number of attention heads in each layer of the Transformer encoder. window_size (`int`, *optional*, defaults to 7): Size of windows. mlp_ratio (`float`, *optional*, defaults to 4.0): Ratio of MLP hidden dimensionality to embedding dimensionality. qkv_bias (`bool`, *optional*, defaults to True): Whether or not a learnable bias should be added to the queries, keys and values. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings and encoder. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. drop_path_rate (`float`, *optional*, defaults to 0.1): Stochastic depth rate. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. use_absolute_embeddings (`bool`, *optional*, defaults to False): Whether or not to add absolute position embeddings to the patch embeddings. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. out_features (`List[str]`, *optional*): If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. (depending on how many stages the model has). If unset and `out_indices` is set, will default to the corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. out_indices (`List[int]`, *optional*): If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. If unset and `out_features` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. Example: ```python >>> from transformers import MaskFormerSwinConfig, MaskFormerSwinModel >>> # Initializing a microsoft/swin-tiny-patch4-window7-224 style configuration >>> configuration = MaskFormerSwinConfig() >>> # Initializing a model (with random weights) from the microsoft/swin-tiny-patch4-window7-224 style configuration >>> model = MaskFormerSwinModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "maskformer-swin" attribute_map = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self, image_size=224, patch_size=4, num_channels=3, embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4.0, qkv_bias=True, hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, drop_path_rate=0.1, hidden_act="gelu", use_absolute_embeddings=False, initializer_range=0.02, layer_norm_eps=1e-5, out_features=None, out_indices=None, **kwargs, ): super().__init__(**kwargs) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.embed_dim = embed_dim self.depths = depths self.num_layers = len(depths) self.num_heads = num_heads self.window_size = window_size self.mlp_ratio = mlp_ratio self.qkv_bias = qkv_bias self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.drop_path_rate = drop_path_rate self.hidden_act = hidden_act self.use_absolute_embeddings = use_absolute_embeddings self.layer_norm_eps = layer_norm_eps self.initializer_range = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model self.hidden_size = int(embed_dim * 2 ** (len(depths) - 1)) self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)] self._out_features, self._out_indices = get_aligned_output_features_output_indices( out_features=out_features, out_indices=out_indices, stage_names=self.stage_names ) __all__ = ["MaskFormerSwinConfig"]
transformers/src/transformers/models/maskformer/configuration_maskformer_swin.py/0
{ "file_path": "transformers/src/transformers/models/maskformer/configuration_maskformer_swin.py", "repo_id": "transformers", "token_count": 2762 }
144
# coding=utf-8 # Copyright 2024 Meta Platforms, Inc. and affiliates, and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Mimi model configuration""" import math import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class MimiConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of an [`MimiModel`]. It is used to instantiate a Mimi model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [kyutai/mimi](https://huggingface.co/kyutai/mimi) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: sampling_rate (`int`, *optional*, defaults to 24000): The sampling rate at which the audio waveform should be digitalized expressed in hertz (Hz). frame_rate (`float`, *optional*, defaults to 12.5): Framerate of the model. audio_channels (`int`, *optional*, defaults to 1): Number of channels in the audio data. Either 1 for mono or 2 for stereo. hidden_size (`int`, *optional*, defaults to 512): Intermediate representation dimension. num_filters (`int`, *optional*, defaults to 64): Number of convolution kernels of first `MimiConv1d` down sampling layer. num_residual_layers (`int`, *optional*, defaults to 1): Number of residual layers. upsampling_ratios (`Sequence[int]`, *optional*): Kernel size and stride ratios. The encoder uses downsampling ratios instead of upsampling ratios, hence it will use the ratios in the reverse order to the ones specified here that must match the decoder order. If not specified, will defaults to `[8, 6, 5, 4]` kernel_size (`int`, *optional*, defaults to 7): Kernel size for the initial convolution. last_kernel_size (`int`, *optional*, defaults to 3): Kernel size for the last convolution layer. residual_kernel_size (`int`, *optional*, defaults to 3): Kernel size for the residual layers. dilation_growth_rate (`int`, *optional*, defaults to 2): How much to increase the dilation with each layer. use_causal_conv (`bool`, *optional*, defaults to `True`): Whether to use fully causal convolution. pad_mode (`str`, *optional*, defaults to `"constant"`): Padding mode for the convolutions. compress (`int`, *optional*, defaults to 2): Reduced dimensionality in residual branches. trim_right_ratio (`float`, *optional*, defaults to 1.0): Ratio for trimming at the right of the transposed convolution under the `use_causal_conv = True` setup. If equal to 1.0, it means that all the trimming is done at the right. codebook_size (`int`, *optional*, defaults to 2048): Number of discret codes in each codebooks. codebook_dim (`int`, *optional*, defaults to 256): Dimension of the unquantized codebook vectors. If not defined, uses `hidden_size`. num_quantizers (`int`, *optional*, defaults to 32): Number of quantizer channels, or codebooks, in the quantizer. use_conv_shortcut (`bool`, *optional*, defaults to `False`): Whether to use a convolutional layer as the 'skip' connection in the `MimiResnetBlock` block. If False, an identity function will be used, giving a generic residual connection. vector_quantization_hidden_dimension (`int`, *optional*, defaults to 256): Intermediate representation dimension in the residual vector quantization space. num_semantic_quantizers (`int`, *optional*, defaults to 1): Number of semantic quantizer channels, or codebooks, in the semantic quantizer. Must be lower than `num_quantizers`. upsample_groups (`int`, *optional*, defaults to 512): If `frame_rate!=encodec_frame_rate`, indicates the number of groups used in the upsampling operation to go from one rate to another. num_hidden_layers (`int`, *optional*, defaults to 8): Number of hidden layers in the Transformer models. intermediate_size (`int`, *optional*, defaults to 2048): Dimension of the MLP representations. num_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer encoder. num_key_value_heads (`int`, *optional*, defaults to 8): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. head_dim (`int`, *optional*, defaults to `hidden_size // num_attention_heads`): The attention head dimension. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 8000): The maximum sequence length that this model might ever be used with. Mimi's sliding window attention allows sequence of up to 8000 tokens. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the LayerNorm normalization layers. use_cache (`bool`, *optional*, defaults to `False`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. sliding_window (`int`, *optional*, defaults to 250): Sliding window attention window size. If not specified, will default to `250`. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. layer_scale_initial_scale (`float`, *optional*, defaults to 0.01): Initiale scale of the residual rescaling operation done in the Transformer models. attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): Whether to use a bias in the query, key, value and output projection layers during self-attention. Example: ```python >>> from transformers import MimiModel, MimiConfig >>> # Initializing a "kyutai/mimi" style configuration >>> configuration = MimiConfig() >>> # Initializing a model (with random weights) from the "kyutai/mimi" style configuration >>> model = MimiModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mimi" def __init__( self, sampling_rate=24_000, frame_rate=12.5, audio_channels=1, hidden_size=512, num_filters=64, num_residual_layers=1, upsampling_ratios=None, kernel_size=7, last_kernel_size=3, residual_kernel_size=3, dilation_growth_rate=2, use_causal_conv=True, pad_mode="constant", compress=2, trim_right_ratio=1.0, codebook_size=2048, codebook_dim=256, num_quantizers=32, use_conv_shortcut=False, vector_quantization_hidden_dimension=256, num_semantic_quantizers=1, upsample_groups=512, num_hidden_layers=8, intermediate_size=2048, num_attention_heads=8, num_key_value_heads=8, head_dim=None, hidden_act="gelu", max_position_embeddings=8000, initializer_range=0.02, norm_eps=1e-5, use_cache=False, rope_theta=10000.0, sliding_window=250, attention_dropout=0.0, layer_scale_initial_scale=0.01, attention_bias=False, **kwargs, ): self.sampling_rate = sampling_rate self.frame_rate = frame_rate self.audio_channels = audio_channels self.hidden_size = hidden_size self.num_filters = num_filters self.num_residual_layers = num_residual_layers self.upsampling_ratios = upsampling_ratios if upsampling_ratios else [8, 6, 5, 4] self.kernel_size = kernel_size self.last_kernel_size = last_kernel_size self.residual_kernel_size = residual_kernel_size self.dilation_growth_rate = dilation_growth_rate self.use_causal_conv = use_causal_conv self.pad_mode = pad_mode self.compress = compress self.trim_right_ratio = trim_right_ratio self.codebook_size = codebook_size self.codebook_dim = codebook_dim if codebook_dim is not None else hidden_size self.num_quantizers = num_quantizers self.use_conv_shortcut = use_conv_shortcut self.vector_quantization_hidden_dimension = vector_quantization_hidden_dimension self.upsample_groups = upsample_groups self.num_hidden_layers = num_hidden_layers self.intermediate_size = intermediate_size self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.norm_eps = norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.sliding_window = sliding_window self.attention_dropout = attention_dropout self.head_dim = head_dim or hidden_size // num_attention_heads self.layer_scale_initial_scale = layer_scale_initial_scale self.attention_bias = attention_bias if num_semantic_quantizers >= self.num_quantizers: raise ValueError( f"The number of semantic quantizers should be lower than the total number of quantizers {self.num_quantizers}, but is currently {num_semantic_quantizers}." ) self.num_semantic_quantizers = num_semantic_quantizers super().__init__(**kwargs) @property def encodec_frame_rate(self) -> int: hop_length = np.prod(self.upsampling_ratios) return math.ceil(self.sampling_rate / hop_length) @property def num_codebooks(self) -> int: # alias to num_quantizers return self.num_quantizers __all__ = ["MimiConfig"]
transformers/src/transformers/models/mimi/configuration_mimi.py/0
{ "file_path": "transformers/src/transformers/models/mimi/configuration_mimi.py", "repo_id": "transformers", "token_count": 4505 }
145
# coding=utf-8 # Copyright 2024 HuggingFace Inc. team. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Mllama model configuration""" from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...modeling_rope_utils import rope_config_validation from ...utils import logging logger = logging.get_logger(__name__) class MllamaVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MllamaVisionModel`]. It is used to instantiate an Mllama vision model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Mllama-11B. e.g. [meta-llama/Llama-3.2-11B-Vision](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 1280): Dimensionality of the encoder layers and the pooler layer. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer encoder. num_global_layers (`int`, *optional*, defaults to 8): Number of global layers in the Transformer encoder. Vision model has a second transformer encoder, called global. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. num_channels (`int`, *optional*, defaults to 3): Number of channels in the input image. intermediate_size (`int`, *optional*, defaults to 5120): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. vision_output_dim (`int`, *optional*, defaults to 7680): Dimensionality of the vision model output. Includes output of transformer encoder with intermediate layers and global transformer encoder. image_size (`int`, *optional*, defaults to 448): The size (resolution) of each image *tile*. patch_size (`int`, *optional*, defaults to 14): The size (resolution) of each patch. norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. max_num_tiles (`int`, *optional*, defaults to 4): Maximum number of tiles for image splitting. intermediate_layers_indices (`List[int]`, *optional*, defaults to [3, 7, 15, 23, 30]): Indices of intermediate layers of transformer encoder from which to extract and output features. These output features are concatenated with final hidden state of transformer encoder. supported_aspect_ratios (`List[List[int]]`, *optional*): List of supported aspect ratios for image splitting. If not specified, the default supported aspect ratios are [[1, 1], [1, 2], [1, 3], [1, 4], [2, 1], [2, 2], [3, 1], [4, 1]] for `max_num_tiles=4`. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. Example: ```python >>> from transformers import MllamaVisionConfig, MllamaVisionModel >>> # Initializing a Llama config >>> config = MllamaVisionConfig() >>> # Initializing a vision model from the mllama-11b style configuration >>> model = MllamaVisionModel(config) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mllama_vision_model" base_config_key = "vision_config" def __init__( self, hidden_size: int = 1280, hidden_act: str = "gelu", num_hidden_layers: int = 32, num_global_layers: int = 8, num_attention_heads: int = 16, num_channels: int = 3, intermediate_size: int = 5120, vision_output_dim: int = 7680, image_size: int = 448, patch_size: int = 14, norm_eps: float = 1e-5, max_num_tiles: int = 4, intermediate_layers_indices: Optional[List[int]] = None, supported_aspect_ratios: Optional[List[List[int]]] = None, initializer_range: float = 0.02, **kwargs, ): if supported_aspect_ratios is None: if max_num_tiles != 4: raise ValueError("max_num_tiles must be 4 for default supported aspect ratios") supported_aspect_ratios = [[1, 1], [1, 2], [1, 3], [1, 4], [2, 1], [2, 2], [3, 1], [4, 1]] if intermediate_layers_indices is None: intermediate_layers_indices = [3, 7, 15, 23, 30] self.hidden_size = hidden_size self.hidden_act = hidden_act self.num_hidden_layers = num_hidden_layers self.num_channels = num_channels self.intermediate_size = intermediate_size self.image_size = image_size self.vision_output_dim = vision_output_dim self.patch_size = patch_size self.intermediate_layers_indices = intermediate_layers_indices self.num_global_layers = num_global_layers self.max_num_tiles = max_num_tiles self.norm_eps = norm_eps self.attention_heads = num_attention_heads self.supported_aspect_ratios = supported_aspect_ratios self.initializer_range = initializer_range super().__init__(**kwargs) @property def max_aspect_ratio_id(self) -> int: return len(self.supported_aspect_ratios) class MllamaTextConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MllamaTextModel`]. It is used to instantiate an Mllama text model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Mllama-11B. e.g. [meta-llama/Llama-3.2-11B-Vision](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 128256): Vocabulary size of the Mllama text model. Defines the maximum number of different tokens that can be represented by the `inputs_ids` passed when calling [`MllamaTextModel`]. hidden_size (`int`, *optional*, defaults to 4096): Dimensionality of the embeddings and hidden states. hidden_act (`str` or `Callable`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the encoder and pooler. num_hidden_layers (`int`, *optional*, defaults to 40): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer encoder. num_key_value_heads (`int`, *optional*, defaults to 8): This is the number of key_value heads that should be used to implement Grouped Query Attention. If not specified, will default to `num_attention_heads`. intermediate_size (`int`, *optional*, defaults to 14336): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. rope_theta (`float`, *optional*, defaults to `500000.0`): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value accordingly. Expected contents: `rope_type` (`str`): The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', 'llama3'], with 'default' being the original RoPE implementation. `factor` (`float`, *optional*): Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In most scaling types, a `factor` of x will enable the model to handle sequences of length x * original maximum pre-trained length. `original_max_position_embeddings` (`int`, *optional*): Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during pretraining. `attention_factor` (`float`, *optional*): Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention computation. If unspecified, it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value. `beta_fast` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear ramp function. If unspecified, it defaults to 32. `beta_slow` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear ramp function. If unspecified, it defaults to 1. `short_factor` (`List[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to short contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `long_factor` (`List[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to long contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `low_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE `high_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE rms_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the rms normalization layers. max_position_embeddings (`int`, *optional*, defaults to 131072): The maximum sequence length that this model might ever be used with. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings cross_attention_layers (`List[int]`, *optional*): Indices of the cross attention layers. If not specified, will default to [3, 8, 13, 18, 23, 28, 33, 38]. dropout (`float`, *optional*, defaults to 0): The dropout probability for self- and cross-attention layers. bos_token_id (`int`, *optional*, defaults to 128000): The id of the beginning of sentence token. eos_token_id (`int`, *optional*, defaults to 128001): The id of the end of sentence token. pad_token_id (`int`, *optional*, defaults to 128004): The id of the padding token. Example: ```python >>> from transformers import MllamaTextModel, MllamaTextConfig >>> # Initializing a Mllama text config >>> config = MllamaTextConfig() >>> # Initializing a model from the Mllama text configuration >>> model = MllamaTextModel(config) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mllama_text_model" base_config_key = "text_config" def __init__( self, vocab_size: int = 128256, hidden_size: int = 4096, hidden_act: str = "silu", num_hidden_layers: int = 40, num_attention_heads: int = 32, num_key_value_heads: int = 8, intermediate_size: int = 14_336, rope_theta: float = 500_000, rope_scaling: Optional[Dict] = None, rms_norm_eps: float = 1e-5, max_position_embeddings: int = 131_072, initializer_range: float = 0.02, use_cache: bool = True, tie_word_embeddings: bool = False, cross_attention_layers: Optional[List[int]] = None, dropout: float = 0, bos_token_id: int = 128000, eos_token_id: int = 128001, pad_token_id: Optional[int] = 128004, **kwargs, ): if cross_attention_layers is None: cross_attention_layers = [3, 8, 13, 18, 23, 28, 33, 38] self.vocab_size = vocab_size self.num_hidden_layers = num_hidden_layers self.cross_attention_layers = cross_attention_layers self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.initializer_range = initializer_range self.use_cache = use_cache self.rope_theta = rope_theta self.rms_norm_eps = rms_norm_eps self.intermediate_size = intermediate_size self.dropout = dropout self.hidden_act = hidden_act self.rope_scaling = rope_scaling self.max_position_embeddings = max_position_embeddings rope_config_validation(self) super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) class MllamaConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MllamaForConditionalGeneration`]. It is used to instantiate an Mllama model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Mllama-9B. e.g. [meta-llama/Llama-3.2-11B-Vision](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `MllamaVisionConfig`): The config object or dictionary of the vision backbone. text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `MllamaTextConfig`): The config object or dictionary of the text backbone. image_token_index (`int`, *optional*, defaults to 128256): The image token index to encode the image prompt. Example: ```python >>> from transformers import MllamaForConditionalGeneration, MllamaConfig, MllamaVisionConfig, MllamaTextConfig >>> # Initializing a CLIP-vision config >>> vision_config = MllamaVisionConfig() >>> # Initializing a Llama config >>> text_config = MllamaTextConfig() >>> # Initializing a mllama-11b style configuration >>> configuration = MllamaConfig(vision_config, text_config) >>> # Initializing a model from the mllama-11b style configuration >>> model = MllamaForConditionalGeneration(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mllama" sub_configs = {"text_config": MllamaTextConfig, "vision_config": MllamaVisionConfig} def __init__( self, vision_config=None, text_config=None, image_token_index=128256, **kwargs, ): if vision_config is None: self.vision_config = MllamaVisionConfig() logger.info("vision_config is None, using default mllama vision config") elif isinstance(vision_config, dict): self.vision_config = MllamaVisionConfig(**vision_config) elif isinstance(vision_config, MllamaVisionConfig): self.vision_config = vision_config self.image_token_index = image_token_index if text_config is None: self.text_config = MllamaTextConfig() logger.info("text_config is None, using default mllama text config") elif isinstance(text_config, dict): self.text_config = MllamaTextConfig(**text_config) elif isinstance(text_config, MllamaTextConfig): self.text_config = text_config super().__init__(**kwargs) __all__ = ["MllamaConfig"]
transformers/src/transformers/models/mllama/configuration_mllama.py/0
{ "file_path": "transformers/src/transformers/models/mllama/configuration_mllama.py", "repo_id": "transformers", "token_count": 7056 }
146
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MobileNetV1 model configuration""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) class MobileNetV1Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MobileNetV1Model`]. It is used to instantiate a MobileNetV1 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MobileNetV1 [google/mobilenet_v1_1.0_224](https://huggingface.co/google/mobilenet_v1_1.0_224) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_channels (`int`, *optional*, defaults to 3): The number of input channels. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. depth_multiplier (`float`, *optional*, defaults to 1.0): Shrinks or expands the number of channels in each layer. Default is 1.0, which starts the network with 32 channels. This is sometimes also called "alpha" or "width multiplier". min_depth (`int`, *optional*, defaults to 8): All layers will have at least this many channels. hidden_act (`str` or `function`, *optional*, defaults to `"relu6"`): The non-linear activation function (function or string) in the Transformer encoder and convolution layers. tf_padding (`bool`, *optional*, defaults to `True`): Whether to use TensorFlow padding rules on the convolution layers. classifier_dropout_prob (`float`, *optional*, defaults to 0.999): The dropout ratio for attached classifiers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 0.001): The epsilon used by the layer normalization layers. Example: ```python >>> from transformers import MobileNetV1Config, MobileNetV1Model >>> # Initializing a "mobilenet_v1_1.0_224" style configuration >>> configuration = MobileNetV1Config() >>> # Initializing a model from the "mobilenet_v1_1.0_224" style configuration >>> model = MobileNetV1Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mobilenet_v1" def __init__( self, num_channels=3, image_size=224, depth_multiplier=1.0, min_depth=8, hidden_act="relu6", tf_padding=True, classifier_dropout_prob=0.999, initializer_range=0.02, layer_norm_eps=0.001, **kwargs, ): super().__init__(**kwargs) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero.") self.num_channels = num_channels self.image_size = image_size self.depth_multiplier = depth_multiplier self.min_depth = min_depth self.hidden_act = hidden_act self.tf_padding = tf_padding self.classifier_dropout_prob = classifier_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps class MobileNetV1OnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("pixel_values", {0: "batch"})]) @property def outputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})]) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})]) @property def atol_for_validation(self) -> float: return 1e-4 __all__ = ["MobileNetV1Config", "MobileNetV1OnnxConfig"]
transformers/src/transformers/models/mobilenet_v1/configuration_mobilenet_v1.py/0
{ "file_path": "transformers/src/transformers/models/mobilenet_v1/configuration_mobilenet_v1.py", "repo_id": "transformers", "token_count": 1793 }
147
# coding=utf-8 # Copyright 2022 Apple Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Original license: https://github.com/apple/ml-cvnets/blob/main/LICENSE """PyTorch MobileViT model.""" import math from typing import Dict, Optional, Set, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, SemanticSegmenterOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, torch_int, ) from .configuration_mobilevit import MobileViTConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "MobileViTConfig" # Base docstring _CHECKPOINT_FOR_DOC = "apple/mobilevit-small" _EXPECTED_OUTPUT_SHAPE = [1, 640, 8, 8] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "apple/mobilevit-small" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" def make_divisible(value: int, divisor: int = 8, min_value: Optional[int] = None) -> int: """ Ensure that all layers have a channel count that is divisible by `divisor`. This function is taken from the original TensorFlow repo. It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py """ if min_value is None: min_value = divisor new_value = max(min_value, int(value + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_value < 0.9 * value: new_value += divisor return int(new_value) class MobileViTConvLayer(nn.Module): def __init__( self, config: MobileViTConfig, in_channels: int, out_channels: int, kernel_size: int, stride: int = 1, groups: int = 1, bias: bool = False, dilation: int = 1, use_normalization: bool = True, use_activation: Union[bool, str] = True, ) -> None: super().__init__() padding = int((kernel_size - 1) / 2) * dilation if in_channels % groups != 0: raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups.") if out_channels % groups != 0: raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups.") self.convolution = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias, padding_mode="zeros", ) if use_normalization: self.normalization = nn.BatchNorm2d( num_features=out_channels, eps=1e-5, momentum=0.1, affine=True, track_running_stats=True, ) else: self.normalization = None if use_activation: if isinstance(use_activation, str): self.activation = ACT2FN[use_activation] elif isinstance(config.hidden_act, str): self.activation = ACT2FN[config.hidden_act] else: self.activation = config.hidden_act else: self.activation = None def forward(self, features: torch.Tensor) -> torch.Tensor: features = self.convolution(features) if self.normalization is not None: features = self.normalization(features) if self.activation is not None: features = self.activation(features) return features class MobileViTInvertedResidual(nn.Module): """ Inverted residual block (MobileNetv2): https://arxiv.org/abs/1801.04381 """ def __init__( self, config: MobileViTConfig, in_channels: int, out_channels: int, stride: int, dilation: int = 1 ) -> None: super().__init__() expanded_channels = make_divisible(int(round(in_channels * config.expand_ratio)), 8) if stride not in [1, 2]: raise ValueError(f"Invalid stride {stride}.") self.use_residual = (stride == 1) and (in_channels == out_channels) self.expand_1x1 = MobileViTConvLayer( config, in_channels=in_channels, out_channels=expanded_channels, kernel_size=1 ) self.conv_3x3 = MobileViTConvLayer( config, in_channels=expanded_channels, out_channels=expanded_channels, kernel_size=3, stride=stride, groups=expanded_channels, dilation=dilation, ) self.reduce_1x1 = MobileViTConvLayer( config, in_channels=expanded_channels, out_channels=out_channels, kernel_size=1, use_activation=False, ) def forward(self, features: torch.Tensor) -> torch.Tensor: residual = features features = self.expand_1x1(features) features = self.conv_3x3(features) features = self.reduce_1x1(features) return residual + features if self.use_residual else features class MobileViTMobileNetLayer(nn.Module): def __init__( self, config: MobileViTConfig, in_channels: int, out_channels: int, stride: int = 1, num_stages: int = 1 ) -> None: super().__init__() self.layer = nn.ModuleList() for i in range(num_stages): layer = MobileViTInvertedResidual( config, in_channels=in_channels, out_channels=out_channels, stride=stride if i == 0 else 1, ) self.layer.append(layer) in_channels = out_channels def forward(self, features: torch.Tensor) -> torch.Tensor: for layer_module in self.layer: features = layer_module(features) return features class MobileViTSelfAttention(nn.Module): def __init__(self, config: MobileViTConfig, hidden_size: int) -> None: super().__init__() if hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size {hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(hidden_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(hidden_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(hidden_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) return context_layer class MobileViTSelfOutput(nn.Module): def __init__(self, config: MobileViTConfig, hidden_size: int) -> None: super().__init__() self.dense = nn.Linear(hidden_size, hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class MobileViTAttention(nn.Module): def __init__(self, config: MobileViTConfig, hidden_size: int) -> None: super().__init__() self.attention = MobileViTSelfAttention(config, hidden_size) self.output = MobileViTSelfOutput(config, hidden_size) self.pruned_heads = set() def prune_heads(self, heads: Set[int]) -> None: if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: self_outputs = self.attention(hidden_states) attention_output = self.output(self_outputs) return attention_output class MobileViTIntermediate(nn.Module): def __init__(self, config: MobileViTConfig, hidden_size: int, intermediate_size: int) -> None: super().__init__() self.dense = nn.Linear(hidden_size, intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class MobileViTOutput(nn.Module): def __init__(self, config: MobileViTConfig, hidden_size: int, intermediate_size: int) -> None: super().__init__() self.dense = nn.Linear(intermediate_size, hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states class MobileViTTransformerLayer(nn.Module): def __init__(self, config: MobileViTConfig, hidden_size: int, intermediate_size: int) -> None: super().__init__() self.attention = MobileViTAttention(config, hidden_size) self.intermediate = MobileViTIntermediate(config, hidden_size, intermediate_size) self.output = MobileViTOutput(config, hidden_size, intermediate_size) self.layernorm_before = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: attention_output = self.attention(self.layernorm_before(hidden_states)) hidden_states = attention_output + hidden_states layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) layer_output = self.output(layer_output, hidden_states) return layer_output class MobileViTTransformer(nn.Module): def __init__(self, config: MobileViTConfig, hidden_size: int, num_stages: int) -> None: super().__init__() self.layer = nn.ModuleList() for _ in range(num_stages): transformer_layer = MobileViTTransformerLayer( config, hidden_size=hidden_size, intermediate_size=int(hidden_size * config.mlp_ratio), ) self.layer.append(transformer_layer) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: for layer_module in self.layer: hidden_states = layer_module(hidden_states) return hidden_states class MobileViTLayer(nn.Module): """ MobileViT block: https://arxiv.org/abs/2110.02178 """ def __init__( self, config: MobileViTConfig, in_channels: int, out_channels: int, stride: int, hidden_size: int, num_stages: int, dilation: int = 1, ) -> None: super().__init__() self.patch_width = config.patch_size self.patch_height = config.patch_size if stride == 2: self.downsampling_layer = MobileViTInvertedResidual( config, in_channels=in_channels, out_channels=out_channels, stride=stride if dilation == 1 else 1, dilation=dilation // 2 if dilation > 1 else 1, ) in_channels = out_channels else: self.downsampling_layer = None self.conv_kxk = MobileViTConvLayer( config, in_channels=in_channels, out_channels=in_channels, kernel_size=config.conv_kernel_size, ) self.conv_1x1 = MobileViTConvLayer( config, in_channels=in_channels, out_channels=hidden_size, kernel_size=1, use_normalization=False, use_activation=False, ) self.transformer = MobileViTTransformer( config, hidden_size=hidden_size, num_stages=num_stages, ) self.layernorm = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps) self.conv_projection = MobileViTConvLayer( config, in_channels=hidden_size, out_channels=in_channels, kernel_size=1 ) self.fusion = MobileViTConvLayer( config, in_channels=2 * in_channels, out_channels=in_channels, kernel_size=config.conv_kernel_size ) def unfolding(self, features: torch.Tensor) -> Tuple[torch.Tensor, Dict]: patch_width, patch_height = self.patch_width, self.patch_height patch_area = int(patch_width * patch_height) batch_size, channels, orig_height, orig_width = features.shape new_height = ( torch_int(torch.ceil(orig_height / patch_height) * patch_height) if torch.jit.is_tracing() else int(math.ceil(orig_height / patch_height) * patch_height) ) new_width = ( torch_int(torch.ceil(orig_width / patch_width) * patch_width) if torch.jit.is_tracing() else int(math.ceil(orig_width / patch_width) * patch_width) ) interpolate = False if new_width != orig_width or new_height != orig_height: # Note: Padding can be done, but then it needs to be handled in attention function. features = nn.functional.interpolate( features, size=(new_height, new_width), mode="bilinear", align_corners=False ) interpolate = True # number of patches along width and height num_patch_width = new_width // patch_width num_patch_height = new_height // patch_height num_patches = num_patch_height * num_patch_width # convert from shape (batch_size, channels, orig_height, orig_width) # to the shape (batch_size * patch_area, num_patches, channels) patches = features.reshape( batch_size * channels * num_patch_height, patch_height, num_patch_width, patch_width ) patches = patches.transpose(1, 2) patches = patches.reshape(batch_size, channels, num_patches, patch_area) patches = patches.transpose(1, 3) patches = patches.reshape(batch_size * patch_area, num_patches, -1) info_dict = { "orig_size": (orig_height, orig_width), "batch_size": batch_size, "channels": channels, "interpolate": interpolate, "num_patches": num_patches, "num_patches_width": num_patch_width, "num_patches_height": num_patch_height, } return patches, info_dict def folding(self, patches: torch.Tensor, info_dict: Dict) -> torch.Tensor: patch_width, patch_height = self.patch_width, self.patch_height patch_area = int(patch_width * patch_height) batch_size = info_dict["batch_size"] channels = info_dict["channels"] num_patches = info_dict["num_patches"] num_patch_height = info_dict["num_patches_height"] num_patch_width = info_dict["num_patches_width"] # convert from shape (batch_size * patch_area, num_patches, channels) # back to shape (batch_size, channels, orig_height, orig_width) features = patches.contiguous().view(batch_size, patch_area, num_patches, -1) features = features.transpose(1, 3) features = features.reshape( batch_size * channels * num_patch_height, num_patch_width, patch_height, patch_width ) features = features.transpose(1, 2) features = features.reshape( batch_size, channels, num_patch_height * patch_height, num_patch_width * patch_width ) if info_dict["interpolate"]: features = nn.functional.interpolate( features, size=info_dict["orig_size"], mode="bilinear", align_corners=False ) return features def forward(self, features: torch.Tensor) -> torch.Tensor: # reduce spatial dimensions if needed if self.downsampling_layer: features = self.downsampling_layer(features) residual = features # local representation features = self.conv_kxk(features) features = self.conv_1x1(features) # convert feature map to patches patches, info_dict = self.unfolding(features) # learn global representations patches = self.transformer(patches) patches = self.layernorm(patches) # convert patches back to feature maps features = self.folding(patches, info_dict) features = self.conv_projection(features) features = self.fusion(torch.cat((residual, features), dim=1)) return features class MobileViTEncoder(nn.Module): def __init__(self, config: MobileViTConfig) -> None: super().__init__() self.config = config self.layer = nn.ModuleList() self.gradient_checkpointing = False # segmentation architectures like DeepLab and PSPNet modify the strides # of the classification backbones dilate_layer_4 = dilate_layer_5 = False if config.output_stride == 8: dilate_layer_4 = True dilate_layer_5 = True elif config.output_stride == 16: dilate_layer_5 = True dilation = 1 layer_1 = MobileViTMobileNetLayer( config, in_channels=config.neck_hidden_sizes[0], out_channels=config.neck_hidden_sizes[1], stride=1, num_stages=1, ) self.layer.append(layer_1) layer_2 = MobileViTMobileNetLayer( config, in_channels=config.neck_hidden_sizes[1], out_channels=config.neck_hidden_sizes[2], stride=2, num_stages=3, ) self.layer.append(layer_2) layer_3 = MobileViTLayer( config, in_channels=config.neck_hidden_sizes[2], out_channels=config.neck_hidden_sizes[3], stride=2, hidden_size=config.hidden_sizes[0], num_stages=2, ) self.layer.append(layer_3) if dilate_layer_4: dilation *= 2 layer_4 = MobileViTLayer( config, in_channels=config.neck_hidden_sizes[3], out_channels=config.neck_hidden_sizes[4], stride=2, hidden_size=config.hidden_sizes[1], num_stages=4, dilation=dilation, ) self.layer.append(layer_4) if dilate_layer_5: dilation *= 2 layer_5 = MobileViTLayer( config, in_channels=config.neck_hidden_sizes[4], out_channels=config.neck_hidden_sizes[5], stride=2, hidden_size=config.hidden_sizes[2], num_stages=3, dilation=dilation, ) self.layer.append(layer_5) def forward( self, hidden_states: torch.Tensor, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutputWithNoAttention]: all_hidden_states = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): if self.gradient_checkpointing and self.training: hidden_states = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, ) else: hidden_states = layer_module(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=hidden_states, hidden_states=all_hidden_states) class MobileViTPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MobileViTConfig base_model_prefix = "mobilevit" main_input_name = "pixel_values" supports_gradient_checkpointing = True _no_split_modules = ["MobileViTLayer"] def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) MOBILEVIT_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileViTConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MOBILEVIT_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileViTImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare MobileViT model outputting raw hidden-states without any specific head on top.", MOBILEVIT_START_DOCSTRING, ) class MobileViTModel(MobileViTPreTrainedModel): def __init__(self, config: MobileViTConfig, expand_output: bool = True): super().__init__(config) self.config = config self.expand_output = expand_output self.conv_stem = MobileViTConvLayer( config, in_channels=config.num_channels, out_channels=config.neck_hidden_sizes[0], kernel_size=3, stride=2, ) self.encoder = MobileViTEncoder(config) if self.expand_output: self.conv_1x1_exp = MobileViTConvLayer( config, in_channels=config.neck_hidden_sizes[5], out_channels=config.neck_hidden_sizes[6], kernel_size=1, ) # Initialize weights and apply final processing self.post_init() def _prune_heads(self, heads_to_prune): """Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer_index, heads in heads_to_prune.items(): mobilevit_layer = self.encoder.layer[layer_index] if isinstance(mobilevit_layer, MobileViTLayer): for transformer_layer in mobilevit_layer.transformer.layer: transformer_layer.attention.prune_heads(heads) @add_start_docstrings_to_model_forward(MOBILEVIT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndNoAttention, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") embedding_output = self.conv_stem(pixel_values) encoder_outputs = self.encoder( embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.expand_output: last_hidden_state = self.conv_1x1_exp(encoder_outputs[0]) # global average pooling: (batch_size, channels, height, width) -> (batch_size, channels) pooled_output = torch.mean(last_hidden_state, dim=[-2, -1], keepdim=False) else: last_hidden_state = encoder_outputs[0] pooled_output = None if not return_dict: output = (last_hidden_state, pooled_output) if pooled_output is not None else (last_hidden_state,) return output + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, ) @add_start_docstrings( """ MobileViT model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """, MOBILEVIT_START_DOCSTRING, ) class MobileViTForImageClassification(MobileViTPreTrainedModel): def __init__(self, config: MobileViTConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.mobilevit = MobileViTModel(config) # Classifier head self.dropout = nn.Dropout(config.classifier_dropout_prob, inplace=True) self.classifier = ( nn.Linear(config.neck_hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEVIT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss). If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilevit(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(self.dropout(pooled_output)) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=loss, logits=logits, hidden_states=outputs.hidden_states, ) class MobileViTASPPPooling(nn.Module): def __init__(self, config: MobileViTConfig, in_channels: int, out_channels: int) -> None: super().__init__() self.global_pool = nn.AdaptiveAvgPool2d(output_size=1) self.conv_1x1 = MobileViTConvLayer( config, in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, use_normalization=True, use_activation="relu", ) def forward(self, features: torch.Tensor) -> torch.Tensor: spatial_size = features.shape[-2:] features = self.global_pool(features) features = self.conv_1x1(features) features = nn.functional.interpolate(features, size=spatial_size, mode="bilinear", align_corners=False) return features class MobileViTASPP(nn.Module): """ ASPP module defined in DeepLab papers: https://arxiv.org/abs/1606.00915, https://arxiv.org/abs/1706.05587 """ def __init__(self, config: MobileViTConfig) -> None: super().__init__() in_channels = config.neck_hidden_sizes[-2] out_channels = config.aspp_out_channels if len(config.atrous_rates) != 3: raise ValueError("Expected 3 values for atrous_rates") self.convs = nn.ModuleList() in_projection = MobileViTConvLayer( config, in_channels=in_channels, out_channels=out_channels, kernel_size=1, use_activation="relu", ) self.convs.append(in_projection) self.convs.extend( [ MobileViTConvLayer( config, in_channels=in_channels, out_channels=out_channels, kernel_size=3, dilation=rate, use_activation="relu", ) for rate in config.atrous_rates ] ) pool_layer = MobileViTASPPPooling(config, in_channels, out_channels) self.convs.append(pool_layer) self.project = MobileViTConvLayer( config, in_channels=5 * out_channels, out_channels=out_channels, kernel_size=1, use_activation="relu" ) self.dropout = nn.Dropout(p=config.aspp_dropout_prob) def forward(self, features: torch.Tensor) -> torch.Tensor: pyramid = [] for conv in self.convs: pyramid.append(conv(features)) pyramid = torch.cat(pyramid, dim=1) pooled_features = self.project(pyramid) pooled_features = self.dropout(pooled_features) return pooled_features class MobileViTDeepLabV3(nn.Module): """ DeepLabv3 architecture: https://arxiv.org/abs/1706.05587 """ def __init__(self, config: MobileViTConfig) -> None: super().__init__() self.aspp = MobileViTASPP(config) self.dropout = nn.Dropout2d(config.classifier_dropout_prob) self.classifier = MobileViTConvLayer( config, in_channels=config.aspp_out_channels, out_channels=config.num_labels, kernel_size=1, use_normalization=False, use_activation=False, bias=True, ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: features = self.aspp(hidden_states[-1]) features = self.dropout(features) features = self.classifier(features) return features @add_start_docstrings( """ MobileViT model with a semantic segmentation head on top, e.g. for Pascal VOC. """, MOBILEVIT_START_DOCSTRING, ) class MobileViTForSemanticSegmentation(MobileViTPreTrainedModel): def __init__(self, config: MobileViTConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.mobilevit = MobileViTModel(config, expand_output=False) self.segmentation_head = MobileViTDeepLabV3(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEVIT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, SemanticSegmenterOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> import requests >>> import torch >>> from PIL import Image >>> from transformers import AutoImageProcessor, MobileViTForSemanticSegmentation >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-small") >>> model = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-small") >>> inputs = image_processor(images=image, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) >>> # logits are of shape (batch_size, num_labels, height, width) >>> logits = outputs.logits ```""" output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None and self.config.num_labels == 1: raise ValueError("The number of labels should be greater than one") outputs = self.mobilevit( pixel_values, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] logits = self.segmentation_head(encoder_hidden_states) loss = None if labels is not None: # upsample logits to the images' original size upsampled_logits = nn.functional.interpolate( logits, size=labels.shape[-2:], mode="bilinear", align_corners=False ) loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index) loss = loss_fct(upsampled_logits, labels) if not return_dict: if output_hidden_states: output = (logits,) + outputs[1:] else: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=None, ) __all__ = [ "MobileViTForImageClassification", "MobileViTForSemanticSegmentation", "MobileViTModel", "MobileViTPreTrainedModel", ]
transformers/src/transformers/models/mobilevit/modeling_mobilevit.py/0
{ "file_path": "transformers/src/transformers/models/mobilevit/modeling_mobilevit.py", "repo_id": "transformers", "token_count": 17809 }
148
# coding=utf-8 # Copyright 2024 Meta AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Moshi model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig logger = logging.get_logger(__name__) class MoshiDepthConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MoshiDepthDecoder`]. It is used to instantiate a Moshi depth decoder model according to the specified arguments, defining the Moshi depth decoder config. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the MoshiDepthDecoder model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MoshiDepthDecoder`]. hidden_size (`int`, *optional*, defaults to 1024): Dimensionality of the layers and the pooler layer of the depth decoder. input_size (`int`, *optional*, defaults to 4096): Dimensionality of the input hidden states. Used to connect the main decoder to the depth decoder. num_hidden_layers (`int`, *optional*, defaults to 6): Number of depth decoder layers. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the depth decoder block. num_key_value_heads (`int`, *optional*): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`. audio_vocab_size (`int`, *optional*, defaults to 2048): Vocabulary size of the audio part of model. Defines the number of different tokens that can be represented by the `audio_codes` passed when calling the Moshi models. max_position_embeddings (`int`, *optional*, defaults to 9): The maximum sequence length that this model might ever be used with. Typically, set this to something large just in case (e.g., 512 or 1024 or 2048). hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the depth decoder. head_dim (`int`, *optional*, defaults to `hidden_size // num_attention_heads`): The attention head dimension. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. sliding_window (`int`, *optional*, defaults to 8): Sliding window attention window size. If not specified, will default to `8`. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. ffn_dim (`int`, *optional*, defaults to 5632): Dimensionality of the "intermediate" (often named feed-forward) layer in the depth decoder block. Must be even. rms_norm_eps (`float`, *optional*, defaults to 1e-08): The epsilon used by the rms normalization layers. num_codebooks (`int`, *optional*, defaults to 8): The number of audio codebooks for each audio channels. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings kwargs (*optional*): Dictionary of keyword arguments. Notably: - **audio_encoder_config** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines the audio encoder config. Example: ```python >>> from transformers import ( ... MoshiDepthConfig, ... MoshiDepthDecoder, ... ) >>> configuration = MoshiDepthConfig() >>> # Initializing a MoshiDepthDecoder (with random weights) from the kmhf/hf-moshiko style configuration >>> model = MoshiDepthDecoder(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "moshi_depth" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=32000, hidden_size=1024, input_size=4096, num_hidden_layers=6, num_attention_heads=16, num_key_value_heads=None, audio_vocab_size=2048, max_position_embeddings=9, hidden_act="silu", head_dim=None, initializer_range=0.02, use_cache=True, sliding_window=8, attention_dropout=0.0, ffn_dim=5632, rms_norm_eps=1e-8, num_codebooks=8, tie_word_embeddings=False, **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.input_size = input_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads if num_key_value_heads is not None else num_attention_heads self.max_position_embeddings = max_position_embeddings self.hidden_act = hidden_act self.head_dim = head_dim or hidden_size // num_attention_heads self.initializer_range = initializer_range self.use_cache = use_cache self.sliding_window = sliding_window self.attention_dropout = attention_dropout if ffn_dim % 2 == 1: raise ValueError(f"`ffn_dim={ffn_dim}` must be even.") self.ffn_dim = ffn_dim self.rms_norm_eps = rms_norm_eps self.num_codebooks = num_codebooks self.audio_vocab_size = audio_vocab_size super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs) class MoshiConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MoshiModel`]. It is used to instantiate a Moshi model according to the specified arguments, defining the audio encoder, Moshi depth decoder and Moshi decoder configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the Moshiko model, e.g. [kmhf/hf-moshiko](https://huggingface.co/kmhf/hf-moshiko) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the MoshiDecoder model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MoshiDecoder`]. hidden_size (`int`, *optional*, defaults to 4096): Dimensionality of the layers and the pooler layer of the main decoder. num_hidden_layers (`int`, *optional*, defaults to 32): Number of decoder layers. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the main decoder block. num_key_value_heads (`int`, *optional*): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`. audio_vocab_size (`int`, *optional*): Vocabulary size of the audio part of model. Defines the number of different tokens that can be represented by the `audio_codes` passed when calling the Moshi models. max_position_embeddings (`int`, *optional*, defaults to 3000): The maximum sequence length that this model might ever be used with. Typically, set this to something large just in case (e.g., 512 or 1024 or 2048). rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. head_dim (`int`, *optional*, defaults to `hidden_size // num_attention_heads`): The attention head dimension. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. sliding_window (`int`, *optional*, defaults to 3000): Sliding window attention window size. If not specified, will default to `3000`. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. ffn_dim (`int`, *optional*, defaults to 22528): Dimensionality of the "intermediate" (often named feed-forward) layer in the main decoder block. Must be even. rms_norm_eps (`float`, *optional*, defaults to 1e-08): The epsilon used by the rms normalization layers. num_codebooks (`int`, *optional*, defaults to 8): The number of audio codebooks for each audio channels. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings kwargs (*optional*): Dictionary of keyword arguments. Notably: - **audio_encoder_config** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines the audio encoder config. - **depth__config** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines the depth decoder config. Example: ```python >>> from transformers import ( ... MoshiConfig, ... MoshiForConditionalGeneration, ... ) >>> configuration = MoshiConfig() >>> # Initializing a MoshiForConditionalGeneration (with random weights) from the kmhf/hf-moshiko style configuration >>> model = MoshiForConditionalGeneration(configuration) >>> # Accessing the model configuration >>> configuration = model.config >>> # Saving the model, including its configuration >>> model.save_pretrained("kmhf/hf-moshiko") >>> # loading model and config from pretrained folder >>> moshi_config = MoshiConfig.from_pretrained("kmhf/hf-moshiko") >>> model = MoshiForConditionalGeneration.from_pretrained("kmhf/hf-moshiko", config=moshi_config) ```""" model_type = "moshi" keys_to_ignore_at_inference = ["past_key_values"] sub_configs = {"audio_encoder_config": AutoConfig} def __init__( self, vocab_size=32000, hidden_size=4096, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=None, audio_vocab_size=None, max_position_embeddings=3000, rope_theta=10000.0, hidden_act="silu", head_dim=None, initializer_range=0.02, use_cache=True, sliding_window=3000, attention_dropout=0.0, ffn_dim=22528, rms_norm_eps=1e-8, num_codebooks=8, tie_word_embeddings=False, **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads if num_key_value_heads is not None else num_attention_heads self.max_position_embeddings = max_position_embeddings self.rope_theta = rope_theta self.hidden_act = hidden_act self.head_dim = head_dim or hidden_size // num_attention_heads self.initializer_range = initializer_range self.use_cache = use_cache self.sliding_window = sliding_window self.attention_dropout = attention_dropout if ffn_dim % 2 == 1: raise ValueError(f"`ffn_dim={ffn_dim}` must be even.") self.ffn_dim = ffn_dim self.rms_norm_eps = rms_norm_eps self.num_codebooks = num_codebooks audio_encoder_config = kwargs.pop("audio_encoder_config", {}) audio_encoder_model_type = audio_encoder_config.pop("model_type", "mimi") self.audio_encoder_config = AutoConfig.for_model(audio_encoder_model_type, **audio_encoder_config) if self.num_codebooks > self.audio_encoder_config.num_codebooks: raise ValueError( f"`num_codebooks={num_codebooks}` is greater than the maximum number of codebooks that the audio encoder can deal with ({self.audio_encoder_config.num_codebooks}). Please lower it." ) self.audio_vocab_size = ( self.audio_encoder_config.codebook_size if audio_vocab_size is None else audio_vocab_size ) depth_decoder_config = kwargs.pop("depth_decoder_config", {}) depth_decoder_config.update( { "audio_vocab_size": self.audio_vocab_size, "input_size": hidden_size, "vocab_size": vocab_size, "num_codebooks": num_codebooks, } ) self.depth_decoder_config = MoshiDepthConfig(**depth_decoder_config) super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs) @property def sampling_rate(self): return self.audio_encoder_config.sampling_rate @classmethod def from_audio_encoder_config( cls, audio_encoder_config: PretrainedConfig, **kwargs, ): r""" Instantiate a [`MoshiConfig`] (or a derived class) from an audio encoder configuration. Returns: [`MoshiConfig`]: An instance of a configuration object """ return cls( audio_encoder_config=audio_encoder_config.to_dict(), **kwargs, ) __all__ = ["MoshiConfig", "MoshiDepthConfig"]
transformers/src/transformers/models/moshi/configuration_moshi.py/0
{ "file_path": "transformers/src/transformers/models/moshi/configuration_moshi.py", "repo_id": "transformers", "token_count": 6197 }
149
# coding=utf-8 # Copyright 2024 Meta AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch Musicgen Melody model.""" import copy import inspect import math import random from dataclasses import dataclass from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import torch import torch.nn as nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...generation import ( ClassifierFreeGuidanceLogitsProcessor, GenerationConfig, GenerationMixin, GenerationMode, LogitsProcessorList, StoppingCriteriaList, ) from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa from ...modeling_outputs import ( BaseModelOutputWithPast, ModelOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10, logging, replace_return_docstrings, ) from ..auto.configuration_auto import AutoConfig from ..auto.modeling_auto import AutoModel, AutoModelForTextEncoding from .configuration_musicgen_melody import MusicgenMelodyConfig, MusicgenMelodyDecoderConfig if is_flash_attn_2_available(): from ...modeling_flash_attention_utils import _flash_attention_forward if TYPE_CHECKING: from ...generation.streamers import BaseStreamer logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "MusicgenMelodyConfig" _CHECKPOINT_FOR_DOC = "facebook/musicgen-melody" @dataclass class MusicgenMelodyOutputWithPast(ModelOutput): """ Base class for Musicgen Melody autoregressive outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of conditional hidden-states representing the concatenation of the projeted text encoder output and the projeted audio encoder output. Used as a conditional signal. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_hidden_states: Optional[torch.FloatTensor] = None # Copied from transformers.models.musicgen.modeling_musicgen.shift_tokens_right def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): """ Shift input ids one token to the right. """ # transpose to get (bsz, num_codebooks, seq_len) input_ids = input_ids.transpose(1, 2) shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() if decoder_start_token_id is None: raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.") shifted_input_ids[..., 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids # Copied from transformers.models.musicgen.modeling_musicgen.MusicgenSinusoidalPositionalEmbedding with Musicgen->MusicgenMelody class MusicgenMelodySinusoidalPositionalEmbedding(nn.Module): """This module produces sinusoidal positional embeddings of any length.""" def __init__(self, num_positions: int, embedding_dim: int): super().__init__() self.embedding_dim = embedding_dim self.make_weights(num_positions, embedding_dim) def make_weights(self, num_embeddings: int, embedding_dim: int): emb_weights = self.get_embedding(num_embeddings, embedding_dim) if hasattr(self, "weights"): # in forward put the weights on the correct dtype and device of the param emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device) self.weights = nn.Parameter(emb_weights) self.weights.requires_grad = False self.weights.detach_() @staticmethod def get_embedding(num_embeddings: int, embedding_dim: int): """ Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb) emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0) emb = torch.cat([torch.cos(emb), torch.sin(emb)], dim=1).view(num_embeddings, -1) if embedding_dim % 2 == 1: # zero pad emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) return emb.to(torch.get_default_dtype()) @torch.no_grad() # Ignore copy def forward(self, inputs_embeds: torch.Tensor, past_key_values_length: int = 0): bsz, seq_len, _ = inputs_embeds.size() # Create the position ids from the input token ids. position_ids = (torch.arange(seq_len) + past_key_values_length).to(inputs_embeds.device) # expand embeddings if needed if seq_len > self.weights.size(0): self.make_weights(seq_len + self.offset, self.embedding_dim) return self.weights.index_select(0, position_ids.view(-1)).detach() # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->MusicgenMelody class MusicgenMelodyAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, config: Optional[MusicgenMelodyConfig] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value # Copied from transformers.models.bart.modeling_bart.BartFlashAttention2 with Bart->MusicgenMelody class MusicgenMelodyFlashAttention2(MusicgenMelodyAttention): """ MusicgenMelody flash attention module. This module inherits from `MusicgenMelodyAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def _reshape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim) def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: # MusicgenMelodyFlashAttention2 attention does not support output_attentions if output_attentions: raise ValueError("MusicgenMelodyFlashAttention2 attention does not support output_attentions") # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, q_len, _ = hidden_states.size() # get query proj query_states = self._reshape(self.q_proj(hidden_states), -1, bsz) # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0].transpose(1, 2) value_states = past_key_value[1].transpose(1, 2) elif is_cross_attention: # cross_attentions key_states = self._reshape(self.k_proj(key_value_states), -1, bsz) value_states = self._reshape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._reshape(self.k_proj(hidden_states), -1, bsz) value_states = self._reshape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0].transpose(1, 2), key_states], dim=1) value_states = torch.cat([past_key_value[1].transpose(1, 2), value_states], dim=1) else: # self_attention key_states = self._reshape(self.k_proj(hidden_states), -1, bsz) value_states = self._reshape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2)) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in the correct dtype just to be sure everything works as expected. # This might slowdown training & inference so it is recommended to not cast the LayerNorms # in fp32. (LlamaRMSNorm handles it correctly) input_dtype = query_states.dtype if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.q_proj.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) attn_output = _flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, dropout=self.dropout if self.training else 0.0, is_causal=self.is_causal, use_top_left_mask=self._flash_attn_uses_top_left_mask, ) attn_output = attn_output.reshape(bsz, q_len, -1) attn_output = self.out_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value # Copied from transformers.models.bart.modeling_bart.BartSdpaAttention with Bart->MusicgenMelody class MusicgenMelodySdpaAttention(MusicgenMelodyAttention): def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" if output_attentions or layer_head_mask is not None: # TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented. logger.warning_once( "MusicgenMelodyModel is using MusicgenMelodySdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention" ' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states, key_value_states=key_value_states, past_key_value=past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) query_states = self._shape(query_states, tgt_len, bsz) # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. # The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1. is_causal = True if self.is_causal and attention_mask is None and tgt_len > 1 else False # NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask, # but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577 attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=attention_mask, dropout_p=self.dropout if self.training else 0.0, is_causal=is_causal, ) if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, None, past_key_value MUSICGEN_MELODY_ATTENTION_CLASSES = { "eager": MusicgenMelodyAttention, "sdpa": MusicgenMelodySdpaAttention, "flash_attention_2": MusicgenMelodyFlashAttention2, } class MusicgenMelodyDecoderLayer(nn.Module): def __init__(self, config: MusicgenMelodyDecoderConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = MUSICGEN_MELODY_ATTENTION_CLASSES[config._attn_implementation]( embed_dim=self.embed_dim, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=True, bias=False, is_causal=True, config=config, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, config.ffn_dim, bias=False) self.fc2 = nn.Linear(config.ffn_dim, self.embed_dim, bias=False) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(attention_heads,)`. past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs # Copied from transformers.models.musicgen.modeling_musicgen.MusicgenPreTrainedModel with Musicgen->MusicgenMelody class MusicgenMelodyPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MusicgenMelodyDecoderConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["MusicgenMelodyDecoderLayer", "MusicgenMelodyAttention"] _supports_flash_attn_2 = True _supports_sdpa = True def _init_weights(self, module): std = self.config.initializer_factor if isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() MUSICGEN_MELODY_START_DOCSTRING = r""" The Musicgen Melody model was proposed in [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, Alexandre Défossez. It is a decoder-only transformer trained on the task of conditional music generation. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MusicgenMelodyConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MUSICGEN_MELODY_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) input_features (`torch.FloatTensor` of shape `(batch_size, audio_sequence_length, num_chroma)`): Input audio features. This should be returned by the [`MusicgenMelodyFeatureExtractor`] class that you can also retrieve from [`AutoFeatureExtractor`]. See [`MusicgenMelodyFeatureExtractor.__call__`] for details. decoder_input_ids (`torch.LongTensor` of shape `(batch_size * num_codebooks, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary, corresponding to the sequence of audio codes. Indices can be obtained by encoding an audio prompt with an audio encoder model to predict audio codes, such as with the [`EncodecModel`]. See [`EncodecModel.encode`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) <Tip warning={true}> The `decoder_input_ids` will automatically be converted from shape `(batch_size * num_codebooks, target_sequence_length)` to `(batch_size, num_codebooks, target_sequence_length)` in the forward pass. If you obtain audio codes from an audio encoding model, such as [`EncodecModel`], ensure that the number of frames is equal to 1, and that you reshape the audio codes from `(frames, batch_size, num_codebooks, target_sequence_length)` to `(batch_size * num_codebooks, target_sequence_length)` prior to passing them as `decoder_input_ids`. </Tip> decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, encoder_sequence_length + sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of conditional hidden-states representing the concatenation of the projeted text encoder output and the projeted audio encoder output. Used as a conditional signal and will thus be concatenated to the projeted `decoder_input_ids`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of `inputs_embeds`. labels (`torch.LongTensor` of shape `(batch_size, sequence_length, num_codebooks)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ MUSICGEN_MELODY_DECODER_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size * num_codebooks, sequence_length)`): Indices of input sequence tokens in the vocabulary, corresponding to the sequence of audio codes. Indices can be obtained by encoding an audio prompt with an audio encoder model to predict audio codes, such as with the [`EncodecModel`]. See [`EncodecModel.encode`] for details. [What are input IDs?](../glossary#input-ids) <Tip warning={true}> The `input_ids` will automatically be converted from shape `(batch_size * num_codebooks, target_sequence_length)` to `(batch_size, num_codebooks, target_sequence_length)` in the forward pass. If you obtain audio codes from an audio encoding model, such as [`EncodecModel`], ensure that the number of frames is equal to 1, and that you reshape the audio codes from `(frames, batch_size, num_codebooks, target_sequence_length)` to `(batch_size * num_codebooks, target_sequence_length)` prior to passing them as `input_ids`. </Tip> attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states representing the concatenation of the text encoder output and the processed audio encoder output. Used as a conditional signal and will thus be concatenated to the projeted `decoder_input_ids`. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing attention on conditional hidden states. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`)`. Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Copied from transformers.models.musicgen.modeling_musicgen.MusicgenDecoder with MUSICGEN->MUSICGEN_MELODY,Musicgen->MusicgenMelody class MusicgenMelodyDecoder(MusicgenMelodyPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MusicgenMelodyDecoderLayer`] """ def __init__(self, config: MusicgenMelodyDecoderConfig): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.layerdrop self.max_target_positions = config.max_position_embeddings self.d_model = config.hidden_size self.num_codebooks = config.num_codebooks self.embed_scale = math.sqrt(config.hidden_size) if config.scale_embedding else 1.0 embed_dim = config.vocab_size + 1 self.embed_tokens = nn.ModuleList( [nn.Embedding(embed_dim, config.hidden_size) for _ in range(config.num_codebooks)] ) self.embed_positions = MusicgenMelodySinusoidalPositionalEmbedding( config.max_position_embeddings, config.hidden_size, ) self.layers = nn.ModuleList([MusicgenMelodyDecoderLayer(config) for _ in range(config.num_hidden_layers)]) self.layer_norm = nn.LayerNorm(config.hidden_size) self.attn_implementation = config._attn_implementation self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(MUSICGEN_MELODY_DECODER_INPUTS_DOCSTRING) # Ignore copy def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: # (bsz * codebooks, seq_len) -> (bsz, codebooks, seq_len) input = input_ids.reshape(-1, self.num_codebooks, input_ids.shape[-1]) bsz, num_codebooks, seq_len = input.shape input_shape = (bsz, seq_len) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] input = inputs_embeds[:, :, -1:] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if inputs_embeds is None: inputs_embeds = sum([self.embed_tokens[codebook](input[:, codebook]) for codebook in range(num_codebooks)]) if encoder_hidden_states is not None: # take care of attention masks if encoder_attention_mask is not None and attention_mask is None: attention_mask = torch.ones(inputs_embeds.shape[:2], device=inputs_embeds.device) if attention_mask is not None: if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_states.shape[:2], device=attention_mask.device) attention_mask = torch.cat([encoder_attention_mask, attention_mask], dim=1) # fuse encoder_hidden_states and inputs_embeds inputs_embeds = torch.cat([encoder_hidden_states, inputs_embeds], dim=1) input_shape = inputs_embeds.size()[:-1] if self.attn_implementation == "flash_attention_2": attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None elif self.attn_implementation == "sdpa" and not output_attentions: # output_attentions=True can not be supported when using SDPA, and we fall back on # the manual implementation that requires a 4D causal mask in all cases. attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( attention_mask, input_shape, inputs_embeds, past_key_values_length, ) else: attention_mask = _prepare_4d_causal_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) # embed positions positions = self.embed_positions(inputs_embeds, past_key_values_length) hidden_states = inputs_embeds + positions.to(inputs_embeds.device) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing`. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None next_decoder_cache = () if use_cache else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: if head_mask.size()[0] != len(self.layers): raise ValueError( f"The `head_mask` should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) dropout_probability = random.uniform(0, 1) if self.training and (dropout_probability < self.layerdrop): continue past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.forward, hidden_states, attention_mask, head_mask[idx] if head_mask is not None else None, None, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) if output_attentions: all_attentions += (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_attentions] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_attentions, ) @add_start_docstrings( "The bare MusicgenMelody decoder model outputting raw hidden-states without any specific head on top.", MUSICGEN_MELODY_START_DOCSTRING, ) # Copied from transformers.models.musicgen.modeling_musicgen.MusicgenModel with MUSICGEN->MUSICGEN_MELODY,Musicgen->MusicgenMelody class MusicgenMelodyModel(MusicgenMelodyPreTrainedModel): def __init__(self, config: MusicgenMelodyDecoderConfig): super().__init__(config) self.decoder = MusicgenMelodyDecoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.decoder.embed_tokens def set_input_embeddings(self, value): self.decoder.embed_tokens = value def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(MUSICGEN_MELODY_DECODER_INPUTS_DOCSTRING) # Ignore copy def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs return BaseModelOutputWithPast( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, ) @add_start_docstrings( "The Musicgen Melody decoder model with a language modelling head on top.", MUSICGEN_MELODY_START_DOCSTRING, ) # Copied from transformers.models.musicgen.modeling_musicgen.MusicgenForCausalLM with MUSICGEN->MUSICGEN_MELODY,Musicgen->MusicgenMelody,MusicGen->Musicgen Melody class MusicgenMelodyForCausalLM(MusicgenMelodyPreTrainedModel, GenerationMixin): def __init__(self, config: MusicgenMelodyDecoderConfig): super().__init__(config) self.model = MusicgenMelodyModel(config) self.num_codebooks = config.num_codebooks self.lm_heads = nn.ModuleList( [nn.Linear(config.hidden_size, config.vocab_size, bias=False) for _ in range(config.num_codebooks)] ) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.decoder.embed_tokens def set_input_embeddings(self, value): self.model.decoder.embed_tokens = value def get_output_embeddings(self): return self.lm_heads def set_output_embeddings(self, new_embeddings): self.lm_heads = new_embeddings def set_decoder(self, decoder): self.model.decoder = decoder def get_decoder(self): return self.model.decoder @add_start_docstrings_to_model_forward(MUSICGEN_MELODY_DECODER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=MusicgenMelodyOutputWithPast, config_class=_CONFIG_FOR_DOC) # Ignore copy def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, ) -> Union[Tuple, MusicgenMelodyOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length, num_codebooks)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` Returns: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (labels is not None) and (input_ids is None and inputs_embeds is None): input_ids = shift_tokens_right(labels, self.config.pad_token_id, self.config.bos_token_id) outputs = self.model( input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] lm_logits = torch.stack([head(hidden_states) for head in self.lm_heads], dim=1) loss = None if labels is not None: # since encoder hidden states have been concatenated to the decoder hidden states, # we take the last timestamps corresponding to labels logits = lm_logits[:, :, -labels.shape[1] :] loss_fct = CrossEntropyLoss() loss = torch.zeros([], device=self.device) # per codebook cross-entropy # ref: https://github.com/facebookresearch/audiocraft/blob/69fea8b290ad1b4b40d28f92d1dfc0ab01dbab85/audiocraft/solvers/musicgen.py#L242-L243 # -100 labels are ignored labels = labels.masked_fill(labels == self.config.pad_token_id, -100) # per codebook cross-entropy for codebook in range(self.config.num_codebooks): codebook_logits = logits[:, codebook].contiguous().view(-1, logits.shape[-1]) codebook_labels = labels[..., codebook].contiguous().view(-1) loss += loss_fct(codebook_logits, codebook_labels) loss = loss / self.config.num_codebooks # (bsz, num_codebooks, seq_len, vocab_size) -> (bsz * num_codebooks, seq_len, vocab_size) lm_logits = lm_logits.reshape(-1, *lm_logits.shape[2:]) if not return_dict: output = (lm_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return MusicgenMelodyOutputWithPast( loss=loss, logits=lm_logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Ignore copy def prepare_inputs_for_generation( self, input_ids, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, past_key_values=None, use_cache=True, delay_pattern_mask=None, guidance_scale=None, **kwargs, ): # Overwritten -- MusicGen has custom processing if delay_pattern_mask is None: input_ids, delay_pattern_mask = self.build_delay_pattern_mask( input_ids, pad_token_id=self.generation_config.pad_token_id, max_length=self.generation_config.max_length, ) # apply the delay pattern mask input_ids = self.apply_delay_pattern_mask(input_ids, delay_pattern_mask) if guidance_scale is not None and guidance_scale > 1: # for classifier free guidance we need to replicate the decoder args across the batch dim (we'll split these # before sampling) input_ids = input_ids.repeat((2, 1)) if attention_mask is not None: attention_mask = attention_mask.repeat((2, 1)) if encoder_hidden_states is not None: encoder_hidden_states = torch.concatenate( [encoder_hidden_states, torch.zeros_like(encoder_hidden_states)], dim=0 ) if encoder_attention_mask is not None: encoder_attention_mask = torch.concatenate( encoder_attention_mask, torch.zeros_like(encoder_attention_mask), dim=0 ) if past_key_values is not None: input_ids = input_ids[:, -1:] # we only want to use conditional signal in the 1st generation step but keeping the attention mask encoder_hidden_states = None return { "input_ids": input_ids, "attention_mask": attention_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, "head_mask": head_mask, "past_key_values": past_key_values, "use_cache": use_cache, } def build_delay_pattern_mask(self, input_ids: torch.LongTensor, pad_token_id: int, max_length: int = None): """Build a delayed pattern mask to the input_ids. Each codebook is offset by the previous codebook by one, giving a delayed pattern mask at the start of sequence and end of sequence. Take the example where there are 4 codebooks and a max sequence length of 8, we have the delayed pattern mask of shape `(codebooks, seq_len)`: - [P, -1, -1, -1, -1, P, P, P] - [P, P, -1, -1, -1, -1, P, P] - [P, P, P, -1, -1, -1, -1, P] - [P, P, P, P, -1, -1, -1, -1] where P is the special padding token id and -1 indicates that the token is valid for prediction. If we include a prompt (decoder input ids), the -1 positions indicate where new tokens should be predicted. Otherwise, the mask is set to the value in the prompt: - [P, a, b, -1, -1, P, P, P] - [P, P, c, d, -1, -1, P, P] - [P, P, P, e, f, -1, -1, P] - [P, P, P, P, g, h, -1, -1] where a-h indicate the input prompt (decoder input ids) that are offset by 1. Now, we only override the -1 tokens in our prediction. """ # (bsz * num_codebooks, seq_len) -> (bsz, num_codebooks, seq_len) input_ids = input_ids.reshape(-1, self.num_codebooks, input_ids.shape[-1]) bsz, num_codebooks, seq_len = input_ids.shape max_length = max_length if max_length is not None else self.generation_config.max_length input_ids_shifted = ( torch.ones((bsz, num_codebooks, max_length), dtype=torch.long, device=input_ids.device) * -1 ) channel_codebooks = num_codebooks // 2 if self.config.audio_channels == 2 else num_codebooks # we only apply the mask if we have a large enough seq len - otherwise we return as is if max_length < 2 * channel_codebooks - 1: return input_ids.reshape(bsz * num_codebooks, -1), input_ids_shifted.reshape(bsz * num_codebooks, -1) # fill the shifted ids with the prompt entries, offset by the codebook idx for codebook in range(channel_codebooks): if self.config.audio_channels == 1: # mono channel - loop over the codebooks one-by-one input_ids_shifted[:, codebook, codebook : seq_len + codebook] = input_ids[:, codebook] else: # left/right channels are interleaved in the generated codebooks, so handle one then the other input_ids_shifted[:, 2 * codebook, codebook : seq_len + codebook] = input_ids[:, 2 * codebook] input_ids_shifted[:, 2 * codebook + 1, codebook : seq_len + codebook] = input_ids[:, 2 * codebook + 1] # construct a pattern mask that indicates the positions of padding tokens for each codebook # first fill the upper triangular part (the EOS padding) delay_pattern = torch.triu( torch.ones((channel_codebooks, max_length), dtype=torch.bool), diagonal=max_length - channel_codebooks + 1 ) # then fill the lower triangular part (the BOS padding) delay_pattern = delay_pattern + torch.tril(torch.ones((channel_codebooks, max_length), dtype=torch.bool)) if self.config.audio_channels == 2: # for left/right channel we need to duplicate every row of the pattern mask in an interleaved fashion delay_pattern = delay_pattern.repeat_interleave(2, dim=0) mask = ~delay_pattern.to(input_ids.device) input_ids = mask * input_ids_shifted + ~mask * pad_token_id # find the first position to start generating - this is the first place we have the -1 token # and will always be in the first codebook (since it has no codebook offset) first_codebook_ids = input_ids[:, 0, :] start_ids = (first_codebook_ids == -1).nonzero()[:, 1] if len(start_ids) > 0: first_start_id = min(start_ids) else: # we have no tokens that need to be filled - return entire matrix of input ids first_start_id = seq_len # (bsz * num_codebooks, seq_len) -> (bsz, num_codebooks, seq_len) pattern_mask = input_ids.reshape(bsz * num_codebooks, -1) input_ids = input_ids[..., :first_start_id].reshape(bsz * num_codebooks, -1) return input_ids, pattern_mask @staticmethod def apply_delay_pattern_mask(input_ids, decoder_pad_token_mask): """Apply a delay pattern mask to the decoder input ids, only preserving predictions where the mask is set to -1, and otherwise setting to the value detailed in the mask.""" seq_len = input_ids.shape[-1] decoder_pad_token_mask = decoder_pad_token_mask[..., :seq_len] input_ids = torch.where(decoder_pad_token_mask == -1, input_ids, decoder_pad_token_mask) return input_ids @torch.no_grad() # Ignore copy def generate( self, inputs: Optional[torch.Tensor] = None, generation_config: Optional[GenerationConfig] = None, logits_processor: Optional[LogitsProcessorList] = None, stopping_criteria: Optional[StoppingCriteriaList] = None, synced_gpus: Optional[bool] = None, streamer: Optional["BaseStreamer"] = None, **kwargs, ): """ Generates sequences of token ids for models with a language modeling head. <Tip warning={true}> Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the model's default generation configuration. You can override any `generation_config` by passing the corresponding parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`. For an overview of generation strategies and code examples, check out the [following guide](./generation_strategies). </Tip> Parameters: inputs (`torch.Tensor` of varying shape depending on the modality, *optional*): The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs` should be in the format `input_ids`. For encoder-decoder models *inputs* can represent any of `input_ids`, `input_values`, `input_features`, or `pixel_values`. generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which had the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. logits_processor (`LogitsProcessorList`, *optional*): Custom logits processors that complement the default logits processors built from arguments and generation config. If a logit processor is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. stopping_criteria (`StoppingCriteriaList`, *optional*): Custom stopping criteria that complement the default stopping criteria built from arguments and a generation config. If a stopping criteria is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. synced_gpus (`bool`, *optional*, defaults to `False`): Whether to continue running the while loop until max_length (needed to avoid deadlocking with `FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3). streamer (`BaseStreamer`, *optional*): Streamer object that will be used to stream the generated sequences. Generated tokens are passed through `streamer.put(token_ids)` and the streamer is responsible for any further processing. kwargs (`Dict[str, Any]`, *optional*): Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. Return: [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`. If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible [`~utils.ModelOutput`] types are: - [`~generation.GenerateDecoderOnlyOutput`], - [`~generation.GenerateBeamDecoderOnlyOutput`] If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible [`~utils.ModelOutput`] types are: - [`~generation.GenerateEncoderDecoderOutput`], - [`~generation.GenerateBeamEncoderDecoderOutput`] """ # 1. Handle `generation_config` and kwargs that might update it, and validate the resulting objects if generation_config is None: generation_config = self.generation_config generation_config = copy.deepcopy(generation_config) model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs generation_config.validate() self._validate_model_kwargs(model_kwargs.copy()) # 2. Set generation parameters if not already defined logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList() stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList() requires_attention_mask = "encoder_outputs" not in model_kwargs kwargs_has_attention_mask = model_kwargs.get("attention_mask", None) is not None # 3. Define model inputs` input_ids, model_input_name, model_kwargs = self._prepare_model_inputs( inputs, generation_config.bos_token_id, model_kwargs ) batch_size = input_ids.shape[0] // self.num_codebooks self._prepare_special_tokens(generation_config, kwargs_has_attention_mask, device=input_ids.device) # 4. Define other model kwargs model_kwargs["use_cache"] = generation_config.use_cache model_kwargs["guidance_scale"] = generation_config.guidance_scale if model_kwargs.get("attention_mask", None) is None and requires_attention_mask: model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation( input_ids, generation_config, model_kwargs ) # 5. Prepare `max_length` depending on other stopping criteria. input_ids_length = input_ids.shape[-1] has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None has_default_min_length = kwargs.get("min_length") is None and generation_config.min_length is not None generation_config = self._prepare_generated_length( generation_config=generation_config, has_default_max_length=has_default_max_length, has_default_min_length=has_default_min_length, model_input_name=model_input_name, inputs_tensor=input_ids, input_ids_length=input_ids_length, ) # 6. Prepare `input_ids` which will be used for auto-regressive generation # Build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to Musicgen) input_ids, delay_pattern_mask = self.build_delay_pattern_mask( input_ids, pad_token_id=generation_config._decoder_start_token_tensor, max_length=generation_config.max_length, ) if streamer is not None: streamer.put(input_ids.cpu()) # stash the delay mask so that we don't have to recompute it in each forward pass model_kwargs["delay_pattern_mask"] = delay_pattern_mask # 7. determine generation mode generation_mode = generation_config.get_generation_mode() # 8. prepare batched CFG externally (to enable coexistance with the unbatched CFG) if generation_config.guidance_scale is not None and generation_config.guidance_scale > 1: logits_processor.append(ClassifierFreeGuidanceLogitsProcessor(generation_config.guidance_scale)) generation_config.guidance_scale = None # 9. prepare distribution pre_processing samplers logits_processor = self._get_logits_processor( generation_config=generation_config, input_ids_seq_length=input_ids_length, encoder_input_ids=input_ids, prefix_allowed_tokens_fn=None, logits_processor=logits_processor, device=input_ids.device, ) # 10. prepare stopping criteria stopping_criteria = self._get_stopping_criteria( generation_config=generation_config, stopping_criteria=stopping_criteria ) if generation_mode in (GenerationMode.SAMPLE, GenerationMode.GREEDY_SEARCH): # expand input_ids with `num_return_sequences` additional sequences per batch input_ids, model_kwargs = self._expand_inputs_for_generation( input_ids=input_ids, expand_size=generation_config.num_return_sequences, **model_kwargs, ) # 11. run sample outputs = self._sample( input_ids, logits_processor=logits_processor, stopping_criteria=stopping_criteria, generation_config=generation_config, synced_gpus=synced_gpus, streamer=streamer, **model_kwargs, ) else: raise ValueError( "Got incompatible mode for generation, should be one of greedy or sampling. " "Ensure that beam search is de-activated by setting `num_beams=1` and `num_beam_groups=1`." ) if generation_config.return_dict_in_generate: output_ids = outputs.sequences else: output_ids = outputs # apply the pattern mask to the final ids output_ids = self.apply_delay_pattern_mask(output_ids, model_kwargs["delay_pattern_mask"]) # revert the pattern delay mask by filtering the pad token id output_ids = output_ids[output_ids != generation_config._pad_token_tensor].reshape( batch_size, self.num_codebooks, -1 ) if generation_config.return_dict_in_generate: outputs.sequences = output_ids return outputs else: return output_ids @add_start_docstrings( "The composite Musicgen Melody model with a text and audio conditional models, a MusicgenMelody decoder and an audio encoder, " "for music generation tasks with one or both of text and audio prompts.", MUSICGEN_MELODY_START_DOCSTRING, """ text_encoder (`Optional[PreTrainedModel]`, *optional*): Text encoder. audio_encoder (`Optional[PreTrainedModel]`, *optional*): Audio code decoder. decoder (`Optional[MusicgenMelodyForCausalLM]`, *optional*): MusicGen Melody decoder used to generate audio codes. """, ) class MusicgenMelodyForConditionalGeneration(PreTrainedModel, GenerationMixin): config_class = MusicgenMelodyConfig main_input_name = "input_ids" supports_gradient_checkpointing = True _supports_flash_attn_2 = True _supports_sdpa = True def __init__( self, config: MusicgenMelodyConfig = None, text_encoder: Optional[PreTrainedModel] = None, audio_encoder: Optional[PreTrainedModel] = None, decoder: Optional[MusicgenMelodyForCausalLM] = None, ): if config is None and None in (text_encoder, audio_encoder, decoder): raise ValueError( "Either a configuration has to be provided, or all three of text encoder, audio encoder and Musicgen Melody decoder." ) if config is None: config = MusicgenMelodyConfig.from_sub_models_config( text_encoder.config, audio_encoder.config, decoder.config ) else: if not isinstance(config, self.config_class): raise ValueError(f"Config: {config} has to be of type {self.config_class}") # initialize with config super().__init__(config) if text_encoder is None: text_encoder = AutoModelForTextEncoding.from_config(config.text_encoder) if audio_encoder is None: audio_encoder = AutoModel.from_config(config.audio_encoder) if decoder is None: decoder = MusicgenMelodyForCausalLM._from_config(config.decoder) self.text_encoder = text_encoder self.audio_encoder = audio_encoder self.decoder = decoder # make sure that the individual model's config refers to the shared config # so that the updates to the config will be synced self.config.text_encoder._attn_implementation = self.text_encoder.config._attn_implementation self.config.audio_encoder._attn_implementation = self.audio_encoder.config._attn_implementation self.config.decoder._attn_implementation = self.decoder.config._attn_implementation self.text_encoder.config = self.config.text_encoder self.audio_encoder.config = self.config.audio_encoder self.decoder.config = self.config.decoder # text encoder outputs might need to be projected to different dimension for decoder if self.text_encoder.config.hidden_size != self.decoder.config.hidden_size: self.enc_to_dec_proj = nn.Linear(self.text_encoder.config.hidden_size, self.decoder.config.hidden_size) # audio encoder outputs after chroma extraction might need to be projected to different dimension for decoder if self.config.num_chroma != self.decoder.config.hidden_size: self.audio_enc_to_dec_proj = nn.Linear(self.config.num_chroma, self.decoder.config.hidden_size) if self.text_encoder.get_output_embeddings() is not None: raise ValueError( f"The encoder {self.text_encoder} should not have a LM Head. Please use a model without and LM Head" ) # Initialize projection layers weights and tie text encoder and decoder weights if set accordingly self.post_init() def _init_weights(self, module): # MusicgenMelodyForConditionalGeneration is made of PreTrainedModels that have already been initialized # Projection layers still need to be initialized. std = self.decoder.config.initializer_factor if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() def tie_weights(self): # tie text encoder & decoder if needed if self.config.tie_encoder_decoder: # tie text encoder and decoder base model decoder_base_model_prefix = self.decoder.base_model_prefix tied_weights = self._tie_encoder_decoder_weights( self.text_encoder, self.decoder._modules[decoder_base_model_prefix], self.decoder.base_model_prefix, "text_encoder", ) # Setting a dynamic variable instead of `_tied_weights_keys` because it's a class # attributed not an instance member, therefore modifying it will modify the entire class # Leading to issues on subsequent calls by different tests or subsequent calls. self._dynamic_tied_weights_keys = tied_weights def get_text_encoder(self): return self.text_encoder def get_encoder(self): # get the text encoder to compute the conditionning hidden-states for generation return self.get_text_encoder() def get_decoder(self): return self.decoder def get_input_embeddings(self): return self.text_encoder.get_input_embeddings() def get_output_embeddings(self): return self.decoder.get_output_embeddings() def set_output_embeddings(self, new_embeddings): return self.decoder.set_output_embeddings(new_embeddings) @classmethod # Copied from transformers.models.musicgen.modeling_musicgen.MusicgenForConditionalGeneration.from_sub_models_pretrained with Musicgen->MusicgenMelody, musicgen-small->musicgen-melody def from_sub_models_pretrained( cls, text_encoder_pretrained_model_name_or_path: str = None, audio_encoder_pretrained_model_name_or_path: str = None, decoder_pretrained_model_name_or_path: str = None, *model_args, **kwargs, ) -> PreTrainedModel: r""" Instantiate a text encoder, an audio encoder, and a MusicGen decoder from one, two or three base classes of the library from pretrained model checkpoints. The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train the model, you need to first set it back in training mode with `model.train()`. Params: text_encoder_pretrained_model_name_or_path (`str`, *optional*): Information necessary to initiate the text encoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. audio_encoder_pretrained_model_name_or_path (`str`, *optional*): Information necessary to initiate the audio encoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`): Information necessary to initiate the decoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. model_args (remaining positional arguments, *optional*): All remaining positional arguments will be passed to the underlying model's `__init__` method. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). - To update the text encoder configuration, use the prefix *text_encoder_* for each configuration parameter. - To update the audio encoder configuration, use the prefix *audio_encoder_* for each configuration parameter. - To update the decoder configuration, use the prefix *decoder_* for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a `config` is provided or automatically loaded. Example: ```python >>> from transformers import MusicgenMelodyForConditionalGeneration >>> # initialize a musicgen model from a t5 text encoder, encodec audio encoder, and musicgen decoder >>> model = MusicgenMelodyForConditionalGeneration.from_sub_models_pretrained( ... text_encoder_pretrained_model_name_or_path="google-t5/t5-base", ... audio_encoder_pretrained_model_name_or_path="facebook/encodec_24khz", ... decoder_pretrained_model_name_or_path="facebook/musicgen-melody", ... ) >>> # saving model after fine-tuning >>> model.save_pretrained("./musicgen-ft") >>> # load fine-tuned model >>> model = MusicgenMelodyForConditionalGeneration.from_pretrained("./musicgen-ft") ```""" kwargs_text_encoder = { argument[len("text_encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("text_encoder_") } kwargs_audio_encoder = { argument[len("audio_encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("audio_encoder_") } kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } # remove text encoder, audio encoder and decoder kwargs from kwargs for key in kwargs_text_encoder.keys(): del kwargs["text_encoder_" + key] for key in kwargs_audio_encoder.keys(): del kwargs["audio_encoder_" + key] for key in kwargs_decoder.keys(): del kwargs["decoder_" + key] # Load and initialize the encoder and decoder # The distinction between encoder and decoder at the model level is made # by the value of the flag `is_decoder` that we need to set correctly. text_encoder = kwargs_text_encoder.pop("model", None) if text_encoder is None: if text_encoder_pretrained_model_name_or_path is None: raise ValueError( "If `text_encoder_model` is not defined as an argument, a `text_encoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_text_encoder: encoder_config, kwargs_text_encoder = AutoConfig.from_pretrained( text_encoder_pretrained_model_name_or_path, **kwargs_text_encoder, return_unused_kwargs=True ) if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: logger.info( f"Initializing {text_encoder_pretrained_model_name_or_path} as a text_encoder model " "from a decoder model. Cross-attention and casual mask are disabled." ) encoder_config.is_decoder = False encoder_config.add_cross_attention = False kwargs_text_encoder["config"] = encoder_config text_encoder = AutoModel.from_pretrained( text_encoder_pretrained_model_name_or_path, *model_args, **kwargs_text_encoder ) audio_encoder = kwargs_audio_encoder.pop("model", None) if audio_encoder is None: if audio_encoder_pretrained_model_name_or_path is None: raise ValueError( "If `audio_encoder_model` is not defined as an argument, an `audio_encoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_audio_encoder: encoder_config, kwargs_audio_encoder = AutoConfig.from_pretrained( audio_encoder_pretrained_model_name_or_path, **kwargs_audio_encoder, return_unused_kwargs=True ) if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: logger.info( f"Initializing {audio_encoder_pretrained_model_name_or_path} as an audio_encoder model " "from a decoder model. Cross-attention and casual mask are disabled." ) encoder_config.is_decoder = False encoder_config.add_cross_attention = False kwargs_audio_encoder["config"] = encoder_config audio_encoder = AutoModel.from_pretrained( audio_encoder_pretrained_model_name_or_path, *model_args, **kwargs_audio_encoder ) decoder = kwargs_decoder.pop("model", None) if decoder is None: if decoder_pretrained_model_name_or_path is None: raise ValueError( "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_decoder: decoder_config, kwargs_decoder = AutoConfig.from_pretrained( decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True ) if isinstance(decoder_config, MusicgenMelodyConfig): decoder_config = decoder_config.decoder if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: logger.info( f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention" f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if" f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers." ) decoder_config.is_decoder = True decoder_config.add_cross_attention = True kwargs_decoder["config"] = decoder_config if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False: logger.warning( f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. " f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, " "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` " "passed to `.from_sub_models_pretrained(...)` are set to `True` or do not pass a " "`decoder_config` to `.from_sub_models_pretrained(...)`" ) decoder = MusicgenMelodyForCausalLM.from_pretrained( decoder_pretrained_model_name_or_path, **kwargs_decoder ) # instantiate config with corresponding kwargs config = MusicgenMelodyConfig.from_sub_models_config( text_encoder.config, audio_encoder.config, decoder.config, **kwargs ) return cls(text_encoder=text_encoder, audio_encoder=audio_encoder, decoder=decoder, config=config) @add_start_docstrings_to_model_forward(MUSICGEN_MELODY_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=MusicgenMelodyOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.BoolTensor] = None, input_features: Optional[torch.FloatTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, past_key_values: Tuple[Tuple[torch.FloatTensor]] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, MusicgenMelodyOutputWithPast]: r""" Returns: Examples: ```python >>> from transformers import AutoProcessor, MusicgenMelodyForConditionalGeneration >>> import torch >>> processor = AutoProcessor.from_pretrained("facebook/musicgen-melody") >>> model = MusicgenMelodyForConditionalGeneration.from_pretrained("facebook/musicgen-melody") >>> inputs = processor( ... text=["80s pop track with bassy drums and synth", "90s rock song with loud guitars and heavy drums"], ... padding=True, ... return_tensors="pt", ... ) >>> pad_token_id = model.generation_config.pad_token_id >>> decoder_input_ids = ( ... torch.ones((inputs.input_ids.shape[0] * model.decoder.num_codebooks, 1), dtype=torch.long) ... * pad_token_id ... ) >>> logits = model(**inputs, decoder_input_ids=decoder_input_ids).logits >>> logits.shape # (bsz * num_codebooks, encoder_len + tgt_len, vocab_size) torch.Size([8, 249, 2048]) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict kwargs_text_encoder = { argument[len("text_encoder_")]: value for argument, value in kwargs.items() if argument.startswith("text_encoder_") } kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } if encoder_hidden_states is None: if inputs_embeds is not None or input_ids is not None: encoder_outputs = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs_text_encoder, ) encoder_hidden_states = encoder_outputs[0] # optionally project encoder_hidden_states if self.text_encoder.config.hidden_size != self.decoder.config.hidden_size: encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) if attention_mask is not None and encoder_hidden_states is not None: encoder_hidden_states = encoder_hidden_states * attention_mask[..., None] # set a default audio conditional hidden states if text is not None if encoder_hidden_states is not None and input_features is None: input_features = torch.zeros( (encoder_hidden_states.shape[0], 1, self.config.num_chroma), device=self.device, dtype=self.dtype, ) input_features[:, :, 0] = 1 if input_features is not None: audio_hidden_states = input_features # optionally project audio_hidden_states -> # (batch_size, seq_len, num_chroma) -> (batch_size, seq_len, hidden_size) if self.config.num_chroma != self.decoder.config.hidden_size: audio_hidden_states = self.audio_enc_to_dec_proj(audio_hidden_states) # pad or truncate to config.chroma_length if audio_hidden_states.shape[1] < self.config.chroma_length: n_repeat = int(math.ceil(self.config.chroma_length / audio_hidden_states.shape[1])) audio_hidden_states = audio_hidden_states.repeat(1, n_repeat, 1) else: logger.warning( f"The conditional audio signal is of length {audio_hidden_states.shape[1]}, which exceeds" f"the maximum chroma duration of {self.config.chroma_length}." f"The audio will be truncated to {self.config.chroma_length} frames." ) audio_hidden_states = audio_hidden_states[:, : self.config.chroma_length] if encoder_hidden_states is not None: encoder_hidden_states = torch.cat([audio_hidden_states, encoder_hidden_states], dim=1) else: encoder_hidden_states = audio_hidden_states if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None): decoder_input_ids = shift_tokens_right( labels, self.config.decoder.pad_token_id, self.config.decoder.bos_token_id ) # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_hidden_states, inputs_embeds=decoder_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, past_key_values=past_key_values, return_dict=return_dict, labels=labels, **kwargs_decoder, ) if not return_dict: return decoder_outputs + (encoder_hidden_states,) return MusicgenMelodyOutputWithPast( loss=decoder_outputs.loss, logits=decoder_outputs.logits, past_key_values=decoder_outputs.past_key_values, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, encoder_hidden_states=encoder_hidden_states, ) def prepare_inputs_for_generation( self, decoder_input_ids, encoder_hidden_states=None, past_key_values=None, attention_mask=None, decoder_attention_mask=None, decoder_head_mask=None, use_cache=None, decoder_delay_pattern_mask=None, guidance_scale=None, **kwargs, ): # Overwritten -- MusicGen has custom processing if decoder_delay_pattern_mask is None: decoder_input_ids, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask( decoder_input_ids, self.generation_config.pad_token_id, max_length=self.generation_config.max_length, ) # apply the delay pattern mask decoder_input_ids = self.decoder.apply_delay_pattern_mask(decoder_input_ids, decoder_delay_pattern_mask) if guidance_scale is not None and guidance_scale > 1: # for classifier free guidance we need to replicate the decoder args across the batch dim (we'll split these # before sampling) decoder_input_ids = decoder_input_ids.repeat((2, 1)) if decoder_attention_mask is not None: decoder_attention_mask = decoder_attention_mask.repeat((2, 1)) if past_key_values is not None: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if decoder_input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = decoder_input_ids.shape[1] - 1 decoder_input_ids = decoder_input_ids[:, remove_prefix_length:] # we only want to use conditional signal in the 1st generation step but keeping the attention mask encoder_hidden_states = None # we also have to update the attention mask return { "input_ids": None, # encoder_hidden_states is defined. input_ids not needed "encoder_hidden_states": encoder_hidden_states, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "decoder_head_mask": decoder_head_mask, "use_cache": use_cache, } # Copied from transformers.models.musicgen.modeling_musicgen.MusicgenForConditionalGeneration._prepare_decoder_input_ids_for_generation def _prepare_decoder_input_ids_for_generation( self, batch_size: int, model_input_name: str, model_kwargs: Dict[str, torch.Tensor], decoder_start_token_id: int = None, bos_token_id: int = None, device: torch.device = None, ) -> Tuple[torch.LongTensor, Dict[str, torch.Tensor]]: """Prepares `decoder_input_ids` for generation with encoder-decoder models""" # 1. Check whether the user has defined `decoder_input_ids` manually. To facilitate in terms of input naming, # we also allow the user to pass it under `input_ids`, if the encoder does not use it as the main input. if model_kwargs is not None and "decoder_input_ids" in model_kwargs: decoder_input_ids = model_kwargs.pop("decoder_input_ids") elif "input_ids" in model_kwargs and model_input_name != "input_ids": decoder_input_ids = model_kwargs.pop("input_ids") else: decoder_input_ids = None # 2. Encoder-decoder models expect the `decoder_input_ids` to start with a special token. Let's ensure that. decoder_start_token_id = self._get_decoder_start_token_id(decoder_start_token_id, bos_token_id) if device is None: device = self.device decoder_input_ids_start = ( torch.ones((batch_size * self.decoder.num_codebooks, 1), dtype=torch.long, device=device) * decoder_start_token_id ) # no user input -> use decoder_start_token_id as decoder_input_ids if decoder_input_ids is None: decoder_input_ids = decoder_input_ids_start # user input but doesn't start with decoder_start_token_id -> prepend decoder_start_token_id (and adjust # decoder_attention_mask if provided) elif (decoder_input_ids[..., 0] != decoder_start_token_id).all().item(): decoder_input_ids = torch.cat([decoder_input_ids_start, decoder_input_ids], dim=-1) if "decoder_attention_mask" in model_kwargs: decoder_attention_mask = model_kwargs["decoder_attention_mask"] decoder_attention_mask = torch.cat( (torch.ones_like(decoder_attention_mask)[:, :1], decoder_attention_mask), dim=-1, ) model_kwargs["decoder_attention_mask"] = decoder_attention_mask return decoder_input_ids, model_kwargs def _prepare_encoder_hidden_states_kwargs_for_generation( self, inputs_tensor: torch.Tensor, model_kwargs, model_input_name: Optional[str], generation_config: GenerationConfig, ) -> Dict[str, Any]: encoder_hidden_states = None # attention mask is consumed once to produce text conditional hidden states through the text encoder encoder_attention_mask = model_kwargs.pop("attention_mask") guidance_scale = generation_config.guidance_scale # 1. condition on text if inputs_tensor is not None: encoder = self.get_text_encoder() # Compatibility with Accelerate big model inference: we need the encoder to outputs stuff on the same device # as the inputs. if hasattr(encoder, "_hf_hook"): encoder._hf_hook.io_same_device = True # Prepare args and kwargs from model kwargs. irrelevant_prefix = ["decoder_", "use_cache"] encoder_kwargs = { argument: value for argument, value in model_kwargs.items() if not any(argument.startswith(p) for p in irrelevant_prefix) } encoder_signature = set(inspect.signature(encoder.forward).parameters) encoder_accepts_wildcard = "kwargs" in encoder_signature or "model_kwargs" in encoder_signature if not encoder_accepts_wildcard: encoder_kwargs = { argument: value for argument, value in encoder_kwargs.items() if argument in encoder_signature } encoder_kwargs["output_attentions"] = generation_config.output_attentions encoder_kwargs["output_hidden_states"] = generation_config.output_hidden_states # make sure that encoder returns `ModelOutput` model_input_name = model_input_name if model_input_name is not None else self.text_encoder.main_input_name encoder_kwargs["return_dict"] = True encoder_kwargs[model_input_name] = inputs_tensor if encoder_attention_mask is not None: encoder_kwargs["attention_mask"] = encoder_attention_mask encoder_hidden_states = encoder(**encoder_kwargs).last_hidden_state # optionally project encoder_hidden_states if self.text_encoder.config.hidden_size != self.decoder.config.hidden_size: encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) # for classifier free guidance we need to add a 'null' input to our encoder hidden states if guidance_scale is not None and guidance_scale > 1: encoder_hidden_states = torch.concatenate( [encoder_hidden_states, torch.zeros_like(encoder_hidden_states)], dim=0 ) if encoder_attention_mask is not None: encoder_attention_mask = torch.concatenate( [encoder_attention_mask, torch.zeros_like(encoder_attention_mask)], dim=0 ) if encoder_attention_mask is not None: encoder_hidden_states = encoder_hidden_states * encoder_attention_mask[..., None] # 2. condition on audio audio_hidden_states = model_kwargs.get("input_features", None) if inputs_tensor is not None: if audio_hidden_states is not None: null_audio_hidden_states = torch.zeros_like(audio_hidden_states) else: null_audio_hidden_states = torch.zeros( (inputs_tensor.shape[0], 1, self.config.num_chroma), device=self.device, dtype=self.dtype ) null_audio_hidden_states[:, :, 0] = 1 if audio_hidden_states is None: audio_hidden_states = null_audio_hidden_states if audio_hidden_states is not None: # for classifier free guidance we need to add a 'null' input to our audio hidden states if guidance_scale is not None and guidance_scale > 1: audio_hidden_states = torch.concatenate([audio_hidden_states, null_audio_hidden_states], dim=0) # optionally project audio_hidden_states -> # (batch_size, seq_len, num_chroma) -> (batch_size, seq_len, hidden_size) if self.config.num_chroma != self.decoder.config.hidden_size: audio_hidden_states = self.audio_enc_to_dec_proj(audio_hidden_states) # pad or truncate to config.chroma_length if audio_hidden_states.shape[1] < self.config.chroma_length: n_repeat = int(math.ceil(self.config.chroma_length / audio_hidden_states.shape[1])) audio_hidden_states = audio_hidden_states.repeat(1, n_repeat, 1) audio_hidden_states = audio_hidden_states[:, : self.config.chroma_length] if encoder_hidden_states is not None: encoder_hidden_states = torch.cat([audio_hidden_states, encoder_hidden_states], dim=1) else: encoder_hidden_states = audio_hidden_states model_kwargs["encoder_hidden_states"] = encoder_hidden_states return model_kwargs def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): return shift_tokens_right(labels, self.config.decoder.pad_token_id, self.config.decoder.bos_token_id) def resize_token_embeddings(self, *args, **kwargs): raise NotImplementedError( "Resizing the embedding layers via the EncoderDecoderModel directly is not supported. Please use the" " respective methods of the wrapped objects (model.encoder.resize_token_embeddings(...) or" " model.decoder.resize_token_embeddings(...))" ) def _maybe_initialize_input_ids_for_generation( self, inputs: Optional[torch.Tensor] = None, bos_token_id: Optional[int] = None, model_kwargs: Optional[Dict[str, torch.Tensor]] = None, ) -> torch.LongTensor: """Initializes input ids for generation, if necessary.""" if inputs is not None: return inputs if bos_token_id is None: raise ValueError("`bos_token_id` has to be defined when no `input_ids` are provided.") # If there is some tensor in `model_kwargs`, we can infer the batch size from it. This is helpful with # soft-prompting or in multimodal implementations built on top of decoder-only language models. batch_size = 1 for value in model_kwargs.values(): if isinstance(value, torch.Tensor): batch_size = value.shape[0] break return torch.ones((batch_size, 1), dtype=torch.long, device=self.device) * bos_token_id def freeze_audio_encoder(self): """ Freeze the audio encoder weights. """ for param in self.audio_encoder.parameters(): param.requires_grad = False self.audio_encoder._requires_grad = False def freeze_text_encoder(self): """ Freeze the text encoder weights. """ for param in self.text_encoder.parameters(): param.requires_grad = False self.text_encoder._requires_grad = False # Copied from transformers.models.musicgen.modeling_musicgen.MusicgenForConditionalGeneration._get_decoder_start_token_id def _get_decoder_start_token_id( self, decoder_start_token_id: Union[int, List[int]] = None, bos_token_id: int = None ) -> int: decoder_start_token_id = ( decoder_start_token_id if decoder_start_token_id is not None else self.generation_config.decoder_start_token_id ) bos_token_id = bos_token_id if bos_token_id is not None else self.generation_config.bos_token_id if decoder_start_token_id is not None: return decoder_start_token_id elif bos_token_id is not None: return bos_token_id raise ValueError( "`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation." ) @torch.no_grad() def generate( self, inputs: Optional[torch.Tensor] = None, generation_config: Optional[GenerationConfig] = None, logits_processor: Optional[LogitsProcessorList] = None, stopping_criteria: Optional[StoppingCriteriaList] = None, synced_gpus: Optional[bool] = None, streamer: Optional["BaseStreamer"] = None, **kwargs, ): """ Generates sequences of token ids for models with a language modeling head. <Tip warning={true}> Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the model's default generation configuration. You can override any `generation_config` by passing the corresponding parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`. For an overview of generation strategies and code examples, check out the [following guide](./generation_strategies). </Tip> Parameters: inputs (`torch.Tensor` of varying shape depending on the modality, *optional*): The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs` should be in the format `input_ids`. For encoder-decoder models *inputs* can represent any of `input_ids`, `input_values`, `input_features`, or `pixel_values`. generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which had the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. logits_processor (`LogitsProcessorList`, *optional*): Custom logits processors that complement the default logits processors built from arguments and generation config. If a logit processor is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. stopping_criteria (`StoppingCriteriaList`, *optional*): Custom stopping criteria that complement the default stopping criteria built from arguments and a generation config. If a stopping criteria is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. synced_gpus (`bool`, *optional*, defaults to `False`): Whether to continue running the while loop until max_length (needed to avoid deadlocking with `FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3). streamer (`BaseStreamer`, *optional*): Streamer object that will be used to stream the generated sequences. Generated tokens are passed through `streamer.put(token_ids)` and the streamer is responsible for any further processing. kwargs (`Dict[str, Any]`, *optional*): Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. Return: [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`. If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible [`~utils.ModelOutput`] types are: - [`~generation.GenerateDecoderOnlyOutput`], - [`~generation.GenerateBeamDecoderOnlyOutput`] If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible [`~utils.ModelOutput`] types are: - [`~generation.GenerateEncoderDecoderOutput`], - [`~generation.GenerateBeamEncoderDecoderOutput`] """ # 1. Handle `generation_config` and kwargs that might update it, and validate the resulting objects if generation_config is None: generation_config = self.generation_config generation_config = copy.deepcopy(generation_config) model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs generation_config.validate() self._validate_model_kwargs(model_kwargs.copy()) # 2. Set generation parameters if not already defined logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList() stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList() requires_attention_mask = "encoder_outputs" not in model_kwargs kwargs_has_attention_mask = model_kwargs.get("attention_mask", None) is not None # 3. Define model inputs inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs( inputs, generation_config.bos_token_id, model_kwargs ) batch_size = inputs_tensor.shape[0] self._prepare_special_tokens(generation_config, kwargs_has_attention_mask, device=inputs_tensor.device) # 4. Define other model kwargs model_kwargs["use_cache"] = generation_config.use_cache model_kwargs["guidance_scale"] = generation_config.guidance_scale if model_kwargs.get("attention_mask", None) is None and requires_attention_mask: model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation( inputs_tensor, generation_config, model_kwargs ) if "encoder_hidden_states" not in model_kwargs: # encoder_hidden_states are created and added to `model_kwargs` model_kwargs = self._prepare_encoder_hidden_states_kwargs_for_generation( inputs_tensor, model_kwargs, model_input_name, generation_config ) # 5. Prepare `input_ids` which will be used for auto-regressive generation input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation( batch_size=batch_size, model_input_name=model_input_name, model_kwargs=model_kwargs, decoder_start_token_id=generation_config._decoder_start_token_tensor, bos_token_id=generation_config._bos_token_tensor, device=inputs_tensor.device, ) # 6. Prepare `max_length` depending on other stopping criteria. input_ids_length = input_ids.shape[-1] has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None has_default_min_length = kwargs.get("min_length") is None and generation_config.min_length is not None generation_config = self._prepare_generated_length( generation_config=generation_config, has_default_max_length=has_default_max_length, has_default_min_length=has_default_min_length, model_input_name=model_input_name, inputs_tensor=inputs_tensor, input_ids_length=input_ids_length, ) # build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to MusicGen) input_ids, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask( input_ids, pad_token_id=generation_config._decoder_start_token_tensor, max_length=generation_config.max_length, ) # stash the delay mask so that we don't have to recompute in each forward pass model_kwargs["decoder_delay_pattern_mask"] = decoder_delay_pattern_mask # input_ids are ready to be placed on the streamer (if used) if streamer is not None: streamer.put(input_ids.cpu()) # 7. determine generation mode generation_mode = generation_config.get_generation_mode() # 8. prepare batched CFG externally (to enable coexistance with the unbatched CFG) if generation_config.guidance_scale is not None and generation_config.guidance_scale > 1: logits_processor.append(ClassifierFreeGuidanceLogitsProcessor(generation_config.guidance_scale)) generation_config.guidance_scale = None # 9. prepare distribution pre_processing samplers logits_processor = self._get_logits_processor( generation_config=generation_config, input_ids_seq_length=input_ids_length, encoder_input_ids=inputs_tensor, prefix_allowed_tokens_fn=None, logits_processor=logits_processor, device=input_ids.device, ) # 10. prepare stopping criteria stopping_criteria = self._get_stopping_criteria( generation_config=generation_config, stopping_criteria=stopping_criteria ) if generation_mode in (GenerationMode.SAMPLE, GenerationMode.GREEDY_SEARCH): # expand input_ids with `num_return_sequences` additional sequences per batch input_ids, model_kwargs = self._expand_inputs_for_generation( input_ids=input_ids, expand_size=generation_config.num_return_sequences, is_encoder_decoder=self.config.is_encoder_decoder, **model_kwargs, ) # 11. run sample outputs = self._sample( input_ids, logits_processor=logits_processor, stopping_criteria=stopping_criteria, generation_config=generation_config, synced_gpus=synced_gpus, streamer=streamer, **model_kwargs, ) else: raise ValueError( "Got incompatible mode for generation, should be one of greedy or sampling. " "Ensure that beam search is de-activated by setting `num_beams=1` and `num_beam_groups=1`." ) if generation_config.return_dict_in_generate: output_ids = outputs.sequences else: output_ids = outputs # apply the pattern mask to the final ids output_ids = self.decoder.apply_delay_pattern_mask(output_ids, model_kwargs["decoder_delay_pattern_mask"]) # revert the pattern delay mask by filtering the pad token id output_ids = output_ids[output_ids != generation_config._pad_token_tensor].reshape( batch_size, self.decoder.num_codebooks, -1 ) # append the frame dimension back to the audio codes output_ids = output_ids[None, ...] audio_scales = model_kwargs.get("audio_scales") if audio_scales is None: audio_scales = [None] * batch_size if self.decoder.config.audio_channels == 1: output_values = self.audio_encoder.decode( output_ids, audio_scales=audio_scales, ).audio_values else: codec_outputs_left = self.audio_encoder.decode(output_ids[:, :, ::2, :], audio_scales=audio_scales) output_values_left = codec_outputs_left.audio_values codec_outputs_right = self.audio_encoder.decode(output_ids[:, :, 1::2, :], audio_scales=audio_scales) output_values_right = codec_outputs_right.audio_values output_values = torch.cat([output_values_left, output_values_right], dim=1) if generation_config.return_dict_in_generate: outputs.sequences = output_values return outputs else: return output_values def _update_model_kwargs_for_generation( self, outputs: ModelOutput, model_kwargs: Dict[str, Any], is_encoder_decoder: bool = False, model_inputs: Optional[Dict[str, Any]] = None, ) -> Dict[str, Any]: # update past_key_values cache_name, cache = self._extract_past_from_model_output(outputs) model_kwargs[cache_name] = cache if getattr(outputs, "state", None) is not None: model_kwargs["state"] = outputs.state # update token_type_ids with last value if "token_type_ids" in model_kwargs: token_type_ids = model_kwargs["token_type_ids"] model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1) # update decoder attention mask if "decoder_attention_mask" in model_kwargs: decoder_attention_mask = model_kwargs["decoder_attention_mask"] model_kwargs["decoder_attention_mask"] = torch.cat( [decoder_attention_mask, decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], 1))], dim=-1, ) return model_kwargs
transformers/src/transformers/models/musicgen_melody/modeling_musicgen_melody.py/0
{ "file_path": "transformers/src/transformers/models/musicgen_melody/modeling_musicgen_melody.py", "repo_id": "transformers", "token_count": 54742 }
150
# Copyright 2024 EleutherAI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import gc import json import os import shutil from pathlib import Path import torch import yaml from tokenizers import Tokenizer from transformers import OlmoConfig, OlmoForCausalLM from transformers.models.gpt_neox.tokenization_gpt_neox_fast import GPTNeoXTokenizerFast """ Sample usage: ``` python src/transformers/models/olmo/convert_olmo_weights_to_hf.py \ --input_dir /path/to/downloaded/olmo/weights --model_size 7B --output_dir /output/path ``` Thereafter, models can be loaded via: ```py from transformers import OlmoForCausalLM, AutoTokenizer model = OlmoForCausalLM.from_pretrained("/output/path") tokenizer = AutoTokenizer.from_pretrained("/output/path") ``` Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM). """ def compute_intermediate_size(n, ffn_dim_multiplier=1, multiple_of=256): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3)) + multiple_of - 1) // multiple_of) def read_json(path): with open(path, "r") as f: return json.load(f) def write_json(text, path): with open(path, "w") as f: json.dump(text, f) def write_model(model_path, input_base_path, tokenizer_path=None, safe_serialization=True, fix_eos_token_id=True): os.makedirs(model_path, exist_ok=True) tmp_model_path = os.path.join(model_path, "tmp") os.makedirs(tmp_model_path, exist_ok=True) config_path = Path(input_base_path) / "config.yaml" olmo_config = yaml.safe_load(config_path.read_text())["model"] n_layers = olmo_config["n_layers"] n_heads = olmo_config["n_heads"] dim = olmo_config["d_model"] dims_per_head = dim // n_heads base = 10000.0 inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head)) max_position_embeddings = olmo_config["max_sequence_length"] vocab_size = olmo_config.get("embedding_size", olmo_config["vocab_size"]) if olmo_config.get("n_kv_heads", None) is not None: num_key_value_heads = olmo_config["n_kv_heads"] # for GQA / MQA elif olmo_config["multi_query_attention"]: # compatibility with other checkpoints num_key_value_heads = 1 else: num_key_value_heads = n_heads print(f"Fetching all parameters from the checkpoint at {input_base_path}.") # Not sharded # (The sharded implementation would also work, but this is simpler.) loaded = torch.load(os.path.join(input_base_path, "model.pt"), map_location="cpu") param_count = 0 index_dict = {"weight_map": {}} for layer_i in range(n_layers): filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin" # Unsharded # TODO: Layernorm stuff # TODO: multi query attention fused_dims = [dim, dims_per_head * num_key_value_heads, dims_per_head * num_key_value_heads] q_proj_weight, k_proj_weight, v_proj_weight = torch.split( loaded[f"transformer.blocks.{layer_i}.att_proj.weight"], fused_dims, dim=0 ) up_proj_weight, gate_proj_weight = torch.chunk( loaded[f"transformer.blocks.{layer_i}.ff_proj.weight"], 2, dim=0 ) state_dict = { f"model.layers.{layer_i}.self_attn.q_proj.weight": q_proj_weight, f"model.layers.{layer_i}.self_attn.k_proj.weight": k_proj_weight, f"model.layers.{layer_i}.self_attn.v_proj.weight": v_proj_weight, f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"transformer.blocks.{layer_i}.attn_out.weight"], f"model.layers.{layer_i}.mlp.gate_proj.weight": gate_proj_weight, f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"transformer.blocks.{layer_i}.ff_out.weight"], f"model.layers.{layer_i}.mlp.up_proj.weight": up_proj_weight, } state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq for k, v in state_dict.items(): index_dict["weight_map"][k] = filename param_count += v.numel() torch.save(state_dict, os.path.join(tmp_model_path, filename)) filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin" # Unsharded # TODO: Deal with weight-tying state_dict = { "model.embed_tokens.weight": loaded["transformer.wte.weight"], "lm_head.weight": loaded["transformer.ff_out.weight"] if "transformer.ff_out.weight" in loaded else loaded["transformer.wte.weight"], } for k, v in state_dict.items(): index_dict["weight_map"][k] = filename param_count += v.numel() torch.save(state_dict, os.path.join(tmp_model_path, filename)) # Write configs index_dict["metadata"] = {"total_size": param_count * 2} write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json")) if olmo_config.get("mlp_hidden_size", None) is not None: intermediate_size = olmo_config["mlp_hidden_size"] // 2 else: intermediate_size = (dim * olmo_config["mlp_ratio"]) // 2 config = OlmoConfig( vocab_size=vocab_size, hidden_size=dim, intermediate_size=intermediate_size, num_hidden_layers=n_layers, num_attention_heads=n_heads, num_key_value_heads=num_key_value_heads, max_position_embeddings=max_position_embeddings, pad_token_id=olmo_config["pad_token_id"], bos_token_id=None, eos_token_id=olmo_config["eos_token_id"], tie_word_embeddings=olmo_config["weight_tying"], rope_theta=base, clip_qkv=olmo_config.get("clip_qkv"), ) config.save_pretrained(tmp_model_path) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() if tokenizer_path is not None: _write_tokenizer(model_path, config, tokenizer_path, fix_eos_token_id) print("Loading the checkpoint in a OLMo model.") model = OlmoForCausalLM.from_pretrained(tmp_model_path, torch_dtype=torch.float32, low_cpu_mem_usage=True) # Avoid saving this as part of the config. del model.config._name_or_path print("Saving in the Transformers format.") model.save_pretrained(model_path, safe_serialization=safe_serialization) shutil.rmtree(tmp_model_path) def _write_tokenizer( output_path: Path, config: OlmoConfig, input_tokenizer_path: Path, fix_eos_token_id: bool = True ) -> None: print(f"Saving a {GPTNeoXTokenizerFast.__name__} to {output_path}.") base_tokenizer = Tokenizer.from_file(str(input_tokenizer_path)) eos_token_id = config.eos_token_id if config.eos_token_id is not None else base_tokenizer.get_vocab_size() - 1 pad_token_id = config.pad_token_id if config.pad_token_id is not None else eos_token_id if fix_eos_token_id and eos_token_id == 0: # Fixing a bug in OLMo where eos token id was incorrectly set print("Changing eos_token_id from 0 to 50279.") eos_token_id = 50279 tokenizer = GPTNeoXTokenizerFast( tokenizer_object=base_tokenizer, eos_token=base_tokenizer.decode([eos_token_id], skip_special_tokens=False), pad_token=base_tokenizer.decode([pad_token_id], skip_special_tokens=False), unk_token=None, bos_token=None, ) tokenizer.save_pretrained(output_path) def main(): parser = argparse.ArgumentParser() parser.add_argument( "--input_dir", required=True, help="Location of OLMo weights, which contains config.yaml and model.pt.", ) parser.add_argument( "--tokenizer_json_path", default=None, help="Location of OLMo tokenizer json file.", ) parser.add_argument( "--output_dir", required=True, help="Location to write HF model and tokenizer", ) parser.add_argument( "--no_fix_eos_token_id", action="store_false", dest="fix_eos_token_id", help="If set, does not change eos token id from 0 to 50279 if it is 0. Changing 0 to 50279 is a bug fix, so use this option with care.", ) parser.add_argument("--safe_serialization", type=bool, help="Whether or not to save using `safetensors`.") # Different OLMo versions used different default values for max_position_embeddings, hence the need to be able to specify which version is being used. args = parser.parse_args() write_model( model_path=args.output_dir, input_base_path=args.input_dir, safe_serialization=args.safe_serialization, tokenizer_path=args.tokenizer_json_path, fix_eos_token_id=args.fix_eos_token_id, ) if __name__ == "__main__": main()
transformers/src/transformers/models/olmo/convert_olmo_weights_to_hf.py/0
{ "file_path": "transformers/src/transformers/models/olmo/convert_olmo_weights_to_hf.py", "repo_id": "transformers", "token_count": 3869 }
151
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for OmDet-Turbo. """ import warnings from typing import TYPE_CHECKING, List, Optional, Tuple, Union from ...feature_extraction_utils import BatchFeature from ...image_transforms import center_to_corners_format from ...image_utils import ImageInput from ...processing_utils import ProcessingKwargs, ProcessorMixin, TextKwargs, Unpack from ...tokenization_utils_base import PreTokenizedInput, TextInput from ...utils import ( TensorType, is_torch_available, is_torchvision_available, ) from ...utils.deprecation import deprecate_kwarg if TYPE_CHECKING: from .modeling_omdet_turbo import OmDetTurboObjectDetectionOutput class OmDetTurboTextKwargs(TextKwargs, total=False): task: Optional[Union[str, List[str], TextInput, PreTokenizedInput]] if is_torch_available(): import torch if is_torchvision_available(): from torchvision.ops.boxes import batched_nms class OmDetTurboProcessorKwargs(ProcessingKwargs, total=False): text_kwargs: OmDetTurboTextKwargs _defaults = { "text_kwargs": { "add_special_tokens": True, "padding": "max_length", "truncation": True, "max_length": 77, "stride": 0, "return_overflowing_tokens": False, "return_special_tokens_mask": False, "return_offsets_mapping": False, "return_token_type_ids": False, "return_length": False, "verbose": True, "task": None, }, "images_kwargs": {}, } class DictWithDeprecationWarning(dict): message = ( "The `classes` key is deprecated for `OmDetTurboProcessor.post_process_grounded_object_detection` " "output dict and will be removed in a 4.51.0 version. Please use `text_labels` instead." ) def __getitem__(self, key): if key == "classes": warnings.warn(self.message, FutureWarning) return super().__getitem__("text_labels") return super().__getitem__(key) def get(self, key, *args, **kwargs): if key == "classes": warnings.warn(self.message, FutureWarning) return super().get("text_labels", *args, **kwargs) return super().get(key, *args, **kwargs) def clip_boxes(box, box_size: Tuple[int, int]): """ Clip the boxes by limiting x coordinates to the range [0, width] and y coordinates to the range [0, height]. Args: box (Tensor): The box to be clipped. box_size (height, width): The clipping box's size. """ assert torch.isfinite(box).all(), "Box tensor contains infinite or NaN!" height, width = box_size x1 = box[:, 0].clamp(min=0, max=width) y1 = box[:, 1].clamp(min=0, max=height) x2 = box[:, 2].clamp(min=0, max=width) y2 = box[:, 3].clamp(min=0, max=height) box = torch.stack((x1, y1, x2, y2), dim=-1) return box def compute_score(boxes): """ Compute logit scores per class for each box (proposal) and an array of class indices corresponding to each proposal, flattened across the proposal_num. The indices in `classes` will later be used to filter and match the predicted classes with the input class names. """ num_classes = boxes.shape[2] proposal_num = boxes.shape[1] scores = torch.sigmoid(boxes) classes = torch.arange(num_classes, device=boxes.device).unsqueeze(0).repeat(proposal_num, 1).flatten(0, 1) return scores, classes def _post_process_boxes_for_image( boxes: "torch.Tensor", scores: "torch.Tensor", labels: "torch.Tensor", image_num_classes: int, image_size: Tuple[int, int], threshold: float, nms_threshold: float, max_num_det: Optional[int] = None, ) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor"]: """ Filter predicted results using given thresholds and NMS. Args: boxes (`torch.Tensor`): A Tensor of predicted class-specific or class-agnostic boxes for the image. Shape (num_queries, max_num_classes_in_batch * 4) if doing class-specific regression, or (num_queries, 4) if doing class-agnostic regression. scores (`torch.Tensor` of shape (num_queries, max_num_classes_in_batch + 1)): A Tensor of predicted class scores for the image. labels (`torch.Tensor` of shape (num_queries * (max_num_classes_in_batch + 1),)): A Tensor of predicted labels for the image. image_num_classes (`int`): The number of classes queried for detection on the image. image_size (`Tuple[int, int]`): A tuple of (height, width) for the image. threshold (`float`): Only return detections with a confidence score exceeding this threshold. nms_threshold (`float`): The threshold to use for box non-maximum suppression. Value in [0, 1]. max_num_det (`int`, *optional*): The maximum number of detections to return. Default is None. Returns: Tuple: A tuple with the following: "boxes" (Tensor): A tensor of shape (num_filtered_objects, 4), containing the predicted boxes in (x1, y1, x2, y2) format. "scores" (Tensor): A tensor of shape (num_filtered_objects,), containing the predicted confidence scores for each detection. "labels" (Tensor): A tensor of ids, where each id is the predicted class id for the corresponding detection """ # Filter by max number of detections proposal_num = len(boxes) if max_num_det is None else max_num_det scores_per_image, topk_indices = scores.flatten(0, 1).topk(proposal_num, sorted=False) labels_per_image = labels[topk_indices] boxes_per_image = boxes.view(-1, 1, 4).repeat(1, scores.shape[1], 1).view(-1, 4) boxes_per_image = boxes_per_image[topk_indices] # Convert and scale boxes to original image size boxes_per_image = center_to_corners_format(boxes_per_image) boxes_per_image = boxes_per_image * torch.tensor(image_size[::-1]).repeat(2).to(boxes_per_image.device) # Filtering by confidence score filter_mask = scores_per_image > threshold # R x K score_keep = filter_mask.nonzero(as_tuple=False).view(-1) boxes_per_image = boxes_per_image[score_keep] scores_per_image = scores_per_image[score_keep] labels_per_image = labels_per_image[score_keep] # Ensure we did not overflow to non existing classes filter_classes_mask = labels_per_image < image_num_classes classes_keep = filter_classes_mask.nonzero(as_tuple=False).view(-1) boxes_per_image = boxes_per_image[classes_keep] scores_per_image = scores_per_image[classes_keep] labels_per_image = labels_per_image[classes_keep] # NMS keep = batched_nms(boxes_per_image, scores_per_image, labels_per_image, nms_threshold) boxes_per_image = boxes_per_image[keep] scores_per_image = scores_per_image[keep] labels_per_image = labels_per_image[keep] # Clip to image size boxes_per_image = clip_boxes(boxes_per_image, image_size) return boxes_per_image, scores_per_image, labels_per_image class OmDetTurboProcessor(ProcessorMixin): r""" Constructs a OmDet-Turbo processor which wraps a Deformable DETR image processor and an AutoTokenizer into a single processor. [`OmDetTurboProcessor`] offers all the functionalities of [`DetrImageProcessor`] and [`AutoTokenizer`]. See the docstring of [`~OmDetTurboProcessor.__call__`] and [`~OmDetTurboProcessor.decode`] for more information. Args: image_processor (`DetrImageProcessor`): An instance of [`DetrImageProcessor`]. The image processor is a required input. tokenizer (`AutoTokenizer`): An instance of ['PreTrainedTokenizer`]. The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "DetrImageProcessor" tokenizer_class = "AutoTokenizer" def __init__(self, image_processor, tokenizer): super().__init__(image_processor, tokenizer) def __call__( self, images: ImageInput = None, text: Union[List[str], List[List[str]]] = None, audio=None, videos=None, **kwargs: Unpack[OmDetTurboProcessorKwargs], ) -> BatchFeature: """ This method uses [*DetrImageProcessor.__call__] method to prepare image(s) for the model, and [CLIPTokenizerFast.__call__] to prepare text for the model. Please refer to the docstring of the above two methods for more information. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. text (`Union[str, List[str], List[List[str]]]`): The classes used to limit the scope of the open vocabulary detection. Expects a list of strings or a list of list of strings. Batched classes can be of different lengths. Examples: ["cat", "dog", "bird"], [["cat", "dog", "bird"], ["hat", "person"], ["car"]] Kwargs: task (`Union[str, List[str], TextInput, PreTokenizedInput]`): The grounded text used to guide open vocabulary detection. Expects a single string or a list of strings. Examples: "Detect a cat, a dog, and a bird.",[ "Detect everything.", "Detect trees and flowers."] When not provided, the default task is "Detect [class1], [class2], [class3]" etc. ... """ if images is None or text is None: raise ValueError("You have to specify both `images` and `text`") output_kwargs = self._merge_kwargs( OmDetTurboProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs, ) if isinstance(text, str): text = text.strip(" ").split(",") if not (len(text) and isinstance(text[0], (list, tuple))): text = [text] task = output_kwargs["text_kwargs"].pop("task", None) if task is None: task = ["Detect {}.".format(", ".join(text_single)) for text_single in text] elif not isinstance(task, (list, tuple)): task = [task] encoding_image_processor = self.image_processor(images, **output_kwargs["images_kwargs"]) tasks_encoding = self.tokenizer(text=task, **output_kwargs["text_kwargs"]) classes = text classes_structure = torch.tensor([len(class_single) for class_single in classes], dtype=torch.long) classes_flattened = [class_single for class_batch in classes for class_single in class_batch] classes_encoding = self.tokenizer(text=classes_flattened, **output_kwargs["text_kwargs"]) encoding = BatchFeature() encoding.update({f"tasks_{key}": value for key, value in tasks_encoding.items()}) encoding.update({f"classes_{key}": value for key, value in classes_encoding.items()}) encoding.update({"classes_structure": classes_structure}) encoding.update(encoding_image_processor) return encoding # Copied from transformers.models.blip.processing_blip.BlipProcessor.batch_decode with BertTokenizerFast->PreTrainedTokenizer def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) # Copied from transformers.models.blip.processing_blip.BlipProcessor.decode with BertTokenizerFast->PreTrainedTokenizer def decode(self, *args, **kwargs): """ This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) def _get_default_image_size(self) -> Tuple[int, int]: height = ( self.image_processor.size["height"] if "height" in self.image_processor.size else self.image_processor.size["shortest_edge"] ) width = ( self.image_processor.size["width"] if "width" in self.image_processor.size else self.image_processor.size["longest_edge"] ) return height, width @deprecate_kwarg("score_threshold", new_name="threshold", version="4.51.0") @deprecate_kwarg("classes", new_name="text_labels", version="4.51.0") def post_process_grounded_object_detection( self, outputs: "OmDetTurboObjectDetectionOutput", text_labels: Optional[Union[List[str], List[List[str]]]] = None, threshold: float = 0.3, nms_threshold: float = 0.5, target_sizes: Optional[Union[TensorType, List[Tuple]]] = None, max_num_det: Optional[int] = None, ): """ Converts the raw output of [`OmDetTurboForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y, bottom_right_x, bottom_right_y) format and get the associated text class. Args: outputs ([`OmDetTurboObjectDetectionOutput`]): Raw outputs of the model. text_labels (Union[List[str], List[List[str]]], *optional*): The input classes names. If not provided, `text_labels` will be set to `None` in `outputs`. threshold (float, defaults to 0.3): Only return detections with a confidence score exceeding this threshold. nms_threshold (float, defaults to 0.5): The threshold to use for box non-maximum suppression. Value in [0, 1]. target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*): Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size `(height, width)` of each image in the batch. If unset, predictions will not be resized. max_num_det (`int`, *optional*): The maximum number of detections to return. Returns: `List[Dict]`: A list of dictionaries, each dictionary containing the scores, classes and boxes for an image in the batch as predicted by the model. """ batch_size = len(outputs.decoder_coord_logits) # Inputs consistency check for target sizes if target_sizes is None: height, width = self._get_default_image_size() target_sizes = [(height, width)] * batch_size if any(len(image_size) != 2 for image_size in target_sizes): raise ValueError( "Each element of target_sizes must contain the size (height, width) of each image of the batch" ) if len(target_sizes) != batch_size: raise ValueError("Make sure that you pass in as many target sizes as output sequences") # Inputs consistency check for text labels if text_labels is not None and isinstance(text_labels[0], str): text_labels = [text_labels] if text_labels is not None and len(text_labels) != batch_size: raise ValueError("Make sure that you pass in as many classes group as output sequences") # Convert target_sizes to list for easier handling if isinstance(target_sizes, torch.Tensor): target_sizes = target_sizes.tolist() batch_boxes = outputs.decoder_coord_logits batch_logits = outputs.decoder_class_logits batch_num_classes = outputs.classes_structure batch_scores, batch_labels = compute_score(batch_logits) results = [] for boxes, scores, image_size, image_num_classes in zip( batch_boxes, batch_scores, target_sizes, batch_num_classes ): boxes, scores, labels = _post_process_boxes_for_image( boxes=boxes, scores=scores, labels=batch_labels, image_num_classes=image_num_classes, image_size=image_size, threshold=threshold, nms_threshold=nms_threshold, max_num_det=max_num_det, ) result = DictWithDeprecationWarning( {"boxes": boxes, "scores": scores, "labels": labels, "text_labels": None} ) results.append(result) # Add text labels if text_labels is not None: for result, image_text_labels in zip(results, text_labels): result["text_labels"] = [image_text_labels[idx] for idx in result["labels"]] return results __all__ = ["OmDetTurboProcessor"]
transformers/src/transformers/models/omdet_turbo/processing_omdet_turbo.py/0
{ "file_path": "transformers/src/transformers/models/omdet_turbo/processing_omdet_turbo.py", "repo_id": "transformers", "token_count": 7014 }
152
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert OPT checkpoint.""" import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def load_checkpoint(checkpoint_path): """Checkpoint path should end in model.pt""" sd = torch.load(checkpoint_path, map_location="cpu") if "model" in sd.keys(): sd = torch.load(checkpoint_path, map_location="cpu")["model"] # pop unnecessary weights keys_to_delete = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(key) keys_to_rename = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: sd[new_key] = sd.pop(old_key) keys = list(sd.keys()) for key in keys: if ".qkv_proj." in key: value = sd[key] # We split QKV in separate Q,K,V q_name = key.replace(".qkv_proj.", ".q_proj.") k_name = key.replace(".qkv_proj.", ".k_proj.") v_name = key.replace(".qkv_proj.", ".v_proj.") depth = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 k, v, q = torch.split(value, depth // 3, dim=0) sd[q_name] = q sd[k_name] = k sd[v_name] = v del sd[key] return sd @torch.no_grad() def convert_opt_checkpoint(checkpoint_path, pytorch_dump_folder_path, config=None): """ Copy/paste/tweak model's weights to our BERT structure. """ state_dict = load_checkpoint(checkpoint_path) if config is not None: config = OPTConfig.from_pretrained(config) else: config = OPTConfig() model = OPTModel(config).half().eval() model.load_state_dict(state_dict) # Check results Path(pytorch_dump_folder_path).mkdir(exist_ok=True) model.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") args = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
transformers/src/transformers/models/opt/convert_opt_original_pytorch_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/opt/convert_opt_original_pytorch_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 1577 }
153
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Image/Text processor class for OWL-ViT """ import warnings from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available if TYPE_CHECKING: from .modeling_owlvit import OwlViTImageGuidedObjectDetectionOutput, OwlViTObjectDetectionOutput class OwlViTProcessor(ProcessorMixin): r""" Constructs an OWL-ViT processor which wraps [`OwlViTImageProcessor`] and [`CLIPTokenizer`]/[`CLIPTokenizerFast`] into a single processor that interits both the image processor and tokenizer functionalities. See the [`~OwlViTProcessor.__call__`] and [`~OwlViTProcessor.decode`] for more information. Args: image_processor ([`OwlViTImageProcessor`], *optional*): The image processor is a required input. tokenizer ([`CLIPTokenizer`, `CLIPTokenizerFast`], *optional*): The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "OwlViTImageProcessor" tokenizer_class = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__(self, image_processor=None, tokenizer=None, **kwargs): feature_extractor = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead.", FutureWarning, ) feature_extractor = kwargs.pop("feature_extractor") image_processor = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(image_processor, tokenizer) def __call__(self, text=None, images=None, query_images=None, padding="max_length", return_tensors="np", **kwargs): """ Main method to prepare for the model one or several text(s) and image(s). This method forwards the `text` and `kwargs` arguments to CLIPTokenizerFast's [`~CLIPTokenizerFast.__call__`] if `text` is not `None` to encode: the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of the above two methods for more information. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. Both channels-first and channels-last formats are supported. query_images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The query image to be prepared, one query image is expected per target image to be queried. Each image can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a number of channels, H and W are image height and width. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. """ if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(text, str) or (isinstance(text, List) and not isinstance(text[0], List)): encodings = [self.tokenizer(text, padding=padding, return_tensors=return_tensors, **kwargs)] elif isinstance(text, List) and isinstance(text[0], List): encodings = [] # Maximum number of queries across batch max_num_queries = max([len(t) for t in text]) # Pad all batch samples to max number of text queries for t in text: if len(t) != max_num_queries: t = t + [" "] * (max_num_queries - len(t)) encoding = self.tokenizer(t, padding=padding, return_tensors=return_tensors, **kwargs) encodings.append(encoding) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings") if return_tensors == "np": input_ids = np.concatenate([encoding["input_ids"] for encoding in encodings], axis=0) attention_mask = np.concatenate([encoding["attention_mask"] for encoding in encodings], axis=0) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp input_ids = jnp.concatenate([encoding["input_ids"] for encoding in encodings], axis=0) attention_mask = jnp.concatenate([encoding["attention_mask"] for encoding in encodings], axis=0) elif return_tensors == "pt" and is_torch_available(): import torch input_ids = torch.cat([encoding["input_ids"] for encoding in encodings], dim=0) attention_mask = torch.cat([encoding["attention_mask"] for encoding in encodings], dim=0) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf input_ids = tf.stack([encoding["input_ids"] for encoding in encodings], axis=0) attention_mask = tf.stack([encoding["attention_mask"] for encoding in encodings], axis=0) else: raise ValueError("Target return tensor type could not be returned") encoding = BatchEncoding() encoding["input_ids"] = input_ids encoding["attention_mask"] = attention_mask if query_images is not None: encoding = BatchEncoding() query_pixel_values = self.image_processor( query_images, return_tensors=return_tensors, **kwargs ).pixel_values encoding["query_pixel_values"] = query_pixel_values if images is not None: image_features = self.image_processor(images, return_tensors=return_tensors, **kwargs) if text is not None and images is not None: encoding["pixel_values"] = image_features.pixel_values return encoding elif query_images is not None and images is not None: encoding["pixel_values"] = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors) def post_process(self, *args, **kwargs): """ This method forwards all its arguments to [`OwlViTImageProcessor.post_process`]. Please refer to the docstring of this method for more information. """ return self.image_processor.post_process(*args, **kwargs) def post_process_object_detection(self, *args, **kwargs): """ This method forwards all its arguments to [`OwlViTImageProcessor.post_process_object_detection`]. Please refer to the docstring of this method for more information. """ warnings.warn( "`post_process_object_detection` method is deprecated for OwlVitProcessor and will be removed in v5. " "Use `post_process_grounded_object_detection` instead.", FutureWarning, ) return self.image_processor.post_process_object_detection(*args, **kwargs) def post_process_grounded_object_detection( self, outputs: "OwlViTObjectDetectionOutput", threshold: float = 0.1, target_sizes: Optional[Union[TensorType, List[Tuple]]] = None, text_labels: Optional[List[List[str]]] = None, ): """ Converts the raw output of [`OwlViTForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y, bottom_right_x, bottom_right_y) format. Args: outputs ([`OwlViTObjectDetectionOutput`]): Raw outputs of the model. threshold (`float`, *optional*, defaults to 0.1): Score threshold to keep object detection predictions. target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*): Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size `(height, width)` of each image in the batch. If unset, predictions will not be resized. text_labels (`List[List[str]]`, *optional*): List of lists of text labels for each image in the batch. If unset, "text_labels" in output will be set to `None`. Returns: `List[Dict]`: A list of dictionaries, each dictionary containing the following keys: - "scores": The confidence scores for each predicted box on the image. - "labels": Indexes of the classes predicted by the model on the image. - "boxes": Image bounding boxes in (top_left_x, top_left_y, bottom_right_x, bottom_right_y) format. - "text_labels": The text labels for each predicted bounding box on the image. """ output = self.image_processor.post_process_object_detection( outputs=outputs, threshold=threshold, target_sizes=target_sizes ) if text_labels is not None and len(text_labels) != len(output): raise ValueError("Make sure that you pass in as many lists of text labels as images") # adding text labels to the output if text_labels is not None: for image_output, image_text_labels in zip(output, text_labels): object_text_labels = [image_text_labels[i] for i in image_output["labels"]] image_output["text_labels"] = object_text_labels else: for image_output in output: image_output["text_labels"] = None return output def post_process_image_guided_detection( self, outputs: "OwlViTImageGuidedObjectDetectionOutput", threshold: float = 0.0, nms_threshold: float = 0.3, target_sizes: Optional[Union[TensorType, List[Tuple]]] = None, ): """ Converts the output of [`OwlViTForObjectDetection.image_guided_detection`] into the format expected by the COCO api. Args: outputs ([`OwlViTImageGuidedObjectDetectionOutput`]): Raw outputs of the model. threshold (`float`, *optional*, defaults to 0.0): Minimum confidence threshold to use to filter out predicted boxes. nms_threshold (`float`, *optional*, defaults to 0.3): IoU threshold for non-maximum suppression of overlapping boxes. target_sizes (`torch.Tensor`, *optional*): Tensor of shape (batch_size, 2) where each entry is the (height, width) of the corresponding image in the batch. If set, predicted normalized bounding boxes are rescaled to the target sizes. If left to None, predictions will not be unnormalized. Returns: `List[Dict]`: A list of dictionaries, each dictionary containing the following keys: - "scores": The confidence scores for each predicted box on the image. - "boxes": Image bounding boxes in (top_left_x, top_left_y, bottom_right_x, bottom_right_y) format. - "labels": Set to `None`. """ return self.image_processor.post_process_image_guided_detection( outputs=outputs, threshold=threshold, nms_threshold=nms_threshold, target_sizes=target_sizes ) def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def feature_extractor_class(self): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.", FutureWarning, ) return self.image_processor_class @property def feature_extractor(self): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.", FutureWarning, ) return self.image_processor __all__ = ["OwlViTProcessor"]
transformers/src/transformers/models/owlvit/processing_owlvit.py/0
{ "file_path": "transformers/src/transformers/models/owlvit/processing_owlvit.py", "repo_id": "transformers", "token_count": 6265 }
154
# coding=utf-8 # Copyright (c) 2020, VinAI Research and the HuggingFace Inc. team. # Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for PhoBERT""" import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.txt", "merges_file": "bpe.codes", } def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char pairs = set(pairs) return pairs class PhobertTokenizer(PreTrainedTokenizer): """ Construct a PhoBERT tokenizer. Based on Byte-Pair-Encoding. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. bos_token (`st`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. """ vocab_files_names = VOCAB_FILES_NAMES def __init__( self, vocab_file, merges_file, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", **kwargs, ): self.vocab_file = vocab_file self.merges_file = merges_file self.encoder = {} self.encoder[str(bos_token)] = 0 self.encoder[str(pad_token)] = 1 self.encoder[str(eos_token)] = 2 self.encoder[str(unk_token)] = 3 self.add_from_file(vocab_file) self.decoder = {v: k for k, v in self.encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: merges = merges_handle.read().split("\n")[:-1] merges = [tuple(merge.split()[:-1]) for merge in merges] self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {} super().__init__( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, **kwargs, ) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A PhoBERT sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. PhoBERT does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] @property def vocab_size(self): return len(self.encoder) def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) word = tuple(list(word[:-1]) + [word[-1] + "</w>"]) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = "@@ ".join(word) word = word[:-4] self.cache[token] = word return word def _tokenize(self, text): """Tokenize a string.""" split_tokens = [] words = re.findall(r"\S+\n?", text) for token in words: split_tokens.extend(list(self.bpe(token).split(" "))) return split_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = " ".join(tokens).replace("@@ ", "").strip() return out_string def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) out_merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) if os.path.abspath(self.merges_file) != os.path.abspath(out_merge_file): copyfile(self.merges_file, out_merge_file) return out_vocab_file, out_merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far) def add_from_file(self, f): """ Loads a pre-existing dictionary from a text file and adds its symbols to this instance. """ if isinstance(f, str): try: with open(f, "r", encoding="utf-8") as fd: self.add_from_file(fd) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset") return lines = f.readlines() for lineTmp in lines: line = lineTmp.strip() idx = line.rfind(" ") if idx == -1: raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'") word = line[:idx] self.encoder[word] = len(self.encoder) __all__ = ["PhobertTokenizer"]
transformers/src/transformers/models/phobert/tokenization_phobert.py/0
{ "file_path": "transformers/src/transformers/models/phobert/tokenization_phobert.py", "repo_id": "transformers", "token_count": 5919 }
155
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import torch from torch import nn from transformers import PLBartConfig, PLBartForConditionalGeneration, PLBartForSequenceClassification def remove_ignore_keys_(state_dict): ignore_keys = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", "decoder.output_projection.weight", ] for k in ignore_keys: state_dict.pop(k, None) def make_linear_from_emb(emb): vocab_size, emb_size = emb.weight.shape lin_layer = nn.Linear(vocab_size, emb_size, bias=False) lin_layer.weight.data = emb.weight.data return lin_layer def convert_fairseq_plbart_checkpoint_from_disk( checkpoint_path, hf_config_path="uclanlp/plbart-base", finetuned=False, classification=False ): state_dict = torch.load(checkpoint_path, map_location="cpu")["model"] remove_ignore_keys_(state_dict) vocab_size = state_dict["encoder.embed_tokens.weight"].shape[0] plbart_config = PLBartConfig.from_pretrained(hf_config_path, vocab_size=vocab_size) state_dict["shared.weight"] = state_dict["decoder.embed_tokens.weight"] if not classification: model = PLBartForConditionalGeneration(plbart_config) model.model.load_state_dict(state_dict) if finetuned: model.lm_head = make_linear_from_emb(model.model.shared) else: classification_head = {} for key, value in state_dict.copy().items(): if key.startswith("classification_heads.sentence_classification_head"): classification_head[key.replace("classification_heads.sentence_classification_head.", "")] = value state_dict.pop(key) model = PLBartForSequenceClassification(plbart_config) model.model.load_state_dict(state_dict) model.classification_head.load_state_dict(classification_head) return model if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default="uclanlp/plbart-base", type=str, help="Which huggingface architecture to use: plbart-base", ) parser.add_argument("--finetuned", action="store_true", help="whether the model is a fine-tuned checkpoint") parser.add_argument( "--classification", action="store_true", help="whether the model is a classification checkpoint" ) args = parser.parse_args() model = convert_fairseq_plbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, classification=args.classification, ) model.save_pretrained(args.pytorch_dump_folder_path)
transformers/src/transformers/models/plbart/convert_plbart_original_checkpoint_to_torch.py/0
{ "file_path": "transformers/src/transformers/models/plbart/convert_plbart_original_checkpoint_to_torch.py", "repo_id": "transformers", "token_count": 1325 }
156
# coding=utf-8 # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch Qwen2MoE model.""" import math from typing import List, Optional, Tuple, Union import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache from ...generation import GenerationMixin from ...modeling_attn_mask_utils import AttentionMaskConverter from ...modeling_outputs import ( MoeCausalLMOutputWithPast, MoeModelOutputWithPast, QuestionAnsweringModelOutput, SequenceClassifierOutputWithPast, TokenClassifierOutput, ) from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10, logging, replace_return_docstrings, ) from ...utils.deprecation import deprecate_kwarg from .configuration_qwen2_moe import Qwen2MoeConfig if is_flash_attn_2_available(): from ...modeling_flash_attention_utils import _flash_attention_forward logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "Qwen/Qwen2-57B-A14B" _CONFIG_FOR_DOC = "Qwen2MoeConfig" # Copied from transformers.models.mixtral.modeling_mixtral.load_balancing_loss_func def load_balancing_loss_func( gate_logits: Union[torch.Tensor, Tuple[torch.Tensor], None], num_experts: Optional[int] = None, top_k=2, attention_mask: Optional[torch.Tensor] = None, ) -> Union[torch.Tensor, int]: r""" Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between experts is too unbalanced. Args: gate_logits: Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of shape [batch_size X sequence_length, num_experts]. num_experts: Number of experts top_k: The number of experts to route per-token, can be also interpreted as the `top-k` routing parameter. attention_mask (`torch.Tensor`, *optional*): The attention_mask used in forward function shape [batch_size X sequence_length] if not None. Returns: The auxiliary loss. """ if gate_logits is None or not isinstance(gate_logits, tuple): return 0 if isinstance(gate_logits, tuple): compute_device = gate_logits[0].device concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0) routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1) _, selected_experts = torch.topk(routing_weights, top_k, dim=-1) expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) if attention_mask is None: # Compute the percentage of tokens routed to each experts tokens_per_expert = torch.mean(expert_mask.float(), dim=0) # Compute the average probability of routing to these experts router_prob_per_expert = torch.mean(routing_weights, dim=0) else: batch_size, sequence_length = attention_mask.shape num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length) # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask expert_attention_mask = ( attention_mask[None, :, :, None, None] .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts)) .reshape(-1, top_k, num_experts) .to(compute_device) ) # Compute the percentage of tokens routed to each experts tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum( expert_attention_mask, dim=0 ) # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert router_per_expert_attention_mask = ( attention_mask[None, :, :, None] .expand((num_hidden_layers, batch_size, sequence_length, num_experts)) .reshape(-1, num_experts) .to(compute_device) ) # Compute the average probability of routing to these experts router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum( router_per_expert_attention_mask, dim=0 ) overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0)) return overall_loss * num_experts # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Qwen2Moe class Qwen2MoeRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ Qwen2MoeRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" # Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Qwen2Moe class Qwen2MoeRotaryEmbedding(nn.Module): def __init__(self, config: Qwen2MoeConfig, device=None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and config.rope_scaling is not None: self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq def _dynamic_frequency_update(self, position_ids, device): """ dynamic RoPE layers should recompute `inv_freq` in the following situations: 1 - growing beyond the cached sequence length (allow scaling) 2 - the current sequence length is in the original scale (avoid losing precision with small sequences) """ seq_len = torch.max(position_ids) + 1 if seq_len > self.max_seq_len_cached: # growth inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len) self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation self.max_seq_len_cached = seq_len if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset # This .to() is needed if the model has been moved to a device after being initialized (because # the buffer is automatically moved, but not the original copy) self.original_inv_freq = self.original_inv_freq.to(device) self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) self.max_seq_len_cached = self.original_max_seq_len @torch.no_grad() def forward(self, x, position_ids): if "dynamic" in self.rope_type: self._dynamic_frequency_update(position_ids, device=x.device) # Core RoPE block inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) position_ids_expanded = position_ids[:, None, :].float() # Force float32 (see https://github.com/huggingface/transformers/pull/29285) device_type = x.device.type device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() sin = emb.sin() # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention cos = cos * self.attention_scaling sin = sin * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) # Copied from transformers.models.llama.modeling_llama.rotate_half def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed # Modified from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Qwen2Moe class Qwen2MoeMLP(nn.Module): def __init__(self, config, intermediate_size=None): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) # Copied from transformers.models.llama.modeling_llama.repeat_kv def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) # copied from transformers.models.qwen2.modeling_qwen2.Qwen2Attention with Qwen2->Qwen2Moe # no longer copied after attention refactors class Qwen2MoeAttention(nn.Module): """ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer and "Generating Long Sequences with Sparse Transformers". """ def __init__(self, config: Qwen2MoeConfig, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx if layer_idx is None: logger.warning_once( f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.max_position_embeddings = config.max_position_embeddings self.rope_theta = config.rope_theta self.is_causal = True self.attention_dropout = config.attention_dropout if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) self.rotary_emb = Qwen2MoeRotaryEmbedding(config=self.config) # Ignore copy def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value # NO LONGER EXIST Copied from transformers.models.qwen2.modeling_qwen2.Qwen2FlashAttention2 with Qwen2->Qwen2Moe # TODO cyril: modular class Qwen2MoeFlashAttention2(Qwen2MoeAttention): """ Qwen2Moe flash attention module, following Qwen2Moe attention module. This module inherits from `Qwen2MoeAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom config.max_window_layers layers. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC ): bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) dropout_rate = 0.0 if not self.training else self.attention_dropout # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in float16 just to be sure everything works as expected. input_dtype = query_states.dtype if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.q_proj.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) # Reashape to the expected shape for Flash Attention query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) if ( self.config.use_sliding_window and getattr(self.config, "sliding_window", None) is not None and self.layer_idx >= self.config.max_window_layers ): sliding_window = self.config.sliding_window else: sliding_window = None attn_output = _flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, position_ids=position_ids, dropout=dropout_rate, sliding_window=sliding_window, is_causal=self.is_causal, use_top_left_mask=self._flash_attn_uses_top_left_mask, ) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value # NO LONGER EXIST Copied from transformers.models.qwen2.modeling_qwen2.Qwen2SdpaAttention with Qwen2->Qwen2Moe # TODO cyril: modular class Qwen2MoeSdpaAttention(Qwen2MoeAttention): """ Qwen2Moe attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from `Qwen2MoeAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to SDPA API. """ # Adapted from Qwen2MoeAttention.forward def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if output_attentions: # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. logger.warning_once( "Qwen2MoeModel is using Qwen2MoeSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, ) bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) causal_mask = attention_mask if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, # Reference: https://github.com/pytorch/pytorch/issues/112577. if query_states.device.type == "cuda" and attention_mask is not None: query_states = query_states.contiguous() key_states = key_states.contiguous() value_states = value_states.contiguous() # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. is_causal = True if causal_mask is None and q_len > 1 else False attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=causal_mask, dropout_p=self.attention_dropout if self.training else 0.0, is_causal=is_causal, ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.view(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) return attn_output, None, past_key_value QWEN2MOE_ATTENTION_CLASSES = { "eager": Qwen2MoeAttention, "flash_attention_2": Qwen2MoeFlashAttention2, "sdpa": Qwen2MoeSdpaAttention, } class Qwen2MoeSparseMoeBlock(nn.Module): def __init__(self, config): super().__init__() self.num_experts = config.num_experts self.top_k = config.num_experts_per_tok self.norm_topk_prob = config.norm_topk_prob # gating self.gate = nn.Linear(config.hidden_size, config.num_experts, bias=False) self.experts = nn.ModuleList( [Qwen2MoeMLP(config, intermediate_size=config.moe_intermediate_size) for _ in range(self.num_experts)] ) self.shared_expert = Qwen2MoeMLP(config, intermediate_size=config.shared_expert_intermediate_size) self.shared_expert_gate = torch.nn.Linear(config.hidden_size, 1, bias=False) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: """ """ batch_size, sequence_length, hidden_dim = hidden_states.shape hidden_states = hidden_states.view(-1, hidden_dim) # router_logits: (batch * sequence_length, n_experts) router_logits = self.gate(hidden_states) routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) if self.norm_topk_prob: routing_weights /= routing_weights.sum(dim=-1, keepdim=True) # we cast back to the input dtype routing_weights = routing_weights.to(hidden_states.dtype) final_hidden_states = torch.zeros( (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device ) # One hot encode the selected experts to create an expert mask # this will be used to easily index which expert is going to be sollicitated expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0) # Loop over all available experts in the model and perform the computation on each expert for expert_idx in range(self.num_experts): expert_layer = self.experts[expert_idx] idx, top_x = torch.where(expert_mask[expert_idx]) # Index the correct hidden states and compute the expert hidden state for # the current expert. We need to make sure to multiply the output hidden # states by `routing_weights` on the corresponding tokens (top-1 and top-2) current_state = hidden_states[None, top_x].reshape(-1, hidden_dim) current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None] # However `index_add_` only support torch tensors for indexing so we'll use # the `top_x` tensor here. final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) shared_expert_output = self.shared_expert(hidden_states) shared_expert_output = F.sigmoid(self.shared_expert_gate(hidden_states)) * shared_expert_output final_hidden_states = final_hidden_states + shared_expert_output final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) return final_hidden_states, router_logits class Qwen2MoeDecoderLayer(nn.Module): def __init__(self, config: Qwen2MoeConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = QWEN2MOE_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) if (layer_idx not in config.mlp_only_layers) and ( config.num_experts > 0 and (layer_idx + 1) % config.decoder_sparse_step == 0 ): self.mlp = Qwen2MoeSparseMoeBlock(config) else: self.mlp = Qwen2MoeMLP(config, intermediate_size=config.intermediate_size) self.input_layernorm = Qwen2MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = Qwen2MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, output_router_logits: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_router_logits (`bool`, *optional*): Whether or not to return the logits of all the routers. They are useful for computing the router loss, and should not be returned during inference. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, with `head_dim` being the embedding dimension of each attention head. kwargs (`dict`, *optional*): Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code into the model """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) if isinstance(hidden_states, tuple): hidden_states, router_logits = hidden_states else: router_logits = None hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) if output_router_logits: outputs += (router_logits,) return outputs QWEN2MOE_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Qwen2MoeConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare Qwen2MoE Model outputting raw hidden-states without any specific head on top.", QWEN2MOE_START_DOCSTRING, ) class Qwen2MoePreTrainedModel(PreTrainedModel): config_class = Qwen2MoeConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["Qwen2MoeDecoderLayer"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True _supports_sdpa = True _supports_cache_class = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() QWEN2MOE_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Two formats are allowed: - a [`~cache_utils.Cache`] instance, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache); - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy cache format. The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the legacy cache format will be returned. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. output_router_logits (`bool`, *optional*): Whether or not to return the logits of all the routers. They are useful for computing the router loss, and should not be returned during inference. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. """ @add_start_docstrings( "The bare Qwen2MoE Model outputting raw hidden-states without any specific head on top.", QWEN2MOE_START_DOCSTRING, ) class Qwen2MoeModel(Qwen2MoePreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2MoeDecoderLayer`] Args: config: Qwen2MoeConfig """ def __init__(self, config: Qwen2MoeConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [Qwen2MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self._attn_implementation = config._attn_implementation self.norm = Qwen2MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.rotary_emb = Qwen2MoeRotaryEmbedding(config=config) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(QWEN2MOE_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_router_logits: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple, MoeModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_router_logits = ( output_router_logits if output_router_logits is not None else self.config.output_router_logits ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # kept for BC (non `Cache` `past_key_values` inputs) return_legacy_cache = False if use_cache and not isinstance(past_key_values, Cache): return_legacy_cache = True if past_key_values is None: past_key_values = DynamicCache() else: past_key_values = DynamicCache.from_legacy_cache(past_key_values) logger.warning_once( "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and " "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class " "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)" ) if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_router_logits = () if output_router_logits else None next_decoder_cache = None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, causal_mask, position_ids, past_key_values, output_attentions, output_router_logits, use_cache, cache_position, position_embeddings, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, output_router_logits=output_router_logits, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache = layer_outputs[2 if output_attentions else 1] if output_attentions: all_self_attns += (layer_outputs[1],) if output_router_logits and layer_outputs[-1] is not None: all_router_logits += (layer_outputs[-1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if return_legacy_cache: next_cache = next_cache.to_legacy_cache() if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits] if v is not None ) return MoeModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, router_logits=all_router_logits, ) # Copied from transformers.models.phi3.modeling_phi3.Phi3Model._update_causal_mask with Phi3->Qwen2Moe def _update_causal_mask( self, attention_mask: torch.Tensor, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool, ): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and past_key_values is not None: is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0] if is_padding_right: raise ValueError( "You are attempting to perform batched generation with padding_side='right'" " this may lead to unexpected behaviour for Flash Attention version of Qwen2Moe. Make sure to " " call `tokenizer.padding_side = 'left'` before tokenizing the input. " ) if attention_mask is not None and 0.0 in attention_mask: return attention_mask return None # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 using_static_cache = isinstance(past_key_values, StaticCache) using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache) # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward if ( self.config._attn_implementation == "sdpa" and not (using_static_cache or using_sliding_window_cache) and not output_attentions ): if AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens, sliding_window=self.config.sliding_window, is_training=self.training, ): return None dtype, device = input_tensor.dtype, input_tensor.device min_dtype = torch.finfo(dtype).min sequence_length = input_tensor.shape[1] # SlidingWindowCache or StaticCache if using_sliding_window_cache or using_static_cache: target_length = past_key_values.get_max_cache_shape() # DynamicCache or no cache else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length + 1 ) # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, device=device, cache_position=cache_position, batch_size=input_tensor.shape[0], config=self.config, past_key_values=past_key_values, ) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type == "cuda" and not output_attentions ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask @staticmethod # Copied from transformers.models.mistral.modeling_mistral.MistralModel._prepare_4d_causal_attention_mask_with_cache_position with Mistral->Qwen2Moe def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, device: torch.device, cache_position: torch.Tensor, batch_size: int, config: Qwen2MoeConfig, past_key_values: Cache, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. device (`torch.device`): The device to plcae the 4D attention mask on. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. config (`Qwen2MoeConfig`): The model's configuration class past_key_values (`Cache`): The cache class that is being used currently to generate """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: min_dtype = torch.finfo(dtype).min causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device ) diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) if config.sliding_window is not None: # if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also # the check is needed to verify is current checkpoint was trained with sliding window or not if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length: sliding_attend_mask = torch.arange(target_length, device=device) <= ( cache_position.reshape(-1, 1) - config.sliding_window ) diagonal_attend_mask.bitwise_or_(sliding_attend_mask) causal_mask *= diagonal_attend_mask causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit if attention_mask.shape[-1] > target_length: attention_mask = attention_mask[:, :target_length] mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask class Qwen2MoeForCausalLM(Qwen2MoePreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] _tp_plan = {"lm_head": "colwise_rep"} def __init__(self, config): super().__init__(config) self.model = Qwen2MoeModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.router_aux_loss_coef = config.router_aux_loss_coef self.num_experts = config.num_experts self.num_experts_per_tok = config.num_experts_per_tok # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep") @add_start_docstrings_to_model_forward(QWEN2MOE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_router_logits: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **loss_kwargs, ) -> Union[Tuple, MoeCausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. logits_to_keep (`int` or `torch.Tensor`, *optional*): If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. This is useful when using packed tensor format (single dimension for batch and sequence length). Returns: Example: ```python >>> from transformers import AutoTokenizer, Qwen2MoeForCausalLM >>> model = Qwen2MoeForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_router_logits = ( output_router_logits if output_router_logits is not None else self.config.output_router_logits ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_router_logits=output_router_logits, return_dict=return_dict, cache_position=cache_position, ) hidden_states = outputs[0] # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) loss = None if labels is not None: loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs) aux_loss = None if output_router_logits: aux_loss = load_balancing_loss_func( outputs.router_logits if return_dict else outputs[-1], self.num_experts, self.num_experts_per_tok, attention_mask, ) if labels is not None: loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device if not return_dict: output = (logits,) + outputs[1:] if output_router_logits: output = (aux_loss,) + output return (loss,) + output if loss is not None else output return MoeCausalLMOutputWithPast( loss=loss, aux_loss=aux_loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, router_logits=outputs.router_logits, ) @add_start_docstrings( """ The Qwen2MoE Model transformer with a sequence classification head on top (linear layer). [`Qwen2MoeForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, QWEN2MOE_START_DOCSTRING, ) # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Qwen2Moe, LLAMA->QWEN2MOE class Qwen2MoeForSequenceClassification(Qwen2MoePreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = Qwen2MoeModel(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(QWEN2MOE_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(logits.device) else: sequence_lengths = -1 pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ The Qwen2MoE Model transformer with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, QWEN2MOE_START_DOCSTRING, ) # Copied from transformers.models.llama.modeling_llama.LlamaForTokenClassification with Llama->Qwen2Moe, LLAMA->QWEN2MOE class Qwen2MoeForTokenClassification(Qwen2MoePreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = Qwen2MoeModel(config) if getattr(config, "classifier_dropout", None) is not None: classifier_dropout = config.classifier_dropout elif getattr(config, "hidden_dropout", None) is not None: classifier_dropout = config.hidden_dropout else: classifier_dropout = 0.1 self.dropout = nn.Dropout(classifier_dropout) self.score = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(QWEN2MOE_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.score(sequence_output) loss = None if labels is not None: loss = self.loss_function(logits, labels, self.config) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ The Qwen2MoE Model transformer with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). """, QWEN2MOE_START_DOCSTRING, ) # Copied from transformers.models.mistral.modeling_mistral.MistralForQuestionAnswering with Mistral->Qwen2Moe, MISTRAL->QWEN2MOE class Qwen2MoeForQuestionAnswering(Qwen2MoePreTrainedModel): base_model_prefix = "model" def __init__(self, config): super().__init__(config) self.qa_outputs = nn.Linear(config.hidden_size, 2) self.model = Qwen2MoeModel(config) # diff with Llama: transformer->model # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(QWEN2MOE_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() loss = None if start_positions is not None and end_positions is not None: loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs) if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((loss,) + output) if loss is not None else output return QuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) __all__ = [ "Qwen2MoeForCausalLM", "Qwen2MoeForQuestionAnswering", "Qwen2MoeModel", "Qwen2MoePreTrainedModel", "Qwen2MoeForSequenceClassification", "Qwen2MoeForTokenClassification", ]
transformers/src/transformers/models/qwen2_moe/modeling_qwen2_moe.py/0
{ "file_path": "transformers/src/transformers/models/qwen2_moe/modeling_qwen2_moe.py", "repo_id": "transformers", "token_count": 32649 }
157
# coding=utf-8 # Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch RecurrentGemma model.""" import math from typing import Dict, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...generation import GenerationMixin from ...modeling_attn_mask_utils import AttentionMaskConverter from ...modeling_outputs import BaseModelOutputWithNoAttention, CausalLMOutput from ...modeling_utils import PreTrainedModel from ...pytorch_utils import ALL_LAYERNORM_LAYERS from ...utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.import_utils import is_torchdynamo_compiling from .configuration_recurrent_gemma import RecurrentGemmaConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "RecurrentGemmaConfig" _MAX_SQRT_GRADIENT = 1000.0 # Copied from transformers.models.gemma.modeling_gemma.GemmaRMSNorm with Gemma->RecurrentGemma class RecurrentGemmaRMSNorm(nn.Module): def __init__(self, dim: int, eps: float = 1e-6): super().__init__() self.eps = eps self.weight = nn.Parameter(torch.zeros(dim)) def _norm(self, x): return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) def forward(self, x): output = self._norm(x.float()) # Llama does x.to(float16) * w whilst RecurrentGemma is (x * w).to(float16) # See https://github.com/huggingface/transformers/pull/29402 output = output * (1.0 + self.weight.float()) return output.type_as(x) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.eps}" ALL_LAYERNORM_LAYERS.append(RecurrentGemmaRMSNorm) class RecurrentGemmaRotaryEmbedding(nn.Module): def __init__(self, dim, base=10000, device=None): super().__init__() self.dim = dim self.base = base inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float() / self.dim)) self.register_buffer("inv_freq", tensor=inv_freq, persistent=False) @torch.no_grad() def forward(self, x, position_ids, seq_len=None): # x: [bs, num_attention_heads, seq_len, head_size] self.inv_freq.to(x.device) inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) position_ids_expanded = position_ids[:, None, :].float() # Force float32 since bfloat16 loses precision on long contexts # See https://github.com/huggingface/transformers/pull/29285 device_type = x.device.type device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() sin = emb.sin() return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) # Copied from transformers.models.llama.modeling_llama.rotate_half def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed # Copied from transformers.models.llama.modeling_llama.repeat_kv def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) class RecurrentGemmaSdpaAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: RecurrentGemmaConfig): super().__init__() self.config = config self.attention_dropout = config.attention_dropout self.hidden_size = config.hidden_size self.num_attention_heads = config.num_attention_heads self.head_dim = config.head_dim self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_attention_heads // self.num_key_value_heads self.partial_rotary_factor = config.partial_rotary_factor self.q_proj = nn.Linear(self.hidden_size, self.num_attention_heads * self.head_dim, bias=config.attention_bias) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) self.o_proj = nn.Linear(self.num_attention_heads * self.head_dim, self.hidden_size, bias=True) self.rotary_emb = RecurrentGemmaRotaryEmbedding( int(self.partial_rotary_factor * self.head_dim), base=config.rope_theta, ) def forward( self, hidden_states: torch.Tensor, position_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, cache_position: Optional[torch.LongTensor] = None, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_attention_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) cos, sin = self.rotary_emb(value_states, position_ids) # Partial rotary embedding query_rot, query_pass = torch.chunk(query_states, int(1 / self.partial_rotary_factor), dim=-1) key_rot, key_pass = torch.chunk(key_states, int(1 / self.partial_rotary_factor), dim=-1) query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids) query_states = torch.cat((query_rot, query_pass), dim=-1) key_states = torch.cat((key_rot, key_pass), dim=-1) if use_cache and hasattr(self, "key_states"): cache_kwargs = {"cache_position": cache_position} key_states, value_states = self._update_cache(key_states, value_states, **cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) causal_mask = attention_mask if attention_mask is not None: causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] attn_output = torch.nn.functional.scaled_dot_product_attention( query_states.contiguous(), key_states.contiguous(), value_states.contiguous(), attn_mask=causal_mask, # pretty much a must for sliding window backend! dropout_p=self.attention_dropout if self.training else 0.0, scale=self.head_dim**-0.5, ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.view(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) return attn_output def _setup_cache(self, batch_size, device, dtype=None): if dtype is None and self.config.torch_dtype is not None: dtype = self.config.torch_dtype dtype = dtype if dtype is not None else torch.float32 cache_shape = (batch_size, self.num_key_value_heads, self.config.attention_window_size, self.head_dim) self.value_states = torch.zeros(cache_shape, dtype=dtype, device=device) self.key_states = torch.zeros(cache_shape, dtype=dtype, device=device) @torch.no_grad() def _update_cache(self, key_states, value_states, **cache_kwargs): """ torch.compile compatible sliding window. Computes the `indices` based on `cache_position >= self.config.attention_window_size - 1`. The `to_shift` is only true once we are above attention_window_size. Thus with `attention_window_size==64`: indices = (slicing + to_shift[-1].int()-1) % self.config.attention_window_size tensor([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 0]) We overwrite the cache using these, then we always write at cache_position (clamped to `attention_window_size`) """ cache_position = cache_kwargs.get("cache_position") if cache_position.shape[0] > self.config.attention_window_size: # int indexing -> device sync? in compile, use tensor k_out = key_states[:, :, -self.config.attention_window_size :, :] v_out = value_states[:, :, -self.config.attention_window_size :, :] else: slicing = torch.ones( self.config.attention_window_size, dtype=torch.long, device=value_states.device ).cumsum(0) cache_position = cache_position.clamp(0, self.config.attention_window_size - 1) to_shift = cache_position >= self.config.attention_window_size - 1 indices = (slicing + to_shift[-1].int() - 1) % self.config.attention_window_size k_out, v_out = self.key_states.to(key_states.device), self.value_states.to(value_states.device) k_out = k_out[:, :, indices] v_out = v_out[:, :, indices] k_out[:, :, cache_position] = key_states.to(k_out.dtype) v_out[:, :, cache_position] = value_states.to(v_out.dtype) self.key_states, self.value_states = k_out, v_out return k_out, v_out class SqrtBoundDerivative(torch.autograd.Function): """Computes a square root with a gradient clipped at `_MAX_SQRT_GRADIENT`.""" @staticmethod def forward(ctx, x: torch.Tensor) -> torch.Tensor: """The forward pass, which is a normal `sqrt`.""" ctx.save_for_backward(x) return torch.sqrt(x) @staticmethod def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor: """The backward pass, which clips the `sqrt` gradient.""" (x,) = ctx.saved_tensors clipped_x_times_4 = torch.clip(4.0 * x, min=1 / (_MAX_SQRT_GRADIENT**2)) return grad_output / torch.sqrt(clipped_x_times_4) class RecurrentGemmaRglru(nn.Module): """A Real-Gated Linear Recurrent Unit (RG-LRU) layer.""" def __init__(self, config): super().__init__() self.num_attention_heads = config.num_attention_heads self.block_width = config.lru_width // self.num_attention_heads self.recurrent_param = nn.Parameter(torch.empty([config.lru_width])) self.input_gate_weight = nn.Parameter( torch.empty([self.num_attention_heads, self.block_width, self.block_width]) ) self.input_gate_bias = nn.Parameter(torch.empty([self.num_attention_heads, self.block_width])) self.recurrent_gate_weight = nn.Parameter( torch.empty([self.num_attention_heads, self.block_width, self.block_width]) ) self.recurrent_gate_bias = nn.Parameter(torch.empty([self.num_attention_heads, self.block_width])) self.recurrent_states = None def forward( self, activations: torch.Tensor, position_ids: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: batch_size, seq_len, lru_width = activations.shape reset = position_ids[:, :, None] == 0 reshape_act = activations.reshape(batch_size * seq_len, self.num_attention_heads, self.block_width) reshape_act = reshape_act.permute(1, 0, 2) res = torch.baddbmm(self.input_gate_bias[:, None, :], reshape_act, self.input_gate_weight) input_gate = torch.sigmoid(res.transpose(0, 1).reshape(batch_size, seq_len, lru_width)) res = torch.baddbmm(self.recurrent_gate_bias[:, None, :], reshape_act, self.recurrent_gate_weight) recurrent_gate = torch.sigmoid(res.transpose(0, 1).reshape(batch_size, seq_len, lru_width)) # Compute the parameter `A` of the recurrence. log_recurrent_gate = -8.0 * recurrent_gate * nn.functional.softplus(self.recurrent_param) recurrent_gate = torch.exp(log_recurrent_gate) a_square = torch.exp(2 * log_recurrent_gate) # Gate the input. gated_inputs = activations * input_gate # Apply gamma normalization to the input. We need to clip the derivatives of # `sqrt` in order to prevent NaNs during training in bfloat16. TODO a bit annoying multiplier = 1 tracing = isinstance(activations, torch.fx.Proxy) or is_torchdynamo_compiling() if not torch.jit.is_tracing() and not tracing: multiplier = SqrtBoundDerivative.apply(1 - a_square) multiplier = reset + ~reset * multiplier normalized_x = gated_inputs * multiplier.type(activations.dtype) hidden_states, recurrent_states = self._rnn_scan( hidden_states=normalized_x, recurrent_gate=recurrent_gate, reset=reset, recurrent_states=self.recurrent_states, ) self.recurrent_states = recurrent_states return hidden_states # TODO refactor def _rnn_scan( self, hidden_states: torch.Tensor, recurrent_gate: torch.Tensor, reset: torch.Tensor, recurrent_states: Union[torch.Tensor, None], acc_dtype: torch.dtype = torch.float32, ) -> Tuple[torch.Tensor, torch.Tensor]: """Runs the recurrence of a linear RNN. Args: hidden_states: The input sequence. recurrent_gate: The diagonal of the recurrence matrix `A`. reset: Indicator of document boundaries, e.g. when to reset the hidden state of the RNN. recurrent_states: The initial hidden state. acc_dtype: The data type for the accumulation. Returns: The output of the linear recurrence. """ # Multiply `a` by the reset. recurrent_gate = recurrent_gate * ~reset if hidden_states.shape[1] == 1: # Using scan in sampling mode. if recurrent_states is None: # same here, when decoding you always have cache return hidden_states, hidden_states[:, 0].type(acc_dtype) else: contextualized_states = recurrent_gate.type(acc_dtype) * recurrent_states[:, None].to( recurrent_gate.device ) contextualized_states += hidden_states.type(acc_dtype) return contextualized_states.type(hidden_states.dtype), contextualized_states[:, -1] else: # Using scan in linear mode. if recurrent_states is None: recurrent_states = torch.zeros(hidden_states[:, 0].shape, dtype=acc_dtype, device=hidden_states.device) contextualized_states = torch.zeros_like(hidden_states) for t in range(hidden_states.shape[1]): recurrent_states = recurrent_gate[:, t].type(acc_dtype) * recurrent_states.to(recurrent_gate.device) recurrent_states = recurrent_states + hidden_states[:, t].type(acc_dtype) contextualized_states[:, t] = recurrent_states.type(hidden_states.dtype) return contextualized_states, recurrent_states class RecurrentGemmaRecurrentBlock(nn.Module): """Griffin and Hawk's recurrent block.""" def __init__(self, config): super().__init__() self.lru_width = config.lru_width self.hidden_size = config.hidden_size self.linear_y = nn.Linear(in_features=config.hidden_size, out_features=config.lru_width) self.linear_x = nn.Linear(in_features=config.hidden_size, out_features=config.lru_width) self.linear_out = nn.Linear(in_features=config.lru_width, out_features=config.hidden_size) self.conv1d_width = config.conv1d_width self.conv_1d = nn.Conv1d( config.lru_width, config.lru_width, kernel_size=config.conv1d_width, groups=config.lru_width, padding=config.conv1d_width - 1, ) self.rg_lru = RecurrentGemmaRglru(config) self.act_fn = ACT2FN[config.hidden_activation] self.conv1d_state = None def forward( self, input_states: torch.Tensor, position_ids: torch.Tensor, attention_mask: torch.Tensor, cache_position: torch.Tensor, use_cache: bool = True, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: _, seq_len, _ = input_states.shape y_branch = self.linear_y(input_states) y_branch = self.act_fn(y_branch) x_branch = self.linear_x(input_states) x_branch = x_branch.transpose(1, 2) if use_cache: if cache_position.shape[0] != 1: # prefill self.conv1d_state = nn.functional.pad(x_branch, (self.conv1d_width - x_branch.shape[-1] - 1, 0)) x_branch = self.conv_1d(x_branch)[..., :seq_len] else: # decoding conv_state = torch.cat((self.conv1d_state, x_branch), -1) x_branch = torch.sum(conv_state * self.conv_1d.weight[:, 0, :], dim=-1) + self.conv_1d.bias x_branch = x_branch.unsqueeze(-1) self.conv1d_state = conv_state[:, :, 1:] else: x_branch = self.conv_1d(x_branch)[..., :seq_len] x_branch = self.rg_lru(x_branch.transpose(1, 2), position_ids) hidden_states = x_branch * y_branch hidden_states = self.linear_out(hidden_states) return hidden_states def _setup_cache(self, batch, device, dtype): # recurrent_states always computed in full precision self.rg_lru.recurrent_states = torch.zeros((batch, self.lru_width), device=device, dtype=torch.float32) self.conv1d_state = torch.zeros((batch, self.hidden_size, self.conv1d_width - 1), device=device, dtype=dtype) TEMPORAL_BLOCK_CLASSES = {"recurrent": RecurrentGemmaRecurrentBlock, "attention": RecurrentGemmaSdpaAttention} class RecurrentGemmaMlp(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size // 2 self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=True) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=True) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=True) self.act_fn = ACT2FN[config.hidden_activation] def forward(self, hidden_states): gate = self.act_fn(self.gate_proj(hidden_states)) return self.down_proj(gate * self.up_proj(hidden_states)) class RecurrentGemmaDecoderLayer(nn.Module): """Griffin and Hawk's residual block.""" def __init__(self, config, layer_idx): super().__init__() self.temporal_pre_norm = RecurrentGemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.temporal_block = TEMPORAL_BLOCK_CLASSES[config.layers_block_type[layer_idx]](config) self.channel_pre_norm = RecurrentGemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.mlp_block = RecurrentGemmaMlp(config) def forward( self, activations: torch.Tensor, position_ids: torch.Tensor, attention_mask: torch.Tensor, cache_position: torch.Tensor = None, use_cache: bool = None, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: raw_activations = activations inputs_normalized = self.temporal_pre_norm(raw_activations) # RMSNorm introduces slight slight differences hidden_states = self.temporal_block( inputs_normalized, position_ids, attention_mask, cache_position=cache_position, use_cache=use_cache ) residual = hidden_states + raw_activations hidden_states = self.channel_pre_norm(residual) hidden_states = self.mlp_block(hidden_states) hidden_states = hidden_states + residual return hidden_states RECURRENTGEMMA_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RecurrentGemmaConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare RecurrentGemma Model outputting raw hidden-states without any specific head on top.", RECURRENTGEMMA_START_DOCSTRING, ) class RecurrentGemmaPreTrainedModel(PreTrainedModel): config_class = RecurrentGemmaConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["RecurrentGemmaDecoderLayer"] _skip_keys_device_placement = ["cache"] _supports_flash_attn_2 = False _supports_sdpa = False # we can't compare with eager for now _supports_cache_class = True _supports_quantized_cache = True def _init_weights(self, module): std = math.sqrt(self.config.w_init_variance_scale / self.config.conv1d_width) if isinstance(module, nn.Conv1d): torch.nn.init.normal_(module.weight, mean=0.0, std=std) torch.nn.init.zeros_(module.bias) elif isinstance(module, RecurrentGemmaSdpaAttention): torch.nn.init.normal_(module.q_proj.weight, mean=0.0, std=math.sqrt(1.0 / self.config.hidden_size)) torch.nn.init.normal_(module.k_proj.weight, mean=0.0, std=math.sqrt(1.0 / self.config.hidden_size)) torch.nn.init.normal_(module.v_proj.weight, mean=0.0, std=math.sqrt(1.0 / self.config.hidden_size)) std = math.sqrt(self.config.final_w_init_variance_scale / self.config.hidden_size) torch.nn.init.normal_(module.o_proj.weight, mean=0.0, std=std) elif isinstance(module, RecurrentGemmaRecurrentBlock): torch.nn.init.zeros_(module.linear_x.bias) torch.nn.init.normal_(module.linear_x.weight, mean=0.0, std=math.sqrt(1.0 / self.config.hidden_size)) torch.nn.init.zeros_(module.linear_y.bias) torch.nn.init.normal_(module.linear_y.weight, mean=0.0, std=math.sqrt(1.0 / self.config.hidden_size)) std = math.sqrt(self.config.final_w_init_variance_scale / self.config.lru_width) torch.nn.init.normal_(module.linear_out.weight, mean=0.0, std=std) torch.nn.init.zeros_(module.linear_out.bias) elif isinstance(module, RecurrentGemmaRglru): std = math.sqrt( self.config.w_init_variance_scale / (self.config.lru_width // self.config.num_attention_heads) ) torch.nn.init.normal_(module.input_gate_weight, mean=0.0, std=std) torch.nn.init.normal_(module.recurrent_gate_weight, mean=0.0, std=std) torch.nn.init.zeros_(module.input_gate_bias) torch.nn.init.zeros_(module.recurrent_gate_bias) module.recurrent_param.data.uniform_(0.9**2 + 1e-8, 0.999**2 + 1e-8) module.recurrent_param.data.log_().mul_(0.5) module.recurrent_param.data.neg_().exp_().sub_(1.0).log_() elif isinstance(module, nn.Linear): torch.nn.init.normal_(module.weight, mean=0.0, std=std) if getattr(module, "bias", None) is not None: torch.nn.init.zeros_(module.bias) def _setup_cache(self, config, batch, device, dtype): layers = getattr(self, "model", self).layers for layer in layers: layer.temporal_block._setup_cache(batch, device, dtype) def reset_cache(self, batch, device, dtype): pass RECURRENTGEMMA_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. """ @add_start_docstrings( "The bare RecurrentGemma Model outputting raw hidden-states without any specific head on top.", RECURRENTGEMMA_START_DOCSTRING, ) class RecurrentGemmaModel(RecurrentGemmaPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`RecurrentGemmaDecoderLayer`] Args: config: RecurrentGemmaConfig """ def __init__(self, config: RecurrentGemmaConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [RecurrentGemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.final_norm = RecurrentGemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.gradient_checkpointing = False self.register_buffer( "normalizer", torch.tensor(self.config.hidden_size**0.5, dtype=torch.bfloat16), persistent=False ) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.llama.modeling_llama.LlamaModel.get_input_embeddings def get_input_embeddings(self): return self.embed_tokens # Copied from transformers.models.llama.modeling_llama.LlamaModel.set_input_embeddings def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(RECURRENTGEMMA_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, position_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, cache_position: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithNoAttention]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) hidden_states = inputs_embeds if use_cache and inputs_embeds.shape[1] != 1: # TODO let's maybe only call in the `generate`? self._setup_cache(self.config, hidden_states.shape[0], hidden_states.device, hidden_states.dtype) if cache_position is None: cache_position = torch.arange(hidden_states.shape[1], device=hidden_states.device) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position) hidden_states = hidden_states * self.normalizer.type(hidden_states.dtype) all_hidden_states = () if output_hidden_states else None for i, residual_block in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: hidden_states = self._gradient_checkpointing_func( residual_block.__call__, hidden_states, position_ids, causal_mask, cache_position, use_cache ) else: hidden_states = residual_block(hidden_states, position_ids, causal_mask, cache_position, use_cache) hidden_states = self.final_norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return BaseModelOutputWithNoAttention( last_hidden_state=hidden_states, hidden_states=all_hidden_states, ) # Ignore copy def _update_causal_mask(self, attention_mask, input_tensor, cache_position): dtype, device = input_tensor.dtype, input_tensor.device min_dtype = torch.finfo(dtype).min sequence_length = input_tensor.shape[1] target_length = max(self.config.attention_window_size, sequence_length) diagonal = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) causal_mask = diagonal if sequence_length != 1: causal_mask = torch.triu(diagonal, diagonal=-1) causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit if attention_mask.dim() == 2: mask_length = attention_mask.shape[-1] padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0) causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype) if attention_mask is not None and attention_mask.device.type == "cuda": # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask # TODO: re-enable check: Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM with LLAMA->RECURRENTGEMMA,Llama->RecurrentGemma,llama->gemma class RecurrentGemmaForCausalLM(RecurrentGemmaPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.model = RecurrentGemmaModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model # Ignore copy @add_start_docstrings_to_model_forward(RECURRENTGEMMA_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, cache_position: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, use_cache: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutput]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from transformers import AutoTokenizer, RecurrentGemmaForCausalLM >>> model = RecurrentGemmaForCausalLM.from_pretrained("google/recurrentgemma-2b") >>> tokenizer = AutoTokenizer.from_pretrained("google/recurrentgemma-2b") >>> prompt = "What is your favorite condiment?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "What is your favorite condiment?" ```""" output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True outputs = self.model( input_ids=input_ids, position_ids=position_ids, cache_position=cache_position, attention_mask=attention_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) # Soft-cap the logits TODO remove if always done. # if self.config.logits_soft_cap is not None: cap = self.config.logits_soft_cap logits = nn.functional.tanh(logits / cap) * cap loss = None if labels is not None: # Upcast to float if we need to compute the loss to avoid potential precision issues logits = logits.float() # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, ) # Ignore copy def _reorder_cache(self, past_key_values, beam_idx): for layer in self.layers: if hasattr(layer.temporal_block, "key_states"): k_state = layer.temporal_block.key_states v_state = layer.temporal_block.value_states k_state = k_state.index_select(0, beam_idx.to(k_state.device)) v_state = v_state.index_select(0, beam_idx.to(v_state.device)) return None __all__ = ["RecurrentGemmaForCausalLM", "RecurrentGemmaModel", "RecurrentGemmaPreTrainedModel"]
transformers/src/transformers/models/recurrent_gemma/modeling_recurrent_gemma.py/0
{ "file_path": "transformers/src/transformers/models/recurrent_gemma/modeling_recurrent_gemma.py", "repo_id": "transformers", "token_count": 17744 }
158
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert RemBERT checkpoint.""" import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def convert_rembert_tf_checkpoint_to_pytorch(tf_checkpoint_path, bert_config_file, pytorch_dump_path): # Initialise PyTorch model config = RemBertConfig.from_json_file(bert_config_file) print("Building PyTorch model from configuration: {}".format(str(config))) model = RemBertModel(config) # Load weights from tf checkpoint load_tf_weights_in_rembert(model, config, tf_checkpoint_path) # Save pytorch-model print("Save PyTorch model to {}".format(pytorch_dump_path)) torch.save(model.state_dict(), pytorch_dump_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) args = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
transformers/src/transformers/models/rembert/convert_rembert_tf_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/rembert/convert_rembert_tf_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 775 }
159
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TF 2.0 RoBERTa model.""" from __future__ import annotations import math import warnings from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutputWithPastAndCrossAttentions, TFBaseModelOutputWithPoolingAndCrossAttentions, TFCausalLMOutputWithCrossAttentions, TFMaskedLMOutput, TFMultipleChoiceModelOutput, TFQuestionAnsweringModelOutput, TFSequenceClassifierOutput, TFTokenClassifierOutput, ) from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFMaskedLanguageModelingLoss, TFModelInputType, TFMultipleChoiceLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFTokenClassificationLoss, get_initializer, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_roberta import RobertaConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "FacebookAI/roberta-base" _CONFIG_FOR_DOC = "RobertaConfig" class TFRobertaEmbeddings(keras.layers.Layer): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ def __init__(self, config, **kwargs): super().__init__(**kwargs) self.padding_idx = 1 self.config = config self.hidden_size = config.hidden_size self.max_position_embeddings = config.max_position_embeddings self.initializer_range = config.initializer_range self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) def build(self, input_shape=None): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.config.vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("token_type_embeddings"): self.token_type_embeddings = self.add_weight( name="embeddings", shape=[self.config.type_vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("position_embeddings"): self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.hidden_size], initializer=get_initializer(self.initializer_range), ) if self.built: return self.built = True if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) def create_position_ids_from_input_ids(self, input_ids, past_key_values_length=0): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: input_ids: tf.Tensor Returns: tf.Tensor """ mask = tf.cast(tf.math.not_equal(input_ids, self.padding_idx), dtype=input_ids.dtype) incremental_indices = (tf.math.cumsum(mask, axis=1) + past_key_values_length) * mask return incremental_indices + self.padding_idx def call( self, input_ids=None, position_ids=None, token_type_ids=None, inputs_embeds=None, past_key_values_length=0, training=False, ): """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ assert not (input_ids is None and inputs_embeds is None) if input_ids is not None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = self.create_position_ids_from_input_ids( input_ids=input_ids, past_key_values_length=past_key_values_length ) else: position_ids = tf.expand_dims( tf.range(start=self.padding_idx + 1, limit=input_shape[-1] + self.padding_idx + 1), axis=0 ) position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) final_embeddings = inputs_embeds + position_embeds + token_type_embeds final_embeddings = self.LayerNorm(inputs=final_embeddings) final_embeddings = self.dropout(inputs=final_embeddings, training=training) return final_embeddings # Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->Roberta class TFRobertaPooler(keras.layers.Layer): def __init__(self, config: RobertaConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(inputs=first_token_tensor) return pooled_output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) # Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention with Bert->Roberta class TFRobertaSelfAttention(keras.layers.Layer): def __init__(self, config: RobertaConfig, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number " f"of attention heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.sqrt_att_head_size = math.sqrt(self.attention_head_size) self.query = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" ) self.value = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob) self.is_decoder = config.is_decoder self.config = config def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] return tf.transpose(tensor, perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor, encoder_attention_mask: tf.Tensor, past_key_value: Tuple[tf.Tensor], output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: batch_size = shape_list(hidden_states)[0] mixed_query_layer = self.query(inputs=hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) key_layer = tf.concat([past_key_value[0], key_layer], axis=2) value_layer = tf.concat([past_key_value[1], value_layer], axis=2) else: key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. # (batch size, num_heads, seq_len_q, seq_len_k) attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) attention_scores = tf.divide(attention_scores, dk) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in TFRobertaModel call() function) attention_scores = tf.add(attention_scores, attention_mask) # Normalize the attention scores to probabilities. attention_probs = stable_softmax(logits=attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(inputs=attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = tf.multiply(attention_probs, head_mask) attention_output = tf.matmul(attention_probs, value_layer) attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, all_head_size) attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size)) outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "query", None) is not None: with tf.name_scope(self.query.name): self.query.build([None, None, self.config.hidden_size]) if getattr(self, "key", None) is not None: with tf.name_scope(self.key.name): self.key.build([None, None, self.config.hidden_size]) if getattr(self, "value", None) is not None: with tf.name_scope(self.value.name): self.value.build([None, None, self.config.hidden_size]) # Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->Roberta class TFRobertaSelfOutput(keras.layers.Layer): def __init__(self, config: RobertaConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.config = config def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) # Copied from transformers.models.bert.modeling_tf_bert.TFBertAttention with Bert->Roberta class TFRobertaAttention(keras.layers.Layer): def __init__(self, config: RobertaConfig, **kwargs): super().__init__(**kwargs) self.self_attention = TFRobertaSelfAttention(config, name="self") self.dense_output = TFRobertaSelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call( self, input_tensor: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor, encoder_attention_mask: tf.Tensor, past_key_value: Tuple[tf.Tensor], output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: self_outputs = self.self_attention( hidden_states=input_tensor, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, training=training, ) attention_output = self.dense_output( hidden_states=self_outputs[0], input_tensor=input_tensor, training=training ) # add attentions (possibly with past_key_value) if we output them outputs = (attention_output,) + self_outputs[1:] return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attention", None) is not None: with tf.name_scope(self.self_attention.name): self.self_attention.build(None) if getattr(self, "dense_output", None) is not None: with tf.name_scope(self.dense_output.name): self.dense_output.build(None) # Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->Roberta class TFRobertaIntermediate(keras.layers.Layer): def __init__(self, config: RobertaConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) # Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->Roberta class TFRobertaOutput(keras.layers.Layer): def __init__(self, config: RobertaConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.config = config def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.intermediate_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) # Copied from transformers.models.bert.modeling_tf_bert.TFBertLayer with Bert->Roberta class TFRobertaLayer(keras.layers.Layer): def __init__(self, config: RobertaConfig, **kwargs): super().__init__(**kwargs) self.attention = TFRobertaAttention(config, name="attention") self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = TFRobertaAttention(config, name="crossattention") self.intermediate = TFRobertaIntermediate(config, name="intermediate") self.bert_output = TFRobertaOutput(config, name="output") def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor | None, encoder_attention_mask: tf.Tensor | None, past_key_value: Tuple[tf.Tensor] | None, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( input_tensor=hidden_states, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=self_attn_past_key_value, output_attentions=output_attentions, training=training, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( input_tensor=attention_output, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, training=training, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value intermediate_output = self.intermediate(hidden_states=attention_output) layer_output = self.bert_output( hidden_states=intermediate_output, input_tensor=attention_output, training=training ) outputs = (layer_output,) + outputs # add attentions if we output them # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "intermediate", None) is not None: with tf.name_scope(self.intermediate.name): self.intermediate.build(None) if getattr(self, "bert_output", None) is not None: with tf.name_scope(self.bert_output.name): self.bert_output.build(None) if getattr(self, "crossattention", None) is not None: with tf.name_scope(self.crossattention.name): self.crossattention.build(None) # Copied from transformers.models.bert.modeling_tf_bert.TFBertEncoder with Bert->Roberta class TFRobertaEncoder(keras.layers.Layer): def __init__(self, config: RobertaConfig, **kwargs): super().__init__(**kwargs) self.config = config self.layer = [TFRobertaLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor | None, encoder_attention_mask: tf.Tensor | None, past_key_values: Tuple[Tuple[tf.Tensor]] | None, use_cache: Optional[bool], output_attentions: bool, output_hidden_states: bool, return_dict: bool, training: bool = False, ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) past_key_value = past_key_values[i] if past_key_values is not None else None layer_outputs = layer_module( hidden_states=hidden_states, attention_mask=attention_mask, head_mask=head_mask[i], encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, training=training, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if self.config.add_cross_attention and encoder_hidden_states is not None: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None ) return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None) @keras_serializable class TFRobertaMainLayer(keras.layers.Layer): config_class = RobertaConfig def __init__(self, config, add_pooling_layer=True, **kwargs): super().__init__(**kwargs) self.config = config self.is_decoder = config.is_decoder self.num_hidden_layers = config.num_hidden_layers self.initializer_range = config.initializer_range self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.return_dict = config.use_return_dict self.encoder = TFRobertaEncoder(config, name="encoder") self.pooler = TFRobertaPooler(config, name="pooler") if add_pooling_layer else None # The embeddings must be the last declaration in order to follow the weights order self.embeddings = TFRobertaEmbeddings(config, name="embeddings") # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.get_input_embeddings def get_input_embeddings(self) -> keras.layers.Layer: return self.embeddings # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.set_input_embeddings def set_input_embeddings(self, value: tf.Variable): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer._prune_heads def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError @unpack_inputs # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.call def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]: if not self.config.is_decoder: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape if past_key_values is None: past_key_values_length = 0 past_key_values = [None] * len(self.encoder.layer) else: past_key_values_length = shape_list(past_key_values[0][0])[-2] if attention_mask is None: attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1) if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, training=training, ) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask_shape = shape_list(attention_mask) mask_seq_length = seq_length + past_key_values_length # Copied from `modeling_tf_t5.py` # Provided a padding mask of dimensions [batch_size, mask_seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length] if self.is_decoder: seq_ids = tf.range(mask_seq_length) causal_mask = tf.less_equal( tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)), seq_ids[None, :, None], ) causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype) extended_attention_mask = causal_mask * attention_mask[:, None, :] attention_mask_shape = shape_list(extended_attention_mask) extended_attention_mask = tf.reshape( extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2]) ) if past_key_values[0] is not None: # attention_mask needs to be sliced to the shape `[batch_size, 1, from_seq_length - cached_seq_length, to_seq_length] extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :] else: extended_attention_mask = tf.reshape( attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1]) ) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype) one_cst = tf.constant(1.0, dtype=embedding_output.dtype) ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype) extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) # Copied from `modeling_tf_t5.py` with -1e9 -> -10000 if self.is_decoder and encoder_attention_mask is not None: # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length] # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype) num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask)) if num_dims_encoder_attention_mask == 3: encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :] if num_dims_encoder_attention_mask == 2: encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask, # tf.transpose(encoder_extended_attention_mask, perm=(-1, -2))) encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0 else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.config.num_hidden_layers encoder_outputs = self.encoder( hidden_states=embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None if not return_dict: return ( sequence_output, pooled_output, ) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "pooler", None) is not None: with tf.name_scope(self.pooler.name): self.pooler.build(None) if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) class TFRobertaPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = RobertaConfig base_model_prefix = "roberta" ROBERTA_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`RobertaConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ ROBERTA_INPUTS_DOCSTRING = r""" Args: input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare RoBERTa Model transformer outputting raw hidden-states without any specific head on top.", ROBERTA_START_DOCSTRING, ) class TFRobertaModel(TFRobertaPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.roberta = TFRobertaMainLayer(config, name="roberta") @unpack_inputs @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[Tuple, TFBaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Set to `False` during training, `True` during generation """ outputs = self.roberta( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "roberta", None) is not None: with tf.name_scope(self.roberta.name): self.roberta.build(None) class TFRobertaLMHead(keras.layers.Layer): """Roberta Head for masked language modeling.""" def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.config = config self.hidden_size = config.hidden_size self.dense = keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.act = get_tf_activation("gelu") # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = input_embeddings def build(self, input_shape=None): self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.config.hidden_size]) def get_output_embeddings(self): return self.decoder def set_output_embeddings(self, value): self.decoder.weight = value self.decoder.vocab_size = shape_list(value)[0] def get_bias(self): return {"bias": self.bias} def set_bias(self, value): self.bias = value["bias"] self.config.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.layer_norm(hidden_states) # project back to size of vocabulary with bias seq_length = shape_list(tensor=hidden_states)[1] hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size]) hidden_states = tf.matmul(a=hidden_states, b=self.decoder.weight, transpose_b=True) hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) return hidden_states @add_start_docstrings("""RoBERTa Model with a `language modeling` head on top.""", ROBERTA_START_DOCSTRING) class TFRobertaForMaskedLM(TFRobertaPreTrainedModel, TFMaskedLanguageModelingLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head.decoder.weight"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.roberta = TFRobertaMainLayer(config, add_pooling_layer=False, name="roberta") self.lm_head = TFRobertaLMHead(config, self.roberta.embeddings, name="lm_head") def get_lm_head(self): return self.lm_head def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.lm_head.name @unpack_inputs @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, mask="<mask>", expected_output="' Paris'", expected_loss=0.1, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "roberta", None) is not None: with tf.name_scope(self.roberta.name): self.roberta.build(None) if getattr(self, "lm_head", None) is not None: with tf.name_scope(self.lm_head.name): self.lm_head.build(None) class TFRobertaForCausalLM(TFRobertaPreTrainedModel, TFCausalLanguageModelingLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head.decoder.weight"] def __init__(self, config: RobertaConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) if not config.is_decoder: logger.warning("If you want to use `TFRobertaLMHeadModel` as a standalone, add `is_decoder=True.`") self.roberta = TFRobertaMainLayer(config, add_pooling_layer=False, name="roberta") self.lm_head = TFRobertaLMHead(config, input_embeddings=self.roberta.embeddings, name="lm_head") def get_lm_head(self): return self.lm_head def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.lm_head.name # Copied from transformers.models.bert.modeling_tf_bert.TFBertLMHeadModel.prepare_inputs_for_generation def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs): input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = tf.ones(input_shape) # cut decoder_input_ids if past is used if past_key_values is not None: input_ids = input_ids[:, -1:] return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values} @unpack_inputs @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFCausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]: r""" encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Set to `False` during training, `True` during generation labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the cross entropy classification loss. Indices should be in `[0, ..., config.vocab_size - 1]`. """ outputs = self.roberta( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.lm_head(hidden_states=sequence_output, training=training) loss = None if labels is not None: # shift labels to the left and cut last logit token shifted_logits = logits[:, :-1] labels = labels[:, 1:] loss = self.hf_compute_loss(labels=labels, logits=shifted_logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFCausalLMOutputWithCrossAttentions( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "roberta", None) is not None: with tf.name_scope(self.roberta.name): self.roberta.build(None) if getattr(self, "lm_head", None) is not None: with tf.name_scope(self.lm_head.name): self.lm_head.build(None) class TFRobertaClassificationHead(keras.layers.Layer): """Head for sentence-level classification tasks.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = keras.layers.Dropout(classifier_dropout) self.out_proj = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj" ) self.config = config def call(self, features, training=False): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x, training=training) x = self.dense(x) x = self.dropout(x, training=training) x = self.out_proj(x) return x def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "out_proj", None) is not None: with tf.name_scope(self.out_proj.name): self.out_proj.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, ROBERTA_START_DOCSTRING, ) class TFRobertaForSequenceClassification(TFRobertaPreTrainedModel, TFSequenceClassificationLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.roberta = TFRobertaMainLayer(config, add_pooling_layer=False, name="roberta") self.classifier = TFRobertaClassificationHead(config, name="classifier") @unpack_inputs @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="cardiffnlp/twitter-roberta-base-emotion", output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output="'optimism'", expected_loss=0.08, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.classifier(sequence_output, training=training) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "roberta", None) is not None: with tf.name_scope(self.roberta.name): self.roberta.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build(None) @add_start_docstrings( """ Roberta Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, ROBERTA_START_DOCSTRING, ) class TFRobertaForMultipleChoice(TFRobertaPreTrainedModel, TFMultipleChoiceLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"lm_head"] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.roberta = TFRobertaMainLayer(config, name="roberta") self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.classifier = keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None outputs = self.roberta( flat_input_ids, flat_attention_mask, flat_token_type_ids, flat_position_ids, head_mask, inputs_embeds, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output, training=training) logits = self.classifier(pooled_output) reshaped_logits = tf.reshape(logits, (-1, num_choices)) loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "roberta", None) is not None: with tf.name_scope(self.roberta.name): self.roberta.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ RoBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, ROBERTA_START_DOCSTRING, ) class TFRobertaForTokenClassification(TFRobertaPreTrainedModel, TFTokenClassificationLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.roberta = TFRobertaMainLayer(config, add_pooling_layer=False, name="roberta") classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = keras.layers.Dropout(classifier_dropout) self.classifier = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="ydshieh/roberta-large-ner-english", output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output="['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']", expected_loss=0.01, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output, training=training) logits = self.classifier(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "roberta", None) is not None: with tf.name_scope(self.roberta.name): self.roberta.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ RoBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, ROBERTA_START_DOCSTRING, ) class TFRobertaForQuestionAnswering(TFRobertaPreTrainedModel, TFQuestionAnsweringLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.roberta = TFRobertaMainLayer(config, add_pooling_layer=False, name="roberta") self.qa_outputs = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="ydshieh/roberta-base-squad2", output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, expected_output="' puppet'", expected_loss=0.86, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: np.ndarray | tf.Tensor | None = None, end_positions: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: r""" start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions} labels["end_position"] = end_positions loss = self.hf_compute_loss(labels, (start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "roberta", None) is not None: with tf.name_scope(self.roberta.name): self.roberta.build(None) if getattr(self, "qa_outputs", None) is not None: with tf.name_scope(self.qa_outputs.name): self.qa_outputs.build([None, None, self.config.hidden_size]) __all__ = [ "TFRobertaForCausalLM", "TFRobertaForMaskedLM", "TFRobertaForMultipleChoice", "TFRobertaForQuestionAnswering", "TFRobertaForSequenceClassification", "TFRobertaForTokenClassification", "TFRobertaMainLayer", "TFRobertaModel", "TFRobertaPreTrainedModel", ]
transformers/src/transformers/models/roberta/modeling_tf_roberta.py/0
{ "file_path": "transformers/src/transformers/models/roberta/modeling_tf_roberta.py", "repo_id": "transformers", "token_count": 34395 }
160
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Flax RoFormer model.""" from typing import Callable, Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp import numpy as np from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from ...modeling_flax_outputs import ( FlaxBaseModelOutput, FlaxMaskedLMOutput, FlaxMultipleChoiceModelOutput, FlaxQuestionAnsweringModelOutput, FlaxSequenceClassifierOutput, FlaxTokenClassifierOutput, ) from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, overwrite_call_docstring from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_roformer import RoFormerConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "junnyu/roformer_chinese_base" _CONFIG_FOR_DOC = "RoFormerConfig" ROFORMER_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models) This model is also a [flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`RoFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ ROFORMER_INPUTS_DOCSTRING = r""" Args: input_ids (`numpy.ndarray` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`numpy.ndarray` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`numpy.ndarray` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`numpy.ndarray` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. head_mask (`numpy.ndarray` of shape `({0})`, `optional): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Copied from transformers.models.marian.modeling_flax_marian.create_sinusoidal_positions def create_sinusoidal_positions(n_pos, dim): position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]) sentinel = dim // 2 + dim % 2 out = np.zeros_like(position_enc) out[:, 0:sentinel] = np.sin(position_enc[:, 0::2]) out[:, sentinel:] = np.cos(position_enc[:, 1::2]) return jnp.array(out) class FlaxRoFormerEmbeddings(nn.Module): """Construct the embeddings from word and token_type embeddings.""" config: RoFormerConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.word_embeddings = nn.Embed( self.config.vocab_size, self.config.hidden_size, embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) self.token_type_embeddings = nn.Embed( self.config.type_vocab_size, self.config.hidden_size, embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) def __call__(self, input_ids, token_type_ids, attention_mask, deterministic: bool = True): # Embed inputs_embeds = self.word_embeddings(input_ids.astype("i4")) token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4")) # Sum all embeddings hidden_states = inputs_embeds + token_type_embeddings # Layer Norm hidden_states = self.LayerNorm(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) return hidden_states class FlaxRoFormerSelfAttention(nn.Module): config: RoFormerConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self) -> None: if self.config.hidden_size % self.config.num_attention_heads != 0: raise ValueError( "`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` " " : {self.config.num_attention_heads}" ) self.query = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.key = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.value = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.rotary_value = self.config.rotary_value def __call__( self, hidden_states, attention_mask, sinusoidal_pos, layer_head_mask, deterministic=True, output_attentions: bool = False, ): head_dim = self.config.hidden_size // self.config.num_attention_heads query_states = self.query(hidden_states).reshape( hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim) ) value_states = self.value(hidden_states).reshape( hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim) ) key_states = self.key(hidden_states).reshape( hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim) ) if sinusoidal_pos is not None: if self.rotary_value: query_states, key_states, value_states = self.apply_rotary_position_embeddings( sinusoidal_pos, query_states, key_states, value_states ) else: query_states, key_states = self.apply_rotary_position_embeddings( sinusoidal_pos, query_states, key_states ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.config.attention_probs_dropout_prob > 0.0: dropout_rng = self.make_rng("dropout") attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.config.attention_probs_dropout_prob, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, ) # Mask heads if we want to if layer_head_mask is not None: attn_weights = jnp.einsum("...hqk,h->...hqk", attn_weights, layer_head_mask) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,)) outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) return outputs @staticmethod def apply_rotary_position_embeddings(sinusoidal_pos, query_layer, key_layer, value_layer=None): sin, cos = sinusoidal_pos.split(2, axis=-1) sin_pos = jnp.stack([sin, sin], axis=-1).reshape(sinusoidal_pos.shape) cos_pos = jnp.stack([cos, cos], axis=-1).reshape(sinusoidal_pos.shape) def rotate_layer(layer, sin_pos, cos_pos): rotate_half_layer = jnp.stack([-layer[..., 1::2], layer[..., ::2]], axis=-1).reshape(layer.shape) rotary_matrix_cos = jnp.einsum("bslh,...sh->bslh", layer, cos_pos) rotary_matrix_sin = jnp.einsum("bslh,...sh->bslh", rotate_half_layer, sin_pos) return rotary_matrix_cos + rotary_matrix_sin query_layer = rotate_layer(query_layer, sin_pos, cos_pos) key_layer = rotate_layer(key_layer, sin_pos, cos_pos) if value_layer is not None: value_layer = rotate_layer(value_layer, sin_pos, cos_pos) return query_layer, key_layer, value_layer return query_layer, key_layer # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfOutput with Bert->RoFormer class FlaxRoFormerSelfOutput(nn.Module): config: RoFormerConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) def __call__(self, hidden_states, input_tensor, deterministic: bool = True): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class FlaxRoFormerAttention(nn.Module): config: RoFormerConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.self = FlaxRoFormerSelfAttention(self.config, dtype=self.dtype) self.output = FlaxRoFormerSelfOutput(self.config, dtype=self.dtype) def __call__( self, hidden_states, attention_mask, sinusoidal_pos, layer_head_mask, deterministic=True, output_attentions: bool = False, ): # Attention mask comes in as attention_mask.shape == (*batch_sizes, kv_length) # FLAX expects: attention_mask.shape == (*batch_sizes, 1, 1, kv_length) such that it is broadcastable # with attn_weights.shape == (*batch_sizes, num_heads, q_length, kv_length) attn_outputs = self.self( hidden_states, attention_mask, sinusoidal_pos, layer_head_mask=layer_head_mask, deterministic=deterministic, output_attentions=output_attentions, ) attn_output = attn_outputs[0] hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic) outputs = (hidden_states,) if output_attentions: outputs += (attn_outputs[1],) return outputs # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertIntermediate with Bert->RoFormer class FlaxRoFormerIntermediate(nn.Module): config: RoFormerConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.intermediate_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.activation = ACT2FN[self.config.hidden_act] def __call__(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertOutput with Bert->RoFormer class FlaxRoFormerOutput(nn.Module): config: RoFormerConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) def __call__(self, hidden_states, attention_output, deterministic: bool = True): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = self.LayerNorm(hidden_states + attention_output) return hidden_states class FlaxRoFormerLayer(nn.Module): config: RoFormerConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.attention = FlaxRoFormerAttention(self.config, dtype=self.dtype) self.intermediate = FlaxRoFormerIntermediate(self.config, dtype=self.dtype) self.output = FlaxRoFormerOutput(self.config, dtype=self.dtype) def __call__( self, hidden_states, attention_mask, sinusiodal_pos, layer_head_mask, deterministic: bool = True, output_attentions: bool = False, ): attention_outputs = self.attention( hidden_states, attention_mask, sinusiodal_pos, layer_head_mask=layer_head_mask, deterministic=deterministic, output_attentions=output_attentions, ) attention_output = attention_outputs[0] hidden_states = self.intermediate(attention_output) hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic) outputs = (hidden_states,) if output_attentions: outputs += (attention_outputs[1],) return outputs class FlaxRoFormerLayerCollection(nn.Module): config: RoFormerConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxRoFormerLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers) ] def __call__( self, hidden_states, attention_mask, sinusoidal_pos, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None # Check if head_mask has a correct number of layers specified if desired if head_mask is not None: if head_mask.shape[0] != (len(self.layers)): raise ValueError( f"The head_mask should be specified for {len(self.layers)} layers, but it is for " f" {head_mask.shape[0]}." ) for i, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = layer( hidden_states, attention_mask, sinusoidal_pos, layer_head_mask=head_mask[i] if head_mask is not None else None, deterministic=deterministic, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions += (layer_outputs[1],) if output_hidden_states: all_hidden_states += (hidden_states,) outputs = (hidden_states,) if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) class FlaxRoFormerEncoder(nn.Module): config: RoFormerConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.embed_positions = create_sinusoidal_positions( self.config.max_position_embeddings, self.config.hidden_size // self.config.num_attention_heads ) self.layer = FlaxRoFormerLayerCollection(self.config, dtype=self.dtype) def __call__( self, hidden_states, attention_mask, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): sinusoidal_pos = self.embed_positions[: hidden_states.shape[1], :] return self.layer( hidden_states, attention_mask, sinusoidal_pos, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPredictionHeadTransform with Bert->RoFormer class FlaxRoFormerPredictionHeadTransform(nn.Module): config: RoFormerConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.dense = nn.Dense(self.config.hidden_size, dtype=self.dtype) self.activation = ACT2FN[self.config.hidden_act] self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) def __call__(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.activation(hidden_states) return self.LayerNorm(hidden_states) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLMPredictionHead with Bert->RoFormer class FlaxRoFormerLMPredictionHead(nn.Module): config: RoFormerConfig dtype: jnp.dtype = jnp.float32 bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros def setup(self): self.transform = FlaxRoFormerPredictionHeadTransform(self.config, dtype=self.dtype) self.decoder = nn.Dense(self.config.vocab_size, dtype=self.dtype, use_bias=False) self.bias = self.param("bias", self.bias_init, (self.config.vocab_size,)) def __call__(self, hidden_states, shared_embedding=None): hidden_states = self.transform(hidden_states) if shared_embedding is not None: hidden_states = self.decoder.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: hidden_states = self.decoder(hidden_states) bias = jnp.asarray(self.bias, self.dtype) hidden_states += bias return hidden_states # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertOnlyMLMHead with Bert->RoFormer class FlaxRoFormerOnlyMLMHead(nn.Module): config: RoFormerConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.predictions = FlaxRoFormerLMPredictionHead(self.config, dtype=self.dtype) def __call__(self, hidden_states, shared_embedding=None): hidden_states = self.predictions(hidden_states, shared_embedding=shared_embedding) return hidden_states class FlaxRoFormerClassificationHead(nn.Module): config: RoFormerConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.dense = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) self.out_proj = nn.Dense( self.config.num_labels, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.activation = ACT2FN[self.config.hidden_act] def __call__(self, hidden_states, deterministic=True): hidden_states = hidden_states[:, 0, :] # take <s> token (equiv. to [CLS]) hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = self.dense(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = self.out_proj(hidden_states) return hidden_states class FlaxRoFormerPreTrainedModel(FlaxPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = RoFormerConfig base_model_prefix = "roformer" module_class: nn.Module = None def __init__( self, config: RoFormerConfig, input_shape: Tuple = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") token_type_ids = jnp.zeros_like(input_ids) attention_mask = jnp.ones_like(input_ids) head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads)) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init( rngs, input_ids, attention_mask, token_type_ids, head_mask, return_dict=False )["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params @add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def __call__( self, input_ids, attention_mask=None, token_type_ids=None, head_mask=None, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # init input tensors if not passed if token_type_ids is None: token_type_ids = jnp.zeros_like(input_ids) if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if head_mask is None: head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng return self.module.apply( {"params": params or self.params}, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), jnp.array(token_type_ids, dtype="i4"), jnp.array(head_mask, dtype="i4"), not train, output_attentions, output_hidden_states, return_dict, rngs=rngs, ) class FlaxRoFormerModule(nn.Module): config: RoFormerConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.embeddings = FlaxRoFormerEmbeddings(self.config, dtype=self.dtype) self.encoder = FlaxRoFormerEncoder(self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): hidden_states = self.embeddings(input_ids, token_type_ids, attention_mask, deterministic=deterministic) outputs = self.encoder( hidden_states, attention_mask, head_mask=head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] if not return_dict: return (hidden_states,) + outputs[1:] return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( "The bare RoFormer Model transformer outputting raw hidden-states without any specific head on top.", ROFORMER_START_DOCSTRING, ) class FlaxRoFormerModel(FlaxRoFormerPreTrainedModel): module_class = FlaxRoFormerModule append_call_sample_docstring(FlaxRoFormerModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutput, _CONFIG_FOR_DOC) class FlaxRoFormerForMaskedLMModule(nn.Module): config: RoFormerConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.roformer = FlaxRoFormerModule(config=self.config, dtype=self.dtype) self.cls = FlaxRoFormerOnlyMLMHead(config=self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.roformer( input_ids, attention_mask, token_type_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = self.roformer.variables["params"]["embeddings"]["word_embeddings"]["embedding"] else: shared_embedding = None # Compute the prediction scores logits = self.cls(hidden_states, shared_embedding=shared_embedding) if not return_dict: return (logits,) + outputs[1:] return FlaxMaskedLMOutput( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings("""RoFormer Model with a `language modeling` head on top.""", ROFORMER_START_DOCSTRING) class FlaxRoFormerForMaskedLM(FlaxRoFormerPreTrainedModel): module_class = FlaxRoFormerForMaskedLMModule append_call_sample_docstring( FlaxRoFormerForMaskedLM, _CHECKPOINT_FOR_DOC, FlaxMaskedLMOutput, _CONFIG_FOR_DOC, mask="<mask>", ) class FlaxRoFormerForSequenceClassificationModule(nn.Module): config: RoFormerConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.roformer = FlaxRoFormerModule(config=self.config, dtype=self.dtype) self.classifier = FlaxRoFormerClassificationHead(config=self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.roformer( input_ids, attention_mask, token_type_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output, deterministic=deterministic) if not return_dict: return (logits,) + outputs[1:] return FlaxSequenceClassifierOutput( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ RoFormer Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, ROFORMER_START_DOCSTRING, ) class FlaxRoFormerForSequenceClassification(FlaxRoFormerPreTrainedModel): module_class = FlaxRoFormerForSequenceClassificationModule append_call_sample_docstring( FlaxRoFormerForSequenceClassification, _CHECKPOINT_FOR_DOC, FlaxSequenceClassifierOutput, _CONFIG_FOR_DOC, ) class FlaxRoFormerForMultipleChoiceModule(nn.Module): config: RoFormerConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.roformer = FlaxRoFormerModule(config=self.config, dtype=self.dtype) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) self.classifier = nn.Dense(1, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): num_choices = input_ids.shape[1] input_ids = input_ids.reshape(-1, input_ids.shape[-1]) attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1]) # Model outputs = self.roformer( input_ids, attention_mask, token_type_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # Equivalent to sequence_summary call in the PyTorch implementation hidden_states = outputs[0] pooled_output = hidden_states[:, -1] pooled_output = self.dropout(pooled_output, deterministic=deterministic) logits = self.classifier(pooled_output) reshaped_logits = logits.reshape(-1, num_choices) if not return_dict: return (reshaped_logits,) + outputs[2:] return FlaxMultipleChoiceModelOutput( logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ RoFormer Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, ROFORMER_START_DOCSTRING, ) class FlaxRoFormerForMultipleChoice(FlaxRoFormerPreTrainedModel): module_class = FlaxRoFormerForMultipleChoiceModule overwrite_call_docstring( FlaxRoFormerForMultipleChoice, ROFORMER_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) append_call_sample_docstring( FlaxRoFormerForMultipleChoice, _CHECKPOINT_FOR_DOC, FlaxMultipleChoiceModelOutput, _CONFIG_FOR_DOC, ) class FlaxRoFormerForTokenClassificationModule(nn.Module): config: RoFormerConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.roformer = FlaxRoFormerModule(config=self.config, dtype=self.dtype) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.roformer( input_ids, attention_mask, token_type_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states, deterministic=deterministic) logits = self.classifier(hidden_states) if not return_dict: return (logits,) + outputs[1:] return FlaxTokenClassifierOutput( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ RoFormer Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, ROFORMER_START_DOCSTRING, ) class FlaxRoFormerForTokenClassification(FlaxRoFormerPreTrainedModel): module_class = FlaxRoFormerForTokenClassificationModule append_call_sample_docstring( FlaxRoFormerForTokenClassification, _CHECKPOINT_FOR_DOC, FlaxTokenClassifierOutput, _CONFIG_FOR_DOC, ) class FlaxRoFormerForQuestionAnsweringModule(nn.Module): config: RoFormerConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.roformer = FlaxRoFormerModule(config=self.config, dtype=self.dtype) self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.roformer( input_ids, attention_mask, token_type_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.qa_outputs(hidden_states) start_logits, end_logits = logits.split(self.config.num_labels, axis=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) if not return_dict: return (start_logits, end_logits) + outputs[1:] return FlaxQuestionAnsweringModelOutput( start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ RoFormer Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, ROFORMER_START_DOCSTRING, ) class FlaxRoFormerForQuestionAnswering(FlaxRoFormerPreTrainedModel): module_class = FlaxRoFormerForQuestionAnsweringModule append_call_sample_docstring( FlaxRoFormerForQuestionAnswering, _CHECKPOINT_FOR_DOC, FlaxQuestionAnsweringModelOutput, _CONFIG_FOR_DOC, ) __all__ = [ "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ]
transformers/src/transformers/models/roformer/modeling_flax_roformer.py/0
{ "file_path": "transformers/src/transformers/models/roformer/modeling_flax_roformer.py", "repo_id": "transformers", "token_count": 17173 }
161
# coding=utf-8 # Copyright 2023 The OpenAI Team Authors and HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """RWKV configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class RwkvConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`RwkvModel`]. It is used to instantiate a RWKV model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the RWVK-4 [RWKV/rwkv-4-169m-pile](https://huggingface.co/RWKV/rwkv-4-169m-pile) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50277): Vocabulary size of the RWKV model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`RwkvModel`]. context_length (`int`, *optional*, defaults to 1024): The maximum sequence length that this model can be used with in a single forward (using it in RNN mode lets use any sequence length). hidden_size (`int`, *optional*, defaults to 4096): Dimensionality of the embeddings and hidden states. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the model. attention_hidden_size (`int`, *optional*): Dimensionality of the attention hidden states. Will default to `hidden_size` if unset. intermediate_size (`int`, *optional*): Dimensionality of the inner feed-forward layers. Will default to 4 times `hidden_size` if unset. layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): The epsilon to use in the layer normalization layers. bos_token_id (`int`, *optional*, defaults to 0): The id of the beginning of sentence token in the vocabulary. Defaults to 0 as RWKV uses the same tokenizer as GPTNeoX. eos_token_id (`int`, *optional*, defaults to 0): The id of the end of sentence token in the vocabulary. Defaults to 0 as RWKV uses the same tokenizer as GPTNeoX. rescale_every (`int`, *optional*, defaults to 6): At inference, the hidden states (and weights of the correponding output layers) are divided by 2 every `rescale_every` layer. If set to 0 or a negative number, no rescale is done. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether or not to tie the word embeddings with the input token embeddings. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last state. Example: ```python >>> from transformers import RwkvConfig, RwkvModel >>> # Initializing a Rwkv configuration >>> configuration = RwkvConfig() >>> # Initializing a model (with random weights) from the configuration >>> model = RwkvModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "rwkv" attribute_map = {"max_position_embeddings": "context_length"} def __init__( self, vocab_size=50277, context_length=1024, hidden_size=4096, num_hidden_layers=32, attention_hidden_size=None, intermediate_size=None, layer_norm_epsilon=1e-5, bos_token_id=0, eos_token_id=0, rescale_every=6, tie_word_embeddings=False, use_cache=True, **kwargs, ): self.vocab_size = vocab_size self.context_length = context_length self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.attention_hidden_size = attention_hidden_size if attention_hidden_size is not None else hidden_size self.intermediate_size = intermediate_size if intermediate_size is not None else 4 * hidden_size self.layer_norm_epsilon = layer_norm_epsilon self.rescale_every = rescale_every self.use_cache = use_cache self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id super().__init__( tie_word_embeddings=tie_word_embeddings, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs ) __all__ = ["RwkvConfig"]
transformers/src/transformers/models/rwkv/configuration_rwkv.py/0
{ "file_path": "transformers/src/transformers/models/rwkv/configuration_rwkv.py", "repo_id": "transformers", "token_count": 1913 }
162
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for SeamlessM4T.""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...convert_slow_tokenizer import import_protobuf from ...tokenization_utils import ( BatchEncoding, PreTokenizedInput, PreTrainedTokenizer, TextInput, ) from ...tokenization_utils_base import AddedToken from ...utils import PaddingStrategy, logging logger = logging.get_logger(__name__) SPIECE_UNDERLINE = "▁" VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"} class SeamlessM4TTokenizer(PreTrainedTokenizer): """ Construct a SeamlessM4T tokenizer. Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on [SentencePiece](https://github.com/google/sentencepiece). The tokenization method is `<language code> <tokens> <eos>` for source language documents, and `<eos> <language code> <tokens> <eos>` for target language documents. Examples: ```python >>> from transformers import SeamlessM4TTokenizer >>> tokenizer = SeamlessM4TTokenizer.from_pretrained( ... "facebook/hf-seamless-m4t-medium", src_lang="eng", tgt_lang="fra" ... ) >>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria" >>> expected_translation_french = "Le chef de l'ONU affirme qu'il n'y a pas de solution militaire en Syrie." >>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_french, return_tensors="pt") ``` Args: vocab_file (`str`): Path to the vocabulary file. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. tokenizer_file (`str`, *optional*): The path to a tokenizer file to use instead of the vocab file. src_lang (`str`, *optional*, defaults to `"eng"`): The language to use as source language for translation. tgt_lang (`str`, *optional*, defaults to `"fra"`): The language to use as target language for translation. sp_model_kwargs (`Dict[str, Any]`, *optional*): Additional keyword arguments to pass to the model initialization. additional_special_tokens (tuple or list of `str` or `tokenizers.AddedToken`, *optional*): A tuple or a list of additional special tokens. Can be used to specify the list of languages that will be supported by the tokenizer. add_prefix_space (`bool`, *optional*, defaults to `True`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] prefix_tokens: List[int] = [] suffix_tokens: List[int] = [] def __init__( self, vocab_file, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", tokenizer_file=None, src_lang="eng", tgt_lang="fra", sp_model_kwargs: Optional[Dict[str, Any]] = None, additional_special_tokens=None, add_prefix_space=True, **kwargs, ): self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs # Add this unused argument to keep some important Copied from statements self.legacy = False self.vocab_file = vocab_file self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False)) # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # spm | '<unk>' | '<s>' | '</s>' | 'an' | 'en' | '_d' | 'er' | 'in' | '_s' | '_a' # fairseq | '<pad>' | '<unk>' | '<s>' | '</s>' | 'an' | 'en' | '▁d' | 'er' | 'in' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token self._added_tokens_decoder = { 0: AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token, 1: AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token, 2: AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token, 3: AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token, } # The first "real" token "an" has position 4 in the original fairseq vocab and position 3 in the spm vocab self.fairseq_offset = 1 self.sp_model_size = len(self.sp_model) self._src_lang = f"__{src_lang}__" if "__" not in src_lang else src_lang self._tgt_lang = f"__{tgt_lang}__" if "__" not in tgt_lang else tgt_lang self.add_prefix_space = add_prefix_space super().__init__( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, tokenizer_file=tokenizer_file, src_lang=src_lang, tgt_lang=tgt_lang, additional_special_tokens=additional_special_tokens, sp_model_kwargs=self.sp_model_kwargs, add_prefix_space=add_prefix_space, **kwargs, ) self.set_src_lang_special_tokens(self._src_lang) self.set_tgt_lang_special_tokens(self._tgt_lang) # Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.__getstate__ def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None state["sp_model_proto"] = self.sp_model.serialized_model_proto() return state # Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.__setstate__ def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) @property def vocab_size(self): return len(self.sp_model) def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, text_pair: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None, text_target: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, text_pair_target: Optional[ Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] ] = None, padding: Union[bool, str, PaddingStrategy] = True, pad_to_multiple_of: Optional[int] = 2, src_lang: Optional[str] = None, tgt_lang: Optional[str] = None, **kwargs, ): """ Args: text (`str`, `List[str]`, `List[List[str]]`, *optional*): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). text_pair (`str`, `List[str]`, `List[List[str]]`, *optional*): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). text_target (`str`, `List[str]`, `List[List[str]]`, *optional*): The sequence or batch of sequences to be encoded as target texts. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). text_pair_target (`str`, `List[str]`, `List[List[str]]`, *optional*): The sequence or batch of sequences to be encoded as target texts. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). src_lang (`str`, *optional*): A string representing the source language. If not specified, the last `src_lang` specified (either during initialization or when calling this tokenizer) will be used. tgt_lang (`str`, *optional*): A string representing the target language. If not specified, the last `tgt_lang` specified (either during initialization or when calling this tokenizer) will be used. kwargs (*optional*): Remaining dictionary of keyword arguments that will be passed to [`PreTrainedTokenizer.__call__`]. """ if src_lang is not None: self.src_lang = src_lang if tgt_lang is not None: self.tgt_lang = tgt_lang output = super().__call__( text=text, text_pair=text_pair, text_target=text_target, text_pair_target=text_pair_target, padding=padding, pad_to_multiple_of=pad_to_multiple_of, **kwargs, ) return BatchEncoding(output, tensor_type=kwargs.get("return_tensors")) @property # Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.src_lang def src_lang(self) -> str: return self._src_lang @src_lang.setter def src_lang(self, new_src_lang: str) -> None: if "__" not in new_src_lang: self._src_lang = f"__{new_src_lang}__" else: self._src_lang = new_src_lang self.set_src_lang_special_tokens(self._src_lang) @property def tgt_lang(self) -> str: return self._tgt_lang @tgt_lang.setter def tgt_lang(self, new_tgt_lang: str) -> None: if "__" not in new_tgt_lang: self._tgt_lang = f"__{new_tgt_lang}__" else: self._tgt_lang = new_tgt_lang self.set_tgt_lang_special_tokens(self._tgt_lang) # Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.get_special_tokens_mask def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) prefix_ones = [1] * len(self.prefix_tokens) suffix_ones = [1] * len(self.suffix_tokens) if token_ids_1 is None: return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones # Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.build_inputs_with_special_tokens def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An NLLB sequence has the following format, where `X` represents the sequence: - `input_ids` (for encoder) `X [eos, src_lang_code]` - `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]` BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a separator. Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return self.prefix_tokens + token_ids_0 + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens # Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.create_token_type_ids_from_sequences def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. nllb does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] def _build_translation_inputs( self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs ): """Used by translation pipeline, to prepare inputs for the generate function""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model.") self.src_lang = src_lang inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs) if "__" not in tgt_lang: tgt_lang = f"__{tgt_lang}__" tgt_lang_id = self.convert_tokens_to_ids(tgt_lang) inputs["forced_bos_token_id"] = tgt_lang_id return inputs def get_vocab(self): vocab = { self.convert_ids_to_tokens(i): i for i in range(self.fairseq_offset, self.vocab_size + self.fairseq_offset) } vocab.update(self.added_tokens_encoder) return vocab @property def unk_token_length(self): return len(self.sp_model.encode(str(self.unk_token))) # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_spm_processor def get_spm_processor(self, from_slow=False): tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs) if self.legacy or from_slow: # no dependency on protobuf tokenizer.Load(self.vocab_file) return tokenizer with open(self.vocab_file, "rb") as f: sp_model = f.read() model_pb2 = import_protobuf(f"The new behaviour of {self.__class__.__name__} (with `self.legacy = False`)") model = model_pb2.ModelProto.FromString(sp_model) normalizer_spec = model_pb2.NormalizerSpec() normalizer_spec.add_dummy_prefix = False model.normalizer_spec.MergeFrom(normalizer_spec) sp_model = model.SerializeToString() tokenizer.LoadFromSerializedProto(sp_model) return tokenizer # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.tokenize def tokenize(self, text: "TextInput", **kwargs) -> List[str]: """ Converts a string to a list of tokens. If `self.legacy` is set to `False`, a prefix token is added unless the first token is special. """ if self.legacy or len(text) == 0: return super().tokenize(text, **kwargs) text = text.replace(SPIECE_UNDERLINE, " ") if self.add_prefix_space: text = SPIECE_UNDERLINE + text tokens = super().tokenize(text, **kwargs) if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens: tokens = tokens[1:] return tokens # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._tokenize def _tokenize(self, text, **kwargs): """ Returns a tokenized string. We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any SPIECE_UNDERLINE. For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give `['H', 'e', 'y']` instead of `['▁He', 'y']`. Thus we always encode `f"{unk_token}text"` and strip the `unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`. `self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`. """ if self.legacy or not text.startswith((SPIECE_UNDERLINE, " ")): return self.sp_model.encode(text, out_type=str) # 1. Encode string + prefix ex: "<unk> Hey" tokens = self.sp_model.encode(self.unk_token + text, out_type=str) # 2. Remove self.unk_token from ['<','unk','>', '▁Hey'] return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" spm_id = self.sp_model.PieceToId(token) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.sp_model.IdToPiece(index - self.fairseq_offset) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (strings for sub-words) in a single string.""" # since we manually add the prefix space, we have to remove it when decoding if tokens[0].startswith(SPIECE_UNDERLINE) and self.add_prefix_space: tokens[0] = tokens[0][1:] out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() return out_string # Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,) # Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.prepare_seq2seq_batch with eng_Latn->eng, fra_Latn->fra def prepare_seq2seq_batch( self, src_texts: List[str], src_lang: str = "eng", tgt_texts: Optional[List[str]] = None, tgt_lang: str = "fra", **kwargs, ) -> BatchEncoding: self.src_lang = src_lang self.tgt_lang = tgt_lang return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs) # Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer._switch_to_input_mode def _switch_to_input_mode(self): return self.set_src_lang_special_tokens(self.src_lang) # Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer._switch_to_target_mode def _switch_to_target_mode(self): return self.set_tgt_lang_special_tokens(self.tgt_lang) def set_src_lang_special_tokens(self, src_lang) -> None: """Reset the special tokens to the source lang setting. Prefix=[src_lang_code], suffix = [eos] """ self.cur_lang_code = self.convert_tokens_to_ids(src_lang) self.init_kwargs["src_lang"] = src_lang if self.cur_lang_code == self.unk_token_id: logger.warning_once( f"`src_lang={src_lang}` has not be found in the vocabulary. Behaviour will probably be unexpected because the language token id will be replaced by the unknown token id." ) self.prefix_tokens = [self.cur_lang_code] self.suffix_tokens = [self.eos_token_id] # https://github.com/facebookresearch/fairseq2/blob/c53f18e6be6b8b46b722f2249b8397b7eccd7ad3/src/fairseq2/models/nllb/tokenizer.py#L112-L116 def set_tgt_lang_special_tokens(self, lang: str) -> None: """Reset the special tokens to the target lang setting. Prefix=[eos, tgt_lang_code] and suffix=[eos]. """ self.cur_lang_code = self.convert_tokens_to_ids(lang) self.init_kwargs["tgt_lang"] = lang if self.cur_lang_code == self.unk_token_id: logger.warning_once( f"`tgt_lang={lang}` has not be found in the vocabulary. Behaviour will probably be unexpected because the language token id will be replaced by the unknown token id." ) self.prefix_tokens = [self.eos_token_id, self.cur_lang_code] self.suffix_tokens = [self.eos_token_id] __all__ = ["SeamlessM4TTokenizer"]
transformers/src/transformers/models/seamless_m4t/tokenization_seamless_m4t.py/0
{ "file_path": "transformers/src/transformers/models/seamless_m4t/tokenization_seamless_m4t.py", "repo_id": "transformers", "token_count": 11089 }
163
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for SegGPT.""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging, requires_backends if is_torch_available(): import torch if is_vision_available(): pass logger = logging.get_logger(__name__) # See https://arxiv.org/pdf/2212.02499.pdf at 3.1 Redefining Output Spaces as "Images" - Semantic Segmentation from PAINTER paper # Taken from https://github.com/Abdullah-Meda/Painter/blob/main/Painter/data/coco_semseg/gen_color_coco_panoptic_segm.py#L31 def build_palette(num_labels: int) -> List[Tuple[int, int]]: base = int(num_labels ** (1 / 3)) + 1 margin = 256 // base # we assume that class_idx 0 is the background which is mapped to black color_list = [(0, 0, 0)] for location in range(num_labels): num_seq_r = location // base**2 num_seq_g = (location % base**2) // base num_seq_b = location % base R = 255 - num_seq_r * margin G = 255 - num_seq_g * margin B = 255 - num_seq_b * margin color_list.append((R, G, B)) return color_list def mask_to_rgb( mask: np.ndarray, palette: Optional[List[Tuple[int, int]]] = None, data_format: Optional[ChannelDimension] = None ) -> np.ndarray: data_format = data_format if data_format is not None else ChannelDimension.FIRST if palette is not None: height, width = mask.shape rgb_mask = np.zeros((3, height, width), dtype=np.uint8) classes_in_mask = np.unique(mask) for class_idx in classes_in_mask: rgb_value = palette[class_idx] class_mask = (mask == class_idx).astype(np.uint8) class_mask = np.expand_dims(class_mask, axis=-1) class_rgb_mask = class_mask * np.array(rgb_value) class_rgb_mask = np.moveaxis(class_rgb_mask, -1, 0) rgb_mask += class_rgb_mask.astype(np.uint8) rgb_mask = np.clip(rgb_mask, 0, 255).astype(np.uint8) else: rgb_mask = np.repeat(mask[None, ...], 3, axis=0) return to_channel_dimension_format(rgb_mask, data_format) class SegGptImageProcessor(BaseImageProcessor): r""" Constructs a SegGpt image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `(size["height"], size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method. size (`dict`, *optional*, defaults to `{"height": 448, "width": 448}`): Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`): Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. do_convert_rgb (`bool`, *optional*, defaults to `True`): Whether to convert the prompt mask to RGB format. Can be overridden by the `do_convert_rgb` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Optional[Dict[str, int]] = None, resample: PILImageResampling = PILImageResampling.BICUBIC, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: bool = True, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"height": 448, "width": 448} size = get_size_dict(size) self.do_resize = do_resize self.do_rescale = do_rescale self.do_normalize = do_normalize self.size = size self.resample = resample self.rescale_factor = rescale_factor self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD self.do_convert_rgb = do_convert_rgb def get_palette(self, num_labels: int) -> List[Tuple[int, int]]: """Build a palette to map the prompt mask from a single channel to a 3 channel RGB. Args: num_labels (`int`): Number of classes in the segmentation task (excluding the background). Returns: `List[Tuple[int, int]]`: Palette to map the prompt mask from a single channel to a 3 channel RGB. """ return build_palette(num_labels) def mask_to_rgb( self, image: np.ndarray, palette: Optional[List[Tuple[int, int]]] = None, data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """Converts a segmentation map to RGB format. Args: image (`np.ndarray`): Segmentation map with dimensions (height, width) where pixel values represent the class index. palette (`List[Tuple[int, int]]`, *optional*, defaults to `None`): Palette to use to convert the mask to RGB format. If unset, the mask is duplicated across the channel dimension. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. Returns: `np.ndarray`: The mask in RGB format. """ return mask_to_rgb(image, palette=palette, data_format=data_format) # Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize with PILImageResampling.BILINEAR->PILImageResampling.BICUBIC def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image to `(size["height"], size["width"])`. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. Returns: `np.ndarray`: The resized image. """ size = get_size_dict(size) if "height" not in size or "width" not in size: raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}") output_size = (size["height"], size["width"]) return resize( image, size=output_size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) def _preprocess_step( self, images: ImageInput, do_resize: Optional[bool] = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, do_convert_rgb: Optional[bool] = None, num_labels: Optional[int] = None, **kwargs, ): """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to _preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Dictionary in the format `{"height": h, "width": w}` specifying the size of the output image after resizing. resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`): `PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BICUBIC`. Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to use if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to use if `do_normalize` is set to `True`. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): Whether to convert the prompt mask to RGB format. If `num_labels` is specified, a palette will be built to map the prompt mask from a single channel to a 3 channel RGB. If unset, the prompt mask is duplicated across the channel dimension. Must be set to `False` if the prompt mask is already in RGB format. num_labels: (`int`, *optional*): Number of classes in the segmentation task (excluding the background). If specified, a palette will be built, assuming that class_idx 0 is the background, to map the prompt mask from a single class_idx channel to a 3 channel RGB. Not specifying this will result in the prompt mask either being passed through as is if it is already in RGB format or being duplicated across the channel dimension. """ do_resize = do_resize if do_resize is not None else self.do_resize do_rescale = do_rescale if do_rescale is not None else self.do_rescale do_normalize = do_normalize if do_normalize is not None else self.do_normalize do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb resample = resample if resample is not None else self.resample rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std size = size if size is not None else self.size size_dict = get_size_dict(size) # If segmentation map is passed we expect 2D images images = make_list_of_images(images, expected_ndims=2 if do_convert_rgb else 3) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if do_rescale and is_scaled_image(images[0]): logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None and not do_convert_rgb: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) if do_convert_rgb: palette = self.get_palette(num_labels) if num_labels is not None else None # Since this is the input for the next transformations its format should be the same as the input_data_format images = [ self.mask_to_rgb(image=image, palette=palette, data_format=ChannelDimension.FIRST) for image in images ] input_data_format = ChannelDimension.FIRST if do_resize: images = [ self.resize(image=image, size=size_dict, resample=resample, input_data_format=input_data_format) for image in images ] if do_rescale: images = [ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) for image in images ] if do_normalize: images = [ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) for image in images ] images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] return images def preprocess( self, images: Optional[ImageInput] = None, prompt_images: Optional[ImageInput] = None, prompt_masks: Optional[ImageInput] = None, do_resize: Optional[bool] = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: Optional[bool] = None, num_labels: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ): """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to _preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. prompt_images (`ImageInput`): Prompt image to _preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. prompt_masks (`ImageInput`): Prompt mask from prompt image to _preprocess that specify prompt_masks value in the preprocessed output. Can either be in the format of segmentation maps (no channels) or RGB images. If in the format of RGB images, `do_convert_rgb` should be set to `False`. If in the format of segmentation maps, `num_labels` specifying `num_labels` is recommended to build a palette to map the prompt mask from a single channel to a 3 channel RGB. If `num_labels` is not specified, the prompt mask will be duplicated across the channel dimension. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Dictionary in the format `{"height": h, "width": w}` specifying the size of the output image after resizing. resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`): `PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BICUBIC`. Only has an effect if `do_resize` is set to `True`. Doesn't apply to prompt mask as it is resized using nearest. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to use if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to use if `do_normalize` is set to `True`. do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): Whether to convert the prompt mask to RGB format. If `num_labels` is specified, a palette will be built to map the prompt mask from a single channel to a 3 channel RGB. If unset, the prompt mask is duplicated across the channel dimension. Must be set to `False` if the prompt mask is already in RGB format. num_labels: (`int`, *optional*): Number of classes in the segmentation task (excluding the background). If specified, a palette will be built, assuming that class_idx 0 is the background, to map the prompt mask from a plain segmentation map with no channels to a 3 channel RGB. Not specifying this will result in the prompt mask either being passed through as is if it is already in RGB format (if `do_convert_rgb` is false) or being duplicated across the channel dimension. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ if all(v is None for v in [images, prompt_images, prompt_masks]): raise ValueError("At least one of images, prompt_images, prompt_masks must be specified.") data = {} if images is not None: images = self._preprocess_step( images, is_mask=False, do_resize=do_resize, size=size, resample=resample, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_convert_rgb=False, data_format=data_format, input_data_format=input_data_format, **kwargs, ) data["pixel_values"] = images if prompt_images is not None: prompt_images = self._preprocess_step( prompt_images, is_mask=False, do_resize=do_resize, size=size, resample=resample, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_convert_rgb=False, data_format=data_format, input_data_format=input_data_format, **kwargs, ) data["prompt_pixel_values"] = prompt_images if prompt_masks is not None: prompt_masks = self._preprocess_step( prompt_masks, do_resize=do_resize, size=size, resample=PILImageResampling.NEAREST, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_convert_rgb=do_convert_rgb, num_labels=num_labels, data_format=data_format, input_data_format=input_data_format, **kwargs, ) data["prompt_masks"] = prompt_masks return BatchFeature(data=data, tensor_type=return_tensors) def post_process_semantic_segmentation( self, outputs, target_sizes: Optional[List[Tuple[int, int]]] = None, num_labels: Optional[int] = None ): """ Converts the output of [`SegGptImageSegmentationOutput`] into segmentation maps. Only supports PyTorch. Args: outputs ([`SegGptImageSegmentationOutput`]): Raw outputs of the model. target_sizes (`List[Tuple[int, int]]`, *optional*): List of length (batch_size), where each list item (`Tuple[int, int]`) corresponds to the requested final size (height, width) of each prediction. If left to None, predictions will not be resized. num_labels (`int`, *optional*): Number of classes in the segmentation task (excluding the background). If specified, a palette will be built, assuming that class_idx 0 is the background, to map prediction masks from RGB values to class indices. This value should be the same used when preprocessing inputs. Returns: semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each `torch.Tensor` correspond to a semantic class id. """ requires_backends(self, ["torch"]) # batch_size x num_channels x 2*height x width masks = outputs.pred_masks # Predicted mask and prompt are concatenated in the height dimension # batch_size x num_channels x height x width masks = masks[:, :, masks.shape[2] // 2 :, :] # To unnormalize we need to permute to channel last # batch_size x height x width x num_channels std = torch.tensor(self.image_std).to(masks.device) mean = torch.tensor(self.image_mean).to(masks.device) masks = masks.permute(0, 2, 3, 1) * std + mean # batch_size x num_channels x height x width masks = masks.permute(0, 3, 1, 2) # Clip to match with palette if specified masks = torch.clip(masks * 255, 0, 255) semantic_segmentation = [] palette_tensor = None palette = self.get_palette(num_labels) if num_labels is not None else None if palette is not None: palette_tensor = torch.tensor(palette).float().to(masks.device) _, num_channels, _, _ = masks.shape palette_tensor = palette_tensor.view(1, 1, num_labels + 1, num_channels) for idx, mask in enumerate(masks): if target_sizes is not None: mask = torch.nn.functional.interpolate( mask.unsqueeze(0), size=target_sizes[idx], mode="nearest", )[0] if num_labels is not None: channels, height, width = mask.shape dist = mask.permute(1, 2, 0).view(height, width, 1, channels) dist = dist - palette_tensor dist = torch.pow(dist, 2) dist = torch.sum(dist, dim=-1) pred = dist.argmin(dim=-1) else: # If no palette is specified SegGpt will try to paint using the mask class idx as RGB pred = mask.mean(dim=0).int() semantic_segmentation.append(pred) return semantic_segmentation __all__ = ["SegGptImageProcessor"]
transformers/src/transformers/models/seggpt/image_processing_seggpt.py/0
{ "file_path": "transformers/src/transformers/models/seggpt/image_processing_seggpt.py", "repo_id": "transformers", "token_count": 13575 }
164
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization class for SigLIP model.""" import os import re import string import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...convert_slow_tokenizer import import_protobuf from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging, requires_backends logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"} SPIECE_UNDERLINE = "▁" class SiglipTokenizer(PreTrainedTokenizer): """ Construct a Siglip tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"</s>"`): The token used for padding, for example when batching sequences of different lengths. additional_special_tokens (`List[str]`, *optional*): Additional special tokens used by the tokenizer. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. model_max_length (`int`, *optional*, defaults to 64): The maximum length (in number of tokens) for model inputs. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, eos_token="</s>", unk_token="<unk>", pad_token="</s>", additional_special_tokens=None, sp_model_kwargs: Optional[Dict[str, Any]] = None, model_max_length=64, do_lower_case=True, **kwargs, ) -> None: requires_backends(self, "protobuf") pad_token = ( AddedToken(pad_token, rstrip=True, lstrip=True, normalized=False, special=True) if isinstance(pad_token, str) else pad_token ) unk_token = ( AddedToken(unk_token, rstrip=True, lstrip=True, normalized=False, special=True) if isinstance(unk_token, str) else unk_token ) eos_token = ( AddedToken(eos_token, rstrip=True, lstrip=True, normalized=False, special=True) if isinstance(eos_token, str) else eos_token ) self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs self.do_lower_case = do_lower_case self.vocab_file = vocab_file self.sp_model = self.get_spm_processor() self.vocab_file = vocab_file super().__init__( eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, additional_special_tokens=additional_special_tokens, sp_model_kwargs=self.sp_model_kwargs, model_max_length=model_max_length, do_lower_case=do_lower_case, **kwargs, ) def get_spm_processor(self): tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs) with open(self.vocab_file, "rb") as f: sp_model = f.read() model_pb2 = import_protobuf() model = model_pb2.ModelProto.FromString(sp_model) normalizer_spec = model_pb2.NormalizerSpec() normalizer_spec.add_dummy_prefix = False model.normalizer_spec.MergeFrom(normalizer_spec) sp_model = model.SerializeToString() tokenizer.LoadFromSerializedProto(sp_model) return tokenizer @property # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.vocab_size def vocab_size(self): return self.sp_model.get_piece_size() # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_vocab def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_special_tokens_mask def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) # normal case: some special tokens if token_ids_1 is None: return ([0] * len(token_ids_0)) + [1] return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._add_eos_if_not_present def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]: """Do not add eos again if user already added it.""" if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.create_token_type_ids_from_sequences def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ eos = [self.eos_token_id] if token_ids_1 is None: return len(token_ids_0 + eos) * [0] return len(token_ids_0 + eos + token_ids_1 + eos) * [0] # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.build_inputs_with_special_tokens def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A sequence has the following format: - single sequence: `X </s>` - pair of sequences: `A </s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ token_ids_0 = self._add_eos_if_not_present(token_ids_0) if token_ids_1 is None: return token_ids_0 else: token_ids_1 = self._add_eos_if_not_present(token_ids_1) return token_ids_0 + token_ids_1 # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.__getstate__ def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.__setstate__ def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def remove_punctuation(self, text: str) -> str: return text.translate(str.maketrans("", "", string.punctuation)) # source: https://github.com/google-research/big_vision/blob/3b8e5ab6ad4f96e32b32826f9e1b8fd277914f9c/big_vision/evaluators/proj/image_text/prompt_engineering.py#L94 def canonicalize_text(self, text, *, keep_punctuation_exact_string=None): """Returns canonicalized `text` (puncuation removed). Args: text (`str`): String to be canonicalized. keep_punctuation_exact_string (`str`, *optional*): If provided, then this exact string is kept. For example providing '{}' will keep any occurrences of '{}' (but will still remove '{' and '}' that appear separately). """ if keep_punctuation_exact_string: text = keep_punctuation_exact_string.join( self.remove_punctuation(part) for part in text.split(keep_punctuation_exact_string) ) else: text = self.remove_punctuation(text) text = re.sub(r"\s+", " ", text) text = text.strip() return text def tokenize(self, text: "TextInput", add_special_tokens=False, **kwargs) -> List[str]: """ Converts a string to a list of tokens. """ tokens = super().tokenize(SPIECE_UNDERLINE + text.replace(SPIECE_UNDERLINE, " "), **kwargs) if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens: tokens = tokens[1:] return tokens @property # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.unk_token_length def unk_token_length(self): return len(self.sp_model.encode(str(self.unk_token))) def _tokenize(self, text, **kwargs): """ Returns a tokenized string. We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any SPIECE_UNDERLINE. For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give `['H', 'e', 'y']` instead of `['▁He', 'y']`. Thus we always encode `f"{unk_token}text"` and strip the `unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`. `self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`. """ text = self.canonicalize_text(text, keep_punctuation_exact_string=None) tokens = self.sp_model.encode(text, out_type=str) # 1. Encode string + prefix ex: "<unk> Hey" tokens = self.sp_model.encode(self.unk_token + text, out_type=str) # 2. Remove self.unk_token from ['<','unk','>', '▁Hey'] return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._convert_token_to_id def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.sp_model.piece_to_id(token) # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._convert_id_to_token def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" token = self.sp_model.IdToPiece(index) return token def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" current_sub_tokens = [] out_string = "" prev_is_special = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(current_sub_tokens) + token prev_is_special = True current_sub_tokens = [] else: current_sub_tokens.append(token) prev_is_special = False out_string += self.sp_model.decode(current_sub_tokens) return out_string.strip() # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,) __all__ = ["SiglipTokenizer"]
transformers/src/transformers/models/siglip/tokenization_siglip.py/0
{ "file_path": "transformers/src/transformers/models/siglip/tokenization_siglip.py", "repo_id": "transformers", "token_count": 6944 }
165
# coding=utf-8 # Copyright 2023 The Fairseq Authors, Microsoft Research, and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """SpeechT5 model configuration""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class SpeechT5Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SpeechT5Model`]. It is used to instantiate a SpeechT5 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the SpeechT5 [microsoft/speecht5_asr](https://huggingface.co/microsoft/speecht5_asr) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 81): Vocabulary size of the SpeechT5 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed to the forward method of [`SpeechT5Model`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. encoder_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. encoder_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. encoder_ffn_dim (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. encoder_layerdrop (`float`, *optional*, defaults to 0.1): The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. decoder_layers (`int`, *optional*, defaults to 6): Number of hidden layers in the Transformer decoder. decoder_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer decoder. decoder_ffn_dim (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer decoder. decoder_layerdrop (`float`, *optional*, defaults to 0.1): The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. positional_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for the text position encoding layers. hidden_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for activations inside the fully connected layer. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. scale_embedding (`bool`, *optional*, defaults to `False`): Scale embeddings by diving by sqrt(d_model). feat_extract_norm (`str`, *optional*, defaults to `"group"`): The norm to be applied to 1D convolutional layers in the speech encoder pre-net. One of `"group"` for group normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D convolutional layers. feat_proj_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for output of the speech encoder pre-net. feat_extract_activation (`str, `optional`, defaults to `"gelu"`): The non-linear activation function (function or string) in the 1D convolutional layers of the feature extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`): A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the speech encoder pre-net. The length of *conv_dim* defines the number of 1D convolutional layers. conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`): A tuple of integers defining the stride of each 1D convolutional layer in the speech encoder pre-net. The length of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*. conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`): A tuple of integers defining the kernel size of each 1D convolutional layer in the speech encoder pre-net. The length of *conv_kernel* defines the number of convolutional layers and has to match the length of *conv_dim*. conv_bias (`bool`, *optional*, defaults to `False`): Whether the 1D convolutional layers have a bias. num_conv_pos_embeddings (`int`, *optional*, defaults to 128): Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional embeddings layer. num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16): Number of groups of 1D convolutional positional embeddings layer. apply_spec_augment (`bool`, *optional*, defaults to `True`): Whether to apply *SpecAugment* data augmentation to the outputs of the speech encoder pre-net. For reference see [SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition](https://arxiv.org/abs/1904.08779). mask_time_prob (`float`, *optional*, defaults to 0.05): Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_time_length (`int`, *optional*, defaults to 10): Length of vector span along the time axis. mask_time_min_masks (`int`, *optional*, defaults to 2),: The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length < mask_time_min_masks'' mask_feature_prob (`float`, *optional*, defaults to 0.0): Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_feature_length (`int`, *optional*, defaults to 10): Length of vector span along the feature axis. mask_feature_min_masks (`int`, *optional*, defaults to 0),: The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if ''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks'' num_mel_bins (`int`, *optional*, defaults to 80): Number of mel features used per input features. Used by the speech decoder pre-net. Should correspond to the value used in the [`SpeechT5Processor`] class. speech_decoder_prenet_layers (`int`, *optional*, defaults to 2): Number of layers in the speech decoder pre-net. speech_decoder_prenet_units (`int`, *optional*, defaults to 256): Dimensionality of the layers in the speech decoder pre-net. speech_decoder_prenet_dropout (`float`, *optional*, defaults to 0.5): The dropout probability for the speech decoder pre-net layers. speaker_embedding_dim (`int`, *optional*, defaults to 512): Dimensionality of the *XVector* embedding vectors. speech_decoder_postnet_layers (`int`, *optional*, defaults to 5): Number of layers in the speech decoder post-net. speech_decoder_postnet_units (`int`, *optional*, defaults to 256): Dimensionality of the layers in the speech decoder post-net. speech_decoder_postnet_kernel (`int`, *optional*, defaults to 5): Number of convolutional filter channels in the speech decoder post-net. speech_decoder_postnet_dropout (`float`, *optional*, defaults to 0.5): The dropout probability for the speech decoder post-net layers. reduction_factor (`int`, *optional*, defaults to 2): Spectrogram length reduction factor for the speech decoder inputs. max_speech_positions (`int`, *optional*, defaults to 4000): The maximum sequence length of speech features that this model might ever be used with. max_text_positions (`int`, *optional*, defaults to 450): The maximum sequence length of text features that this model might ever be used with. encoder_max_relative_position (`int`, *optional*, defaults to 160): Maximum distance for relative position embedding in the encoder. use_guided_attention_loss (`bool`, *optional*, defaults to `True`): Whether to apply guided attention loss while training the TTS model. guided_attention_loss_num_heads (`int`, *optional*, defaults to 2): Number of attention heads the guided attention loss will be applied to. Use -1 to apply this loss to all attention heads. guided_attention_loss_sigma (`float`, *optional*, defaults to 0.4): Standard deviation for guided attention loss. guided_attention_loss_scale (`float`, *optional*, defaults to 10.0): Scaling coefficient for guided attention loss (also known as lambda). use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Example: ```python >>> from transformers import SpeechT5Model, SpeechT5Config >>> # Initializing a "microsoft/speecht5_asr" style configuration >>> configuration = SpeechT5Config() >>> # Initializing a model (with random weights) from the "microsoft/speecht5_asr" style configuration >>> model = SpeechT5Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "speecht5" attribute_map = {"num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers"} def __init__( self, vocab_size=81, hidden_size=768, encoder_layers=12, encoder_attention_heads=12, encoder_ffn_dim=3072, encoder_layerdrop=0.1, decoder_layers=6, decoder_ffn_dim=3072, decoder_attention_heads=12, decoder_layerdrop=0.1, hidden_act="gelu", positional_dropout=0.1, hidden_dropout=0.1, attention_dropout=0.1, activation_dropout=0.1, initializer_range=0.02, layer_norm_eps=1e-5, scale_embedding=False, feat_extract_norm="group", feat_proj_dropout=0.0, feat_extract_activation="gelu", conv_dim=(512, 512, 512, 512, 512, 512, 512), conv_stride=(5, 2, 2, 2, 2, 2, 2), conv_kernel=(10, 3, 3, 3, 3, 2, 2), conv_bias=False, num_conv_pos_embeddings=128, num_conv_pos_embedding_groups=16, apply_spec_augment=True, mask_time_prob=0.05, mask_time_length=10, mask_time_min_masks=2, mask_feature_prob=0.0, mask_feature_length=10, mask_feature_min_masks=0, pad_token_id=1, bos_token_id=0, eos_token_id=2, decoder_start_token_id=2, num_mel_bins=80, speech_decoder_prenet_layers=2, speech_decoder_prenet_units=256, speech_decoder_prenet_dropout=0.5, speaker_embedding_dim=512, speech_decoder_postnet_layers=5, speech_decoder_postnet_units=256, speech_decoder_postnet_kernel=5, speech_decoder_postnet_dropout=0.5, reduction_factor=2, max_speech_positions=4000, max_text_positions=450, encoder_max_relative_position=160, use_guided_attention_loss=True, guided_attention_loss_num_heads=2, guided_attention_loss_sigma=0.4, guided_attention_loss_scale=10.0, use_cache=True, is_encoder_decoder=True, **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.encoder_layers = encoder_layers self.encoder_ffn_dim = encoder_ffn_dim self.encoder_attention_heads = encoder_attention_heads self.encoder_layerdrop = encoder_layerdrop self.decoder_layers = decoder_layers self.decoder_ffn_dim = decoder_ffn_dim self.decoder_attention_heads = decoder_attention_heads self.decoder_layerdrop = decoder_layerdrop self.hidden_act = hidden_act self.positional_dropout = positional_dropout self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.scale_embedding = scale_embedding self.feat_extract_norm = feat_extract_norm self.feat_proj_dropout = feat_proj_dropout self.feat_extract_activation = feat_extract_activation self.conv_dim = list(conv_dim) self.conv_stride = list(conv_stride) self.conv_kernel = list(conv_kernel) self.conv_bias = conv_bias self.num_conv_pos_embeddings = num_conv_pos_embeddings self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups self.num_feat_extract_layers = len(self.conv_dim) if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 self.apply_spec_augment = apply_spec_augment self.mask_time_prob = mask_time_prob self.mask_time_length = mask_time_length self.mask_time_min_masks = mask_time_min_masks self.mask_feature_prob = mask_feature_prob self.mask_feature_length = mask_feature_length self.mask_feature_min_masks = mask_feature_min_masks self.num_mel_bins = num_mel_bins self.speech_decoder_prenet_layers = speech_decoder_prenet_layers self.speech_decoder_prenet_units = speech_decoder_prenet_units self.speech_decoder_prenet_dropout = speech_decoder_prenet_dropout self.speaker_embedding_dim = speaker_embedding_dim self.speech_decoder_postnet_layers = speech_decoder_postnet_layers self.speech_decoder_postnet_units = speech_decoder_postnet_units self.speech_decoder_postnet_kernel = speech_decoder_postnet_kernel self.speech_decoder_postnet_dropout = speech_decoder_postnet_dropout self.reduction_factor = reduction_factor self.max_speech_positions = max_speech_positions self.max_text_positions = max_text_positions self.encoder_max_relative_position = encoder_max_relative_position self.use_guided_attention_loss = use_guided_attention_loss self.guided_attention_loss_num_heads = guided_attention_loss_num_heads self.guided_attention_loss_sigma = guided_attention_loss_sigma self.guided_attention_loss_scale = guided_attention_loss_scale self.use_cache = use_cache self.is_encoder_decoder = is_encoder_decoder super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, is_encoder_decoder=is_encoder_decoder, decoder_start_token_id=decoder_start_token_id, **kwargs, ) def inputs_to_logits_ratio(self): return functools.reduce(operator.mul, self.conv_stride, 1) class SpeechT5HifiGanConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SpeechT5HifiGanModel`]. It is used to instantiate a SpeechT5 HiFi-GAN vocoder model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the SpeechT5 [microsoft/speecht5_hifigan](https://huggingface.co/microsoft/speecht5_hifigan) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: model_in_dim (`int`, *optional*, defaults to 80): The number of frequency bins in the input log-mel spectrogram. sampling_rate (`int`, *optional*, defaults to 16000): The sampling rate at which the output audio will be generated, expressed in hertz (Hz). upsample_initial_channel (`int`, *optional*, defaults to 512): The number of input channels into the upsampling network. upsample_rates (`Tuple[int]` or `List[int]`, *optional*, defaults to `[4, 4, 4, 4]`): A tuple of integers defining the stride of each 1D convolutional layer in the upsampling network. The length of *upsample_rates* defines the number of convolutional layers and has to match the length of *upsample_kernel_sizes*. upsample_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[8, 8, 8, 8]`): A tuple of integers defining the kernel size of each 1D convolutional layer in the upsampling network. The length of *upsample_kernel_sizes* defines the number of convolutional layers and has to match the length of *upsample_rates*. resblock_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[3, 7, 11]`): A tuple of integers defining the kernel sizes of the 1D convolutional layers in the multi-receptive field fusion (MRF) module. resblock_dilation_sizes (`Tuple[Tuple[int]]` or `List[List[int]]`, *optional*, defaults to `[[1, 3, 5], [1, 3, 5], [1, 3, 5]]`): A nested tuple of integers defining the dilation rates of the dilated 1D convolutional layers in the multi-receptive field fusion (MRF) module. initializer_range (`float`, *optional*, defaults to 0.01): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. leaky_relu_slope (`float`, *optional*, defaults to 0.1): The angle of the negative slope used by the leaky ReLU activation. normalize_before (`bool`, *optional*, defaults to `True`): Whether or not to normalize the spectrogram before vocoding using the vocoder's learned mean and variance. Example: ```python >>> from transformers import SpeechT5HifiGan, SpeechT5HifiGanConfig >>> # Initializing a "microsoft/speecht5_hifigan" style configuration >>> configuration = SpeechT5HifiGanConfig() >>> # Initializing a model (with random weights) from the "microsoft/speecht5_hifigan" style configuration >>> model = SpeechT5HifiGan(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "hifigan" def __init__( self, model_in_dim=80, sampling_rate=16000, upsample_initial_channel=512, upsample_rates=[4, 4, 4, 4], upsample_kernel_sizes=[8, 8, 8, 8], resblock_kernel_sizes=[3, 7, 11], resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]], initializer_range=0.01, leaky_relu_slope=0.1, normalize_before=True, **kwargs, ): self.model_in_dim = model_in_dim self.sampling_rate = sampling_rate self.upsample_initial_channel = upsample_initial_channel self.upsample_rates = upsample_rates self.upsample_kernel_sizes = upsample_kernel_sizes self.resblock_kernel_sizes = resblock_kernel_sizes self.resblock_dilation_sizes = resblock_dilation_sizes self.initializer_range = initializer_range self.leaky_relu_slope = leaky_relu_slope self.normalize_before = normalize_before super().__init__(**kwargs) __all__ = ["SpeechT5Config", "SpeechT5HifiGanConfig"]
transformers/src/transformers/models/speecht5/configuration_speecht5.py/0
{ "file_path": "transformers/src/transformers/models/speecht5/configuration_speecht5.py", "repo_id": "transformers", "token_count": 9178 }
166
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import requests import torch from PIL import Image from transformers import SuperPointConfig, SuperPointForKeypointDetection, SuperPointImageProcessor def get_superpoint_config(): config = SuperPointConfig( encoder_hidden_sizes=[64, 64, 128, 128], decoder_hidden_size=256, keypoint_decoder_dim=65, descriptor_decoder_dim=256, keypoint_threshold=0.005, max_keypoints=-1, nms_radius=4, border_removal_distance=4, initializer_range=0.02, ) return config def create_rename_keys(config, state_dict): rename_keys = [] # Encoder weights rename_keys.append(("conv1a.weight", "encoder.conv_blocks.0.conv_a.weight")) rename_keys.append(("conv1b.weight", "encoder.conv_blocks.0.conv_b.weight")) rename_keys.append(("conv2a.weight", "encoder.conv_blocks.1.conv_a.weight")) rename_keys.append(("conv2b.weight", "encoder.conv_blocks.1.conv_b.weight")) rename_keys.append(("conv3a.weight", "encoder.conv_blocks.2.conv_a.weight")) rename_keys.append(("conv3b.weight", "encoder.conv_blocks.2.conv_b.weight")) rename_keys.append(("conv4a.weight", "encoder.conv_blocks.3.conv_a.weight")) rename_keys.append(("conv4b.weight", "encoder.conv_blocks.3.conv_b.weight")) rename_keys.append(("conv1a.bias", "encoder.conv_blocks.0.conv_a.bias")) rename_keys.append(("conv1b.bias", "encoder.conv_blocks.0.conv_b.bias")) rename_keys.append(("conv2a.bias", "encoder.conv_blocks.1.conv_a.bias")) rename_keys.append(("conv2b.bias", "encoder.conv_blocks.1.conv_b.bias")) rename_keys.append(("conv3a.bias", "encoder.conv_blocks.2.conv_a.bias")) rename_keys.append(("conv3b.bias", "encoder.conv_blocks.2.conv_b.bias")) rename_keys.append(("conv4a.bias", "encoder.conv_blocks.3.conv_a.bias")) rename_keys.append(("conv4b.bias", "encoder.conv_blocks.3.conv_b.bias")) # Keypoint Decoder weights rename_keys.append(("convPa.weight", "keypoint_decoder.conv_score_a.weight")) rename_keys.append(("convPb.weight", "keypoint_decoder.conv_score_b.weight")) rename_keys.append(("convPa.bias", "keypoint_decoder.conv_score_a.bias")) rename_keys.append(("convPb.bias", "keypoint_decoder.conv_score_b.bias")) # Descriptor Decoder weights rename_keys.append(("convDa.weight", "descriptor_decoder.conv_descriptor_a.weight")) rename_keys.append(("convDb.weight", "descriptor_decoder.conv_descriptor_b.weight")) rename_keys.append(("convDa.bias", "descriptor_decoder.conv_descriptor_a.bias")) rename_keys.append(("convDb.bias", "descriptor_decoder.conv_descriptor_b.bias")) return rename_keys def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val def prepare_imgs(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im1 = Image.open(requests.get(url, stream=True).raw) url = "http://images.cocodataset.org/test-stuff2017/000000004016.jpg" im2 = Image.open(requests.get(url, stream=True).raw) return [im1, im2] @torch.no_grad() def convert_superpoint_checkpoint(checkpoint_url, pytorch_dump_folder_path, save_model, push_to_hub, test_mode=False): """ Copy/paste/tweak model's weights to our SuperPoint structure. """ print("Downloading original model from checkpoint...") config = get_superpoint_config() # load original state_dict from URL original_state_dict = torch.hub.load_state_dict_from_url(checkpoint_url) print("Converting model parameters...") # rename keys rename_keys = create_rename_keys(config, original_state_dict) new_state_dict = original_state_dict.copy() for src, dest in rename_keys: rename_key(new_state_dict, src, dest) # Load HuggingFace model model = SuperPointForKeypointDetection(config) model.load_state_dict(new_state_dict) model.eval() print("Successfully loaded weights in the model") # Check model outputs preprocessor = SuperPointImageProcessor() inputs = preprocessor(images=prepare_imgs(), return_tensors="pt") outputs = model(**inputs) # If test_mode is True, we check that the model outputs match the original results if test_mode: torch.count_nonzero(outputs.mask[0]) expected_keypoints_shape = (2, 830, 2) expected_scores_shape = (2, 830) expected_descriptors_shape = (2, 830, 256) expected_keypoints_values = torch.tensor([[480.0, 9.0], [494.0, 9.0], [489.0, 16.0]]) expected_scores_values = torch.tensor([0.0064, 0.0140, 0.0595, 0.0728, 0.5170, 0.0175, 0.1523, 0.2055, 0.0336]) expected_descriptors_value = torch.tensor(-0.1096) assert outputs.keypoints.shape == expected_keypoints_shape assert outputs.scores.shape == expected_scores_shape assert outputs.descriptors.shape == expected_descriptors_shape assert torch.allclose(outputs.keypoints[0, :3], expected_keypoints_values, atol=1e-3) assert torch.allclose(outputs.scores[0, :9], expected_scores_values, atol=1e-3) assert torch.allclose(outputs.descriptors[0, 0, 0], expected_descriptors_value, atol=1e-3) print("Model outputs match the original results!") if save_model: print("Saving model to local...") # Create folder to save model if not os.path.isdir(pytorch_dump_folder_path): os.mkdir(pytorch_dump_folder_path) model.save_pretrained(pytorch_dump_folder_path) preprocessor.save_pretrained(pytorch_dump_folder_path) model_name = "magic-leap-community/superpoint" if push_to_hub: print(f"Pushing {model_name} to the hub...") model.push_to_hub(model_name) preprocessor.push_to_hub(model_name) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/magicleap/SuperPointPretrainedNetwork/raw/master/superpoint_v1.pth", type=str, help="URL of the original SuperPoint checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="model", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--save_model", action="store_true", help="Save model to local") parser.add_argument("--push_to_hub", action="store_true", help="Push model and image preprocessor to the hub") args = parser.parse_args() convert_superpoint_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub )
transformers/src/transformers/models/superpoint/convert_superpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/superpoint/convert_superpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 2864 }
167
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Swin2SR checkpoints from the original repository. URL: https://github.com/mv-lab/swin2sr""" import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import Swin2SRConfig, Swin2SRForImageSuperResolution, Swin2SRImageProcessor def get_config(checkpoint_url): config = Swin2SRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: config.upscale = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: config.upscale = 4 config.image_size = 48 config.upsampler = "pixelshuffle_aux" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: config.depths = [6, 6, 6, 6] config.embed_dim = 60 config.num_heads = [6, 6, 6, 6] config.upsampler = "pixelshuffledirect" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: config.upscale = 4 config.upsampler = "nearest+conv" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: config.num_channels = 1 config.upscale = 1 config.image_size = 126 config.window_size = 7 config.img_range = 255.0 config.upsampler = "" return config def rename_key(name, config): if "patch_embed.proj" in name and "layers" not in name: name = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection") if "patch_embed.norm" in name: name = name.replace("patch_embed.norm", "embeddings.patch_embeddings.layernorm") if "layers" in name: name = name.replace("layers", "encoder.stages") if "residual_group.blocks" in name: name = name.replace("residual_group.blocks", "layers") if "attn.proj" in name: name = name.replace("attn.proj", "attention.output.dense") if "attn" in name: name = name.replace("attn", "attention.self") if "norm1" in name: name = name.replace("norm1", "layernorm_before") if "norm2" in name: name = name.replace("norm2", "layernorm_after") if "mlp.fc1" in name: name = name.replace("mlp.fc1", "intermediate.dense") if "mlp.fc2" in name: name = name.replace("mlp.fc2", "output.dense") if "q_bias" in name: name = name.replace("q_bias", "query.bias") if "k_bias" in name: name = name.replace("k_bias", "key.bias") if "v_bias" in name: name = name.replace("v_bias", "value.bias") if "cpb_mlp" in name: name = name.replace("cpb_mlp", "continuous_position_bias_mlp") if "patch_embed.proj" in name: name = name.replace("patch_embed.proj", "patch_embed.projection") if name == "norm.weight": name = "layernorm.weight" if name == "norm.bias": name = "layernorm.bias" if "conv_first" in name: name = name.replace("conv_first", "first_convolution") if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: name = name.replace("conv_last", "final_convolution") if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: name = name.replace("conv_before_upsample.0", "conv_before_upsample") if "upsample.0" in name: name = name.replace("upsample.0", "upsample.convolution_0") if "upsample.2" in name: name = name.replace("upsample.2", "upsample.convolution_1") name = "upsample." + name elif config.upsampler == "pixelshuffledirect": name = name.replace("upsample.0.weight", "upsample.conv.weight") name = name.replace("upsample.0.bias", "upsample.conv.bias") else: pass else: name = "swin2sr." + name return name def convert_state_dict(orig_state_dict, config): for key in orig_state_dict.copy().keys(): val = orig_state_dict.pop(key) if "qkv" in key: key_split = key.split(".") stage_num = int(key_split[1]) block_num = int(key_split[4]) dim = config.embed_dim if "weight" in key: orig_state_dict[ f"swin2sr.encoder.stages.{stage_num}.layers.{block_num}.attention.self.query.weight" ] = val[:dim, :] orig_state_dict[f"swin2sr.encoder.stages.{stage_num}.layers.{block_num}.attention.self.key.weight"] = ( val[dim : dim * 2, :] ) orig_state_dict[ f"swin2sr.encoder.stages.{stage_num}.layers.{block_num}.attention.self.value.weight" ] = val[-dim:, :] else: orig_state_dict[f"swin2sr.encoder.stages.{stage_num}.layers.{block_num}.attention.self.query.bias"] = ( val[:dim] ) orig_state_dict[f"swin2sr.encoder.stages.{stage_num}.layers.{block_num}.attention.self.key.bias"] = ( val[dim : dim * 2] ) orig_state_dict[f"swin2sr.encoder.stages.{stage_num}.layers.{block_num}.attention.self.value.bias"] = ( val[-dim:] ) pass else: orig_state_dict[rename_key(key, config)] = val return orig_state_dict def convert_swin2sr_checkpoint(checkpoint_url, pytorch_dump_folder_path, push_to_hub): config = get_config(checkpoint_url) model = Swin2SRForImageSuperResolution(config) model.eval() state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") new_state_dict = convert_state_dict(state_dict, config) missing_keys, unexpected_keys = model.load_state_dict(new_state_dict, strict=False) if len(missing_keys) > 0: raise ValueError("Missing keys when converting: {}".format(missing_keys)) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f"Unexpected key {key} in state_dict") # verify values url = "https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true" image = Image.open(requests.get(url, stream=True).raw).convert("RGB") processor = Swin2SRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values image_size = 126 if "Jpeg" in checkpoint_url else 256 transforms = Compose( [ Resize((image_size, image_size)), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ] ) pixel_values = transforms(image).unsqueeze(0) if config.num_channels == 1: pixel_values = pixel_values[:, 0, :, :].unsqueeze(1) outputs = model(pixel_values) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: expected_shape = torch.Size([1, 3, 512, 512]) expected_slice = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: expected_shape = torch.Size([1, 3, 1024, 1024]) expected_slice = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here expected_shape = torch.Size([1, 3, 1024, 1024]) expected_slice = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: expected_shape = torch.Size([1, 3, 512, 512]) expected_slice = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: expected_shape = torch.Size([1, 3, 1024, 1024]) expected_slice = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), f"Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3], expected_slice, atol=1e-3) print("Looks ok!") url_to_name = { "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth": ( "swin2SR-classical-sr-x2-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth": ( "swin2SR-classical-sr-x4-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth": ( "swin2SR-compressed-sr-x4-48" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth": ( "swin2SR-lightweight-x2-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth": ( "swin2SR-realworld-sr-x4-64-bsrgan-psnr" ), } model_name = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving image processor to {pytorch_dump_folder_path}") processor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: model.push_to_hub(f"caidas/{model_name}") processor.push_to_hub(f"caidas/{model_name}") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth", type=str, help="URL of the original Swin2SR checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the converted model to the hub.") args = parser.parse_args() convert_swin2sr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
transformers/src/transformers/models/swin2sr/convert_swin2sr_original_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/swin2sr/convert_swin2sr_original_to_pytorch.py", "repo_id": "transformers", "token_count": 5322 }
168
# coding=utf-8 # Copyright 2022 Google LLC and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Convert T5X checkpoint to PyTorch Steps: - Install gsutil according to https://cloud.google.com/storage/docs/gsutil_install - Get a T5X checkpoint at https://github.com/google-research/t5x/blob/main/docs/models.md#t5-11-checkpoints Example: `gsutil -m cp -r gs://t5-data/pretrained_models/t5x/t5_1_1_small $HOME/` - Create or download a corresponding config for the downloaded model. E.g. for T5 v1.1 small, you can use https://huggingface.co/google/t5-v1_1-small/blob/main/config.json - Convert: ``` python3 convert_t5x_checkpoint_to_pytorch.py --t5x_checkpoint_path=$HOME/t5_1_1_small --config_file=config.json\ --pytorch_dump_path=$HOME/t5_1_1_small_pt ``` """ import argparse import collections import torch from flax import traverse_util from t5x import checkpoints from transformers import T5Config, T5EncoderModel, T5ForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def t5x_attention_lookup(params, i, prefix, layer_name="attention"): """Returns the KOQV parameters of (self-)attention. Does not transpose.""" k = params[f"{prefix}/layers_{i}/{layer_name}/key/kernel"] o = params[f"{prefix}/layers_{i}/{layer_name}/out/kernel"] q = params[f"{prefix}/layers_{i}/{layer_name}/query/kernel"] v = params[f"{prefix}/layers_{i}/{layer_name}/value/kernel"] return k, o, q, v def t5x_mlp_lookup(params, i, prefix, split_mlp_wi=False): """Returns the MLP parameters of a layer. Does not transpose.""" if split_mlp_wi: wi_0 = params[f"{prefix}/layers_{i}/mlp/wi_0/kernel"] wi_1 = params[f"{prefix}/layers_{i}/mlp/wi_1/kernel"] wi = (wi_0, wi_1) else: wi = params[f"{prefix}/layers_{i}/mlp/wi/kernel"] wo = params[f"{prefix}/layers_{i}/mlp/wo/kernel"] return wi, wo def t5x_layer_norm_lookup(params, i, prefix, layer_name): """Returns the layer norm param of a layer.""" return params[f"{prefix}/layers_{i}/{layer_name}/scale"] def convert_t5x_to_pytorch(variables: dict, *, num_layers: int, num_decoder_layers: int, is_encoder_only: bool): """Converts the parameters from T5X-Flax to Transformers-PyTorch.""" old = traverse_util.flatten_dict(variables["target"]) old = {"/".join(k): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi split_mlp_wi = "encoder/layers_0/mlp/wi_0/kernel" in old print("Split MLP:", split_mlp_wi) new = collections.OrderedDict() # Shared embeddings. new["shared.weight"] = old["token_embedder/embedding"] # Encoder. for i in range(num_layers): # Block i, layer 0 (Self Attention). layer_norm = t5x_layer_norm_lookup(old, i, "encoder", "pre_attention_layer_norm") k, o, q, v = t5x_attention_lookup(old, i, "encoder", "attention") new[f"encoder.block.{i}.layer.0.layer_norm.weight"] = layer_norm new[f"encoder.block.{i}.layer.0.SelfAttention.k.weight"] = k.T new[f"encoder.block.{i}.layer.0.SelfAttention.o.weight"] = o.T new[f"encoder.block.{i}.layer.0.SelfAttention.q.weight"] = q.T new[f"encoder.block.{i}.layer.0.SelfAttention.v.weight"] = v.T # Block i, layer 1 (MLP). layer_norm = t5x_layer_norm_lookup(old, i, "encoder", "pre_mlp_layer_norm") wi, wo = t5x_mlp_lookup(old, i, "encoder", split_mlp_wi) new[f"encoder.block.{i}.layer.1.layer_norm.weight"] = layer_norm if split_mlp_wi: new[f"encoder.block.{i}.layer.1.DenseReluDense.wi_0.weight"] = wi[0].T new[f"encoder.block.{i}.layer.1.DenseReluDense.wi_1.weight"] = wi[1].T else: new[f"encoder.block.{i}.layer.1.DenseReluDense.wi.weight"] = wi.T new[f"encoder.block.{i}.layer.1.DenseReluDense.wo.weight"] = wo.T new["encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight"] = old[ "encoder/relpos_bias/rel_embedding" ].T new["encoder.final_layer_norm.weight"] = old["encoder/encoder_norm/scale"] if not is_encoder_only: # Decoder. for i in range(num_decoder_layers): # Block i, layer 0 (Self Attention). layer_norm = t5x_layer_norm_lookup(old, i, "decoder", "pre_self_attention_layer_norm") k, o, q, v = t5x_attention_lookup(old, i, "decoder", "self_attention") new[f"decoder.block.{i}.layer.0.layer_norm.weight"] = layer_norm new[f"decoder.block.{i}.layer.0.SelfAttention.k.weight"] = k.T new[f"decoder.block.{i}.layer.0.SelfAttention.o.weight"] = o.T new[f"decoder.block.{i}.layer.0.SelfAttention.q.weight"] = q.T new[f"decoder.block.{i}.layer.0.SelfAttention.v.weight"] = v.T # Block i, layer 1 (Cross Attention). layer_norm = t5x_layer_norm_lookup(old, i, "decoder", "pre_cross_attention_layer_norm") k, o, q, v = t5x_attention_lookup(old, i, "decoder", "encoder_decoder_attention") new[f"decoder.block.{i}.layer.1.layer_norm.weight"] = layer_norm new[f"decoder.block.{i}.layer.1.EncDecAttention.k.weight"] = k.T new[f"decoder.block.{i}.layer.1.EncDecAttention.o.weight"] = o.T new[f"decoder.block.{i}.layer.1.EncDecAttention.q.weight"] = q.T new[f"decoder.block.{i}.layer.1.EncDecAttention.v.weight"] = v.T # Block i, layer 2 (MLP). layer_norm = t5x_layer_norm_lookup(old, i, "decoder", "pre_mlp_layer_norm") wi, wo = t5x_mlp_lookup(old, i, "decoder", split_mlp_wi) new[f"decoder.block.{i}.layer.2.layer_norm.weight"] = layer_norm if split_mlp_wi: new[f"decoder.block.{i}.layer.2.DenseReluDense.wi_0.weight"] = wi[0].T new[f"decoder.block.{i}.layer.2.DenseReluDense.wi_1.weight"] = wi[1].T else: new[f"decoder.block.{i}.layer.2.DenseReluDense.wi.weight"] = wi.T new[f"decoder.block.{i}.layer.2.DenseReluDense.wo.weight"] = wo.T new["decoder.final_layer_norm.weight"] = old["decoder/decoder_norm/scale"] new["decoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight"] = old[ "decoder/relpos_bias/rel_embedding" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: new["lm_head.weight"] = old["decoder/logits_dense/kernel"].T return new def make_state_dict(converted_params, is_encoder_only: bool): """Prepares a state dict for the PyTorch model.""" # Make a state dict with torch tensors. state_dict = collections.OrderedDict([(k, torch.from_numpy(v.copy())) for (k, v) in converted_params.items()]) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: state_dict["encoder.embed_tokens.weight"] = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: state_dict["decoder.embed_tokens.weight"] = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head.") state_dict["lm_head.weight"] = state_dict["shared.weight"] return state_dict def load_t5x_weights_in_t5(model, config, t5x_checkpoint_path, is_encoder_only): """Replaces the params in model witht the T5X converted params.""" variables = checkpoints.load_t5x_checkpoint(t5x_checkpoint_path) converted = convert_t5x_to_pytorch( variables, num_layers=config.num_layers, num_decoder_layers=config.num_decoder_layers, is_encoder_only=is_encoder_only, ) state_dict = make_state_dict(converted, is_encoder_only) model.load_state_dict(state_dict, strict=True) def convert_t5x_checkpoint_to_pytorch( t5x_checkpoint_path, config_file, pytorch_dump_path, is_encoder_only: bool = False ): """Loads the config and model, converts the T5X checkpoint, and saves a PyTorch checkpoint.""" # Initialise PyTorch model config = T5Config.from_json_file(config_file) print(f"Building PyTorch model from configuration: {config}") # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: model = T5EncoderModel(config) else: model = T5ForConditionalGeneration(config) # Load weights from tf checkpoint load_t5x_weights_in_t5(model, config, t5x_checkpoint_path, is_encoder_only) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}") model.save_pretrained(pytorch_dump_path) # Verify that we can load the checkpoint. model.from_pretrained(pytorch_dump_path) print("Done") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) args = parser.parse_args() convert_t5x_checkpoint_to_pytorch( args.t5x_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
transformers/src/transformers/models/t5/convert_t5x_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/t5/convert_t5x_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 4540 }
169
# coding=utf-8 # Copyright 2021 Google Research and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TF 2.0 TAPAS model.""" from __future__ import annotations import enum import math from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutputWithPastAndCrossAttentions, TFBaseModelOutputWithPooling, TFMaskedLMOutput, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import ( TFMaskedLanguageModelingLoss, TFModelInputType, TFPreTrainedModel, TFSequenceClassificationLoss, get_initializer, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, is_tensorflow_probability_available, logging, replace_return_docstrings, ) from .configuration_tapas import TapasConfig logger = logging.get_logger(__name__) # soft dependency if is_tensorflow_probability_available(): try: import tensorflow_probability as tfp # On the first call, check whether a compatible version of TensorFlow is installed # TensorFlow Probability depends on a recent stable release of TensorFlow n = tfp.distributions.Normal(loc=0.0, scale=1.0) except ImportError: logger.error( "TAPAS models are not usable since `tensorflow_probability` can't be loaded. " "It seems you have `tensorflow_probability` installed with the wrong tensorflow version. " "Please try to reinstall it following the instructions here: https://github.com/tensorflow/probability." ) else: try: import tensorflow_probability as tfp # On the first call, check whether a compatible version of TensorFlow is installed # TensorFlow Probability depends on a recent stable release of TensorFlow _ = tfp.distributions.Normal(loc=0.0, scale=1.0) except ImportError: pass _CONFIG_FOR_DOC = "TapasConfig" _CHECKPOINT_FOR_DOC = "google/tapas-base" EPSILON_ZERO_DIVISION = 1e-10 CLOSE_ENOUGH_TO_LOG_ZERO = -10000.0 @dataclass class TFTableQuestionAnsweringOutput(ModelOutput): """ Output type of [`TFTapasForQuestionAnswering`]. Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` (and possibly `answer`, `aggregation_labels`, `numeric_values` and `numeric_values_scale` are provided)): Total loss as the sum of the hierarchical cell selection log-likelihood loss and (optionally) the semi-supervised regression loss and (optionally) supervised loss for aggregations. logits (`tf.Tensor` of shape `(batch_size, sequence_length)`): Prediction scores of the cell selection head, for every token. logits_aggregation (`tf.Tensor`, *optional*, of shape `(batch_size, num_aggregation_labels)`): Prediction scores of the aggregation head, for every aggregation operator. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None logits: tf.Tensor = None logits_aggregation: tf.Tensor | None = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None class TFTapasEmbeddings(keras.layers.Layer): """ Construct the embeddings from word, position and token_type embeddings. Same as BertEmbeddings but with a number of additional token type embeddings to encode tabular structure. """ def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) self.config = config self.number_of_token_type_embeddings = len(config.type_vocab_sizes) self.reset_position_index_per_cell = config.reset_position_index_per_cell self.hidden_size = config.hidden_size self.max_position_embeddings = config.max_position_embeddings self.initializer_range = config.initializer_range self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) def build(self, input_shape=None): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.config.vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("position_embeddings"): self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.hidden_size], initializer=get_initializer(self.initializer_range), ) for i, type_vocab_size in enumerate(self.config.type_vocab_sizes): with tf.name_scope(f"token_type_embeddings_{i}"): setattr( self, f"token_type_embeddings_{i}", self.add_weight( name="embeddings", shape=[type_vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range), ), ) if self.built: return self.built = True if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) def call( self, input_ids: tf.Tensor = None, position_ids: tf.Tensor = None, token_type_ids: tf.Tensor = None, inputs_embeds: tf.Tensor = None, training: bool = False, ) -> tf.Tensor: """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ assert not (input_ids is None and inputs_embeds is None) if input_ids is not None: input_shape = shape_list(input_ids) else: input_shape = shape_list(inputs_embeds)[:-1] seq_length = input_shape[1] if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape + [self.number_of_token_type_embeddings], value=0) if position_ids is None: # create absolute position embeddings position_ids = tf.expand_dims(tf.range(start=0, limit=seq_length), axis=0) position_ids = tf.broadcast_to(position_ids, shape=input_shape) # when self.config.reset_position_index_per_cell is set to True, create relative position embeddings if self.reset_position_index_per_cell: # shape (batch_size, seq_len) col_index = IndexMap(token_type_ids[:, :, 1], self.config.type_vocab_sizes[1], batch_dims=1) # shape (batch_size, seq_len) row_index = IndexMap(token_type_ids[:, :, 2], self.config.type_vocab_sizes[2], batch_dims=1) # shape (batch_size, seq_len) full_index = ProductIndexMap(col_index, row_index) # shape (max_rows * max_columns,). First absolute position for every cell first_position_per_segment = reduce_min(position_ids, full_index)[0] # ? shape (batch_size, seq_len). First absolute position of the cell for every token first_position = gather(first_position_per_segment, full_index) # shape (1, seq_len) position = tf.expand_dims(tf.range(start=0, limit=seq_length), axis=0) position_ids = tf.math.minimum(self.max_position_embeddings - 1, position - first_position) if input_ids is not None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = tf.gather(params=self.weight, indices=input_ids) position_embeddings = tf.gather(self.position_embeddings, indices=position_ids) final_embeddings = inputs_embeds + position_embeddings for i in range(self.number_of_token_type_embeddings): name = f"token_type_embeddings_{i}" final_embeddings += tf.gather(params=getattr(self, name), indices=token_type_ids[:, :, i]) final_embeddings = self.LayerNorm(inputs=final_embeddings) final_embeddings = self.dropout(inputs=final_embeddings, training=training) return final_embeddings # Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention with Bert->Tapas class TFTapasSelfAttention(keras.layers.Layer): def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number " f"of attention heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.sqrt_att_head_size = math.sqrt(self.attention_head_size) self.query = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" ) self.value = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob) self.is_decoder = config.is_decoder self.config = config def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] return tf.transpose(tensor, perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor, encoder_attention_mask: tf.Tensor, past_key_value: Tuple[tf.Tensor], output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: batch_size = shape_list(hidden_states)[0] mixed_query_layer = self.query(inputs=hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) key_layer = tf.concat([past_key_value[0], key_layer], axis=2) value_layer = tf.concat([past_key_value[1], value_layer], axis=2) else: key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. # (batch size, num_heads, seq_len_q, seq_len_k) attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) attention_scores = tf.divide(attention_scores, dk) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in TFTapasModel call() function) attention_scores = tf.add(attention_scores, attention_mask) # Normalize the attention scores to probabilities. attention_probs = stable_softmax(logits=attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(inputs=attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = tf.multiply(attention_probs, head_mask) attention_output = tf.matmul(attention_probs, value_layer) attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, all_head_size) attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size)) outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "query", None) is not None: with tf.name_scope(self.query.name): self.query.build([None, None, self.config.hidden_size]) if getattr(self, "key", None) is not None: with tf.name_scope(self.key.name): self.key.build([None, None, self.config.hidden_size]) if getattr(self, "value", None) is not None: with tf.name_scope(self.value.name): self.value.build([None, None, self.config.hidden_size]) # Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->Tapas class TFTapasSelfOutput(keras.layers.Layer): def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.config = config def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) # Copied from transformers.models.bert.modeling_tf_bert.TFBertAttention with Bert->Tapas class TFTapasAttention(keras.layers.Layer): def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) self.self_attention = TFTapasSelfAttention(config, name="self") self.dense_output = TFTapasSelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call( self, input_tensor: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor, encoder_attention_mask: tf.Tensor, past_key_value: Tuple[tf.Tensor], output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: self_outputs = self.self_attention( hidden_states=input_tensor, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, training=training, ) attention_output = self.dense_output( hidden_states=self_outputs[0], input_tensor=input_tensor, training=training ) # add attentions (possibly with past_key_value) if we output them outputs = (attention_output,) + self_outputs[1:] return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attention", None) is not None: with tf.name_scope(self.self_attention.name): self.self_attention.build(None) if getattr(self, "dense_output", None) is not None: with tf.name_scope(self.dense_output.name): self.dense_output.build(None) # Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->Tapas class TFTapasIntermediate(keras.layers.Layer): def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) # Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->Tapas class TFTapasOutput(keras.layers.Layer): def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.config = config def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.intermediate_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) # Copied from transformers.models.bert.modeling_tf_bert.TFBertLayer with Bert->Tapas class TFTapasLayer(keras.layers.Layer): def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) self.attention = TFTapasAttention(config, name="attention") self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = TFTapasAttention(config, name="crossattention") self.intermediate = TFTapasIntermediate(config, name="intermediate") self.bert_output = TFTapasOutput(config, name="output") def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor | None, encoder_attention_mask: tf.Tensor | None, past_key_value: Tuple[tf.Tensor] | None, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( input_tensor=hidden_states, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=self_attn_past_key_value, output_attentions=output_attentions, training=training, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( input_tensor=attention_output, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, training=training, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value intermediate_output = self.intermediate(hidden_states=attention_output) layer_output = self.bert_output( hidden_states=intermediate_output, input_tensor=attention_output, training=training ) outputs = (layer_output,) + outputs # add attentions if we output them # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "intermediate", None) is not None: with tf.name_scope(self.intermediate.name): self.intermediate.build(None) if getattr(self, "bert_output", None) is not None: with tf.name_scope(self.bert_output.name): self.bert_output.build(None) if getattr(self, "crossattention", None) is not None: with tf.name_scope(self.crossattention.name): self.crossattention.build(None) # Copied from transformers.models.bert.modeling_tf_bert.TFBertEncoder with Bert->Tapas class TFTapasEncoder(keras.layers.Layer): def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) self.config = config self.layer = [TFTapasLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor | None, encoder_attention_mask: tf.Tensor | None, past_key_values: Tuple[Tuple[tf.Tensor]] | None, use_cache: Optional[bool], output_attentions: bool, output_hidden_states: bool, return_dict: bool, training: bool = False, ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) past_key_value = past_key_values[i] if past_key_values is not None else None layer_outputs = layer_module( hidden_states=hidden_states, attention_mask=attention_mask, head_mask=head_mask[i], encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, training=training, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if self.config.add_cross_attention and encoder_hidden_states is not None: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None ) return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None) # Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->Tapas class TFTapasPooler(keras.layers.Layer): def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(inputs=first_token_tensor) return pooled_output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) # Copied from transformers.models.bert.modeling_tf_bert.TFBertPredictionHeadTransform with Bert->Tapas class TFTapasPredictionHeadTransform(keras.layers.Layer): def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense", ) if isinstance(config.hidden_act, str): self.transform_act_fn = get_tf_activation(config.hidden_act) else: self.transform_act_fn = config.hidden_act self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(inputs=hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) # Copied from transformers.models.bert.modeling_tf_bert.TFBertLMPredictionHead with Bert->Tapas class TFTapasLMPredictionHead(keras.layers.Layer): def __init__(self, config: TapasConfig, input_embeddings: keras.layers.Layer, **kwargs): super().__init__(**kwargs) self.config = config self.hidden_size = config.hidden_size self.transform = TFTapasPredictionHeadTransform(config, name="transform") # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.input_embeddings = input_embeddings def build(self, input_shape=None): self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") if self.built: return self.built = True if getattr(self, "transform", None) is not None: with tf.name_scope(self.transform.name): self.transform.build(None) def get_output_embeddings(self) -> keras.layers.Layer: return self.input_embeddings def set_output_embeddings(self, value: tf.Variable): self.input_embeddings.weight = value self.input_embeddings.vocab_size = shape_list(value)[0] def get_bias(self) -> Dict[str, tf.Variable]: return {"bias": self.bias} def set_bias(self, value: tf.Variable): self.bias = value["bias"] self.config.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.transform(hidden_states=hidden_states) seq_length = shape_list(hidden_states)[1] hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size]) hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True) hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) return hidden_states # Copied from transformers.models.bert.modeling_tf_bert.TFBertMLMHead with Bert->Tapas class TFTapasMLMHead(keras.layers.Layer): def __init__(self, config: TapasConfig, input_embeddings: keras.layers.Layer, **kwargs): super().__init__(**kwargs) self.predictions = TFTapasLMPredictionHead(config, input_embeddings, name="predictions") def call(self, sequence_output: tf.Tensor) -> tf.Tensor: prediction_scores = self.predictions(hidden_states=sequence_output) return prediction_scores def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "predictions", None) is not None: with tf.name_scope(self.predictions.name): self.predictions.build(None) @keras_serializable class TFTapasMainLayer(keras.layers.Layer): config_class = TapasConfig def __init__(self, config: TapasConfig, add_pooling_layer: bool = True, **kwargs): super().__init__(**kwargs) self.config = config self.embeddings = TFTapasEmbeddings(config, name="embeddings") self.encoder = TFTapasEncoder(config, name="encoder") self.pooler = TFTapasPooler(config, name="pooler") if add_pooling_layer else None def get_input_embeddings(self) -> keras.layers.Layer: return self.embeddings def set_input_embeddings(self, value: tf.Variable): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if attention_mask is None: attention_mask = tf.fill(dims=input_shape, value=1) if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape + [len(self.config.type_vocab_sizes)], value=0) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, training=training, ) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1])) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype) one_cst = tf.constant(1.0, dtype=embedding_output.dtype) ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype) extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.config.num_hidden_layers encoder_outputs = self.encoder( hidden_states=embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None if not return_dict: return ( sequence_output, pooled_output, ) + encoder_outputs[1:] return TFBaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "pooler", None) is not None: with tf.name_scope(self.pooler.name): self.pooler.build(None) class TFTapasPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = TapasConfig base_model_prefix = "tapas" @property def input_signature(self): return { "input_ids": tf.TensorSpec((None, None), tf.int32, name="input_ids"), "attention_mask": tf.TensorSpec((None, None), tf.float32, name="attention_mask"), "token_type_ids": tf.TensorSpec((None, None, 7), tf.int32, name="token_type_ids"), } TAPAS_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`TapasConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ TAPAS_INPUTS_DOCSTRING = r""" Args: input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`np.ndarray` or `tf.Tensor` of shape `({0}, 7)`, *optional*): Token indices that encode tabular structure. Indices can be obtained using [`AutoTokenizer`]. See this class for more info. [What are token type IDs?](../glossary#token-type-ids) position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. If `reset_position_index_per_cell` of [`TapasConfig`] is set to `True`, relative position embeddings will be used. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`np.ndarray` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False``): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare Tapas Model transformer outputting raw hidden-states without any specific head on top.", TAPAS_START_DOCSTRING, ) class TFTapasModel(TFTapasPreTrainedModel): def __init__(self, config: TapasConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.tapas = TFTapasMainLayer(config, name="tapas") @unpack_inputs @add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: r""" Returns: Examples: ```python >>> from transformers import AutoTokenizer, TapasModel >>> import pandas as pd >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base") >>> model = TapasModel.from_pretrained("google/tapas-base") >>> data = { ... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], ... "Age": ["56", "45", "59"], ... "Number of movies": ["87", "53", "69"], ... } >>> table = pd.DataFrame.from_dict(data) >>> queries = ["How many movies has George Clooney played in?", "How old is Brad Pitt?"] >>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="tf") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ```""" outputs = self.tapas( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "tapas", None) is not None: with tf.name_scope(self.tapas.name): self.tapas.build(None) @add_start_docstrings("""Tapas Model with a `language modeling` head on top.""", TAPAS_START_DOCSTRING) class TFTapasForMaskedLM(TFTapasPreTrainedModel, TFMaskedLanguageModelingLoss): def __init__(self, config: TapasConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) if config.is_decoder: logger.warning( "If you want to use `TFTapasForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.tapas = TFTapasMainLayer(config, add_pooling_layer=False, name="tapas") self.lm_head = TFTapasMLMHead(config, input_embeddings=self.tapas.embeddings, name="cls") def get_lm_head(self) -> keras.layers.Layer: return self.lm_head.predictions @unpack_inputs @add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` Returns: Examples: ```python >>> from transformers import AutoTokenizer, TapasForMaskedLM >>> import pandas as pd >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base") >>> model = TapasForMaskedLM.from_pretrained("google/tapas-base") >>> data = { ... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], ... "Age": ["56", "45", "59"], ... "Number of movies": ["87", "53", "69"], ... } >>> table = pd.DataFrame.from_dict(data) >>> inputs = tokenizer( ... table=table, queries="How many [MASK] has George [MASK] played in?", return_tensors="tf" ... ) >>> labels = tokenizer( ... table=table, queries="How many movies has George Clooney played in?", return_tensors="tf" ... )["input_ids"] >>> outputs = model(**inputs, labels=labels) >>> logits = outputs.logits ```""" outputs = self.tapas( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=prediction_scores) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "tapas", None) is not None: with tf.name_scope(self.tapas.name): self.tapas.build(None) if getattr(self, "lm_head", None) is not None: with tf.name_scope(self.lm_head.name): self.lm_head.build(None) class TFTapasComputeTokenLogits(keras.layers.Layer): def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) self.temperature = config.temperature # cell selection heads with tf.name_scope("output"): self.output_weights = self.add_weight( name="output_weights", shape=(config.hidden_size,), dtype=tf.float32, trainable=True, initializer=tf.zeros_initializer() if config.init_cell_selection_weights_to_zero else keras.initializers.TruncatedNormal(stddev=config.initializer_range), ) self.output_bias = self.add_weight( name="output_bias", shape=(), trainable=True, initializer=tf.zeros_initializer() ) def call(self, sequence_output: tf.Tensor) -> tf.Tensor: """ Computes logits per token Args: sequence_output (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Also known as last_hidden_state. Sequence of hidden-states at the output of the last layer of the model. Returns: logits (`tf.Tensor` of shape `(batch_size, sequence_length)`): Logits per token. """ logits = (tf.einsum("bsj,j->bs", sequence_output, self.output_weights) + self.output_bias) / self.temperature return logits class TFTapasComputeColumnLogits(keras.layers.Layer): def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) with tf.name_scope("column_output"): self.column_output_weights = self.add_weight( name="column_output_weights", shape=[config.hidden_size], dtype=tf.float32, trainable=True, initializer=tf.zeros_initializer() if config.init_cell_selection_weights_to_zero else keras.initializers.TruncatedNormal(stddev=config.initializer_range), ) self.column_output_bias = self.add_weight( name="column_output_bias", shape=(), trainable=True, initializer=tf.zeros_initializer() ) def call(self, sequence_output, cell_index, cell_mask, allow_empty_column_selection) -> tf.Tensor: """ Computes the column logits. Args: sequence_output (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Also known as last_hidden_state. Sequence of hidden-states at the output of the last layer of the model. cell_index (`ProductIndexMap`): Index that groups tokens into cells. cell_mask (`tf.Tensor` of shape `(batch_size, max_num_rows * max_num_cols)`): Mask for cells that exist in the table (i.e. that are not padding). allow_empty_column_selection (`bool`): Whether to allow not to select any column Returns: column_logits (`tf.Tensor`of shape `(batch_size, max_num_cols)`): Tensor containing the column logits for every example in the batch. """ # First, compute the token logits (batch_size, seq_len) - without temperature token_logits = tf.einsum("bsj,j->bs", sequence_output, self.column_output_weights) + self.column_output_bias # Next, average the logits per cell (batch_size, max_num_cols*max_num_rows) cell_logits, cell_logits_index = reduce_mean(token_logits, cell_index) # Finally, average the logits per column (batch_size, max_num_cols) column_index = cell_index.project_inner(cell_logits_index) column_logits, out_index = reduce_sum(cell_logits * cell_mask, column_index) cell_count, _ = reduce_sum(cell_mask, column_index) column_logits /= cell_count + EPSILON_ZERO_DIVISION # Mask columns that do not appear in the example. is_padding = tf.logical_and(cell_count < 0.5, tf.not_equal(out_index.indices, 0)) column_logits += CLOSE_ENOUGH_TO_LOG_ZERO * tf.cast(is_padding, tf.float32) if not allow_empty_column_selection: column_logits += CLOSE_ENOUGH_TO_LOG_ZERO * tf.cast(tf.equal(out_index.indices, 0), tf.float32) return column_logits @add_start_docstrings( """ Tapas Model with a cell selection head and optional aggregation head on top for question-answering tasks on tables (linear layers on top of the hidden-states output to compute `logits` and optional `logits_aggregation`), e.g. for SQA, WTQ or WikiSQL-supervised tasks. """, TAPAS_START_DOCSTRING, ) class TFTapasForQuestionAnswering(TFTapasPreTrainedModel): def __init__(self, config: TapasConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) # base model self.tapas = TFTapasMainLayer(config, name="tapas") # dropout self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.compute_token_logits = TFTapasComputeTokenLogits(config, name="compute_token_logits") self.compute_column_logits = TFTapasComputeColumnLogits(config, name="compute_column_logits") if config.num_aggregation_labels > 0: self.aggregation_classifier = keras.layers.Dense( config.num_aggregation_labels, kernel_initializer=get_initializer(config.initializer_range), name="aggregation_classifier", ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFTableQuestionAnsweringOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, table_mask: np.ndarray | tf.Tensor | None = None, aggregation_labels: np.ndarray | tf.Tensor | None = None, float_answer: np.ndarray | tf.Tensor | None = None, numeric_values: np.ndarray | tf.Tensor | None = None, numeric_values_scale: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFTableQuestionAnsweringOutput, Tuple[tf.Tensor]]: r""" table_mask (`tf.Tensor` of shape `(batch_size, seq_length)`, *optional*): Mask for the table. Indicates which tokens belong to the table (1). Question tokens, table headers and padding are 0. labels (`tf.Tensor` of shape `(batch_size, seq_length)`, *optional*): Labels per token for computing the hierarchical cell selection loss. This encodes the positions of the answer appearing in the table. Can be obtained using [`AutoTokenizer`]. - 1 for tokens that are **part of the answer**, - 0 for tokens that are **not part of the answer**. aggregation_labels (`tf.Tensor` of shape `(batch_size, )`, *optional*): Aggregation function index for every example in the batch for computing the aggregation loss. Indices should be in `[0, ..., config.num_aggregation_labels - 1]`. Only required in case of strong supervision for aggregation (WikiSQL-supervised). float_answer (`tf.Tensor` of shape `(batch_size, )`, *optional*): Float answer for every example in the batch. Set to *float('nan')* for cell selection questions. Only required in case of weak supervision (WTQ) to calculate the aggregate mask and regression loss. numeric_values (`tf.Tensor` of shape `(batch_size, seq_length)`, *optional*): Numeric values of every token, NaN for tokens which are not numeric values. Can be obtained using [`AutoTokenizer`]. Only required in case of weak supervision for aggregation (WTQ) to calculate the regression loss. numeric_values_scale (`tf.Tensor` of shape `(batch_size, seq_length)`, *optional*): Scale of the numeric values of every token. Can be obtained using [`AutoTokenizer`]. Only required in case of weak supervision for aggregation (WTQ) to calculate the regression loss. Returns: Examples: ```python >>> from transformers import AutoTokenizer, TapasForQuestionAnswering >>> import pandas as pd >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base-finetuned-wtq") >>> model = TapasForQuestionAnswering.from_pretrained("google/tapas-base-finetuned-wtq") >>> data = { ... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], ... "Age": ["56", "45", "59"], ... "Number of movies": ["87", "53", "69"], ... } >>> table = pd.DataFrame.from_dict(data) >>> queries = ["How many movies has George Clooney played in?", "How old is Brad Pitt?"] >>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="tf") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> logits_aggregation = outputs.logits_aggregation ```""" outputs = self.tapas( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] pooled_output = outputs[1] sequence_output = self.dropout(sequence_output) if input_ids is not None: input_shape = shape_list(input_ids) else: input_shape = shape_list(inputs_embeds)[:-1] # Construct indices for the table. if token_type_ids is None: token_type_ids = tf.fill(input_shape + [len(self.config.type_vocab_sizes)], 0) token_types = [ "segment_ids", "column_ids", "row_ids", "prev_labels", "column_ranks", "inv_column_ranks", "numeric_relations", ] row_ids = token_type_ids[:, :, token_types.index("row_ids")] column_ids = token_type_ids[:, :, token_types.index("column_ids")] # Construct indices for the table. row_index = IndexMap( indices=tf.minimum(tf.cast(row_ids, tf.int32), self.config.max_num_rows - 1), num_segments=self.config.max_num_rows, batch_dims=1, ) col_index = IndexMap( indices=tf.minimum(tf.cast(column_ids, tf.int32), self.config.max_num_columns - 1), num_segments=self.config.max_num_columns, batch_dims=1, ) cell_index = ProductIndexMap(row_index, col_index) # Masks. input_shape = shape_list(input_ids) if input_ids is not None else shape_list(inputs_embeds)[:-1] if attention_mask is None: attention_mask = tf.ones(input_shape) # Table cells only, without question tokens and table headers. if table_mask is None: table_mask = tf.where(row_ids > 0, tf.ones_like(row_ids), tf.zeros_like(row_ids)) # <float32>[batch_size, seq_length] input_mask_float = tf.cast(attention_mask, tf.float32) table_mask_float = tf.cast(table_mask, tf.float32) # Mask for cells that exist in the table (i.e. that are not padding). cell_mask, _ = reduce_mean(input_mask_float, cell_index) # Compute logits per token. These are used to select individual cells. logits = self.compute_token_logits(sequence_output) # Compute logits per column. These are used to select a column. column_logits = None if self.config.select_one_column: column_logits = self.compute_column_logits( sequence_output, cell_index, cell_mask, self.config.allow_empty_column_selection ) # Aggregate logits. logits_aggregation = None if self.config.num_aggregation_labels > 0: logits_aggregation = self.aggregation_classifier(pooled_output) # Total loss calculation total_loss = tf.zeros(shape=(1,), dtype=tf.float32) calculate_loss = False if labels is not None: calculate_loss = True is_supervised = not self.config.num_aggregation_labels > 0 or not self.config.use_answer_as_supervision # Semi-supervised cell selection in case of no aggregation: # If the answer (the denotation) appears directly in the table we might # select the answer without applying any aggregation function. There are # some ambiguous cases, see utils._calculate_aggregate_mask for more info. # `aggregate_mask` is 1 for examples where we chose to aggregate and 0 # for examples where we chose to select the answer directly. # `labels` encodes the positions of the answer appearing in the table. if is_supervised: aggregate_mask = None else: if float_answer is not None: assert ( shape_list(labels)[0] == shape_list(float_answer)[0] ), "Make sure the answers are a FloatTensor of shape (batch_size,)" # <float32>[batch_size] aggregate_mask = _calculate_aggregate_mask( float_answer, pooled_output, self.config.cell_selection_preference, labels, self.aggregation_classifier, ) else: aggregate_mask = None raise ValueError("You have to specify float answers in order to calculate the aggregate mask") # Cell selection log-likelihood if self.config.average_logits_per_cell: logits_per_cell, _ = reduce_mean(logits, cell_index) logits = gather(logits_per_cell, cell_index) dist_per_token = tfp.distributions.Bernoulli(logits=logits) # Compute cell selection loss per example. selection_loss_per_example = None if not self.config.select_one_column: weight = tf.where( labels == 0, tf.ones_like(labels, dtype=tf.float32), self.config.positive_label_weight * tf.ones_like(labels, dtype=tf.float32), ) selection_loss_per_token = -dist_per_token.log_prob(labels) * weight selection_loss_per_example = tf.reduce_sum(selection_loss_per_token * input_mask_float, axis=1) / ( tf.reduce_sum(input_mask_float, axis=1) + EPSILON_ZERO_DIVISION ) else: selection_loss_per_example, logits = _single_column_cell_selection_loss( logits, column_logits, labels, cell_index, col_index, cell_mask ) dist_per_token = tfp.distributions.Bernoulli(logits=logits) # Supervised cell selection if self.config.disable_per_token_loss: pass elif is_supervised: total_loss += tf.reduce_mean(selection_loss_per_example) else: # For the not supervised case, do not assign loss for cell selection total_loss += tf.reduce_mean(selection_loss_per_example * (1.0 - aggregate_mask)) # Semi-supervised regression loss and supervised loss for aggregations if self.config.num_aggregation_labels > 0: if is_supervised: # Note that `aggregate_mask` is None if the setting is supervised. if aggregation_labels is not None: assert ( shape_list(labels)[0] == shape_list(aggregation_labels)[0] ), "Make sure the aggregation labels are a LongTensor of shape (batch_size,)" per_example_additional_loss = _calculate_aggregation_loss( logits_aggregation, aggregate_mask, aggregation_labels, self.config.use_answer_as_supervision, self.config.num_aggregation_labels, self.config.aggregation_loss_weight, ) else: raise ValueError( "You have to specify aggregation labels in order to calculate the aggregation loss" ) else: aggregation_labels = tf.zeros(shape_list(labels)[0], dtype=tf.int32) per_example_additional_loss = _calculate_aggregation_loss( logits_aggregation, aggregate_mask, aggregation_labels, self.config.use_answer_as_supervision, self.config.num_aggregation_labels, self.config.aggregation_loss_weight, ) if self.config.use_answer_as_supervision: if numeric_values is not None and numeric_values_scale is not None: assert shape_list(numeric_values) == shape_list(numeric_values_scale) # Add regression loss for numeric answers which require aggregation. answer_loss, large_answer_loss_mask = _calculate_regression_loss( float_answer, aggregate_mask, dist_per_token, numeric_values, numeric_values_scale, table_mask_float, logits_aggregation, self.config, ) per_example_additional_loss += answer_loss # Zero loss for examples with answer_loss > cutoff. per_example_additional_loss *= large_answer_loss_mask else: raise ValueError( "You have to specify numeric values and numeric values scale in order to calculate the" " regression loss" ) total_loss += tf.reduce_mean(per_example_additional_loss) else: # if no label ids are provided, set them to zeros in order to properly compute logits labels = tf.zeros_like(logits) _, logits = _single_column_cell_selection_loss( logits, column_logits, labels, cell_index, col_index, cell_mask ) if not return_dict: output = (logits, logits_aggregation) + outputs[2:] return ((total_loss,) + output) if calculate_loss else output return TFTableQuestionAnsweringOutput( loss=total_loss if calculate_loss else None, logits=logits, logits_aggregation=logits_aggregation, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "tapas", None) is not None: with tf.name_scope(self.tapas.name): self.tapas.build(None) if getattr(self, "compute_token_logits", None) is not None: with tf.name_scope(self.compute_token_logits.name): self.compute_token_logits.build(None) if getattr(self, "compute_column_logits", None) is not None: with tf.name_scope(self.compute_column_logits.name): self.compute_column_logits.build(None) if getattr(self, "aggregation_classifier", None) is not None: with tf.name_scope(self.aggregation_classifier.name): self.aggregation_classifier.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ Tapas Model with a sequence classification head on top (a linear layer on top of the pooled output), e.g. for table entailment tasks, such as TabFact (Chen et al., 2020). """, TAPAS_START_DOCSTRING, ) class TFTapasForSequenceClassification(TFTapasPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: TapasConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.tapas = TFTapasMainLayer(config, name="tapas") self.dropout = keras.layers.Dropout(config.hidden_dropout_prob, name="dropout") self.classifier = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @replace_return_docstrings(output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Note: this is called "classification_class_index" in the original implementation. Returns: Examples: ```python >>> from transformers import AutoTokenizer, TapasForSequenceClassification >>> import tensorflow as tf >>> import pandas as pd >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base-finetuned-tabfact") >>> model = TapasForSequenceClassification.from_pretrained("google/tapas-base-finetuned-tabfact") >>> data = { ... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], ... "Age": ["56", "45", "59"], ... "Number of movies": ["87", "53", "69"], ... } >>> table = pd.DataFrame.from_dict(data) >>> queries = [ ... "There is only one actor who is 45 years old", ... "There are 3 actors which played in more than 60 movies", ... ] >>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="tf") >>> labels = tf.convert_to_tensor([1, 0]) # 1 means entailed, 0 means refuted >>> outputs = model(**inputs, labels=labels) >>> loss = outputs.loss >>> logits = outputs.logits ```""" outputs = self.tapas( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs[1] pooled_output = self.dropout(inputs=pooled_output, training=training) logits = self.classifier(inputs=pooled_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "tapas", None) is not None: with tf.name_scope(self.tapas.name): self.tapas.build(None) if getattr(self, "dropout", None) is not None: with tf.name_scope(self.dropout.name): self.dropout.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) """ TAPAS utilities.""" class AverageApproximationFunction(str, enum.Enum): RATIO = "ratio" FIRST_ORDER = "first_order" SECOND_ORDER = "second_order" # Beginning of everything related to segmented tensors class IndexMap: """Index grouping entries within a tensor.""" def __init__(self, indices, num_segments, batch_dims=0): """ Creates an index. Args: indices: <int32> Tensor of indices, same shape as `values`. num_segments: <int32> Scalar tensor, the number of segments. All elements in a batched segmented tensor must have the same number of segments (although many segments can be empty). batch_dims: Python integer, the number of batch dimensions. The first `batch_dims` dimensions of a SegmentedTensor are treated as batch dimensions. Segments in different batch elements are always distinct even if they have the same index. """ self.indices = tf.convert_to_tensor(indices) self.num_segments = tf.convert_to_tensor(num_segments) self.batch_dims = batch_dims def batch_shape(self): return tf.shape(self.indices)[: self.batch_dims] class ProductIndexMap(IndexMap): """The product of two indices.""" def __init__(self, outer_index, inner_index): """ Combines indices i and j into pairs (i, j). The result is an index where each segment (i, j) is the intersection of segments i and j. For example if the inputs represent table cells indexed by respectively rows and columns the output will be a table indexed by (row, column) pairs, i.e. by cell. The implementation combines indices {0, .., n - 1} and {0, .., m - 1} into {0, .., nm - 1}. The output has `num_segments` equal to `outer_index.num_segements` * `inner_index.num_segments`. Args: outer_index: IndexMap. inner_index: IndexMap, must have the same shape as `outer_index`. """ if outer_index.batch_dims != inner_index.batch_dims: raise ValueError("outer_index.batch_dims and inner_index.batch_dims must be the same.") super(ProductIndexMap, self).__init__( indices=( inner_index.indices + outer_index.indices * tf.cast(inner_index.num_segments, inner_index.indices.dtype) ), num_segments=inner_index.num_segments * outer_index.num_segments, batch_dims=inner_index.batch_dims, ) self.outer_index = outer_index self.inner_index = inner_index def project_outer(self, index): """Projects an index with the same index set onto the outer components.""" return IndexMap( indices=tf.math.floordiv(index.indices, self.inner_index.num_segments), num_segments=self.outer_index.num_segments, batch_dims=index.batch_dims, ) def project_inner(self, index): """Projects an index with the same index set onto the inner components.""" return IndexMap( indices=tf.math.floormod(index.indices, self.inner_index.num_segments), num_segments=self.inner_index.num_segments, batch_dims=index.batch_dims, ) def gather(values, index, name="segmented_gather"): """ Gathers from `values` using the index map. For each element in the domain of the index map this operation looks up a value for that index in `values`. Two elements from the same segment always get assigned the same value. Args: values: [B1, ..., Bn, num_segments, V1, ...] Tensor with segment values. index: [B1, ..., Bn, I1, ..., Ik] IndexMap. name: Name for the TensorFlow operation. Returns: [B1, ..., Bn, I1, ..., Ik, V1, ...] Tensor with the gathered values. """ return tf.gather(values, index.indices, batch_dims=index.batch_dims, name=name) def flatten(index, name="segmented_flatten"): """ Flattens a batched index map to a 1d index map. This operation relabels the segments to keep batch elements distinct. The k-th batch element will have indices shifted by `num_segments` * (k - 1). The result is a tensor with `num_segments` multiplied by the number of elements in the batch. Args: index: IndexMap to flatten. name: Name for the TensorFlow operation. Returns: The flattened IndexMap. """ batch_size = tf.reduce_prod(index.batch_shape()) offset = tf.range(batch_size) * index.num_segments offset = tf.reshape(offset, index.batch_shape()) for _ in range(index.batch_dims, index.indices.shape.rank): offset = tf.expand_dims(offset, -1) indices = tf.cast(offset, index.indices.dtype) + index.indices return IndexMap(indices=tf.reshape(indices, [-1]), num_segments=index.num_segments * batch_size, batch_dims=0) def range_index_map(batch_shape, num_segments, name="range_index_map"): """ Constructs an index map equal to range(num_segments). Args: batch_shape (`tf.Tensor`): Batch shape num_segments (`int`): Number of segments name (`str`, *optional*, defaults to 'range_index_map'): Name for the operation. Currently not used Returns: (`IndexMap`): IndexMap of shape batch_shape with elements equal to range(num_segments). """ batch_shape = tf.convert_to_tensor(batch_shape) batch_shape.shape.assert_has_rank(1) num_segments = tf.convert_to_tensor(num_segments) num_segments.shape.assert_has_rank(0) indices = tf.range(num_segments) shape = tf.concat([tf.ones_like(batch_shape, dtype=tf.int32), tf.expand_dims(num_segments, axis=0)], axis=0) indices = tf.reshape(indices, shape) multiples = tf.concat([batch_shape, [1]], axis=0) indices = tf.tile(indices, multiples) return IndexMap(indices=indices, num_segments=num_segments, batch_dims=batch_shape.shape.as_list()[0]) def _segment_reduce(values, index, segment_reduce_fn, name): """ Applies a segment reduction segment-wise. Args: values (`tf.Tensor`): Tensor with segment values. index (`IndexMap`): IndexMap. segment_reduce_fn (`str`): Name for the reduce operation. One of "sum", "mean", "max" or "min". name (`str`): Name for the operation. Currently not used Returns: (`IndexMap`): IndexMap of shape batch_shape with elements equal to range(num_segments). """ # Flatten the batch dimensions, as segments ops do not support batching. # However if `values` has extra dimensions to the right keep them # unflattened. Segmented ops support vector-valued operations. flat_index = flatten(index) vector_shape = tf.shape(values)[index.indices.shape.rank :] flattened_shape = tf.concat([[-1], vector_shape], axis=0) flat_values = tf.reshape(values, flattened_shape) segment_means = segment_reduce_fn( data=flat_values, segment_ids=flat_index.indices, num_segments=flat_index.num_segments ) # Unflatten the values. new_shape = tf.concat([index.batch_shape(), [index.num_segments], vector_shape], axis=0) output_values = tf.reshape(segment_means, new_shape) output_index = range_index_map(index.batch_shape(), index.num_segments) return output_values, output_index def reduce_mean(values, index, name="segmented_reduce_mean"): """ Averages a tensor over its segments. Outputs 0 for empty segments. This operations computes the mean over segments, with support for: - Batching using the first dimensions [B1, B2, ..., Bn]. Each element in a batch can have different indices. - Vectorization using the last dimension [V1, V2, ...]. If they are present the output will be a mean of vectors rather than scalars. Only the middle dimensions [I1, ..., Ik] are reduced by the operation. Args: values: [B1, B2, ..., Bn, I1, .., Ik, V1, V2, ..] tensor of values to be averaged. index: IndexMap [B1, B2, ..., Bn, I1, .., Ik] index defining the segments. name: Name for the TensorFlow ops. Returns: A pair (output_values, output_index) where `output_values` is a tensor of shape [B1, B2, ..., Bn, num_segments, V1, V2, ..] and `index` is an IndexMap with shape [B1, B2, ..., Bn, num_segments]. """ return _segment_reduce(values, index, tf.math.unsorted_segment_mean, name) def reduce_sum(values, index, name="segmented_reduce_sum"): """ Sums a tensor over its segments. Outputs 0 for empty segments. This operations computes the sum over segments, with support for: - Batching using the first dimensions [B1, B2, ..., Bn]. Each element in a batch can have different indices. - Vectorization using the last dimension [V1, V2, ...]. If they are present the output will be a sum of vectors rather than scalars. Only the middle dimensions [I1, ..., Ik] are reduced by the operation. Args: values: [B1, B2, ..., Bn, I1, .., Ik, V1, V2, ..] tensor of values to be averaged. index: IndexMap [B1, B2, ..., Bn, I1, .., Ik] index defining the segments. name: Name for the TensorFlow ops. Returns: A pair (output_values, output_index) where `output_values` is a tensor of shape [B1, B2, ..., Bn, num_segments, V1, V2, ..] and `index` is an IndexMap with shape [B1, B2, ..., Bn, num_segments]. """ return _segment_reduce(values, index, tf.math.unsorted_segment_sum, name) def reduce_max(values, index, name="segmented_reduce_max"): """ Computes the maximum over segments. This operations computes the maximum over segments, with support for: - Batching using the first dimensions [B1, B2, ..., Bn]. Each element in a batch can have different indices. - Vectorization using the last dimension [V1, V2, ...]. If they are present the output will be an element-wise maximum of vectors rather than scalars. Only the middle dimensions [I1, ..., Ik] are reduced by the operation. Args: values: [B1, B2, ..., Bn, I1, .., Ik, V1, V2, ..] tensor of values to be averaged. index: IndexMap [B1, B2, ..., Bn, I1, .., Ik] index defining the segments. name: Name for the TensorFlow ops. Returns: A pair (output_values, output_index) where `output_values` is a tensor of shape [B1, B2, ..., Bn, num_segments, V1, V2, ..] and `index` is an IndexMap with shape [B1, B2, ..., Bn, num_segments]. """ return _segment_reduce(values, index, tf.math.unsorted_segment_max, name) def reduce_min(values, index, name="segmented_reduce_min"): """Computes the minimum over segments.""" return _segment_reduce(values, index, tf.math.unsorted_segment_min, name) def _single_column_cell_selection_loss(token_logits, column_logits, labels, cell_index, col_index, cell_mask): """ Computes the loss for cell selection constrained to a single column. The loss is a hierarchical log-likelihood. The model first predicts a column and then selects cells within that column (conditioned on the column). Cells outside the selected column are never selected. Args: token_logits (`tf.Tensor` of shape `(batch_size, sequence_length)`): Tensor containing the logits per token. column_logits (`tf.Tensor` of shape `(batch_size, max_num_cols)`): Tensor containing the logits per column. labels (`tf.Tensor` of shape `(batch_size, sequence_length)`): Labels per token. cell_index (`ProductIndexMap`): Index that groups tokens into cells. col_index (`IndexMap`): Index that groups tokens into columns. cell_mask (`tf.Tensor` of shape `(batch_size, max_num_rows * max_num_cols)`): Mask for cells that exist in the table (i.e. that are not padding). Returns: selection_loss_per_example (`tf.Tensor` of shape `(batch_size,)`): Loss for each example. logits (`tf.Tensor` of shape `(batch_size, sequence_length)`): New logits which are only allowed to select cells in a single column. Logits outside of the most likely column according to *column_logits* will be set to a very low value (such that the probabilities are 0). """ # First find the column we should select. We use the column with maximum # number of selected cells. labels_per_column, _ = reduce_sum(tf.cast(labels, tf.float32), col_index) column_label = tf.argmax(labels_per_column, axis=-1, output_type=tf.int32) # Check if there are no selected cells in the column. In that case the model # should predict the special column id 0, which means "select nothing". no_cell_selected = tf.equal(tf.reduce_max(labels_per_column, axis=-1), 0) column_label = tf.where(no_cell_selected, tf.zeros_like(column_label), column_label) column_dist = tfp.distributions.Categorical(logits=column_logits) column_loss_per_example = -column_dist.log_prob(column_label) # Reduce the labels and logits to per-cell from per-token. logits_per_cell, _ = reduce_mean(token_logits, cell_index) labels_per_cell, labels_index = reduce_max(tf.cast(labels, tf.int32), cell_index) # Mask for the selected column. column_id_for_cells = cell_index.project_inner(labels_index).indices column_mask = tf.cast(tf.equal(column_id_for_cells, tf.expand_dims(column_label, axis=1)), tf.float32) # Compute the log-likelihood for cells, but only for the selected column. cell_dist = tfp.distributions.Bernoulli(logits=logits_per_cell) cell_log_prob = cell_dist.log_prob(labels_per_cell) cell_loss = -tf.reduce_sum(cell_log_prob * column_mask * cell_mask, axis=1) # We need to normalize the loss by the number of cells in the column. cell_loss /= tf.reduce_sum(column_mask * cell_mask, axis=1) + EPSILON_ZERO_DIVISION selection_loss_per_example = column_loss_per_example selection_loss_per_example += tf.where(no_cell_selected, tf.zeros_like(selection_loss_per_example), cell_loss) # Set the probs outside the selected column (selected by the *model*) # to 0. This ensures backwards compatibility with models that select # cells from multiple columns. selected_column_id = tf.argmax(column_logits, axis=-1, output_type=tf.int32) selected_column_mask = tf.cast( tf.equal(column_id_for_cells, tf.expand_dims(selected_column_id, axis=-1)), tf.float32 ) # Never select cells with the special column id 0. selected_column_mask = tf.where( tf.equal(column_id_for_cells, 0), tf.zeros_like(selected_column_mask), selected_column_mask ) logits_per_cell += CLOSE_ENOUGH_TO_LOG_ZERO * (1.0 - cell_mask * selected_column_mask) logits = gather(logits_per_cell, cell_index) return selection_loss_per_example, logits def _calculate_aggregate_mask(answer, pooled_output, cell_selection_preference, labels, aggregation_classifier): """ Finds examples where the model should select cells with no aggregation. Returns a mask that determines for which examples should the model select answers directly from the table, without any aggregation function. If the answer is a piece of text the case is unambiguous as aggregation functions only apply to numbers. If the answer is a number but does not appear in the table then we must use some aggregation case. The ambiguous case is when the answer is a number that also appears in the table. In this case we use the aggregation function probabilities predicted by the model to decide whether to select or aggregate. The threshold for this is a hyperparameter *cell_selection_preference* Args: answer (`tf.Tensor` of shape `(batch_size, )`): Answer for every example in the batch. Nan if there is no scalar answer. pooled_output (`tf.Tensor` of shape `(batch_size, hidden_size)`): Output of the pooler (BertPooler) on top of the encoder layer. cell_selection_preference (`float`): Preference for cell selection in ambiguous cases. labels (`tf.Tensor` of shape `(batch_size, sequence_length)`): Labels per token. aggregation_classifier (`torch.nn.Linear`): Aggregation head Returns: aggregate_mask (`tf.Tensor` of shape `(batch_size,)`): A mask set to 1 for examples that should use aggregation functions. """ # tf.Tensor(batch_size,) aggregate_mask_init = tf.cast(tf.logical_not(tf.math.is_nan(answer)), tf.float32) logits_aggregation = aggregation_classifier(pooled_output) dist_aggregation = tfp.distributions.Categorical(logits=logits_aggregation) # Index 0 corresponds to "no aggregation". aggregation_ops_total_mass = tf.reduce_sum(dist_aggregation.probs_parameter()[:, 1:], axis=1) # Cell selection examples according to current model. is_pred_cell_selection = aggregation_ops_total_mass <= cell_selection_preference # Examples with non-empty cell selection supervision. is_cell_supervision_available = tf.reduce_sum(labels, axis=1) > 0 aggregate_mask = tf.where( tf.logical_and(is_pred_cell_selection, is_cell_supervision_available), tf.zeros_like(aggregate_mask_init, dtype=tf.float32), aggregate_mask_init, ) aggregate_mask = tf.stop_gradient(aggregate_mask) return aggregate_mask def _calculate_aggregation_loss_known( logits_aggregation, aggregate_mask, aggregation_labels, use_answer_as_supervision, num_aggregation_labels ): """ Calculates aggregation loss when its type is known during training. In the weakly supervised setting, the only known information is that for cell selection examples, "no aggregation" should be predicted. For other examples (those that require aggregation), no loss is accumulated. In the setting where aggregation type is always known, standard cross entropy loss is accumulated for all examples Args: logits_aggregation (`tf.Tensor` of shape `(batch_size, num_aggregation_labels)`): Logits per aggregation operation. aggregate_mask (`tf.Tensor` of shape `(batch_size, )`): A mask set to 1 for examples that should use aggregation functions. aggregation_labels (`tf.Tensor` of shape `(batch_size, )`): Aggregation function id for every example in the batch. use_answer_as_supervision (`bool`, *optional*): Whether to use the answer as the only supervision for aggregation examples. num_aggregation_labels (`int`, *optional*, defaults to 0): The number of aggregation operators to predict. Returns: aggregation_loss_known (`tf.Tensor` of shape `(batch_size,)`): Aggregation loss (when its type is known during training) per example. """ if use_answer_as_supervision: # Prepare "no aggregation" targets for cell selection examples. target_aggregation = tf.zeros_like(aggregate_mask, dtype=tf.int32) else: # Use aggregation supervision as the target. target_aggregation = aggregation_labels one_hot_labels = tf.one_hot(target_aggregation, depth=num_aggregation_labels, dtype=tf.float32) log_probs = tf.nn.log_softmax(logits_aggregation, axis=-1) # <float32>[batch_size] per_example_aggregation_intermediate = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) if use_answer_as_supervision: # Accumulate loss only for examples requiring cell selection # (no aggregation). return per_example_aggregation_intermediate * (1 - aggregate_mask) else: return per_example_aggregation_intermediate def _calculate_aggregation_loss_unknown(logits_aggregation, aggregate_mask): """ Calculates aggregation loss in the case of answer supervision. Args: logits_aggregation (`tf.Tensor` of shape `(batch_size, num_aggregation_labels)`): Logits per aggregation operation. aggregate_mask (`tf.Tensor` of shape `(batch_size, )`): A mask set to 1 for examples that should use aggregation functions Returns: aggregation_loss_unknown (`tf.Tensor` of shape `(batch_size,)`): Aggregation loss (in case of answer supervision) per example. """ dist_aggregation = tfp.distributions.Categorical(logits=logits_aggregation) # Index 0 corresponds to "no aggregation". aggregation_ops_total_mass = tf.reduce_sum(dist_aggregation.probs_parameter()[:, 1:], axis=1) # Predict some aggregation in case of an answer that needs aggregation. # This increases the probability of all aggregation functions, in a way # similar to MML, but without considering whether the function gives the # correct answer. return -tf.math.log(aggregation_ops_total_mass) * aggregate_mask def _calculate_aggregation_loss( logits_aggregation, aggregate_mask, aggregation_labels, use_answer_as_supervision, num_aggregation_labels, aggregation_loss_weight, ): """ Calculates the aggregation loss per example. Args: logits_aggregation (`tf.Tensor` of shape `(batch_size, num_aggregation_labels)`): Logits per aggregation operation. aggregate_mask (`tf.Tensor` of shape `(batch_size, )`): A mask set to 1 for examples that should use aggregation functions. aggregation_labels (`tf.Tensor` of shape `(batch_size, )`): Aggregation function id for every example in the batch. use_answer_as_supervision (`bool`, *optional*): Whether to use the answer as the only supervision for aggregation examples. num_aggregation_labels (`int`, *optional*, defaults to 0): The number of aggregation operators to predict. aggregation_loss_weight (`float`, *optional*, defaults to 1.0): Importance weight for the aggregation loss. Returns: aggregation_loss (`tf.Tensor` of shape `(batch_size,)`): Aggregation loss per example. """ per_example_aggregation_loss = _calculate_aggregation_loss_known( logits_aggregation, aggregate_mask, aggregation_labels, use_answer_as_supervision, num_aggregation_labels ) if use_answer_as_supervision: # Add aggregation loss for numeric answers that need aggregation. per_example_aggregation_loss += _calculate_aggregation_loss_unknown(logits_aggregation, aggregate_mask) return aggregation_loss_weight * per_example_aggregation_loss def _calculate_expected_result( dist_per_cell, numeric_values, numeric_values_scale, input_mask_float, logits_aggregation, config ): """ Calculates the expected result given cell and aggregation probabilities. Args: dist_per_cell (`tfp.distributions.Bernoulli`): Cell selection distribution for each cell. numeric_values (`tf.Tensor` of shape `(batch_size, seq_length)`): Numeric values of every token. Nan for tokens which are not numeric values. numeric_values_scale (`tf.Tensor` of shape `(batch_size, seq_length)`): Scale of the numeric values of every token. input_mask_float (`tf.Tensor` of shape `(batch_size, seq_length)`): Mask for the table, without question tokens and table headers. logits_aggregation (`tf.Tensor` of shape `(batch_size, num_aggregation_labels)`): Logits per aggregation operation. config ([`TapasConfig`]): Model configuration class with all the hyperparameters of the model Returns: expected_result (`tf.Tensor` of shape `(batch_size,)`): The expected result per example. """ if config.use_gumbel_for_cells: gumbel_dist = tfp.distributions.RelaxedBernoulli( # The token logits where already divided by the temperature and used for # computing cell selection errors so we need to multiply it again here config.temperature, logits=dist_per_cell.logits_parameter() * config.temperature, ) scaled_probability_per_cell = gumbel_dist.sample() else: scaled_probability_per_cell = dist_per_cell.probs_parameter() # <float32>[batch_size, seq_length] scaled_probability_per_cell = (scaled_probability_per_cell / numeric_values_scale) * input_mask_float count_result = tf.reduce_sum(scaled_probability_per_cell, axis=1) numeric_values_masked = tf.where( tf.math.is_nan(numeric_values), tf.zeros_like(numeric_values), numeric_values ) # Mask non-numeric table values to zero. sum_result = tf.reduce_sum(scaled_probability_per_cell * numeric_values_masked, axis=1) avg_approximation = config.average_approximation_function if avg_approximation == AverageApproximationFunction.RATIO: average_result = sum_result / (count_result + EPSILON_ZERO_DIVISION) elif avg_approximation == AverageApproximationFunction.FIRST_ORDER: # The sum of all probabilities exept that correspond to other cells ex = tf.reduce_sum(scaled_probability_per_cell, axis=1, keepdims=True) - scaled_probability_per_cell + 1 average_result = tf.reduce_sum(numeric_values_masked * scaled_probability_per_cell / ex, axis=1) elif avg_approximation == AverageApproximationFunction.SECOND_ORDER: # The sum of all probabilities exept that correspond to other cells ex = tf.reduce_sum(scaled_probability_per_cell, axis=1, keepdims=True) - scaled_probability_per_cell + 1 pointwise_var = scaled_probability_per_cell * (1 - scaled_probability_per_cell) var = tf.reduce_sum(pointwise_var, axis=1, keepdims=True) - pointwise_var multiplier = (var / tf.math.square(ex) + 1) / ex average_result = tf.reduce_sum(numeric_values_masked * scaled_probability_per_cell * multiplier, axis=1) else: raise ValueError("Invalid average_approximation_function: %s", config.average_approximation_function) if config.use_gumbel_for_aggregation: gumbel_dist = tfp.distributions.RelaxedOneHotCategorical( config.aggregation_temperature, logits=logits_aggregation[:, 1:] ) # <float32>[batch_size, num_aggregation_labels - 1] aggregation_op_only_probs = gumbel_dist.sample() else: # <float32>[batch_size, num_aggregation_labels - 1] aggregation_op_only_probs = stable_softmax(logits_aggregation[:, 1:] / config.aggregation_temperature, axis=-1) all_results = tf.concat( [ tf.expand_dims(sum_result, axis=1), tf.expand_dims(average_result, axis=1), tf.expand_dims(count_result, axis=1), ], axis=1, ) expected_result = tf.reduce_sum(all_results * aggregation_op_only_probs, axis=1) return expected_result def _calculate_regression_loss( answer, aggregate_mask, dist_per_cell, numeric_values, numeric_values_scale, input_mask_float, logits_aggregation, config, ): """ Calculates the regression loss per example. Args: answer (`tf.Tensor` of shape `(batch_size,)`): Answer for every example in the batch. Nan if there is no scalar answer. aggregate_mask (`tf.Tensor` of shape `(batch_size,)`): A mask set to 1 for examples that should use aggregation functions. dist_per_cell (`torch.distributions.Bernoulli`): Cell selection distribution for each cell. numeric_values (`tf.Tensor` of shape `(batch_size, seq_length)`): Numeric values of every token. Nan for tokens which are not numeric values. numeric_values_scale (`tf.Tensor` of shape `(batch_size, seq_length)`): Scale of the numeric values of every token. input_mask_float (`tf.Tensor` of shape `(batch_size, seq_length)`): Mask for the table, without question tokens and table headers. logits_aggregation (`tf.Tensor` of shape `(batch_size, num_aggregation_labels)`): Logits per aggregation operation. config ([`TapasConfig`]): Model configuration class with all the parameters of the model Returns: per_example_answer_loss_scaled (`tf.Tensor` of shape `(batch_size,)`): Scales answer loss for each example in the batch. large_answer_loss_mask (`tf.Tensor` of shape `(batch_size,)`): A mask which is 1 for examples for which their answer loss is larger than the answer_loss_cutoff. """ # float32 (batch_size,) expected_result = _calculate_expected_result( dist_per_cell, numeric_values, numeric_values_scale, input_mask_float, logits_aggregation, config ) # <float32>[batch_size] answer_masked = tf.where(tf.math.is_nan(answer), tf.zeros_like(answer), answer) if config.use_normalized_answer_loss: normalizer = tf.stop_gradient( tf.math.maximum(tf.math.abs(expected_result), tf.math.abs(answer_masked)) + EPSILON_ZERO_DIVISION ) normalized_answer_masked = answer_masked / normalizer normalized_expected_result = expected_result / normalizer per_example_answer_loss = tf.compat.v1.losses.huber_loss( normalized_answer_masked * aggregate_mask, normalized_expected_result * aggregate_mask, delta=tf.cast(1.0, tf.float32), reduction=tf.losses.Reduction.NONE, ) else: per_example_answer_loss = tf.compat.v1.losses.huber_loss( answer_masked * aggregate_mask, expected_result * aggregate_mask, delta=tf.cast(config.huber_loss_delta, tf.float32), reduction=tf.losses.Reduction.NONE, ) if config.answer_loss_cutoff is None: large_answer_loss_mask = tf.ones_like(per_example_answer_loss, dtype=tf.float32) else: large_answer_loss_mask = tf.where( per_example_answer_loss > config.answer_loss_cutoff, tf.zeros_like(per_example_answer_loss, dtype=tf.float32), tf.ones_like(per_example_answer_loss, dtype=tf.float32), ) per_example_answer_loss_scaled = config.answer_loss_importance * (per_example_answer_loss * aggregate_mask) return per_example_answer_loss_scaled, large_answer_loss_mask __all__ = [ "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ]
transformers/src/transformers/models/tapas/modeling_tf_tapas.py/0
{ "file_path": "transformers/src/transformers/models/tapas/modeling_tf_tapas.py", "repo_id": "transformers", "token_count": 47285 }
170
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple, Union import torch from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class TimmBackbone(PreTrainedModel, BackboneMixin): """ Wrapper class for timm models to be used as backbones. This enables using the timm models interchangeably with the other models in the library keeping the same API. """ main_input_name = "pixel_values" supports_gradient_checkpointing = False config_class = TimmBackboneConfig def __init__(self, config, **kwargs): requires_backends(self, "timm") super().__init__(config) self.config = config if config.backbone is None: raise ValueError("backbone is not set in the config. Please set it to a timm model name.") if hasattr(config, "out_features") and config.out_features is not None: raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead.") pretrained = getattr(config, "use_pretrained_backbone", None) if pretrained is None: raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False.") # We just take the final layer by default. This matches the default for the transformers models. out_indices = config.out_indices if getattr(config, "out_indices", None) is not None else (-1,) in_chans = kwargs.pop("in_chans", config.num_channels) self._backbone = timm.create_model( config.backbone, pretrained=pretrained, # This is currently not possible for transformer architectures. features_only=config.features_only, in_chans=in_chans, out_indices=out_indices, **kwargs, ) # Converts all `BatchNorm2d` and `SyncBatchNorm` or `BatchNormAct2d` and `SyncBatchNormAct2d` layers of provided module into `FrozenBatchNorm2d` or `FrozenBatchNormAct2d` respectively if getattr(config, "freeze_batch_norm_2d", False): self.freeze_batch_norm_2d() # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. self._return_layers = { layer["module"]: str(layer["index"]) for layer in self._backbone.feature_info.get_dicts() } self._all_layers = {layer["module"]: str(i) for i, layer in enumerate(self._backbone.feature_info.info)} super()._init_backbone(config) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): requires_backends(cls, ["vision", "timm"]) from ...models.timm_backbone import TimmBackboneConfig config = kwargs.pop("config", TimmBackboneConfig()) use_timm = kwargs.pop("use_timm_backbone", True) if not use_timm: raise ValueError("use_timm_backbone must be True for timm backbones") num_channels = kwargs.pop("num_channels", config.num_channels) features_only = kwargs.pop("features_only", config.features_only) use_pretrained_backbone = kwargs.pop("use_pretrained_backbone", config.use_pretrained_backbone) out_indices = kwargs.pop("out_indices", config.out_indices) config = TimmBackboneConfig( backbone=pretrained_model_name_or_path, num_channels=num_channels, features_only=features_only, use_pretrained_backbone=use_pretrained_backbone, out_indices=out_indices, ) return super()._from_config(config, **kwargs) def freeze_batch_norm_2d(self): timm.utils.model.freeze_batch_norm_2d(self._backbone) def unfreeze_batch_norm_2d(self): timm.utils.model.unfreeze_batch_norm_2d(self._backbone) def _init_weights(self, module): """ Empty init weights function to ensure compatibility of the class in the library. """ pass def forward( self, pixel_values: torch.FloatTensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("Cannot output attentions for timm backbones at the moment") if output_hidden_states: # We modify the return layers to include all the stages of the backbone self._backbone.return_layers = self._all_layers hidden_states = self._backbone(pixel_values, **kwargs) self._backbone.return_layers = self._return_layers feature_maps = tuple(hidden_states[i] for i in self.out_indices) else: feature_maps = self._backbone(pixel_values, **kwargs) hidden_states = None feature_maps = tuple(feature_maps) hidden_states = tuple(hidden_states) if hidden_states is not None else None if not return_dict: output = (feature_maps,) if output_hidden_states: output = output + (hidden_states,) return output return BackboneOutput(feature_maps=feature_maps, hidden_states=hidden_states, attentions=None) __all__ = ["TimmBackbone"]
transformers/src/transformers/models/timm_backbone/modeling_timm_backbone.py/0
{ "file_path": "transformers/src/transformers/models/timm_backbone/modeling_timm_backbone.py", "repo_id": "transformers", "token_count": 2578 }
171
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """UDOP model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class UdopConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`UdopForConditionalGeneration`]. It is used to instantiate a UDOP model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the UDOP [microsoft/udop-large](https://huggingface.co/microsoft/udop-large) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Arguments: vocab_size (`int`, *optional*, defaults to 33201): Vocabulary size of the UDOP model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`UdopForConditionalGeneration`]. d_model (`int`, *optional*, defaults to 1024): Size of the encoder layers and the pooler layer. d_kv (`int`, *optional*, defaults to 64): Size of the key, query, value projections per attention head. The `inner_dim` of the projection layer will be defined as `num_heads * d_kv`. d_ff (`int`, *optional*, defaults to 4096): Size of the intermediate feed forward layer in each `UdopBlock`. num_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer encoder and decoder. num_decoder_layers (`int`, *optional*): Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set. num_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder and decoder. relative_attention_num_buckets (`int`, *optional*, defaults to 32): The number of buckets to use for each attention layer. relative_attention_max_distance (`int`, *optional*, defaults to 128): The maximum distance of the longer sequences for the bucket separation. relative_bias_args (`List[dict]`, *optional*, defaults to `[{'type': '1d'}, {'type': 'horizontal'}, {'type': 'vertical'}]`): A list of dictionaries containing the arguments for the relative bias layers. dropout_rate (`float`, *optional*, defaults to 0.1): The ratio for all dropout layers. layer_norm_epsilon (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. initializer_factor (`float`, *optional*, defaults to 1.0): A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). feed_forward_proj (`string`, *optional*, defaults to `"relu"`): Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`. Udopv1.1 uses the `"gated-gelu"` feed forward projection. Original Udop uses `"relu"`. is_encoder_decoder (`bool`, *optional*, defaults to `True`): Whether the model should behave as an encoder/decoder or not. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). pad_token_id (`int`, *optional*, defaults to 0): The id of the padding token in the vocabulary. eos_token_id (`int`, *optional*, defaults to 1): The id of the end-of-sequence token in the vocabulary. max_2d_position_embeddings (`int`, *optional*, defaults to 1024): The maximum absolute position embeddings for relative position encoding. image_size (`int`, *optional*, defaults to 224): The size of the input images. patch_size (`int`, *optional*, defaults to 16): The patch size used by the vision encoder. num_channels (`int`, *optional*, defaults to 3): The number of channels in the input images. """ model_type = "udop" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self, vocab_size=33201, d_model=1024, d_kv=64, d_ff=4096, num_layers=24, num_decoder_layers=None, num_heads=16, relative_attention_num_buckets=32, relative_attention_max_distance=128, relative_bias_args=[{"type": "1d"}, {"type": "horizontal"}, {"type": "vertical"}], dropout_rate=0.1, layer_norm_epsilon=1e-6, initializer_factor=1.0, feed_forward_proj="relu", is_encoder_decoder=True, use_cache=True, pad_token_id=0, eos_token_id=1, max_2d_position_embeddings=1024, image_size=224, patch_size=16, num_channels=3, **kwargs, ): self.vocab_size = vocab_size self.d_model = d_model self.d_kv = d_kv self.d_ff = d_ff self.num_layers = num_layers self.num_decoder_layers = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry self.num_heads = num_heads self.relative_attention_num_buckets = relative_attention_num_buckets self.relative_attention_max_distance = relative_attention_max_distance self.dropout_rate = dropout_rate self.layer_norm_epsilon = layer_norm_epsilon self.initializer_factor = initializer_factor self.feed_forward_proj = feed_forward_proj self.use_cache = use_cache # UDOP attributes self.max_2d_position_embeddings = max_2d_position_embeddings self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels if not isinstance(relative_bias_args, list): raise TypeError("`relative_bias_args` should be a list of dictionaries.") self.relative_bias_args = relative_bias_args act_info = self.feed_forward_proj.split("-") self.dense_act_fn = act_info[-1] self.is_gated_act = act_info[0] == "gated" if len(act_info) > 1 and act_info[0] != "gated" or len(act_info) > 2: raise ValueError( f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) super().__init__( pad_token_id=pad_token_id, eos_token_id=eos_token_id, is_encoder_decoder=is_encoder_decoder, **kwargs, ) __all__ = ["UdopConfig"]
transformers/src/transformers/models/udop/configuration_udop.py/0
{ "file_path": "transformers/src/transformers/models/udop/configuration_udop.py", "repo_id": "transformers", "token_count": 3086 }
172
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Hubert checkpoint.""" import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, Wav2Vec2FeatureExtractor, logging, ) logging.set_verbosity_info() logger = logging.get_logger(__name__) def convert_classification(base_model_name, hf_config, downstream_dict): model = UniSpeechSatForSequenceClassification.from_pretrained(base_model_name, config=hf_config) model.projector.weight.data = downstream_dict["projector.weight"] model.projector.bias.data = downstream_dict["projector.bias"] model.classifier.weight.data = downstream_dict["model.post_net.linear.weight"] model.classifier.bias.data = downstream_dict["model.post_net.linear.bias"] return model def convert_diarization(base_model_name, hf_config, downstream_dict): model = UniSpeechSatForAudioFrameClassification.from_pretrained(base_model_name, config=hf_config) model.classifier.weight.data = downstream_dict["model.linear.weight"] model.classifier.bias.data = downstream_dict["model.linear.bias"] return model def convert_xvector(base_model_name, hf_config, downstream_dict): model = UniSpeechSatForXVector.from_pretrained(base_model_name, config=hf_config) model.projector.weight.data = downstream_dict["connector.weight"] model.projector.bias.data = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel): model.tdnn[i].kernel.weight.data = downstream_dict[ f"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] model.tdnn[i].kernel.bias.data = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"] model.feature_extractor.weight.data = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] model.feature_extractor.bias.data = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] model.classifier.weight.data = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] model.classifier.bias.data = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] model.objective.weight.data = downstream_dict["objective.W"] return model @torch.no_grad() def convert_s3prl_checkpoint(base_model_name, config_path, checkpoint_path, model_dump_path): """ Copy/paste/tweak model's weights to transformers design. """ checkpoint = torch.load(checkpoint_path, map_location="cpu") downstream_dict = checkpoint["Downstream"] hf_config = UniSpeechSatConfig.from_pretrained(config_path) hf_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( base_model_name, return_attention_mask=True, do_normalize=False ) arch = hf_config.architectures[0] if arch.endswith("ForSequenceClassification"): hf_model = convert_classification(base_model_name, hf_config, downstream_dict) elif arch.endswith("ForAudioFrameClassification"): hf_model = convert_diarization(base_model_name, hf_config, downstream_dict) elif arch.endswith("ForXVector"): hf_model = convert_xvector(base_model_name, hf_config, downstream_dict) else: raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}") if hf_config.use_weighted_layer_sum: hf_model.layer_weights.data = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(model_dump_path) hf_model.save_pretrained(model_dump_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") args = parser.parse_args() convert_s3prl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
transformers/src/transformers/models/unispeech_sat/convert_unispeech_original_s3prl_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/unispeech_sat/convert_unispeech_original_s3prl_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 1692 }
173
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for Video-LLaVA.""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( convert_to_rgb, get_resize_output_image_size, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, VideoInput, infer_channel_dimension_format, is_scaled_image, is_valid_image, make_list_of_images, to_numpy_array, valid_images, validate_preprocess_arguments, ) from ...utils import TensorType, filter_out_non_signature_kwargs, is_vision_available, logging logger = logging.get_logger(__name__) if is_vision_available(): import PIL def make_batched_videos(videos) -> List[VideoInput]: if isinstance(videos, (list, tuple)) and isinstance(videos[0], (list, tuple)) and is_valid_image(videos[0][0]): return videos elif isinstance(videos, (list, tuple)) and is_valid_image(videos[0]): if isinstance(videos[0], PIL.Image.Image): return [videos] elif len(videos[0].shape) == 4: return [list(video) for video in videos] elif is_valid_image(videos) and len(videos.shape) == 4: return [list(videos)] raise ValueError(f"Could not make batched video from {videos}") class VideoLlavaImageProcessor(BaseImageProcessor): r""" Constructs a CLIP image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by `do_resize` in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`): Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`): Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method. do_center_crop (`bool`, *optional*, defaults to `True`): Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the `preprocess` method. crop_size (`Dict[str, int]` *optional*, defaults to 224): Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. Can be overridden by the `image_std` parameter in the `preprocess` method. do_convert_rgb (`bool`, *optional*, defaults to `True`): Whether to convert the image to RGB. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BICUBIC, do_center_crop: bool = True, crop_size: Dict[str, int] = None, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: bool = True, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"shortest_edge": 224} size = get_size_dict(size, default_to_square=False) crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size") self.do_resize = do_resize self.size = size self.resample = resample self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD self.do_convert_rgb = do_convert_rgb def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the output image. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): Resampling filter to use when resiizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ default_to_square = True if "shortest_edge" in size: size = size["shortest_edge"] default_to_square = False elif "height" in size and "width" in size: size = (size["height"], size["width"]) else: raise ValueError("Size must contain either 'shortest_edge' or 'height' and 'width'.") output_size = get_resize_output_image_size( image, size=size, default_to_square=default_to_square, input_data_format=input_data_format, ) return resize( image, size=output_size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) @filter_out_non_signature_kwargs() def preprocess( self, images: List[ImageInput] = None, videos: List[VideoInput] = None, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_center_crop: bool = None, crop_size: int = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: bool = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`, *optional*): List of images to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. videos (`VideoInput`, *optional*): List of videos to preprocess. Expects a single or batch of videos with pixel values ranging from 0 to 255. If passing in videos with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only has an effect if `do_resize` is set to `True`. do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): Whether to center crop the image. crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): Size of the center crop. Only has an effect if `do_center_crop` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to `True`. do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): Whether to convert the image to RGB. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size size = get_size_dict(size, param_name="size", default_to_square=False) resample = resample if resample is not None else self.resample do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop crop_size = crop_size if crop_size is not None else self.crop_size crop_size = get_size_dict(crop_size, param_name="crop_size", default_to_square=True) do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb if images is not None: images = make_list_of_images(images) if videos is not None: videos = make_batched_videos(videos) if (videos is not None and not valid_images(videos)) or (images is not None and not valid_images(images)): raise ValueError( "Invalid input type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) data = {} if videos is not None: pixel_values_videos = [ [ self._preprocess_image( image=frame, do_resize=do_resize, size=size, resample=resample, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_center_crop=do_center_crop, crop_size=crop_size, do_convert_rgb=do_convert_rgb, data_format=data_format, input_data_format=input_data_format, ) for frame in video ] for video in videos ] data["pixel_values_videos"] = pixel_values_videos if images is not None: pixel_values_images = [ self._preprocess_image( image=image, do_resize=do_resize, size=size, resample=resample, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_center_crop=do_center_crop, crop_size=crop_size, do_convert_rgb=do_convert_rgb, data_format=data_format, input_data_format=input_data_format, ) for image in images ] data["pixel_values_images"] = pixel_values_images encoded_outputs = BatchFeature(data, tensor_type=return_tensors) return encoded_outputs def _preprocess_image( self, image: ImageInput = None, do_resize: Optional[bool] = None, size: Optional[Dict[str, int]] = None, resample: PILImageResampling = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_center_crop: bool = None, crop_size: int = None, do_convert_rgb: bool = None, data_format: ChannelDimension = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_center_crop=do_center_crop, crop_size=crop_size, do_resize=do_resize, size=size, resample=resample, ) # PIL RGBA images are converted to RGB if do_convert_rgb: image = convert_to_rgb(image) # All transformations expect numpy arrays. image = to_numpy_array(image) if do_rescale and is_scaled_image(image): logger.warning_once( "It looks like you are trying to rescale already rescaled images/video frames. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(image) if do_resize: image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) if do_center_crop: image = self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) if do_rescale: image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) if do_normalize: image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) return image __all__ = ["VideoLlavaImageProcessor"]
transformers/src/transformers/models/video_llava/image_processing_video_llava.py/0
{ "file_path": "transformers/src/transformers/models/video_llava/image_processing_video_llava.py", "repo_id": "transformers", "token_count": 8541 }
174
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """VisualBERT model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class VisualBertConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`VisualBertModel`]. It is used to instantiate an VisualBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the VisualBERT [uclanlp/visualbert-vqa-coco-pre](https://huggingface.co/uclanlp/visualbert-vqa-coco-pre) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the VisualBERT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`VisualBertModel`]. Vocabulary size of the model. Defines the different tokens that can be represented by the `inputs_ids` passed to the forward method of [`VisualBertModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. visual_embedding_dim (`int`, *optional*, defaults to 512): Dimensionality of the visual embeddings to be passed to the model. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`VisualBertModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. bypass_transformer (`bool`, *optional*, defaults to `False`): Whether or not the model should bypass the transformer for the visual embeddings. If set to `True`, the model directly concatenates the visual embeddings from [`VisualBertEmbeddings`] with text output from transformers, and then pass it to a self-attention layer. special_visual_initialize (`bool`, *optional*, defaults to `True`): Whether or not the visual token type and position type embedding weights should be initialized the same as the textual token type and positive type embeddings. When set to `True`, the weights of the textual token type and position type embeddings are copied to the respective visual embedding layers. Example: ```python >>> from transformers import VisualBertConfig, VisualBertModel >>> # Initializing a VisualBERT visualbert-vqa-coco-pre style configuration >>> configuration = VisualBertConfig.from_pretrained("uclanlp/visualbert-vqa-coco-pre") >>> # Initializing a model (with random weights) from the visualbert-vqa-coco-pre style configuration >>> model = VisualBertModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "visual_bert" def __init__( self, vocab_size=30522, hidden_size=768, visual_embedding_dim=512, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, bypass_transformer=False, special_visual_initialize=True, pad_token_id=1, bos_token_id=0, eos_token_id=2, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.visual_embedding_dim = visual_embedding_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.type_vocab_size = type_vocab_size self.layer_norm_eps = layer_norm_eps self.bypass_transformer = bypass_transformer self.special_visual_initialize = special_visual_initialize __all__ = ["VisualBertConfig"]
transformers/src/transformers/models/visual_bert/configuration_visual_bert.py/0
{ "file_path": "transformers/src/transformers/models/visual_bert/configuration_visual_bert.py", "repo_id": "transformers", "token_count": 2437 }
175
# coding=utf-8 # Copyright 2022 Facebook AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TF 2.0 ViT MAE (masked autoencoder) model.""" from __future__ import annotations import collections.abc import math from copy import deepcopy from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...file_utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_tf_outputs import TFBaseModelOutput from ...modeling_tf_utils import ( TFModelInputType, TFPreTrainedModel, get_initializer, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import shape_list, stable_softmax from ...utils import logging from .configuration_vit_mae import ViTMAEConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "ViTMAEConfig" _CHECKPOINT_FOR_DOC = "facebook/vit-mae-base" @dataclass class TFViTMAEModelOutput(ModelOutput): """ Class for TFViTMAEModel's outputs, with potential hidden states and attentions. Args: last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. mask (`tf.Tensor` of shape `(batch_size, sequence_length)`): Tensor indicating which patches are masked (1) and which are not (0). ids_restore (`tf.Tensor` of shape `(batch_size, sequence_length)`): Tensor containing the original index of the (shuffled) masked patches. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: tf.Tensor = None mask: tf.Tensor = None ids_restore: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None @dataclass class TFViTMAEDecoderOutput(ModelOutput): """ Class for TFViTMAEDecoder's outputs, with potential hidden states and attentions. Args: logits (`tf.Tensor` of shape `(batch_size, sequence_length, patch_size ** 2 * num_channels)`): Pixel reconstruction logits. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None @dataclass class TFViTMAEForPreTrainingOutput(ModelOutput): """ Class for TFViTMAEForPreTraining's outputs, with potential hidden states and attentions. Args: loss (`tf.Tensor` of shape `(1,)`): Pixel reconstruction loss. logits (`tf.Tensor` of shape `(batch_size, sequence_length, patch_size ** 2 * num_channels)`): Pixel reconstruction logits. mask (`tf.Tensor` of shape `(batch_size, sequence_length)`): Tensor indicating which patches are masked (1) and which are not (0). ids_restore (`tf.Tensor` of shape `(batch_size, sequence_length)`): Tensor containing the original index of the (shuffled) masked patches. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None logits: tf.Tensor = None mask: tf.Tensor = None ids_restore: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None def get_2d_sincos_pos_embed(embed_dim, grid_size, add_cls_token=False): """ Create 2D sin/cos positional embeddings. Args: embed_dim (`int`): Embedding dimension. grid_size (`int`): The grid height and width. add_cls_token (`bool`, *optional*, defaults to `False`): Whether or not to add a classification (CLS) token. Returns: (`tf.Tensor` of shape (grid_size*grid_size, embed_dim) or (1+grid_size*grid_size, embed_dim): the position embeddings (with or without classification token) """ grid_h = tf.range(grid_size, dtype=tf.float32) grid_w = tf.range(grid_size, dtype=tf.float32) grid = tf.meshgrid(grid_w, grid_h) # here w goes first grid = tf.stack(grid, axis=0) grid = tf.reshape(grid, [2, 1, grid_size, grid_size]) pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) if add_cls_token: pos_embed = tf.concat([tf.zeros((1, embed_dim)), pos_embed], axis=0) return pos_embed def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): if embed_dim % 2 != 0: raise ValueError("embed_dim must be even") # use half of dimensions to encode grid_h emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) emb = tf.concat([emb_h, emb_w], axis=1) # (H*W, D) return emb def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): """ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) """ if embed_dim % 2 != 0: raise ValueError("embed_dim must be even") omega = tf.range(embed_dim // 2, dtype="float32") omega /= embed_dim / 2.0 omega = 1.0 / 10000**omega # (D/2,) pos = tf.reshape(pos, [-1]) # (M,) out = tf.einsum("m,d->md", pos, omega) # (M, D/2), outer product # half of the positions get sinusoidal pattern and the rest gets # cosine pattern and then they are concatenated emb_sin = tf.sin(out) # (M, D/2) emb_cos = tf.cos(out) # (M, D/2) emb = tf.concat([emb_sin, emb_cos], axis=1) # (M, D) return emb class TFViTMAEEmbeddings(keras.layers.Layer): """ Construct the CLS token, position and patch embeddings. """ def __init__(self, config: ViTMAEConfig, **kwargs): super().__init__(**kwargs) self.patch_embeddings = TFViTMAEPatchEmbeddings(config, name="patch_embeddings") self.num_patches = self.patch_embeddings.num_patches self.config = config def build(self, input_shape=None): self.cls_token = self.add_weight( shape=(1, 1, self.config.hidden_size), initializer=tf.random_normal_initializer(stddev=self.config.initializer_range), trainable=True, name="cls_token", ) self.position_embeddings = self.add_weight( shape=(1, self.num_patches + 1, self.config.hidden_size), initializer="zeros", trainable=False, # fixed sin-cos embedding name="position_embeddings", ) pos_embed = get_2d_sincos_pos_embed( self.position_embeddings.shape[-1], int(self.patch_embeddings.num_patches**0.5), add_cls_token=True, )[None, ...] self.position_embeddings.assign(pos_embed) if self.built: return self.built = True if getattr(self, "patch_embeddings", None) is not None: with tf.name_scope(self.patch_embeddings.name): self.patch_embeddings.build(None) def interpolate_pos_encoding(self, embeddings, height, width) -> tf.Tensor: """ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. Source: https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 """ batch_size, seq_len, dim = shape_list(embeddings) num_patches = seq_len - 1 _, num_positions, _ = shape_list(self.position_embeddings) num_positions -= 1 if num_patches == num_positions and height == width: return self.position_embeddings class_pos_embed = self.position_embeddings[:, :1] patch_pos_embed = self.position_embeddings[:, 1:] h0 = height // self.config.patch_size w0 = width // self.config.patch_size patch_pos_embed = tf.image.resize( images=tf.reshape( patch_pos_embed, shape=(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim) ), size=(h0, w0), method="bicubic", ) patch_pos_embed = tf.reshape(tensor=patch_pos_embed, shape=(1, -1, dim)) return tf.concat(values=(class_pos_embed, patch_pos_embed), axis=1) def random_masking(self, sequence: tf.Tensor, noise: tf.Tensor | None = None): """ Perform per-sample random masking by per-sample shuffling. Per-sample shuffling is done by argsort random noise. Args: sequence (`tf.Tensor` of shape `(batch_size, sequence_length, dim)`) noise (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*) which is mainly used for testing purposes to control randomness and maintain the reproducibility """ batch_size, seq_length, dim = shape_list(sequence) len_keep = int(seq_length * (1 - self.config.mask_ratio)) if noise is None: noise = tf.random.uniform(shape=(batch_size, seq_length), minval=0.0, maxval=1.0) # noise in [0, 1) # sort noise for each sample ids_shuffle = tf.argsort(noise, axis=1) # ascend: small is keep, large is remove ids_restore = tf.argsort(ids_shuffle, axis=1) # keep the first subset ids_keep = ids_shuffle[:, :len_keep] sequence_unmasked = tf.gather( sequence, axis=1, batch_dims=1, indices=ids_keep, ) # generate the binary mask: 0 is keep, 1 is remove # this hack is needed because TF's EagerTensors don't support # assignment mask_keep = tf.zeros((batch_size, len_keep)) mask_remove = tf.ones((batch_size, seq_length - len_keep)) mask = tf.concat([mask_keep, mask_remove], axis=-1) # unshuffle to get the binary mask mask = tf.gather(mask, axis=1, batch_dims=1, indices=ids_restore) return sequence_unmasked, mask, ids_restore def call( self, pixel_values: tf.Tensor, noise: tf.Tensor = None, interpolate_pos_encoding: bool = False ) -> tf.Tensor: batch_size, num_channels, height, width = shape_list(pixel_values) embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) if interpolate_pos_encoding: position_embeddings = self.interpolate_pos_encoding(embeddings, height, width) else: position_embeddings = self.position_embeddings # add position embeddings w/o cls token embeddings = embeddings + position_embeddings[:, 1:, :] # masking: length -> length * config.mask_ratio embeddings, mask, ids_restore = self.random_masking(embeddings, noise) # append cls token cls_token = self.cls_token + position_embeddings[:, :1, :] cls_tokens = tf.tile(cls_token, (shape_list(embeddings)[0], 1, 1)) embeddings = tf.concat([cls_tokens, embeddings], axis=1) return embeddings, mask, ids_restore class TFViTMAEPatchEmbeddings(keras.layers.Layer): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config: ViTMAEConfig, **kwargs): super().__init__(**kwargs) image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_patches = num_patches self.num_channels = num_channels self.config = config self.projection = keras.layers.Conv2D( filters=hidden_size, kernel_size=patch_size, strides=patch_size, padding="valid", data_format="channels_last", kernel_initializer="glorot_uniform", # following torch.nn.Linear bias_initializer="zeros", name="projection", ) def call( self, pixel_values: tf.Tensor, training: bool = False, interpolate_pos_encoding: bool = False ) -> tf.Tensor: batch_size, num_channels, height, width = shape_list(pixel_values) if tf.executing_eagerly(): if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the" " configuration." ) if not interpolate_pos_encoding and (height != self.image_size[0] or width != self.image_size[1]): raise ValueError( f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size[0]}*{self.image_size[1]})." ) # When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1)) projection = self.projection(pixel_values) # Change the 2D spatial dimensions to a single temporal dimension. # shape = (batch_size, num_patches, out_channels=embed_dim) num_patches = (width // self.patch_size[1]) * (height // self.patch_size[0]) x = tf.reshape(tensor=projection, shape=(batch_size, num_patches, -1)) return x def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "projection", None) is not None: with tf.name_scope(self.projection.name): self.projection.build([None, None, None, self.num_channels]) # Copied from transformers.models.vit.modeling_tf_vit.TFViTSelfAttention with ViT->ViTMAE class TFViTMAESelfAttention(keras.layers.Layer): def __init__(self, config: ViTMAEConfig, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number " f"of attention heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.sqrt_att_head_size = math.sqrt(self.attention_head_size) self.query = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" ) self.value = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob) self.config = config def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] return tf.transpose(tensor, perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: batch_size = shape_list(hidden_states)[0] mixed_query_layer = self.query(inputs=hidden_states) mixed_key_layer = self.key(inputs=hidden_states) mixed_value_layer = self.value(inputs=hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) value_layer = self.transpose_for_scores(mixed_value_layer, batch_size) # Take the dot product between "query" and "key" to get the raw attention scores. # (batch size, num_heads, seq_len_q, seq_len_k) attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) attention_scores = tf.divide(attention_scores, dk) # Normalize the attention scores to probabilities. attention_probs = stable_softmax(logits=attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(inputs=attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = tf.multiply(attention_probs, head_mask) attention_output = tf.matmul(attention_probs, value_layer) attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, all_head_size) attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size)) outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "query", None) is not None: with tf.name_scope(self.query.name): self.query.build([None, None, self.config.hidden_size]) if getattr(self, "key", None) is not None: with tf.name_scope(self.key.name): self.key.build([None, None, self.config.hidden_size]) if getattr(self, "value", None) is not None: with tf.name_scope(self.value.name): self.value.build([None, None, self.config.hidden_size]) # Copied from transformers.models.vit.modeling_tf_vit.TFViTSelfOutput with ViT->ViTMAE class TFViTMAESelfOutput(keras.layers.Layer): """ The residual connection is defined in TFViTMAELayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: ViTMAEConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.config = config def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) # Copied from transformers.models.vit.modeling_tf_vit.TFViTAttention with ViT->ViTMAE class TFViTMAEAttention(keras.layers.Layer): def __init__(self, config: ViTMAEConfig, **kwargs): super().__init__(**kwargs) self.self_attention = TFViTMAESelfAttention(config, name="attention") self.dense_output = TFViTMAESelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call( self, input_tensor: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: self_outputs = self.self_attention( hidden_states=input_tensor, head_mask=head_mask, output_attentions=output_attentions, training=training ) attention_output = self.dense_output( hidden_states=self_outputs[0], input_tensor=input_tensor, training=training ) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attention", None) is not None: with tf.name_scope(self.self_attention.name): self.self_attention.build(None) if getattr(self, "dense_output", None) is not None: with tf.name_scope(self.dense_output.name): self.dense_output.build(None) # Copied from transformers.models.vit.modeling_tf_vit.TFViTIntermediate with ViT->ViTMAE class TFViTMAEIntermediate(keras.layers.Layer): def __init__(self, config: ViTMAEConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) # Copied from transformers.models.vit.modeling_tf_vit.TFViTOutput with ViT->ViTMAE class TFViTMAEOutput(keras.layers.Layer): def __init__(self, config: ViTMAEConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.config = config def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = hidden_states + input_tensor return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.intermediate_size]) # Copied from transformers.models.vit.modeling_tf_vit.TFViTLayer with ViT->ViTMAE class TFViTMAELayer(keras.layers.Layer): """This corresponds to the Block class in the timm implementation.""" def __init__(self, config: ViTMAEConfig, **kwargs): super().__init__(**kwargs) self.attention = TFViTMAEAttention(config, name="attention") self.intermediate = TFViTMAEIntermediate(config, name="intermediate") self.vit_output = TFViTMAEOutput(config, name="output") self.layernorm_before = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_before") self.layernorm_after = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_after") self.config = config def call( self, hidden_states: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: attention_outputs = self.attention( # in ViTMAE, layernorm is applied before self-attention input_tensor=self.layernorm_before(inputs=hidden_states), head_mask=head_mask, output_attentions=output_attentions, training=training, ) attention_output = attention_outputs[0] # first residual connection hidden_states = attention_output + hidden_states # in ViTMAE, layernorm is also applied after self-attention layer_output = self.layernorm_after(inputs=hidden_states) intermediate_output = self.intermediate(hidden_states=layer_output) # second residual connection is done here layer_output = self.vit_output( hidden_states=intermediate_output, input_tensor=hidden_states, training=training ) outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "intermediate", None) is not None: with tf.name_scope(self.intermediate.name): self.intermediate.build(None) if getattr(self, "vit_output", None) is not None: with tf.name_scope(self.vit_output.name): self.vit_output.build(None) if getattr(self, "layernorm_before", None) is not None: with tf.name_scope(self.layernorm_before.name): self.layernorm_before.build([None, None, self.config.hidden_size]) if getattr(self, "layernorm_after", None) is not None: with tf.name_scope(self.layernorm_after.name): self.layernorm_after.build([None, None, self.config.hidden_size]) # Copied from transformers.models.vit.modeling_tf_vit.TFViTEncoder with ViT->ViTMAE class TFViTMAEEncoder(keras.layers.Layer): def __init__(self, config: ViTMAEConfig, **kwargs): super().__init__(**kwargs) self.layer = [TFViTMAELayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] def call( self, hidden_states: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, output_hidden_states: bool, return_dict: bool, training: bool = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states=hidden_states, head_mask=head_mask[i], output_attentions=output_attentions, training=training, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None) @keras_serializable class TFViTMAEMainLayer(keras.layers.Layer): config_class = ViTMAEConfig def __init__(self, config: ViTMAEConfig, **kwargs): super().__init__(**kwargs) self.config = config self.embeddings = TFViTMAEEmbeddings(config, name="embeddings") self.encoder = TFViTMAEEncoder(config, name="encoder") self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm") def get_input_embeddings(self) -> keras.layers.Layer: return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError @unpack_inputs def call( self, pixel_values: TFModelInputType | None = None, noise: tf.Tensor = None, head_mask: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, interpolate_pos_encoding: bool = False, ) -> Union[TFViTMAEModelOutput, Tuple[tf.Tensor]]: embedding_output, mask, ids_restore = self.embeddings( pixel_values=pixel_values, training=training, noise=noise, interpolate_pos_encoding=interpolate_pos_encoding, ) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.config.num_hidden_layers encoder_outputs = self.encoder( embedding_output, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(inputs=sequence_output) if not return_dict: return (sequence_output, mask, ids_restore) + encoder_outputs[1:] return TFViTMAEModelOutput( last_hidden_state=sequence_output, mask=mask, ids_restore=ids_restore, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "layernorm", None) is not None: with tf.name_scope(self.layernorm.name): self.layernorm.build([None, None, self.config.hidden_size]) class TFViTMAEPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ViTMAEConfig base_model_prefix = "vit" main_input_name = "pixel_values" VIT_MAE_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `pixel_values` only and nothing else: `model(pixel_values)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([pixel_values, attention_mask])` or `model([pixel_values, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"pixel_values": pixel_values, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Args: config ([`ViTMAEConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ VIT_MAE_INPUTS_DOCSTRING = r""" Args: pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] for details. head_mask (`np.ndarray` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False``): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). interpolate_pos_encoding (`bool`, *optional*, defaults to `False`): Whether to interpolate the position encodings at the encoder and decoder. """ @add_start_docstrings( "The bare ViTMAE Model transformer outputting raw hidden-states without any specific head on top.", VIT_MAE_START_DOCSTRING, ) class TFViTMAEModel(TFViTMAEPreTrainedModel): def __init__(self, config: ViTMAEConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.vit = TFViTMAEMainLayer(config, name="vit") def get_input_embeddings(self): return self.vit.get_input_embeddings() @unpack_inputs @add_start_docstrings_to_model_forward(VIT_MAE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFViTMAEModelOutput, config_class=_CONFIG_FOR_DOC) def call( self, pixel_values: TFModelInputType | None = None, noise: tf.Tensor = None, head_mask: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, interpolate_pos_encoding: bool = False, ) -> Union[TFViTMAEModelOutput, Tuple[tf.Tensor]]: r""" Returns: Examples: ```python >>> from transformers import AutoImageProcessor, TFViTMAEModel >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("facebook/vit-mae-base") >>> model = TFViTMAEModel.from_pretrained("facebook/vit-mae-base") >>> inputs = image_processor(images=image, return_tensors="tf") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ```""" outputs = self.vit( pixel_values=pixel_values, noise=noise, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, interpolate_pos_encoding=interpolate_pos_encoding, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "vit", None) is not None: with tf.name_scope(self.vit.name): self.vit.build(None) class TFViTMAEDecoder(keras.layers.Layer): def __init__(self, config, num_patches, **kwargs): super().__init__(**kwargs) self.decoder_embed = keras.layers.Dense(config.decoder_hidden_size, name="decoder_embed") decoder_config = deepcopy(config) decoder_config.hidden_size = config.decoder_hidden_size decoder_config.num_hidden_layers = config.decoder_num_hidden_layers decoder_config.num_attention_heads = config.decoder_num_attention_heads decoder_config.intermediate_size = config.decoder_intermediate_size self.decoder_layers = [ TFViTMAELayer(decoder_config, name=f"decoder_layers.{j}") for j in range(config.decoder_num_hidden_layers) ] self.decoder_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="decoder_norm") self.decoder_pred = keras.layers.Dense( config.patch_size**2 * config.num_channels, kernel_initializer=get_initializer(config.initializer_range), name="decoder_pred", ) # encoder to decoder self.config = config self.num_patches = num_patches def build(self, input_shape=None): self.mask_token = self.add_weight( shape=(1, 1, self.config.decoder_hidden_size), initializer=tf.random_normal_initializer(stddev=self.config.initializer_range), trainable=True, name="mask_token", ) self.decoder_pos_embed = self.add_weight( shape=(1, self.num_patches + 1, self.config.decoder_hidden_size), initializer="zeros", trainable=False, name="decoder_pos_embed", ) decoder_pos_embed = get_2d_sincos_pos_embed( self.decoder_pos_embed.shape[-1], int(self.num_patches**0.5), add_cls_token=True, )[None, ...] self.decoder_pos_embed.assign(decoder_pos_embed) if self.built: return self.built = True if getattr(self, "decoder_embed", None) is not None: with tf.name_scope(self.decoder_embed.name): self.decoder_embed.build([None, None, self.config.hidden_size]) if getattr(self, "decoder_norm", None) is not None: with tf.name_scope(self.decoder_norm.name): self.decoder_norm.build([None, None, self.config.decoder_hidden_size]) if getattr(self, "decoder_pred", None) is not None: with tf.name_scope(self.decoder_pred.name): self.decoder_pred.build([None, None, self.config.decoder_hidden_size]) if getattr(self, "decoder_layers", None) is not None: for layer in self.decoder_layers: with tf.name_scope(layer.name): layer.build(None) def interpolate_pos_encoding(self, embeddings) -> tf.Tensor: """ This method is a modified version of the interpolation function for ViT-mae model at the deocder, that allows to interpolate the pre-trained decoder position encodings, to be able to use the model on higher resolution images. Source: https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 """ # [batch_size, num_patches + 1, hidden_size] _, num_positions, dim = shape_list(self.decoder_pos_embed) # -1 removes the class dimension since we later append it without interpolation seq_len = shape_list(embeddings)[1] - 1 num_positions = num_positions - 1 # Separation of class token and patch tokens class_pos_embed = self.decoder_pos_embed[:, :1, :] patch_pos_embed = self.decoder_pos_embed[:, 1:, :] # interpolate the position embeddings patch_pos_embed = tf.image.resize( images=tf.reshape(patch_pos_embed, shape=(1, 1, -1, dim)), size=(1, seq_len), method="bicubic", ) # [1, seq_len, hidden_size] patch_pos_embed = tf.reshape(tensor=patch_pos_embed, shape=(1, -1, dim)) # Adding the class token back return tf.concat(values=(class_pos_embed, patch_pos_embed), axis=1) def call( self, hidden_states, ids_restore, output_attentions=False, output_hidden_states=False, return_dict=True, interpolate_pos_encoding=False, ): # embed tokens x = self.decoder_embed(hidden_states) # append mask tokens to sequence mask_tokens = tf.tile( self.mask_token, (shape_list(x)[0], shape_list(ids_restore)[1] + 1 - shape_list(x)[1], 1), ) x_ = tf.concat([x[:, 1:, :], mask_tokens], axis=1) # no cls token x_ = tf.gather(x_, axis=1, batch_dims=1, indices=ids_restore) # unshuffle x = tf.concat([x[:, :1, :], x_], axis=1) # append cls token if interpolate_pos_encoding: decoder_pos_embed = self.interpolate_pos_encoding(x) else: decoder_pos_embed = self.decoder_pos_embed # add pos embed hidden_states = x + decoder_pos_embed # apply Transformer layers (blocks) all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.decoder_layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states, head_mask=None, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) hidden_states = self.decoder_norm(hidden_states) # predictor projection logits = self.decoder_pred(hidden_states) # remove cls token logits = logits[:, 1:, :] if not return_dict: return tuple(v for v in [logits, all_hidden_states, all_self_attentions] if v is not None) return TFViTMAEDecoderOutput(logits=logits, hidden_states=all_hidden_states, attentions=all_self_attentions) @add_start_docstrings( "The ViTMAE Model transformer with the decoder on top for self-supervised pre-training.", VIT_MAE_START_DOCSTRING, ) class TFViTMAEForPreTraining(TFViTMAEPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.vit = TFViTMAEMainLayer(config, name="vit") self.decoder = TFViTMAEDecoder( config, num_patches=self.vit.embeddings.num_patches, name="decoder", ) def get_input_embeddings(self): return self.vit.get_input_embeddings() def _prune_heads(self, heads_to_prune): raise NotImplementedError def patchify(self, pixel_values, interpolate_pos_encoding: bool = False): """ Args: pixel_values (`tf.Tensor` of shape `(batch_size, height, width, num_channels)` or `(batch_size, num_channels, height, width)`): Pixel values. interpolate_pos_encoding (`bool`, default `False`): interpolation flag passed during the forward pass. Returns: `tf.Tensor` of shape `(batch_size, num_patches, patch_size**2 * num_channels)`: Patchified pixel values. """ patch_size, num_channels = self.config.patch_size, self.config.num_channels # make sure channels are last if shape_list(pixel_values)[1] == num_channels: pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1)) # sanity checks if not interpolate_pos_encoding: tf.debugging.assert_equal( shape_list(pixel_values)[1], shape_list(pixel_values)[2], message="Make sure the pixel values have a squared size", ) tf.debugging.assert_equal( shape_list(pixel_values)[1] % patch_size, 0, message="Make sure the pixel values have a size that is divisible by the patch size", ) tf.debugging.assert_equal( shape_list(pixel_values)[3], num_channels, message=( "Make sure the number of channels of the pixel values is equal to the one set in the configuration" ), ) # patchify batch_size = shape_list(pixel_values)[0] num_patches_h = shape_list(pixel_values)[1] // patch_size num_patches_w = shape_list(pixel_values)[2] // patch_size patchified_pixel_values = tf.reshape( pixel_values, (batch_size, num_patches_h, patch_size, num_patches_w, patch_size, num_channels), ) patchified_pixel_values = tf.einsum("nhpwqc->nhwpqc", patchified_pixel_values) patchified_pixel_values = tf.reshape( patchified_pixel_values, (batch_size, num_patches_h * num_patches_w, patch_size**2 * num_channels), ) return patchified_pixel_values def unpatchify(self, patchified_pixel_values, original_image_size: Optional[Tuple[int, int]] = None): """ Args: patchified_pixel_values (`tf.Tensor` of shape `(batch_size, num_patches, patch_size**2 * num_channels)`: Patchified pixel values. original_image_size (`Tuple[int, int]`, *optional*): Original image size. Returns: `tf.Tensor` of shape `(batch_size, height, width, num_channels)`: Pixel values. """ patch_size, num_channels = self.config.patch_size, self.config.num_channels original_image_size = ( original_image_size if original_image_size is not None else (self.config.image_size, self.config.image_size) ) original_height, original_width = original_image_size num_patches_h = original_height // patch_size num_patches_w = original_width // patch_size # sanity check tf.debugging.assert_equal( num_patches_h * num_patches_w, shape_list(patchified_pixel_values)[1], message=f"The number of patches in the patchified pixel values is {shape_list(patchified_pixel_values)[1]} does not match the patches of original image {num_patches_w}*{num_patches_h}", ) # unpatchify batch_size = shape_list(patchified_pixel_values)[0] patchified_pixel_values = tf.reshape( patchified_pixel_values, (batch_size, num_patches_h, num_patches_w, patch_size, patch_size, num_channels), ) patchified_pixel_values = tf.einsum("nhwpqc->nhpwqc", patchified_pixel_values) pixel_values = tf.reshape( patchified_pixel_values, (batch_size, num_patches_h * patch_size, num_patches_w * patch_size, num_channels), ) return pixel_values def forward_loss(self, pixel_values, pred, mask, interpolate_pos_encoding: bool = False): """ Args: pixel_values (`tf.Tensor` of shape `(batch_size, height, width, num_channels)`): Pixel values. pred (`tf.Tensor` of shape `(batch_size, num_patches, patch_size**2 * num_channels)`: Predicted pixel values. mask (`tf.Tensor` of shape `(batch_size, sequence_length)`): Tensor indicating which patches are masked (1) and which are not (0). interpolate_pos_encoding (`bool`, *optional*, default `False`): interpolation flag passed during the forward pass. Returns: `tf.Tensor`: Pixel reconstruction loss. """ target = self.patchify(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) if self.config.norm_pix_loss: mean = tf.reduce_mean(target, axis=-1, keepdims=True) var = tf.math.reduce_variance(target, axis=-1, keepdims=True) target = (target - mean) / (var + 1.0e-6) ** 0.5 loss = (pred - target) ** 2 loss = tf.reduce_mean(loss, axis=-1) # [batch_size, num_patches], mean loss per patch loss = tf.reduce_sum(loss * mask) / tf.reduce_sum(mask) # mean loss on removed patches loss = tf.reshape(loss, (1,)) return loss @unpack_inputs @add_start_docstrings_to_model_forward(VIT_MAE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFViTMAEForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def call( self, pixel_values: TFModelInputType | None = None, noise: tf.Tensor = None, head_mask: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, interpolate_pos_encoding: bool = False, ) -> Union[TFViTMAEForPreTrainingOutput, Tuple[tf.Tensor]]: r""" Returns: Examples: ```python >>> from transformers import AutoImageProcessor, TFViTMAEForPreTraining >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("facebook/vit-mae-base") >>> model = TFViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> loss = outputs.loss >>> mask = outputs.mask >>> ids_restore = outputs.ids_restore ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.vit( pixel_values=pixel_values, noise=noise, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, interpolate_pos_encoding=interpolate_pos_encoding, ) latent = outputs.last_hidden_state ids_restore = outputs.ids_restore mask = outputs.mask # [batch_size, num_patches, patch_size**2*3] decoder_outputs = self.decoder(latent, ids_restore, interpolate_pos_encoding=interpolate_pos_encoding) logits = decoder_outputs.logits loss = self.forward_loss(pixel_values, logits, mask, interpolate_pos_encoding=interpolate_pos_encoding) if not return_dict: output = (logits, mask, ids_restore) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFViTMAEForPreTrainingOutput( loss=loss, logits=logits, mask=mask, ids_restore=ids_restore, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "vit", None) is not None: with tf.name_scope(self.vit.name): self.vit.build(None) if getattr(self, "decoder", None) is not None: with tf.name_scope(self.decoder.name): self.decoder.build(None) __all__ = ["TFViTMAEForPreTraining", "TFViTMAEModel", "TFViTMAEPreTrainedModel"]
transformers/src/transformers/models/vit_mae/modeling_tf_vit_mae.py/0
{ "file_path": "transformers/src/transformers/models/vit_mae/modeling_tf_vit_mae.py", "repo_id": "transformers", "token_count": 25005 }
176
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert VitPose checkpoints from the original repository. URL: https://github.com/vitae-transformer/vitpose Notebook to get the original logits: https://colab.research.google.com/drive/1QDX_2POTpl6JaZAV2WIFjuiqDsDwiqMZ?usp=sharing. """ import argparse import os import re import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import VitPoseBackboneConfig, VitPoseConfig, VitPoseForPoseEstimation, VitPoseImageProcessor ORIGINAL_TO_CONVERTED_KEY_MAPPING = { r"patch_embed.proj": "embeddings.patch_embeddings.projection", r"pos_embed": "embeddings.position_embeddings", r"blocks": "encoder.layer", r"attn.proj": "attention.output.dense", r"attn": "attention.self", r"norm1": "layernorm_before", r"norm2": "layernorm_after", r"last_norm": "layernorm", r"keypoint_head": "head", r"final_layer": "conv", } MODEL_TO_FILE_NAME_MAPPING = { # VitPose models, simple decoder "vitpose-base-simple": "vitpose-b-simple.pth", # VitPose models, classic decoder "vitpose-base": "vitpose-b.pth", # VitPose models, COCO-AIC-MPII "vitpose-base-coco-aic-mpii": "vitpose_base_coco_aic_mpii.pth", # VitPose+ models "vitpose-plus-small": "vitpose+_small.pth", "vitpose-plus-base": "vitpose+_base.pth", "vitpose-plus-large": "vitpose+_large.pth", "vitpose-plus-huge": "vitpose+_huge.pth", } def get_config(model_name): if "plus" in model_name: num_experts = 6 if "small" in model_name: part_features = 96 out_indices = [12] elif "base" in model_name: part_features = 192 out_indices = [12] elif "large" in model_name: part_features = 256 out_indices = [24] elif "huge" in model_name: part_features = 320 out_indices = [32] else: raise ValueError(f"Model {model_name} not supported") else: num_experts = 1 part_features = 0 # size of the architecture if "small" in model_name: hidden_size = 384 num_hidden_layers = 12 num_attention_heads = 12 elif "large" in model_name: hidden_size = 1024 num_hidden_layers = 24 num_attention_heads = 16 elif "huge" in model_name: hidden_size = 1280 num_hidden_layers = 32 num_attention_heads = 16 backbone_config = VitPoseBackboneConfig( out_indices=out_indices, hidden_size=hidden_size, num_hidden_layers=num_hidden_layers, num_attention_heads=num_attention_heads, num_experts=num_experts, part_features=part_features, ) use_simple_decoder = "simple" in model_name edges = [ [15, 13], [13, 11], [16, 14], [14, 12], [11, 12], [5, 11], [6, 12], [5, 6], [5, 7], [6, 8], [7, 9], [8, 10], [1, 2], [0, 1], [0, 2], [1, 3], [2, 4], [3, 5], [4, 6], ] id2label = { 0: "Nose", 1: "L_Eye", 2: "R_Eye", 3: "L_Ear", 4: "R_Ear", 5: "L_Shoulder", 6: "R_Shoulder", 7: "L_Elbow", 8: "R_Elbow", 9: "L_Wrist", 10: "R_Wrist", 11: "L_Hip", 12: "R_Hip", 13: "L_Knee", 14: "R_Knee", 15: "L_Ankle", 16: "R_Ankle", } label2id = {v: k for k, v in id2label.items()} config = VitPoseConfig( backbone_config=backbone_config, num_labels=17, use_simple_decoder=use_simple_decoder, edges=edges, id2label=id2label, label2id=label2id, ) return config def convert_old_keys_to_new_keys(state_dict_keys: dict = None): """ This function should be applied only once, on the concatenated keys to efficiently rename using the key mappings. """ output_dict = {} if state_dict_keys is not None: old_text = "\n".join(state_dict_keys) new_text = old_text for pattern, replacement in ORIGINAL_TO_CONVERTED_KEY_MAPPING.items(): if replacement is None: new_text = re.sub(pattern, "", new_text) # an empty line continue new_text = re.sub(pattern, replacement, new_text) output_dict = dict(zip(old_text.split("\n"), new_text.split("\n"))) return output_dict # We will verify our results on a COCO image def prepare_img(): url = "http://images.cocodataset.org/val2017/000000000139.jpg" image = Image.open(requests.get(url, stream=True).raw) return image @torch.no_grad() def write_model(model_name, model_path, push_to_hub, check_logits=True): # ------------------------------------------------------------ # Vision model params and config # ------------------------------------------------------------ # params from config config = get_config(model_name) # ------------------------------------------------------------ # Convert weights # ------------------------------------------------------------ # load original state_dict filename = MODEL_TO_FILE_NAME_MAPPING[model_name] print(f"Fetching all parameters from the checkpoint at {filename}...") checkpoint_path = hf_hub_download( repo_id="nielsr/vitpose-original-checkpoints", filename=filename, repo_type="model" ) print("Converting model...") original_state_dict = torch.load(checkpoint_path, map_location="cpu")["state_dict"] all_keys = list(original_state_dict.keys()) new_keys = convert_old_keys_to_new_keys(all_keys) dim = config.backbone_config.hidden_size state_dict = {} for key in all_keys: new_key = new_keys[key] value = original_state_dict[key] if re.search("associate_heads", new_key) or re.search("backbone.cls_token", new_key): # This associated_heads is concept of auxiliary head so does not require in inference stage. # backbone.cls_token is optional forward function for dynamically change of size, see detail in https://github.com/ViTAE-Transformer/ViTPose/issues/34 pass elif re.search("qkv", new_key): state_dict[new_key.replace("self.qkv", "attention.query")] = value[:dim] state_dict[new_key.replace("self.qkv", "attention.key")] = value[dim : dim * 2] state_dict[new_key.replace("self.qkv", "attention.value")] = value[-dim:] elif re.search("head", new_key) and not config.use_simple_decoder: # Pattern for deconvolution layers deconv_pattern = r"deconv_layers\.(0|3)\.weight" new_key = re.sub(deconv_pattern, lambda m: f"deconv{int(m.group(1))//3 + 1}.weight", new_key) # Pattern for batch normalization layers bn_patterns = [ (r"deconv_layers\.(\d+)\.weight", r"batchnorm\1.weight"), (r"deconv_layers\.(\d+)\.bias", r"batchnorm\1.bias"), (r"deconv_layers\.(\d+)\.running_mean", r"batchnorm\1.running_mean"), (r"deconv_layers\.(\d+)\.running_var", r"batchnorm\1.running_var"), (r"deconv_layers\.(\d+)\.num_batches_tracked", r"batchnorm\1.num_batches_tracked"), ] for pattern, replacement in bn_patterns: if re.search(pattern, new_key): # Convert the layer number to the correct batch norm index layer_num = int(re.search(pattern, key).group(1)) bn_num = layer_num // 3 + 1 new_key = re.sub(pattern, replacement.replace(r"\1", str(bn_num)), new_key) state_dict[new_key] = value else: state_dict[new_key] = value print("Loading the checkpoint in a Vitpose model.") model = VitPoseForPoseEstimation(config) model.eval() model.load_state_dict(state_dict) print("Checkpoint loaded successfully.") # create image processor image_processor = VitPoseImageProcessor() # verify image processor image = prepare_img() boxes = [[[412.8, 157.61, 53.05, 138.01], [384.43, 172.21, 15.12, 35.74]]] pixel_values = image_processor(images=image, boxes=boxes, return_tensors="pt").pixel_values filepath = hf_hub_download(repo_id="nielsr/test-image", filename="vitpose_batch_data.pt", repo_type="dataset") original_pixel_values = torch.load(filepath, map_location="cpu")["img"] # we allow for a small difference in the pixel values due to the original repository using cv2 assert torch.allclose(pixel_values, original_pixel_values, atol=1e-1) dataset_index = torch.tensor([0]) with torch.no_grad(): print("Shape of original_pixel_values: ", original_pixel_values.shape) print("First values of original_pixel_values: ", original_pixel_values[0, 0, :3, :3]) # first forward pass outputs = model(original_pixel_values, dataset_index=dataset_index) output_heatmap = outputs.heatmaps print("Shape of output_heatmap: ", output_heatmap.shape) print("First values: ", output_heatmap[0, 0, :3, :3]) # second forward pass (flipped) # this is done since the model uses `flip_test=True` in its test config original_pixel_values_flipped = torch.flip(original_pixel_values, [3]) outputs_flipped = model( original_pixel_values_flipped, dataset_index=dataset_index, flip_pairs=torch.tensor([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]]), ) output_flipped_heatmap = outputs_flipped.heatmaps outputs.heatmaps = (output_heatmap + output_flipped_heatmap) * 0.5 # Verify pose_results pose_results = image_processor.post_process_pose_estimation(outputs, boxes=boxes)[0] if check_logits: # Simple decoder checkpoints if model_name == "vitpose-base-simple": assert torch.allclose( pose_results[1]["keypoints"][0], torch.tensor([3.98180511e02, 1.81808380e02]), atol=5e-2, ) assert torch.allclose( pose_results[1]["scores"][0], torch.tensor([8.66642594e-01]), atol=5e-2, ) # Classic decoder checkpoints elif model_name == "vitpose-base": assert torch.allclose( pose_results[1]["keypoints"][0], torch.tensor([3.9807913e02, 1.8182812e02]), atol=5e-2, ) assert torch.allclose( pose_results[1]["scores"][0], torch.tensor([8.8235235e-01]), atol=5e-2, ) # COCO-AIC-MPII checkpoints elif model_name == "vitpose-base-coco-aic-mpii": assert torch.allclose( pose_results[1]["keypoints"][0], torch.tensor([3.98305542e02, 1.81741592e02]), atol=5e-2, ) assert torch.allclose( pose_results[1]["scores"][0], torch.tensor([8.69966745e-01]), atol=5e-2, ) # VitPose+ models elif model_name == "vitpose-plus-small": assert torch.allclose( pose_results[1]["keypoints"][0], torch.tensor([398.1597, 181.6902]), atol=5e-2, ) assert torch.allclose( pose_results[1]["scores"][0], torch.tensor(0.9051), atol=5e-2, ) elif model_name == "vitpose-plus-base": assert torch.allclose( pose_results[1]["keypoints"][0], torch.tensor([3.98201294e02, 1.81728302e02]), atol=5e-2, ) assert torch.allclose( pose_results[1]["scores"][0], torch.tensor([8.75046968e-01]), atol=5e-2, ) elif model_name == "vitpose-plus-large": assert torch.allclose( pose_results[1]["keypoints"][0], torch.tensor([398.1409, 181.7412]), atol=5e-2, ) assert torch.allclose( pose_results[1]["scores"][0], torch.tensor(0.8746), atol=5e-2, ) elif model_name == "vitpose-plus-huge": assert torch.allclose( pose_results[1]["keypoints"][0], torch.tensor([398.2079, 181.8026]), atol=5e-2, ) assert torch.allclose( pose_results[1]["scores"][0], torch.tensor(0.8693), atol=5e-2, ) else: raise ValueError("Model not supported") print("Conversion successfully done.") if model_path is not None: os.makedirs(model_path, exist_ok=True) model.save_pretrained(model_path) image_processor.save_pretrained(model_path) if push_to_hub: print(f"Pushing model and image processor for {model_name} to hub") # we created a community organization on the hub for this model # maintained by the Transformers team model.push_to_hub(f"usyd-community/{model_name}") image_processor.push_to_hub(f"usyd-community/{model_name}") def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="vitpose-base-simple", choices=MODEL_TO_FILE_NAME_MAPPING.keys(), type=str, help="Name of the VitPose model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to store the converted model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) parser.add_argument( "--check_logits", action="store_false", help="Whether or not to verify the logits of the converted model." ) args = parser.parse_args() write_model( model_path=args.pytorch_dump_folder_path, model_name=args.model_name, push_to_hub=args.push_to_hub, check_logits=args.check_logits, ) if __name__ == "__main__": main()
transformers/src/transformers/models/vitpose/convert_vitpose_to_hf.py/0
{ "file_path": "transformers/src/transformers/models/vitpose/convert_vitpose_to_hf.py", "repo_id": "transformers", "token_count": 7140 }
177
# coding=utf-8 # Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Wav2Vec2Conformer model configuration""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class Wav2Vec2ConformerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Wav2Vec2ConformerModel`]. It is used to instantiate an Wav2Vec2Conformer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Wav2Vec2Conformer [facebook/wav2vec2-conformer-rel-pos-large](https://huggingface.co/facebook/wav2vec2-conformer-rel-pos-large) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*): Vocabulary size of the Wav2Vec2Conformer model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Wav2Vec2ConformerModel`]. Vocabulary size of the model. Defines the different tokens that can be represented by the *inputs_ids* passed to the forward method of [`Wav2Vec2ConformerModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. activation_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for activations inside the fully connected layer. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. final_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for the final projection layer of [`Wav2Vec2ConformerForCTC`]. layerdrop (`float`, *optional*, defaults to 0.1): The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. feat_extract_norm (`str`, *optional*, defaults to `"group"`): The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D convolutional layers. feat_proj_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for output of the feature encoder. feat_extract_activation (`str, `optional`, defaults to `"gelu"`): The non-linear activation function (function or string) in the 1D convolutional layers of the feature extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. feat_quantizer_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for quantized feature encoder states. conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`): A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers. conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`): A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*. conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`): A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The length of *conv_kernel* defines the number of convolutional layers and has to match the length of *conv_dim*. conv_bias (`bool`, *optional*, defaults to `False`): Whether the 1D convolutional layers have a bias. num_conv_pos_embeddings (`int`, *optional*, defaults to 128): Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional embeddings layer. num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16): Number of groups of 1D convolutional positional embeddings layer. apply_spec_augment (`bool`, *optional*, defaults to `True`): Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see [SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition](https://arxiv.org/abs/1904.08779). mask_time_prob (`float`, *optional*, defaults to 0.05): Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_time_length (`int`, *optional*, defaults to 10): Length of vector span along the time axis. mask_time_min_masks (`int`, *optional*, defaults to 2),: The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length < mask_time_min_masks'' mask_feature_prob (`float`, *optional*, defaults to 0.0): Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_feature_length (`int`, *optional*, defaults to 10): Length of vector span along the feature axis. mask_feature_min_masks (`int`, *optional*, defaults to 0),: The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if ''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks'' num_codevectors_per_group (`int`, *optional*, defaults to 320): Number of entries in each quantization codebook (group). num_codevector_groups (`int`, *optional*, defaults to 2): Number of codevector groups for product codevector quantization. contrastive_logits_temperature (`float`, *optional*, defaults to 0.1): The temperature *kappa* in the contrastive loss. feat_quantizer_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for the output of the feature encoder that's used by the quantizer. num_negatives (`int`, *optional*, defaults to 100): Number of negative samples for the contrastive loss. codevector_dim (`int`, *optional*, defaults to 256): Dimensionality of the quantized feature vectors. proj_codevector_dim (`int`, *optional*, defaults to 256): Dimensionality of the final projection of both the quantized and the transformer features. diversity_loss_weight (`int`, *optional*, defaults to 0.1): The weight of the codebook diversity loss component. ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`): Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an instance of [`Wav2Vec2ConformerForCTC`]. ctc_zero_infinity (`bool`, *optional*, defaults to `False`): Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance of [`Wav2Vec2ConformerForCTC`]. use_weighted_layer_sum (`bool`, *optional*, defaults to `False`): Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an instance of [`Wav2Vec2ConformerForSequenceClassification`]. classifier_proj_size (`int`, *optional*, defaults to 256): Dimensionality of the projection before token mean-pooling for classification. tdnn_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 1500)`): A tuple of integers defining the number of output channels of each 1D convolutional layer in the *TDNN* module of the *XVector* model. The length of *tdnn_dim* defines the number of *TDNN* layers. tdnn_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 3, 3, 1, 1)`): A tuple of integers defining the kernel size of each 1D convolutional layer in the *TDNN* module of the *XVector* model. The length of *tdnn_kernel* has to match the length of *tdnn_dim*. tdnn_dilation (`Tuple[int]` or `List[int]`, *optional*, defaults to `(1, 2, 3, 1, 1)`): A tuple of integers defining the dilation factor of each 1D convolutional layer in *TDNN* module of the *XVector* model. The length of *tdnn_dilation* has to match the length of *tdnn_dim*. xvector_output_dim (`int`, *optional*, defaults to 512): Dimensionality of the *XVector* embedding vectors. add_adapter (`bool`, *optional*, defaults to `False`): Whether a convolutional network should be stacked on top of the Wav2Vec2Conformer Encoder. Can be very useful for warm-starting Wav2Vec2Conformer for SpeechEncoderDecoder models. adapter_kernel_size (`int`, *optional*, defaults to 3): Kernel size of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`. adapter_stride (`int`, *optional*, defaults to 2): Stride of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`. num_adapter_layers (`int`, *optional*, defaults to 3): Number of convolutional layers that should be used in the adapter network. Only relevant if `add_adapter is True`. output_hidden_size (`int`, *optional*): Dimensionality of the encoder output layer. If not defined, this defaults to *hidden-size*. Only relevant if `add_adapter is True`. position_embeddings_type (`str`, *optional*, defaults to `"relative"`): Can be specified to `relative` or `rotary` for relative or rotary position embeddings respectively. If left `None` no relative position embedding is applied. rotary_embedding_base (`int`, *optional*, defaults to 10000): If `"rotary"` position embeddings are used, defines the size of the embedding base. max_source_positions (`int`, *optional*, defaults to 5000): if `"relative"` position embeddings are used, defines the maximum source input positions. conv_depthwise_kernel_size (`int`, *optional*, defaults to 31): Kernel size of convolutional depthwise 1D layer in Conformer blocks. conformer_conv_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all convolutional layers in Conformer blocks. Example: ```python >>> from transformers import Wav2Vec2ConformerConfig, Wav2Vec2ConformerModel >>> # Initializing a Wav2Vec2Conformer facebook/wav2vec2-conformer-rel-pos-large style configuration >>> configuration = Wav2Vec2ConformerConfig() >>> # Initializing a model (with random weights) from the facebook/wav2vec2-conformer-rel-pos-large style configuration >>> model = Wav2Vec2ConformerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "wav2vec2-conformer" def __init__( self, vocab_size=None, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout=0.1, activation_dropout=0.1, attention_dropout=0.1, feat_proj_dropout=0.0, feat_quantizer_dropout=0.0, final_dropout=0.1, layerdrop=0.1, initializer_range=0.02, layer_norm_eps=1e-5, feat_extract_norm="group", feat_extract_activation="gelu", conv_dim=(512, 512, 512, 512, 512, 512, 512), conv_stride=(5, 2, 2, 2, 2, 2, 2), conv_kernel=(10, 3, 3, 3, 3, 2, 2), conv_bias=False, num_conv_pos_embeddings=128, num_conv_pos_embedding_groups=16, apply_spec_augment=True, mask_time_prob=0.05, mask_time_length=10, mask_time_min_masks=2, mask_feature_prob=0.0, mask_feature_length=10, mask_feature_min_masks=0, num_codevectors_per_group=320, num_codevector_groups=2, contrastive_logits_temperature=0.1, num_negatives=100, codevector_dim=256, proj_codevector_dim=256, diversity_loss_weight=0.1, ctc_loss_reduction="sum", ctc_zero_infinity=False, use_weighted_layer_sum=False, classifier_proj_size=256, tdnn_dim=(512, 512, 512, 512, 1500), tdnn_kernel=(5, 3, 3, 1, 1), tdnn_dilation=(1, 2, 3, 1, 1), xvector_output_dim=512, pad_token_id=0, bos_token_id=1, eos_token_id=2, add_adapter=False, adapter_kernel_size=3, adapter_stride=2, num_adapter_layers=3, output_hidden_size=None, position_embeddings_type="relative", rotary_embedding_base=10000, max_source_positions=5000, conv_depthwise_kernel_size=31, conformer_conv_dropout=0.1, **kwargs, ): super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id) self.hidden_size = hidden_size self.feat_extract_norm = feat_extract_norm self.feat_extract_activation = feat_extract_activation self.conv_dim = list(conv_dim) self.conv_stride = list(conv_stride) self.conv_kernel = list(conv_kernel) self.conv_bias = conv_bias self.num_conv_pos_embeddings = num_conv_pos_embeddings self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups self.num_feat_extract_layers = len(self.conv_dim) self.num_hidden_layers = num_hidden_layers self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.num_attention_heads = num_attention_heads self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.feat_proj_dropout = feat_proj_dropout self.final_dropout = final_dropout self.layerdrop = layerdrop self.layer_norm_eps = layer_norm_eps self.initializer_range = initializer_range self.vocab_size = vocab_size self.use_weighted_layer_sum = use_weighted_layer_sum self.max_source_positions = max_source_positions self.position_embeddings_type = position_embeddings_type self.rotary_embedding_base = rotary_embedding_base if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`." ) # Conformer-block related self.conv_depthwise_kernel_size = conv_depthwise_kernel_size self.conformer_conv_dropout = conformer_conv_dropout # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 self.apply_spec_augment = apply_spec_augment self.mask_time_prob = mask_time_prob self.mask_time_length = mask_time_length self.mask_time_min_masks = mask_time_min_masks self.mask_feature_prob = mask_feature_prob self.mask_feature_length = mask_feature_length self.mask_feature_min_masks = mask_feature_min_masks # parameters for pretraining with codevector quantized representations self.num_codevectors_per_group = num_codevectors_per_group self.num_codevector_groups = num_codevector_groups self.contrastive_logits_temperature = contrastive_logits_temperature self.feat_quantizer_dropout = feat_quantizer_dropout self.num_negatives = num_negatives self.codevector_dim = codevector_dim self.proj_codevector_dim = proj_codevector_dim self.diversity_loss_weight = diversity_loss_weight # ctc loss self.ctc_loss_reduction = ctc_loss_reduction self.ctc_zero_infinity = ctc_zero_infinity # adapter self.add_adapter = add_adapter self.adapter_kernel_size = adapter_kernel_size self.adapter_stride = adapter_stride self.num_adapter_layers = num_adapter_layers self.output_hidden_size = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. self.classifier_proj_size = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. self.tdnn_dim = list(tdnn_dim) self.tdnn_kernel = list(tdnn_kernel) self.tdnn_dilation = list(tdnn_dilation) self.xvector_output_dim = xvector_output_dim @property def inputs_to_logits_ratio(self): return functools.reduce(operator.mul, self.conv_stride, 1) __all__ = ["Wav2Vec2ConformerConfig"]
transformers/src/transformers/models/wav2vec2_conformer/configuration_wav2vec2_conformer.py/0
{ "file_path": "transformers/src/transformers/models/wav2vec2_conformer/configuration_wav2vec2_conformer.py", "repo_id": "transformers", "token_count": 8163 }
178
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Feature extractor class for Whisper """ from typing import List, Optional, Union import numpy as np from ... import is_torch_available from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging if is_torch_available(): import torch logger = logging.get_logger(__name__) class WhisperFeatureExtractor(SequenceFeatureExtractor): r""" Constructs a Whisper feature extractor. This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. This class extracts mel-filter bank features from raw speech using a custom numpy implementation of the `Short Time Fourier Transform` which should match pytorch's `torch.stft` equivalent. Args: feature_size (`int`, *optional*, defaults to 80): The feature dimension of the extracted features. sampling_rate (`int`, *optional*, defaults to 16000): The sampling rate at which the audio files should be digitalized expressed in hertz (Hz). hop_length (`int`, *optional*, defaults to 160): Length of the overlaping windows for the STFT used to obtain the Mel Frequency coefficients. chunk_length (`int`, *optional*, defaults to 30): The maximum number of chuncks of `sampling_rate` samples used to trim and pad longer or shorter audio sequences. n_fft (`int`, *optional*, defaults to 400): Size of the Fourier transform. padding_value (`float`, *optional*, defaults to 0.0): Padding value used to pad the audio. Should correspond to silences. """ model_input_names = ["input_features"] def __init__( self, feature_size=80, sampling_rate=16000, hop_length=160, chunk_length=30, n_fft=400, padding_value=0.0, return_attention_mask=False, # pad inputs to max length with silence token (zero) and no attention mask **kwargs, ): super().__init__( feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, return_attention_mask=return_attention_mask, **kwargs, ) self.n_fft = n_fft self.hop_length = hop_length self.chunk_length = chunk_length self.n_samples = chunk_length * sampling_rate self.nb_max_frames = self.n_samples // hop_length self.sampling_rate = sampling_rate self.mel_filters = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=feature_size, min_frequency=0.0, max_frequency=8000.0, sampling_rate=sampling_rate, norm="slaney", mel_scale="slaney", ) def _np_extract_fbank_features(self, waveform_batch: np.array, device: str) -> np.ndarray: """ Compute the log-mel spectrogram of the provided audio, gives similar results to Whisper's original torch implementation with 1e-5 tolerance. """ if device != "cpu": raise ValueError( f"Got device `{device}` for feature extraction, but feature extraction on CUDA accelerator " "devices requires torch, which is not installed. Either set `device='cpu'`, or " "install torch according to the official instructions: https://pytorch.org/get-started/locally/" ) log_spec_batch = [] for waveform in waveform_batch: log_spec = spectrogram( waveform, window_function(self.n_fft, "hann"), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters, log_mel="log10", ) log_spec = log_spec[:, :-1] log_spec = np.maximum(log_spec, log_spec.max() - 8.0) log_spec = (log_spec + 4.0) / 4.0 log_spec_batch.append(log_spec) log_spec_batch = np.array(log_spec_batch) return log_spec_batch def _torch_extract_fbank_features(self, waveform: np.array, device: str = "cpu") -> np.ndarray: """ Compute the log-mel spectrogram of the audio using PyTorch's GPU-accelerated STFT implementation with batching, yielding results similar to cpu computing with 1e-5 tolerance. """ waveform = torch.from_numpy(waveform).type(torch.float32) window = torch.hann_window(self.n_fft) if device != "cpu": waveform = waveform.to(device) window = window.to(device) stft = torch.stft(waveform, self.n_fft, self.hop_length, window=window, return_complex=True) magnitudes = stft[..., :-1].abs() ** 2 mel_filters = torch.from_numpy(self.mel_filters).type(torch.float32) if device != "cpu": mel_filters = mel_filters.to(device) mel_spec = mel_filters.T @ magnitudes log_spec = torch.clamp(mel_spec, min=1e-10).log10() if waveform.dim() == 2: max_val = log_spec.max(dim=2, keepdim=True)[0].max(dim=1, keepdim=True)[0] log_spec = torch.maximum(log_spec, max_val - 8.0) else: log_spec = torch.maximum(log_spec, log_spec.max() - 8.0) log_spec = (log_spec + 4.0) / 4.0 if device != "cpu": log_spec = log_spec.detach().cpu() return log_spec.numpy() @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def zero_mean_unit_var_norm( input_values: List[np.ndarray], attention_mask: List[np.ndarray], padding_value: float = 0.0 ) -> List[np.ndarray]: """ Every array in the list is normalized to have zero mean and unit variance """ if attention_mask is not None: attention_mask = np.array(attention_mask, np.int32) normed_input_values = [] for vector, length in zip(input_values, attention_mask.sum(-1)): normed_slice = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7) if length < normed_slice.shape[0]: normed_slice[length:] = padding_value normed_input_values.append(normed_slice) else: normed_input_values = [(x - x.mean()) / np.sqrt(x.var() + 1e-7) for x in input_values] return normed_input_values def __call__( self, raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], truncation: bool = True, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_attention_mask: Optional[bool] = None, padding: Optional[str] = "max_length", max_length: Optional[int] = None, sampling_rate: Optional[int] = None, do_normalize: Optional[bool] = None, device: Optional[str] = "cpu", return_token_timestamps: Optional[bool] = None, **kwargs, ) -> BatchFeature: """ Main method to featurize and prepare for the model one or several sequence(s). Implementation uses PyTorch for the STFT computation if available, otherwise a slower NumPy based one. Args: raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`): The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not stereo, i.e. single float per timestep. truncation (`bool`, *optional*, default to `True`): Activates truncation to cut input sequences longer than *max_length* to *max_length*. pad_to_multiple_of (`int`, *optional*, defaults to None): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. return_attention_mask (`bool`, *optional*): Whether to return the attention mask. If left to the default, will return the attention mask according to the specific feature_extractor's default. [What are attention masks?](../glossary#attention-mask) <Tip> For Whisper models, `attention_mask` should always be passed for batched inference, to avoid subtle bugs. </Tip> return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. sampling_rate (`int`, *optional*): The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass `sampling_rate` at the forward call to prevent silent errors and allow automatic speech recognition pipeline. padding_value (`float`, *optional*, defaults to 0.0): The value that is used to fill the padding values / vectors. do_normalize (`bool`, *optional*, defaults to `False`): Whether or not to zero-mean unit-variance normalize the input. Normalizing can help to significantly improve the performance of the model. device (`str`, *optional*, defaults to `'cpu'`): Specifies the device for computation of the log-mel spectrogram of audio signals in the `_torch_extract_fbank_features` method. (e.g., "cpu", "cuda") return_token_timestamps (`bool`, *optional*, defaults to `None`): Whether or not to return the number of frames of the input raw_speech. These num_frames can be used by the model to compute word level timestamps. """ if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" f" was sampled with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}") is_batched = is_batched_numpy or ( isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list))) ) if is_batched: raw_speech = [np.asarray([speech], dtype=np.float32).T for speech in raw_speech] elif not is_batched and not isinstance(raw_speech, np.ndarray): raw_speech = np.asarray(raw_speech, dtype=np.float32) elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64): raw_speech = raw_speech.astype(np.float32) # always return batch if not is_batched: raw_speech = [np.asarray([raw_speech]).T] batched_speech = BatchFeature({"input_features": raw_speech}) # convert into correct format for padding padded_inputs = self.pad( batched_speech, padding=padding, max_length=max_length if max_length else self.n_samples, truncation=truncation, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask or do_normalize, ) # zero-mean and unit-variance normalization if do_normalize: padded_inputs["input_features"] = self.zero_mean_unit_var_norm( padded_inputs["input_features"], attention_mask=padded_inputs["attention_mask"], padding_value=self.padding_value, ) padded_inputs["input_features"] = np.stack(padded_inputs["input_features"], axis=0) # make sure list is in array format input_features = padded_inputs.get("input_features").transpose(2, 0, 1) extract_fbank_features = ( self._torch_extract_fbank_features if is_torch_available() else self._np_extract_fbank_features ) input_features = extract_fbank_features(input_features[0], device) if isinstance(input_features[0], List): padded_inputs["input_features"] = [np.asarray(feature, dtype=np.float32) for feature in input_features] else: padded_inputs["input_features"] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) padded_inputs["attention_mask"] = padded_inputs["attention_mask"][:, :: self.hop_length] if return_token_timestamps is not None: padded_inputs["num_frames"] = [len(raw_speech_i) // self.hop_length for raw_speech_i in raw_speech] if return_tensors is not None: padded_inputs = padded_inputs.convert_to_tensors(return_tensors) return padded_inputs __all__ = ["WhisperFeatureExtractor"]
transformers/src/transformers/models/whisper/feature_extraction_whisper.py/0
{ "file_path": "transformers/src/transformers/models/whisper/feature_extraction_whisper.py", "repo_id": "transformers", "token_count": 6313 }
179
# coding=utf-8 # Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Flax XGLM model.""" import math import random from functools import partial from typing import Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp import numpy as np from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from jax.random import PRNGKey from ...modeling_flax_outputs import ( FlaxBaseModelOutputWithPastAndCrossAttentions, FlaxCausalLMOutputWithCrossAttentions, ) from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_xglm import XGLMConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "facebook/xglm-564M" _CONFIG_FOR_DOC = "XGLMConfig" XGLM_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Flax Linen [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`XGLMConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ XGLM_INPUTS_DOCSTRING = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ def create_sinusoidal_positions(n_pos, dim, padding_idx=1): half_dim = dim // 2 emb = math.log(10000) / (half_dim - 1) emb = np.exp(np.arange(half_dim) * -emb) emb = np.expand_dims(np.arange(n_pos), 1) * np.expand_dims(emb, 0) emb = np.concatenate([np.sin(emb), np.cos(emb)], 1) emb = np.reshape(emb, (n_pos, dim)) if padding_idx is not None: emb[padding_idx, :] = 0 return jnp.array(emb) class FlaxXGLMAttention(nn.Module): config: XGLMConfig embed_dim: int num_heads: int dropout: float = 0.0 causal: bool = False bias: bool = True dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self) -> None: self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} " f"and `num_heads`: {self.num_heads})." ) dense = partial( nn.Dense, self.embed_dim, use_bias=self.bias, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() self.out_proj = dense() self.dropout_layer = nn.Dropout(rate=self.dropout) if self.causal: self.causal_mask = make_causal_mask( jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool" ) def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) @nn.compact def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slighly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend # to those key positions that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None batch_size = hidden_states.shape[0] # get query proj query_states = self.q_proj(hidden_states) # get key, value proj if is_cross_attention: # cross_attentions key_states = self.k_proj(key_value_states) value_states = self.v_proj(key_value_states) else: # self_attention key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) # handle cache prepare causal attention mask if self.causal: query_length, key_length = query_states.shape[1], key_states.shape[1] if self.has_variable("cache", "cached_key"): mask_shift = self.variables["cache"]["cache_index"] max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_mask = lax.dynamic_slice( self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) return attn_output, attn_weights class FlaxXGLMDecoderLayer(nn.Module): config: XGLMConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxXGLMAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.attention_heads, dropout=self.config.attention_dropout, causal=True, dtype=self.dtype, ) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) if self.config.add_cross_attention: self.encoder_attn = FlaxXGLMAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.fc1 = nn.Dense( self.config.ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) # Copied from transformers.models.mbart.modeling_flax_mbart.FlaxMBartDecoderLayer.__call__ def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) hidden_states, cross_attn_weights = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs class FlaxXGLMDecoderLayerCollection(nn.Module): config: XGLMConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxXGLMDecoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_layers) ] self.layerdrop = self.config.layerdrop def __call__( self, hidden_states, attention_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if not deterministic and (dropout_probability < self.layerdrop): layer_outputs = (None, None, None) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, init_cache=init_cache, output_attentions=output_attentions, deterministic=deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) outputs = (hidden_states, all_hidden_states, all_self_attns, all_cross_attentions) if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) class FlaxXGLMModule(nn.Module): config: XGLMConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.padding_idx = self.config.pad_token_id self.max_target_positions = self.config.max_position_embeddings self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0 self.embed_tokens = nn.Embed( self.config.vocab_size, embed_dim, embedding_init=jax.nn.initializers.normal(self.config.init_std), ) # XGLM is set up so that if padding_idx is specified then offset the embedding ids by 2 # and adjust num_embeddings appropriately. Other models don't have this hack self.offset = 2 self.embed_positions = create_sinusoidal_positions( self.config.max_position_embeddings + self.offset, embed_dim ) self.layers = FlaxXGLMDecoderLayerCollection(self.config, self.dtype) self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, input_ids, attention_mask, position_ids, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): input_shape = input_ids.shape input_ids = input_ids.reshape(-1, input_shape[-1]) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale # embed positions position_ids = position_ids + self.offset positions = jnp.take(self.embed_positions, position_ids, axis=0) hidden_states = inputs_embeds + positions hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_states = outputs[0] last_hidden_states = self.layer_norm(last_hidden_states) hidden_states = None if output_hidden_states: hidden_states = outputs[1] hidden_states = hidden_states[:-1] + (last_hidden_states,) if not return_dict: outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:]) return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=last_hidden_states, hidden_states=hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) class FlaxXGLMPreTrainedModel(FlaxPreTrainedModel): config_class = XGLMConfig base_model_prefix: str = "model" module_class: nn.Module = None def __init__( self, config: XGLMConfig, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") attention_mask = jnp.ones_like(input_ids) position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} if self.config.add_cross_attention: encoder_hidden_states = jnp.zeros(input_shape + (self.config.n_embd,)) encoder_attention_mask = attention_mask module_init_outputs = self.module.init( rngs, input_ids, attention_mask, position_ids, encoder_hidden_states, encoder_attention_mask, return_dict=False, ) else: module_init_outputs = self.module.init(rngs, input_ids, attention_mask, position_ids, return_dict=False) random_params = module_init_outputs["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params def init_cache(self, batch_size, max_length): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. """ # init input variables to retrieve cache input_ids = jnp.ones((batch_size, max_length), dtype="i4") attention_mask = jnp.ones_like(input_ids, dtype="i4") position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) init_variables = self.module.init( jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True ) return unfreeze(init_variables["cache"]) @add_start_docstrings_to_model_forward(XGLM_INPUTS_DOCSTRING) def __call__( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, past_key_values: dict = None, dropout_rng: PRNGKey = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if encoder_hidden_states is not None and encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) # prepare encoder inputs if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if position_ids is None: batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) # Handle any PRNG if needed rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed # down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be # changed by FlaxXGLMAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False outputs = self.module.apply( inputs, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past_key_values = outputs outputs["past_key_values"] = unfreeze(past_key_values["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past_key_values = outputs outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:] return outputs @add_start_docstrings( "The bare XGLM Model transformer outputting raw hidden-states without any specific head on top.", XGLM_START_DOCSTRING, ) class FlaxXGLMModel(FlaxXGLMPreTrainedModel): module_class = FlaxXGLMModule append_call_sample_docstring( FlaxXGLMModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutputWithPastAndCrossAttentions, _CONFIG_FOR_DOC, ) class FlaxXGLMForCausalLMModule(nn.Module): config: XGLMConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.model = FlaxXGLMModule(self.config, self.dtype) self.lm_head = nn.Dense( self.config.vocab_size, use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) def __call__( self, input_ids, attention_mask, position_ids, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): outputs = self.model( input_ids, attention_mask, position_ids, encoder_hidden_states, encoder_attention_mask, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = self.model.variables["params"]["embed_tokens"]["embedding"] lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = self.lm_head(hidden_states) if not return_dict: return (lm_logits,) + outputs[1:] return FlaxCausalLMOutputWithCrossAttentions( logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) @add_start_docstrings( """ The XGLM Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, XGLM_START_DOCSTRING, ) class FlaxXGLMForCausalLM(FlaxXGLMPreTrainedModel): module_class = FlaxXGLMForCausalLMModule def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None): # initializing the cache batch_size, seq_length = input_ids.shape past_key_values = self.init_cache(batch_size, max_length) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since GPT2 uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if attention_mask is not None: position_ids = attention_mask.cumsum(axis=-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0)) else: position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) return { "past_key_values": past_key_values, "attention_mask": extended_attention_mask, "position_ids": position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1 return model_kwargs append_call_sample_docstring( FlaxXGLMForCausalLM, _CHECKPOINT_FOR_DOC, FlaxCausalLMOutputWithCrossAttentions, _CONFIG_FOR_DOC, ) __all__ = ["FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel"]
transformers/src/transformers/models/xglm/modeling_flax_xglm.py/0
{ "file_path": "transformers/src/transformers/models/xglm/modeling_flax_xglm.py", "repo_id": "transformers", "token_count": 14649 }
180
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License """Tokenization classes for XLM-RoBERTa model.""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) SPIECE_UNDERLINE = "▁" VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"} class XLMRobertaTokenizer(PreTrainedTokenizer): """ Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. Attributes: sp_model (`SentencePieceProcessor`): The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(vocab_file)) self.vocab_file = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token self.fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab self.fairseq_offset = 1 self.fairseq_tokens_to_ids["<mask>"] = len(self.sp_model) + self.fairseq_offset self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()} super().__init__( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, sp_model_kwargs=self.sp_model_kwargs, **kwargs, ) def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None state["sp_model_proto"] = self.sp_model.serialized_model_proto() return state def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An XLM-RoBERTa sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] @property def vocab_size(self): return len(self.sp_model) + self.fairseq_offset + 1 # Add the <mask> token def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text: str) -> List[str]: # TODO check if the t5/llama PR also applies here return self.sp_model.encode(text, out_type=str) def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] spm_id = self.sp_model.PieceToId(token) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (strings for sub-words) in a single string.""" out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() return out_string def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,) __all__ = ["XLMRobertaTokenizer"]
transformers/src/transformers/models/xlm_roberta/tokenization_xlm_roberta.py/0
{ "file_path": "transformers/src/transformers/models/xlm_roberta/tokenization_xlm_roberta.py", "repo_id": "transformers", "token_count": 5416 }
181
# coding=utf-8 # Copyright 2023 Meta AI Team and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch X-MOD model.""" import math from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN, gelu from ...generation import GenerationMixin from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, CausalLMOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_xmod import XmodConfig logger = logging.get_logger(__name__) # Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->Xmod class XmodEmbeddings(nn.Module): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False ) # End copy self.padding_idx = config.pad_token_id self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx ) def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 ): if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) else: position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape) # Copied from transformers.models.roberta.modeling_roberta.RobertaSelfAttention with Roberta->Xmod class XmodSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) use_cache = past_key_value is not None if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": query_length, key_length = query_layer.shape[2], key_layer.shape[2] if use_cache: position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( -1, 1 ) else: position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in XmodModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs class XmodSelfOutput(nn.Module): # Copied from transformers.models.roberta.modeling_roberta.RobertaSelfOutput.__init__ def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states class XmodAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = XmodSelfAttention(config, position_embedding_type=position_embedding_type) self.output = XmodSelfOutput(config) self.pruned_heads = set() self.pre_norm = config.pre_norm # Copied from transformers.models.roberta.modeling_roberta.RobertaAttention.prune_heads def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: residual = hidden_states if self.pre_norm: hidden_states = self.output.LayerNorm(hidden_states) self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], residual) if not self.pre_norm: attention_output = self.output.LayerNorm(attention_output) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.roberta.modeling_roberta.RobertaIntermediate class XmodIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class XmodAdapter(nn.Module): def __init__(self, config): super().__init__() self.bottleneck_size = config.hidden_size // config.adapter_reduction_factor self.dense1 = nn.Linear(config.hidden_size, self.bottleneck_size) self.dense2 = nn.Linear(self.bottleneck_size, config.hidden_size) if isinstance(config.hidden_act, str): self.adapter_act_fn = ACT2FN[config.hidden_act] else: self.adapter_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense1(hidden_states) hidden_states = self.adapter_act_fn(hidden_states) hidden_states = self.dense2(hidden_states) return hidden_states class XmodOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.ln_before_adapter = config.ln_before_adapter self.dropout = nn.Dropout(config.hidden_dropout_prob) if config.adapter_layer_norm: self.adapter_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) else: self.adapter_layer_norm = None self.adapter_reuse_layer_norm = config.adapter_reuse_layer_norm self.adapter_modules = nn.ModuleDict({}) for language in config.languages: self.adapter_modules[str(language)] = XmodAdapter(config) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor, lang_ids: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor hidden_states = self.lang_adapter(lang_ids, hidden_states) return hidden_states def lang_adapter(self, lang_ids: torch.Tensor, hidden_states: torch.Tensor): # Process subsequent samples with the same lang_id in parallel lang_ids, lang_lengths = torch.unique_consecutive(lang_ids, return_counts=True) if not self.ln_before_adapter: residual = hidden_states if self.adapter_layer_norm is not None: hidden_states = self.adapter_layer_norm(hidden_states) elif self.adapter_reuse_layer_norm: hidden_states = self.LayerNorm(hidden_states) if self.ln_before_adapter: residual = hidden_states split_hidden_states = torch.split(hidden_states, lang_lengths.tolist(), 0) lang_wise_outputs = [] for i, (lang_id, split_hidden_state) in enumerate(zip(lang_ids, split_hidden_states)): lang = list(self.adapter_modules.keys())[int(lang_id.item())] lang_wise_outputs.append(self.adapter_modules[lang](split_hidden_state)) hidden_states = torch.cat(lang_wise_outputs, 0) hidden_states = self.dropout(hidden_states) hidden_states += residual return hidden_states class XmodLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = XmodAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = XmodAttention(config, position_embedding_type="absolute") self.intermediate = XmodIntermediate(config) self.output = XmodOutput(config) self.pre_norm = config.pre_norm def forward( self, hidden_states: torch.Tensor, lang_ids: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value residual = attention_output if self.pre_norm: attention_output = self.output.LayerNorm(attention_output) intermediate_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output, ) layer_output = self.output(intermediate_output, residual, lang_ids) if not self.pre_norm: layer_output = self.output.LayerNorm(layer_output) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): return self.intermediate(attention_output) class XmodEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([XmodLayer(config) for _ in range(config.num_hidden_layers)]) self.is_pre_norm = config.pre_norm if self.is_pre_norm: self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, lang_ids: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, lang_ids, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) else: layer_outputs = layer_module( hidden_states, lang_ids, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if self.is_pre_norm: hidden_states = self.LayerNorm(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaPooler class XmodPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class XmodPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = XmodConfig base_model_prefix = "roberta" supports_gradient_checkpointing = True # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def set_default_language(self, language: str): """ Set the default language code for the model. This is used when the language is not specified in the input. Args: language (`str`): The language code, such as `"en_XX"` or `"de_DE"`. """ if language not in self.config.languages: raise ValueError( f"{self} does not have an adapter for {language}. Supported languages: {list(self.config.languages)}" ) self.config.default_language = language def freeze_embeddings_and_language_adapters(self): """ Freeze the embeddings and language adapters of the model. Usually, this is applied before the model is fine-tuned on a downstream task. """ logger.info("Freezing embeddings") for parameter in self.roberta.embeddings.parameters(): parameter.requires_grad = False logger.info("Freezing adapters") for layer in self.roberta.encoder.layer: if layer.output.adapter_layer_norm is not None: for parameter in layer.output.adapter_layer_norm.parameters(): parameter.requires_grad = False for parameter in layer.output.adapter_modules.parameters(): parameter.requires_grad = False XMOD_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`XmodConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ XMOD_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) lang_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of the language adapters that should be activated for each sample, respectively. Default: the index that corresponds to `self.config.default_language`. attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare X-MOD Model transformer outputting raw hidden-states without any specific head on top.", XMOD_START_DOCSTRING, ) class XmodModel(XmodPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in *Attention is all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. .. _*Attention is all you need*: https://arxiv.org/abs/1706.03762 """ # Copied from transformers.models.clap.modeling_clap.ClapTextModel.__init__ with ClapText->Xmod def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = XmodEmbeddings(config) self.encoder = XmodEncoder(config) self.pooler = XmodPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.roberta.modeling_roberta.RobertaModel.get_input_embeddings def get_input_embeddings(self): return self.embeddings.word_embeddings # Copied from transformers.models.roberta.modeling_roberta.RobertaModel.set_input_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value # Copied from transformers.models.roberta.modeling_roberta.RobertaModel._prune_heads def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(XMOD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids: Optional[torch.Tensor] = None, lang_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors: of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if lang_ids is None: if self.config.default_language is None: raise ValueError("Input language unknown. Please call `XmodPreTrainedModel.set_default_language()`") adapter_languages = list(self.encoder.layer[0].output.adapter_modules.keys()) default_lang_id = adapter_languages.index(self.config.default_language) lang_ids = default_lang_id * torch.ones(batch_size, device=device) if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, lang_ids=lang_ids, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings( "X-MOD Model with a `language modeling` head on top for CLM fine-tuning.", XMOD_START_DOCSTRING, ) class XmodForCausalLM(XmodPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] # Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM.__init__ with Roberta->Xmod def __init__(self, config): super().__init__(config) if not config.is_decoder: logger.warning("If you want to use `XmodLMHeadModel` as a standalone, add `is_decoder=True.`") self.roberta = XmodModel(config, add_pooling_layer=False) self.lm_head = XmodLMHead(config) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM.get_output_embeddings def get_output_embeddings(self): return self.lm_head.decoder # Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM.set_output_embeddings def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings @add_start_docstrings_to_model_forward(XMOD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids: Optional[torch.LongTensor] = None, lang_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, past_key_values: Tuple[Tuple[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Returns: `transformers.modeling_outputs.CausalLMOutputWithCrossAttentions` or `tuple(torch.FloatTensor)` Example: ```python >>> from transformers import AutoTokenizer, XmodForCausalLM, AutoConfig >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/xlm-roberta-base") >>> config = AutoConfig.from_pretrained("facebook/xmod-base") >>> config.is_decoder = True >>> model = XmodForCausalLM.from_pretrained("facebook/xmod-base", config=config) >>> model.set_default_language("en_XX") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False outputs = self.roberta( input_ids, lang_ids=lang_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) lm_loss = None if labels is not None: # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM._reorder_cache def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past @add_start_docstrings( """X-MOD Model with a `language modeling` head on top.""", XMOD_START_DOCSTRING, ) class XmodForMaskedLM(XmodPreTrainedModel): _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] # Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM.__init__ with Roberta->Xmod def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `XmodForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.roberta = XmodModel(config, add_pooling_layer=False) self.lm_head = XmodLMHead(config) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM.get_output_embeddings def get_output_embeddings(self): return self.lm_head.decoder # Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM.set_output_embeddings def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings @add_start_docstrings_to_model_forward(XMOD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids: Optional[torch.LongTensor] = None, lang_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` kwargs (`Dict[str, any]`, *optional*, defaults to *{}*): Used to hide legacy arguments that have been deprecated. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, lang_ids=lang_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaLMHead class XmodLMHead(nn.Module): """Roberta Head for masked language modeling.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.decoder = nn.Linear(config.hidden_size, config.vocab_size) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) self.decoder.bias = self.bias def forward(self, features, **kwargs): x = self.dense(features) x = gelu(x) x = self.layer_norm(x) # project back to size of vocabulary with bias x = self.decoder(x) return x def _tie_weights(self): # To tie those two weights if they get disconnected (on TPU or when the bias is resized) # For accelerate compatibility and to not break backward compatibility if self.decoder.bias.device.type == "meta": self.decoder.bias = self.bias else: self.bias = self.decoder.bias @add_start_docstrings( """ X-MOD Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, XMOD_START_DOCSTRING, ) class XmodForSequenceClassification(XmodPreTrainedModel): # Copied from transformers.models.roberta.modeling_roberta.RobertaForSequenceClassification.__init__ with Roberta->Xmod def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.roberta = XmodModel(config, add_pooling_layer=False) self.classifier = XmodClassificationHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(XMOD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids: Optional[torch.LongTensor] = None, lang_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, lang_ids=lang_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ X-MOD Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, XMOD_START_DOCSTRING, ) class XmodForMultipleChoice(XmodPreTrainedModel): # Copied from transformers.models.roberta.modeling_roberta.RobertaForMultipleChoice.__init__ with Roberta->Xmod def __init__(self, config): super().__init__(config) self.roberta = XmodModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(XMOD_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) def forward( self, input_ids: Optional[torch.LongTensor] = None, lang_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None flat_lang_ids = lang_ids.repeat(input_ids.size(0) * input_ids.size(1)) if lang_ids is not None else None flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None flat_inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.roberta( flat_input_ids, lang_ids=flat_lang_ids, position_ids=flat_position_ids, token_type_ids=flat_token_type_ids, attention_mask=flat_attention_mask, head_mask=head_mask, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ X-MOD Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, XMOD_START_DOCSTRING, ) class XmodForTokenClassification(XmodPreTrainedModel): # Copied from transformers.models.roberta.modeling_roberta.RobertaForTokenClassification.__init__ with Roberta->Xmod def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roberta = XmodModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(XMOD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids: Optional[torch.LongTensor] = None, lang_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, lang_ids=lang_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead class XmodClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x @add_start_docstrings( """ X-MOD Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, XMOD_START_DOCSTRING, ) class XmodForQuestionAnswering(XmodPreTrainedModel): # Copied from transformers.models.roberta.modeling_roberta.RobertaForQuestionAnswering.__init__ with Roberta->Xmod def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roberta = XmodModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(XMOD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids: Optional[torch.LongTensor] = None, lang_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, lang_ids=lang_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: torch.Tensor x: Returns: torch.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask return incremental_indices.long() + padding_idx __all__ = [ "XmodForCausalLM", "XmodForMaskedLM", "XmodForMultipleChoice", "XmodForQuestionAnswering", "XmodForSequenceClassification", "XmodForTokenClassification", "XmodModel", "XmodPreTrainedModel", ]
transformers/src/transformers/models/xmod/modeling_xmod.py/0
{ "file_path": "transformers/src/transformers/models/xmod/modeling_xmod.py", "repo_id": "transformers", "token_count": 31975 }
182
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from src/transformers/models/zamba2/modular_zamba2.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_zamba2.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # coding=utf-8 # Copyright 2024 Zyphra Technologies and the HuggingFace Inc. team. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import re from itertools import cycle from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache from ...generation import GenerationMixin from ...modeling_attn_mask_utils import AttentionMaskConverter from ...modeling_flash_attention_utils import FlashAttentionKwargs from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ...processing_utils import Unpack from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from ...utils.deprecation import deprecate_kwarg from ...utils.import_utils import is_causal_conv1d_available, is_mamba_ssm_available from .configuration_zamba2 import Zamba2Config if is_mamba_ssm_available(): from mamba_ssm.ops.triton.selective_state_update import selective_state_update from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined else: selective_state_update, mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined = None, None, None if is_causal_conv1d_available(): from causal_conv1d import causal_conv1d_fn, causal_conv1d_update else: causal_conv1d_update, causal_conv1d_fn = None, None logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "Zyphra/Zamba2-2.7B" class Zamba2RMSNormGated(torch.nn.Module): def __init__(self, hidden_size, eps=1e-6): super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states, gate=None): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) if gate is not None: hidden_states = hidden_states * nn.functional.silu(gate.to(torch.float32)) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) class Zamba2RMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ Zamba2RMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" class Zamba2HybridDynamicCache(DynamicCache): """ A dynamic cache that can handle both the attention cache (which has a seq_len dimension) and the mamba cache (which has a constant shape regardless of seq_len). This cache has two sets of lists of tensors: `key_cache` and `value_cache` for attention cache and `conv_states` and `ssm_states` for mamba cache. Each of these lists has `num_layers` tensors. The expected shape for each tensor For attention layers, `key_cache` and `value_cache` have a shape of `(batch_size, num_heads, seq_len, head_dim)`, while `conv_states` and `ssm_states` have a shape of `(batch_size, 0)` (empty tensors). For mamba layers, `key_cache` and `value_cache` have a shape of `(batch_size, 0)` (empty tensors), while `conv_states` represents the convolution state and has a shape of `(batch_size, d_inner, d_conv)`, and `ssm_states` represents the ssm state and has a shape of `(batch_size, d_inner, d_state)`. """ def __init__( self, config: Zamba2Config, batch_size: int, dtype: torch.dtype = torch.float16, device: Optional[str] = None ): self.dtype = dtype self.layers_block_type = config.layers_block_type self.has_previous_state = False self.intermediate_size = int(config.mamba_expand * config.hidden_size) self.ssm_state_size = config.mamba_d_state self.conv_kernel_size = config.mamba_d_conv self.n_mamba_heads = config.n_mamba_heads self.transformer_layers = [] self._modules = {} self._parameters = {} self._buffers = {} self.conv_states = {} self.ssm_states = {} for i in range(config.num_hidden_layers): self.conv_states[i] = torch.zeros( batch_size, self.intermediate_size + 2 * config.mamba_ngroups * config.mamba_d_state, self.conv_kernel_size, device=device, dtype=dtype, ) self.ssm_states[i] = torch.zeros( batch_size, self.n_mamba_heads, config.mamba_headdim, self.ssm_state_size, device=device, dtype=dtype ) if self.layers_block_type[i] == "hybrid": self.transformer_layers.append(i) self.key_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)] self.value_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)] def update( self, key_states: torch.Tensor, value_states: torch.Tensor, layer_idx: int, cache_kwargs: Optional[Dict[str, Any]] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: # Update the cache if self.key_cache[layer_idx].shape[-1] == 0: self.key_cache[layer_idx] = key_states self.value_cache[layer_idx] = value_states else: self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=2) self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=2) return self.key_cache[layer_idx], self.value_cache[layer_idx] def reorder_cache(self, beam_idx: torch.LongTensor): """Reorders the cache for beam search, given the selected beam indices.""" for layer_idx in range(len(self.key_cache)): device = self.key_cache[layer_idx].device self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device)) device = self.value_cache[layer_idx].device self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device)) device = self.conv_states[layer_idx].device self.conv_states[layer_idx] = self.conv_states[layer_idx].index_select(0, beam_idx.to(device)) device = self.ssm_states[layer_idx].device self.ssm_states[layer_idx] = self.ssm_states[layer_idx].index_select(0, beam_idx.to(device)) def get_seq_length(self, layer_idx: Optional[int] = 0) -> int: """Returns the sequence length of the cached states. A layer index can be optionally passed.""" # take any layer that contains cache and not empty tensor layer_idx = self.transformer_layers[0] if layer_idx not in self.transformer_layers else layer_idx if len(self.key_cache) <= layer_idx or self.key_cache[layer_idx].numel() == 0: return 0 return self.key_cache[layer_idx].shape[-2] def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]: raise NotImplementedError("Zamba2HybridDynamicCache does not have a legacy cache equivalent.") @classmethod def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache": raise NotImplementedError("Zamba2HybridDynamicCache does not have a legacy cache equivalent.") def update_conv_state( self, layer_idx: int, new_conv_state: torch.Tensor, cache_position: torch.LongTensor ) -> torch.Tensor: conv_state = self.conv_states[layer_idx] cache_position = cache_position.clamp(0, self.conv_kernel_size - 1) conv_state = conv_state.roll(shifts=-1, dims=-1) conv_state[:, :, cache_position] = new_conv_state.to(conv_state.device) self.conv_states[layer_idx].zero_() self.conv_states[layer_idx] += conv_state return self.conv_states[layer_idx] def reset(self): self.conv_states.zero_() self.ssm_states.zero_() class Zamba2RotaryEmbedding(nn.Module): def __init__( self, config: Zamba2Config, device=None, ): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and config.rope_scaling is not None: self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] # we cannot use the config here to parameterize because of a factor 2 for the head_dim inv_freq, self.attention_scaling = self.rope_init_fn( device=device, base=config.rope_theta, dim=config.attention_head_dim ) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq def _dynamic_frequency_update(self, position_ids, device): """ dynamic RoPE layers should recompute `inv_freq` in the following situations: 1 - growing beyond the cached sequence length (allow scaling) 2 - the current sequence length is in the original scale (avoid losing precision with small sequences) """ seq_len = torch.max(position_ids) + 1 if seq_len > self.max_seq_len_cached: # growth inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len) self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation self.max_seq_len_cached = seq_len if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset # This .to() is needed if the model has been moved to a device after being initialized (because # the buffer is automatically moved, but not the original copy) self.original_inv_freq = self.original_inv_freq.to(device) self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) self.max_seq_len_cached = self.original_max_seq_len @torch.no_grad() def forward(self, x, position_ids): if "dynamic" in self.rope_type: self._dynamic_frequency_update(position_ids, device=x.device) # Core RoPE block inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) position_ids_expanded = position_ids[:, None, :].float() # Force float32 (see https://github.com/huggingface/transformers/pull/29285) device_type = x.device.type device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() sin = emb.sin() # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention cos = cos * self.attention_scaling sin = sin * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs, ): key_states = repeat_kv(key, module.num_key_value_groups) value_states = repeat_kv(value, module.num_key_value_groups) attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed class Zamba2Attention(nn.Module): """ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer and "Generating Long Sequences with Sparse Transformers". Adapted from transformers.models.mistral.modeling_mistral.MistralAttention: The input dimension here is attention_hidden_size = 2 * hidden_size, and head_dim = attention_hidden_size // num_heads. The extra factor of 2 comes from the input being the concatenation of original_hidden_states with the output of the previous (mamba) layer (see fig. 2 in https://arxiv.org/pdf/2405.16712). Additionally, replaced attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) with attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim/2) Multi-headed attention from 'Attention Is All You Need' paper. Adapted from transformers.models.mistral.modeling_mistral.MistralAttention: The input dimension here is attention_hidden_size = 2 * hidden_size, and head_dim = attention_hidden_size // num_heads. The extra factor of 2 comes from the input being the concatenation of original_hidden_states with the output of the previous (mamba) layer (see fig. 2 in https://arxiv.org/pdf/2405.16712). Additionally, replaced attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) with attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim/2) Finally, this attention layer contributes to tied transformer blocks aimed to increasing compute without increasing model size. Because this layer is tied, un-tied adapters (formally the same as LoRA but used in the base model) modules are added to the q, k, v projectors to increase expressivity with a small memory overhead (see Fig. 2 of https://arxiv.org/pdf/2411.15242). """ def __init__( self, config: Zamba2Config, layer_idx: Optional[int] = None, num_fwd_mem_blocks: int = None, block_id: int = None, ): super().__init__() self.config = config self.layer_idx = layer_idx self.attention_hidden_size = config.attention_hidden_size self.head_dim = config.attention_head_dim self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.max_position_embeddings = config.max_position_embeddings self.scaling = (self.head_dim / 2) ** -0.5 self.is_causal = True self.attention_dropout = config.attention_dropout self.q_proj = nn.Linear(config.attention_hidden_size, config.num_attention_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(config.attention_hidden_size, config.num_key_value_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(config.attention_hidden_size, config.num_key_value_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False) self.num_fwd_mem_blocks = num_fwd_mem_blocks self.layer_block_map = config.hybrid_layer_ids self.block_id = block_id if config.use_shared_attention_adapter: self.linear_q_adapter_list = nn.ModuleList([]) self.linear_k_adapter_list = nn.ModuleList([]) self.linear_v_adapter_list = nn.ModuleList([]) for i in range(self.num_fwd_mem_blocks): if i % config.num_mem_blocks == block_id: linear_q_adapter = nn.Sequential( nn.Linear(self.attention_hidden_size, self.config.adapter_rank, bias=False), nn.Linear(self.config.adapter_rank, self.attention_hidden_size, bias=False), ) linear_k_adapter = nn.Sequential( nn.Linear(self.attention_hidden_size, self.config.adapter_rank, bias=False), nn.Linear(self.config.adapter_rank, self.attention_hidden_size, bias=False), ) linear_v_adapter = nn.Sequential( nn.Linear(self.attention_hidden_size, self.config.adapter_rank, bias=False), nn.Linear(self.config.adapter_rank, self.attention_hidden_size, bias=False), ) else: linear_q_adapter = nn.Identity() linear_k_adapter = nn.Identity() linear_v_adapter = nn.Identity() self.linear_q_adapter_list.append(linear_q_adapter) self.linear_k_adapter_list.append(linear_k_adapter) self.linear_v_adapter_list.append(linear_v_adapter) self.layer_dic = {value: index for index, value in enumerate(self.layer_block_map)} def forward( self, hidden_states: torch.Tensor, layer_idx: int, attention_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Zamba2HybridDynamicCache] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) if self.config.use_shared_attention_adapter: adapter_layer_idx = self.layer_dic[layer_idx] query_states = query_states + self.linear_q_adapter_list[adapter_layer_idx](hidden_states) key_states = key_states + self.linear_k_adapter_list[adapter_layer_idx](hidden_states) value_states = value_states + self.linear_v_adapter_list[adapter_layer_idx](hidden_states) query_states = query_states.view(hidden_shape).transpose(1, 2) key_states = key_states.view(hidden_shape).transpose(1, 2) value_states = value_states.view(hidden_shape).transpose(1, 2) if self.config.use_mem_rope: cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: key_states, value_states = past_key_value.update(key_states, value_states, layer_idx) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights # Helper methods for segment sum computation def pad_tensor_by_size(input_tensor: torch.Tensor, pad_size: int): """ Padding x tensor with `pad_size` on the seq_len dim (dim=1) Assumes that we only have tensors of either size 4 or 3 """ pad_shape = (0, 0, 0, 0, 0, pad_size, 0, 0) if len(input_tensor.shape) == 4 else (0, 0, 0, pad_size, 0, 0) return torch.nn.functional.pad(input_tensor, pad_shape, mode="constant", value=0) def reshape_into_chunks(input_tensor, pad_size, chunk_size): """ Padding input_tensor with `pad_size` on the seq_len dim (dim=1) and simultaneously splitting it into chunk sequences. Assumes that we only have tensors of either size 4 or 3 """ # [bsz, seq_len, ...] -> [bsz, seq_len multiple of chunk_size, ...] input_tensor = pad_tensor_by_size(input_tensor, pad_size) if len(input_tensor.shape) == 3: # [bsz, seq_len multiple of chunk_size, num_heads] -> [bsz, -1, chunk_size, num_heads] return input_tensor.reshape(input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2]) else: # [bsz, seq_len multiple of chunk_size, num_heads, head_dim or state_size] -> [bsz, -1, chunk_size, num_heads, head_dim or state_size] return input_tensor.reshape( input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2], input_tensor.shape[3] ) def segment_sum(input_tensor): """ More stable segment sum calculation. Uses cumulative sums and masking instead of direct subtractions. """ chunk_size = input_tensor.size(-1) # 1. expand input tensor to have an additional dimension and repeat along that dimension # [..., chunk_size] -> [..., chunk_size, chunk_size] input_tensor = input_tensor[..., None].expand(*input_tensor.size(), chunk_size) # 2. create a lower triangular mask with the diagonal set to 0 to 0 out elements above diag mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=-1) input_tensor = input_tensor.masked_fill(~mask, 0) # 3. compute actual cumsum tensor_segsum = torch.cumsum(input_tensor, dim=-2) # 4. apply mask to keep only the lower triangular part of the cumulative sum result (incl diagonal this time) mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=0) tensor_segsum = tensor_segsum.masked_fill(~mask, -torch.inf) return tensor_segsum is_fast_path_available = all((selective_state_update, causal_conv1d_fn, causal_conv1d_update)) class Zamba2MambaMixer(nn.Module): """ Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`. A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective) ∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4, and is why Mamba is called **selective** state spaces) """ def __init__(self, config: Zamba2Config, layer_idx: int = None): super().__init__() self.config = config self.hidden_size = config.hidden_size self.ssm_state_size = config.mamba_d_state self.conv_kernel_size = config.mamba_d_conv self.intermediate_size = int(config.mamba_expand * self.hidden_size) self.layer_idx = layer_idx self.use_conv_bias = config.use_conv_bias self.activation = "silu" self.act = nn.SiLU() self.n_groups = config.mamba_ngroups self.head_dim = config.mamba_headdim self.num_heads = self.config.n_mamba_heads self.chunk_size = config.chunk_size self.time_step_limit = config.time_step_limit self.time_step_min = config.time_step_min self.time_step_max = config.time_step_max self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.ssm_state_size self.conv1d = nn.Conv1d( in_channels=self.conv_dim, out_channels=self.conv_dim, bias=True, kernel_size=config.mamba_d_conv, groups=self.conv_dim, padding=config.mamba_d_conv - 1, ) # projection of the input hidden states projection_size = self.intermediate_size + self.conv_dim + self.num_heads self.in_proj = nn.Linear( self.hidden_size, projection_size, bias=config.add_bias_linear, ) # selective projection used to make dt, B and C input dependant # time step projection (discretization) # instantiate once and copy inv_dt in init_weights of PretrainedModel self.dt_bias = nn.Parameter(torch.ones(self.num_heads)) # S4D real initialization. These are not discretized! # The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded A = torch.arange(1, self.num_heads + 1) self.A_log = nn.Parameter(torch.log(A)) self.A_log._no_weight_decay = True self.norm = Zamba2RMSNormGated(self.intermediate_size, eps=1e-5) self.D = nn.Parameter(torch.ones(self.num_heads)) self.D._no_weight_decay = True self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.add_bias_linear) if not is_fast_path_available: logger.warning_once( "The fast path is not available because on of `(selective_state_update, causal_conv1d_fn, causal_conv1d_update)`" " is None. Falling back to the naive implementation. To install follow https://github.com/state-spaces/mamba/#installation and" " https://github.com/Dao-AILab/causal-conv1d" ) def cuda_kernels_forward( self, hidden_states: torch.Tensor, cache_params: Optional[Zamba2HybridDynamicCache] = None, attention_mask: Optional[torch.Tensor] = None, ): # set up dimensions for reshapes later batch_size, seq_len, _ = hidden_states.shape groups_time_state_size = self.n_groups * self.ssm_state_size d_to_remove = 2 * self.intermediate_size + 2 * self.n_groups * self.ssm_state_size + self.num_heads # getting projected states from cache if it exists if cache_params is not None and cache_params.has_previous_state: in_projected_states = self.in_proj(hidden_states.squeeze(1)) # (B 2D) d_mlp = (in_projected_states.shape[-1] - d_to_remove) // 2 split_projection_dim = [d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads] _, _, gate, hidden_states_B_C, dt = torch.split(in_projected_states, split_projection_dim, dim=-1) hidden_states_B_C = causal_conv1d_update( hidden_states_B_C, cache_params.conv_states[self.layer_idx], self.conv1d.weight.squeeze(1), self.conv1d.bias, self.activation, ) hidden_states, B, C = torch.split( hidden_states_B_C, [self.intermediate_size, groups_time_state_size, groups_time_state_size], dim=-1, ) A = -torch.exp(self.A_log.float()) # (nheads,) A = A[:, None, ...][:, :, None].expand(-1, self.head_dim, self.ssm_state_size).to(dtype=torch.float32) dt = dt[:, :, None].expand(-1, -1, self.head_dim) dt_bias = self.dt_bias[:, None, ...].expand(-1, self.head_dim) D = self.D[:, None, ...].expand(-1, self.head_dim) B = B.view(batch_size, self.n_groups, B.shape[1] // self.n_groups) C = C.view(batch_size, self.n_groups, C.shape[1] // self.n_groups) hidden_states_reshaped = hidden_states.view(batch_size, self.num_heads, self.head_dim) hidden_states = selective_state_update( cache_params.ssm_states[self.layer_idx], hidden_states_reshaped, dt, A, B, C, D, z=None, dt_bias=dt_bias, dt_softplus=True, ) hidden_states = hidden_states.view(batch_size, self.num_heads * self.head_dim) hidden_states = self.norm(hidden_states, gate) out = self.out_proj(hidden_states)[:, None, ...] # if no cache is found, calling the kernel else: if attention_mask is not None and not torch.all(attention_mask == 1): # tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66 dtype = hidden_states.dtype hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype) # 1. Gated MLP's linear projection projected_states = self.in_proj(hidden_states) A = -torch.exp(self.A_log.float()) # (num_heads) or (intermediate_size, state_size) dt_limit_kwargs = {} if self.time_step_limit is None else {"dt_limit": self.time_step_limit} if attention_mask is not None: input_not_masked = torch.all(attention_mask == 1) else: input_not_masked = True if self.training and cache_params is None and input_not_masked: out, ssm_state = mamba_split_conv1d_scan_combined( projected_states, self.conv1d.weight.squeeze(1), self.conv1d.bias, self.dt_bias, A, D=self.D, chunk_size=self.chunk_size, seq_idx=None, activation=self.activation, rmsnorm_weight=self.norm.weight, rmsnorm_eps=self.norm.variance_epsilon, outproj_weight=self.out_proj.weight, outproj_bias=self.out_proj.bias, headdim=self.head_dim, ngroups=self.n_groups, norm_before_gate=False, return_final_states=True, **dt_limit_kwargs, ) else: gate, hidden_states_B_C, time_step = torch.split( projected_states, [self.intermediate_size, self.conv_dim, self.num_heads], dim=-1, ) # 1D Convolution if cache_params is not None: hidden_states_B_C_t = hidden_states_B_C.transpose(1, 2) conv_state = nn.functional.pad( hidden_states_B_C_t, (self.conv_kernel_size - hidden_states_B_C_t.shape[-1], 0) ) cache_params.conv_states[self.layer_idx].copy_(conv_state) if causal_conv1d_fn is None or self.activation not in ["silu", "swish"]: hidden_states_B_C = self.act( self.conv1d(hidden_states_B_C.transpose(1, 2)).transpose(1, 2)[:, :seq_len] ) # (B, L, self.d_inner + 2 * ngroups * d_state) else: hidden_states_B_C = causal_conv1d_fn( x=hidden_states_B_C.transpose(1, 2), weight=self.conv1d.weight.squeeze(1), bias=self.conv1d.bias, activation=self.activation, ).transpose(1, 2)[:, :seq_len] hidden_states, B, C = torch.split( hidden_states_B_C, [self.intermediate_size, groups_time_state_size, groups_time_state_size], dim=-1, ) if attention_mask is not None and not torch.all(attention_mask == 1): # tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66 dtype = hidden_states.dtype hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype) scan_output, ssm_state = mamba_chunk_scan_combined( hidden_states.view(batch_size, seq_len, -1, self.head_dim), time_step, A, B.view(batch_size, seq_len, self.n_groups, -1), C.view(batch_size, seq_len, self.n_groups, -1), chunk_size=self.chunk_size, D=self.D, z=None, seq_idx=None, return_final_states=True, dt_bias=self.dt_bias, dt_softplus=True, **dt_limit_kwargs, ) if ssm_state is not None and cache_params is not None: cache_params.ssm_states[self.layer_idx].copy_(ssm_state) scan_output = scan_output.view(batch_size, seq_len, -1) # Multiply "gate" branch and apply extra normalization layer scan_output = self.norm(scan_output, gate) out = self.out_proj(scan_output) return out # fmt: off def torch_forward(self, input_states, cache_params: Optional[Zamba2HybridDynamicCache]=None, attention_mask: Optional[torch.Tensor]=None): batch_size, seq_len, _ = input_states.shape dtype = input_states.dtype # Gated MLP's linear projection if cache_params is not None and cache_params.has_previous_state: projected_states = self.in_proj(input_states.squeeze(1)) else: if attention_mask is not None and not torch.all(attention_mask==1): # tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66 input_states = (input_states * attention_mask[:, :, None]).to(dtype) projected_states = self.in_proj(input_states) d_mlp = (projected_states.shape[-1] - 2 * self.intermediate_size - 2 * self.n_groups * self.ssm_state_size- self.num_heads) // 2 _, _, gate, hidden_states, dt = projected_states.split( [d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1 ) # Convolution sequence transformation if cache_params is not None: ssm_state = cache_params.ssm_states[self.layer_idx].clone() ssm_state = ssm_state.to(hidden_states.device) if cache_params.has_previous_state: gate = gate.unsqueeze(1) conv_state = cache_params.conv_states[self.layer_idx] # [batch, intermediate_size, conv_kernel_size] conv_state = torch.roll(conv_state, shifts=-1, dims=-1) # handle batched generation - states are copied through conv_state[:, :, -1] = hidden_states[:, 0, :] if hidden_states.ndim == 3 else hidden_states cache_params.conv_states[self.layer_idx].copy_(conv_state) hidden_states = torch.sum(conv_state.to(projected_states.device) * self.conv1d.weight[:, 0, :], dim=-1) if self.use_conv_bias: hidden_states += self.conv1d.bias hidden_states = self.act(hidden_states).to(dtype)[:, None, ...] # [batch, 1, intermediate_size] : decoding else: hidden_states = hidden_states.transpose(1,2) conv_state = nn.functional.pad( hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0) ) cache_params.conv_states[self.layer_idx].copy_(conv_state) hidden_states = self.act(self.conv1d(hidden_states).transpose(1,2))[:, :seq_len, :] # [batch, intermediate_size, seq_len] if attention_mask is not None and not torch.all(attention_mask==1): dtype = hidden_states.dtype # tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66 hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype) else: ssm_state = torch.zeros( (batch_size, self.num_heads, self.head_dim, self.ssm_state_size), device=hidden_states.device, dtype=dtype ) hidden_states = self.act(self.conv1d(hidden_states.transpose(1, 2))[..., :seq_len].transpose(1, 2)) hidden_states, B, C = torch.split(hidden_states, [self.intermediate_size, self.n_groups * self.ssm_state_size, self.n_groups * self.ssm_state_size], dim=-1) A = -torch.exp(self.A_log.float()) # [num_heads] if cache_params is not None and cache_params.has_previous_state: # Note: there is no need to pad parameter matrices here, as there is just one new token # for batched generation dt = dt[:, None, ...] if dt.ndim == 2 else dt[:, 0, :][:, None, ...] dt = dt.transpose(1, 2).expand(batch_size, dt.shape[-1], self.head_dim) # [num_heads] -> [num_heads, head_dim] dt_bias = self.dt_bias[..., None].expand(self.dt_bias.shape[0], self.head_dim) dt = torch.nn.functional.softplus(dt + dt_bias.to(dt.dtype)) dt = torch.clamp(dt, self.time_step_min) #, self.time_step_max) A = A[..., None, None].expand(self.num_heads, self.head_dim, self.ssm_state_size).to(dtype=torch.float32) # [bsz, num_heads, head_dim, state_size] dA = torch.exp(dt[..., None] * A) # Discretize B # [bsz, n_groups * state_size] -> [bsz, n_groups, 1, state_size] -> # -> [bsz, n_groups, group to head repetition factor, state_size] -> [bsz, num_heads, state_size] B = B.reshape(batch_size, self.n_groups, -1)[..., None, :] B = B.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, B.shape[-1]).contiguous() B = B.reshape(batch_size, -1, B.shape[-1]) # [bsz, num_heads, head_dim, state_size] dB = dt[..., None] * B[..., None, :] # Discretize x into dB # [bsz, intermediate_size] -> [bsz, num_heads, head_dim] hidden_states = hidden_states.reshape(batch_size, -1, self.head_dim) dBx = dB * hidden_states[..., None] # State calculation cache_params.ssm_states[self.layer_idx].copy_( cache_params.ssm_states[self.layer_idx] * dA + dBx ) # Subsequent output # [bsz, n_groups * state_size] -> [bsz, num_heads, state_size] C = C.reshape(batch_size, self.n_groups, -1)[..., None, :] C = C.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, C.shape[-1]).contiguous() C = C.reshape(batch_size, -1, C.shape[-1]) # [bsz, num_heads, head_dim] ssm_states = cache_params.ssm_states[self.layer_idx].to(C.dtype) # Shape: [b, h, d, n] # Reshape ssm_states to merge the first two dimensions ssm_states_reshaped = ssm_states.view(batch_size * self.num_heads, self.head_dim, self.ssm_state_size) # Shape: [b*h, d, n] C_reshaped = C.view(batch_size * self.num_heads, self.ssm_state_size, 1) # Shape: [b*h, n, 1] y = torch.bmm(ssm_states_reshaped, C_reshaped) y = y.view(batch_size, self.num_heads, self.head_dim) # D skip connection # [num_heads] -> [num_heads, head_dim] D = self.D[..., None].expand(self.D.shape[0], self.head_dim) y = (y + hidden_states * D).to(y.dtype) # [bsz, num_heads, head_dim] -> [bsz, 1, intermediate_size] y = y.reshape(batch_size, -1)[:, None, ...] else: # begin ssd naive implementation without einsums dt = nn.functional.softplus(dt + self.dt_bias) dt = torch.clamp(dt, self.time_step_min) hidden_states = hidden_states.reshape(batch_size, seq_len, -1, self.head_dim).float() B = B.reshape(batch_size, seq_len, -1, self.ssm_state_size).float() C = C.reshape(batch_size, seq_len, -1, self.ssm_state_size).float() B = B.repeat(1, 1, self.num_heads // self.n_groups, 1) C = C.repeat(1, 1, self.num_heads // self.n_groups, 1) pad_size = (self.chunk_size - seq_len % self.chunk_size) % self.chunk_size D_residual = self.D[..., None] * pad_tensor_by_size(hidden_states, pad_size) # Discretize x and A hidden_states = hidden_states * dt[..., None] A = A.to(hidden_states.dtype) * dt # Rearrange into blocks/chunks hidden_states, A, B, C = [reshape_into_chunks(t, pad_size, self.chunk_size) for t in (hidden_states, A, B, C)] # [bsz, -1, chunk_size, num_heads] -> [bsz, num_heads, -1, chunk_size] A = A.permute(0, 3, 1, 2) A_cumsum = torch.cumsum(A, dim=-1) # 1. Compute the output for each intra-chunk (diagonal blocks) # This is the analog of a causal mask L = torch.exp(segment_sum(A)) # First, contraction of C and B to get G (attention-weights like) G_intermediate = C[:, :, :, None, :, :] * B[:, :, None, :, : ,:] # shape: (b, c, l, s, h, n) G = G_intermediate.sum(dim=-1) # shape: (b, c, l, s, h) # Step 2: Compute M, equivalent to applying attention mask to weights M_intermediate = G[..., None] * L.permute(0, 2, 3, 4, 1)[..., None] M = M_intermediate.sum(dim=-1) # Step 3: Compute Y_diag (apply to values) Y_diag = (M[..., None] * hidden_states[:, :, None]).sum(3) # (right term of low-rank factorization of off-diagonal blocks; B terms) decay_states = torch.exp((A_cumsum[:, :, :, -1:] - A_cumsum)) B_decay_contraction = B * decay_states.permute(0, 2, 3, 1)[..., None] # permute back B * decay states states = (B_decay_contraction.permute(0, 1, 3, 2, 4)[..., None] * hidden_states.permute(0, 1, 3, 2, 4)[..., None, :]).sum(dim=3).permute(0, 1, 2, 4, 3) if cache_params is not None and cache_params.has_previous_state: previous_states = cache_params.ssm_states[self.layer_idx][:, None, ...] else: previous_states = torch.zeros_like(states[:, :1]) states = torch.cat([previous_states, states], dim=1) decay_chunk = torch.exp(segment_sum(nn.functional.pad(A_cumsum[:, :, :, -1], (1, 0)))) states_permuted = states.permute(0, 2, 1, 3, 4) result = (decay_chunk[..., None, None] * states_permuted[:, :, None, ...]).sum(dim=2) new_states = result.permute(0, 2, 1, 3, 4) states, ssm_state = new_states[:, :-1], new_states[:, -1] # Compute state -> output conversion per chunk # (left term of low-rank factorization of off-diagonal blocks; C terms) state_decay_out = torch.exp(A_cumsum) # compute Yoff C_times_states = (C[..., None, :] * states[:, :, None, ...]) state_decay_out_permuted = state_decay_out.permute(0, 2, 3, 1) Y_off = (C_times_states.sum(-1) * state_decay_out_permuted[..., None]) # Add output of intra-chunk and inter-chunk terms (diagonal and off-diagonal blocks) y = Y_diag + Y_off # [bsz, -1, self.chunk_size, num_heads, head_dim] -> [bsz, (padded) seq_len, num_heads, head_dim] y = y.reshape(batch_size, -1, self.num_heads, self.head_dim) y = y + D_residual # Cutting off padded chunks if pad_size > 0: y = y[:, :seq_len, :, :] y = y.reshape(batch_size, seq_len, -1) if ssm_state is not None and cache_params is not None: cache_params.ssm_states[self.layer_idx].copy_(ssm_state) scan_output = self.norm(y, gate) # end ssd naive # 4. Final linear projection contextualized_states = self.out_proj(scan_output.to(dtype)) # [batch, seq_len, hidden_size] return contextualized_states # fmt: on def forward( self, hidden_states, cache_params: Optional[Zamba2HybridDynamicCache] = None, attention_mask: Optional[torch.Tensor] = None, ): if is_fast_path_available and "cuda" in self.in_proj.weight.device.type: return self.cuda_kernels_forward(hidden_states, cache_params, attention_mask) return self.torch_forward(hidden_states, cache_params, attention_mask) class Zamba2MLP(nn.Module): def __init__(self, config: Zamba2Config, num_fwd_mem_blocks=None, block_id: int = None): """ This MLP layer contributes to tied transformer blocks aimed to increasing compute without increasing model size. Because this layer is tied, un-tied adapter modules (formally same as LoRA, but used in the base model) are added to the up and gate projectors to increase expressivity with a small memory overhead. """ super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.num_fwd_mem_blocks = num_fwd_mem_blocks self.block_id = block_id self.gate_up_proj = nn.Linear(self.hidden_size, 2 * self.intermediate_size, bias=config.add_bias_linear) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.add_bias_linear) self.act_fn = ACT2FN[config.hidden_act] self.gate_up_proj_adapter_list = nn.ModuleList([]) for i in range(self.num_fwd_mem_blocks): if i % config.num_mem_blocks == block_id: gate_up_proj_adapter = nn.Sequential( nn.Linear(self.config.hidden_size, self.config.adapter_rank, bias=False), nn.Linear(self.config.adapter_rank, 2 * self.intermediate_size, bias=False), ) else: gate_up_proj_adapter = nn.Identity() self.gate_up_proj_adapter_list.append(gate_up_proj_adapter) layer_block_map = config.hybrid_layer_ids self.layer_dic = {value: index for index, value in enumerate(layer_block_map)} def forward(self, hidden_state, layer_idx=None): gate_up_state = self.gate_up_proj(hidden_state) layer_idx = self.layer_dic[layer_idx] gate_up_state = gate_up_state + self.gate_up_proj_adapter_list[layer_idx](hidden_state) gate_up_state = torch.chunk(gate_up_state, 2, dim=-1) hidden_state = self.act_fn(gate_up_state[0]) * gate_up_state[1] output = self.down_proj(hidden_state) return output class Zamba2AttentionDecoderLayer(nn.Module): def __init__(self, config: Zamba2Config, block_id: int = None, layer_idx: Optional[int] = None): super().__init__() self.block_id = block_id num_gs = len(config.hybrid_layer_ids) self.self_attn = Zamba2Attention(config, layer_idx=-1, num_fwd_mem_blocks=num_gs, block_id=block_id) self.feed_forward = Zamba2MLP(config, num_fwd_mem_blocks=num_gs, block_id=block_id) self.input_layernorm = Zamba2RMSNorm(config.attention_hidden_size, eps=config.rms_norm_eps) self.pre_ff_layernorm = Zamba2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, original_hidden_states: torch.Tensor, layer_idx: int, attention_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Zamba2HybridDynamicCache] = None, output_attentions: Optional[bool] = False, position_embeddings: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): output of previous Mamba layer of shape `(batch, seq_len, embed_dim)` original_hidden_states (`torch.FloatTensor`): word embedding output of shape `(batch, seq_len, embed_dim)`. This is concatenated with `hidden_states` (which is the output of the previous (mamba) layer). The concatenated tensor is then used as input of the pre-attention RMSNorm (see fig. 2 in https://arxiv.org/pdf/2405.16712). attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. past_key_value (`Zamba2HybridDynamicCache`, *optional*): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, with `head_dim` being the embedding dimension of each attention head. """ hidden_states = torch.concatenate([hidden_states, original_hidden_states], dim=-1) hidden_states = self.input_layernorm(hidden_states) hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, layer_idx=layer_idx, attention_mask=attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, position_embeddings=position_embeddings, **kwargs, ) hidden_states = self.pre_ff_layernorm(hidden_states) hidden_states = self.feed_forward(hidden_states, layer_idx) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs class Zamba2MambaDecoderLayer(nn.Module): def __init__(self, config: Zamba2Config, layer_idx: int): super().__init__() self.mamba = Zamba2MambaMixer(config=config, layer_idx=layer_idx) self.input_layernorm = Zamba2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.layer_idx = layer_idx def forward( self, hidden_states: torch.Tensor, original_hidden_states: Optional[torch.Tensor] = None, layer_idx: int = None, attention_mask: Optional[torch.Tensor] = None, causal_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Zamba2HybridDynamicCache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, transformer_hidden_states: Optional[torch.Tensor] = None, **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. past_key_value (`Zamba2HybridDynamicCache`, *optional*): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. """ residual = hidden_states # `transformer_hidden_states` is the output from shared transformer + linear layer (see fig. 2 in https://arxiv.org/pdf/2405.16712). # `transformer_hidden_states` is then added to the input to the mamba layer below (as described in eq. (6) of https://arxiv.org/pdf/2405.16712). hidden_states = ( hidden_states + transformer_hidden_states if transformer_hidden_states is not None else hidden_states ) hidden_states = self.input_layernorm(hidden_states) hidden_states = self.mamba( hidden_states=hidden_states, cache_params=past_key_value, attention_mask=attention_mask, ) self_attn_weights = None # residual connection after mamba hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (past_key_value,) return outputs class Zamba2HybridLayer(nn.Module): def __init__( self, shared_transformer: Zamba2AttentionDecoderLayer, linear: nn.Linear, mamba: Zamba2MambaDecoderLayer ): super().__init__() self.linear = linear self.mamba_decoder = mamba self.shared_transformer = shared_transformer def forward( self, hidden_states: torch.Tensor, original_hidden_states: Optional[torch.Tensor] = None, layer_idx: int = None, attention_mask: Optional[torch.Tensor] = None, causal_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Zamba2HybridDynamicCache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, position_embeddings: Optional[torch.LongTensor] = None, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` original_hidden_states (`torch.FloatTensor`): word embedding output that will be concatenated with hidden activations to form the input of the shared transformer layer. layer_idx (`int`): layer number. attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. past_key_value (`Zamba2HybridDynamicCache`, *optional*): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, with `head_dim` being the embedding dimension of each attention head. """ layer_outputs = self.shared_transformer( hidden_states, original_hidden_states=original_hidden_states, layer_idx=layer_idx, attention_mask=causal_mask, past_key_value=past_key_value, output_attentions=output_attentions, position_embeddings=position_embeddings, ) transformer_hidden_states = layer_outputs[0] if output_attentions: self_attn_weights = layer_outputs[1] transformer_hidden_states = self.linear(transformer_hidden_states) layer_outputs = self.mamba_decoder( hidden_states, transformer_hidden_states=transformer_hidden_states, attention_mask=attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, position_embeddings=position_embeddings, ) if output_attentions: layer_outputs = (layer_outputs[0], self_attn_weights) + layer_outputs[2:] return layer_outputs class Zamba2PreTrainedModel(PreTrainedModel): config_class = Zamba2Config base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["Zamba2AttentionDecoderLayer", "Zamba2MambaDecoderLayer"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True _supports_flex_attn = True _supports_sdpa = False _supports_cache_class = True # Note: only supports Zamba2HybridDynamicCache _is_stateful = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, Zamba2MambaMixer): module.A_log._no_weight_decay = True module.D._no_weight_decay = True dt = torch.exp( torch.rand(self.config.n_mamba_heads) * (math.log(self.config.time_step_max) - math.log(self.config.time_step_min)) + math.log(self.config.time_step_min) ).clamp(min=self.config.time_step_floor) # # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759 inv_dt = dt + torch.log(-torch.expm1(-dt)) with torch.no_grad(): module.dt_bias.copy_(inv_dt) module.dt_bias._no_reinit = True ZAMBA2_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Zamba2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ ZAMBA2_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Zamba2HybridDynamicCache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): A Zamba2HybridDynamicCache object containing pre-computed hidden-states (keys and values in the self-attention blocks and convolution and ssm states in the mamba blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. Key and value cache tensors have shape `(batch_size, num_heads, seq_len, head_dim)`. Convolution and ssm states tensors have shape `(batch_size, d_inner, d_conv)` and `(batch_size, d_inner, d_state)` respectively. See the `Zamba2HybridDynamicCache` class for more details. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. """ @add_start_docstrings( "The bare Zamba2 Model outputting raw hidden-states without any specific head on top.", ZAMBA2_START_DOCSTRING, ) class Zamba2Model(Zamba2PreTrainedModel): """ Model consisting of *config.num_hidden_layers* layers. Args: config: Zamba2Config """ def __init__(self, config: Zamba2Config): super().__init__(config) self.config = config self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) blocks = [Zamba2AttentionDecoderLayer(config, block_id=k) for k in range(config.num_mem_blocks)] mamba_layers = [] linear_layers = [] self.layers_block_type = config.layers_block_type for i in range(config.num_hidden_layers): if config.layers_block_type[i] == "mamba": mamba_layers.append(Zamba2MambaDecoderLayer(config, layer_idx=i)) elif config.layers_block_type[i] == "hybrid": linear_layers.append(nn.Linear(self.config.hidden_size, self.config.hidden_size, bias=False)) mamba_layers.append(Zamba2MambaDecoderLayer(config, layer_idx=i)) mamba_layers = iter(mamba_layers) linear_layers = iter(linear_layers) blocks = cycle(blocks) layers = self.get_layers(blocks, linear_layers, mamba_layers) self.layers = nn.ModuleList(layers) self._attn_implementation = config._attn_implementation self.final_layernorm = Zamba2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) if config.use_mem_rope: if config.use_long_context: logger.warning_once( "`use_long_context` set to `True`: using rescaled `rope_theta` and extended `max_position_embeddings`." ) self.rotary_emb = Zamba2RotaryEmbedding(config) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(ZAMBA2_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Zamba2HybridDynamicCache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError( "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" ) if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) hidden_states = inputs_embeds original_hidden_states = torch.clone(inputs_embeds) # original_hidden_states: word embedding output that will be concatenated with hidden activations to form the input of the shared transformer layer if use_cache and past_key_values is None: batch_size = input_ids.shape[0] if input_ids is not None else inputs_embeds.shape[0] past_key_values = Zamba2HybridDynamicCache(self.config, batch_size, dtype=self.dtype, device=self.device) if cache_position is None: past_seen_tokens = ( past_key_values.get_seq_length(layer_idx=self.first_transformer_layer_id) if past_key_values is not None else 0 ) cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position) # create position embeddings to be shared across the decoder layers if self.config.use_mem_rope: position_embeddings = self.rotary_emb(hidden_states, position_ids) else: position_embeddings = None all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for layer_idx, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer.__call__, hidden_states, original_hidden_states, layer_idx, attention_mask, causal_mask, past_key_values, output_attentions, use_cache, position_embeddings, ) else: layer_outputs = layer( hidden_states, original_hidden_states=original_hidden_states, layer_idx=layer_idx, attention_mask=attention_mask, causal_mask=causal_mask, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, position_embeddings=position_embeddings, ) hidden_states = layer_outputs[0] if output_attentions: if layer_outputs[1] is not None: # append attentions only of attention layers. Mamba layers return `None` as the attention weights all_self_attns += (layer_outputs[1],) hidden_states = self.final_layernorm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) if past_key_values and not past_key_values.has_previous_state: past_key_values.has_previous_state = True output = BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values if use_cache else None, hidden_states=all_hidden_states, attentions=all_self_attns, ) return output if return_dict else output.to_tuple() def _update_causal_mask(self, attention_mask, input_tensor, cache_position): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and 0.0 in attention_mask: return attention_mask return None dtype, device = input_tensor.dtype, input_tensor.device min_dtype = torch.finfo(dtype).min sequence_length = input_tensor.shape[1] target_length = cache_position[-1] + 1 causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit if attention_mask.dim() == 2: mask_length = attention_mask.shape[-1] padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0) causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type == "cuda" ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask def get_layers(self, blocks, linear_layers, mamba_layers): layers = [] self._tied_weights_keys = [] self.first_transformer_layer_id = 0 for layer_id, layer_type in enumerate(self.layers_block_type): if layer_type == "hybrid": if self.first_transformer_layer_id == 0: self.first_transformer_layer_id = layer_id block = next(blocks) if self.config.num_mem_blocks * len(self.config.hybrid_layer_ids) > 1: prefix_pattern = rf"^layers\.{layer_id}\.shared_transformer\." main_keys_pattern = re.compile( prefix_pattern + r"(?:" + r"self_attn\.(?:q_proj|k_proj|v_proj|o_proj)\.weight|" + r"feed_forward\.(?:gate_up_proj|down_proj)\.weight|" + r"(?:input_layernorm|pre_ff_layernorm)\.weight" + r")$" ) self._tied_weights_keys.append(main_keys_pattern) adapter_id = 0 for _layer_type in self.layers_block_type: if _layer_type == "hybrid" and adapter_id % self.config.num_mem_blocks == block.block_id: adapter_pattern = re.compile( r"^shared_transformer\.feed_forward\.gate_up_proj_adapter_list\." + str(adapter_id) + r"\.(?:0|1)\.weight$" ) self._tied_weights_keys.append(adapter_pattern) adapter_id += 1 if self.config.use_shared_attention_adapter: adapter_id = 0 for _layer_type in self.layers_block_type: if _layer_type == "hybrid" and adapter_id % self.config.num_mem_blocks == block.block_id: attn_adapter_pattern = re.compile( r"^shared_transformer\.self_attn\." + r"(?:linear_q_adapter_list|linear_k_adapter_list|linear_v_adapter_list)\." + str(adapter_id) + r"\.(?:0|1)\.weight$" ) self._tied_weights_keys.append(attn_adapter_pattern) adapter_id += 1 layers.append(Zamba2HybridLayer(block, next(linear_layers), next(mamba_layers))) else: layers.append(next(mamba_layers)) return layers # Adapted from transformers.models.jamba.modeling_jamba.JambaForCausalLM with Jamba->Zamba2, JAMBA->ZAMBA2 class Zamba2ForCausalLM(Zamba2PreTrainedModel, GenerationMixin): def __init__(self, config: Zamba2Config): super().__init__(config) self.model = Zamba2Model(config) self._tied_weights_keys = ["lm_head.weight", *self.model._tied_weights_keys] self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep") @add_start_docstrings_to_model_forward(ZAMBA2_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Zamba2HybridDynamicCache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **loss_kwargs, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. logits_to_keep (`int` or `torch.Tensor`, *optional*): If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. This is useful when using packed tensor format (single dimension for batch and sequence length). Returns: Example: ```python >>> from transformers import AutoTokenizer, Zamba2ForCausalLM >>> model = Zamba2ForCausalLM.from_pretrained("Zyphra/Zamba2-7B-v1") >>> tokenizer = AutoTokenizer.from_pretrained("Zyphra/Zamba2-7B-v1") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, cache_position=cache_position, return_dict=return_dict, ) hidden_states = outputs[0] # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) loss = None if labels is not None: loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, position_ids=None, use_cache=True, **kwargs, ): # Overwitten -- has a unique cache type, `Zamba2HybridDynamicCache` empty_past_kv = past_key_values is None # Omit tokens covered by past_key_values if not empty_past_kv: # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens # Exception 1: when passing input_embeds, input_ids may be missing entries # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here if inputs_embeds is not None: # Exception 1 input_ids = input_ids[:, -cache_position.shape[0] :] elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2) input_ids = input_ids[:, cache_position] else: past_key_values = Zamba2HybridDynamicCache( self.config, input_ids.shape[0], dtype=self.dtype, device=self.device ) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if not empty_past_kv: position_ids = position_ids[:, -input_ids.shape[1] :] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and empty_past_kv: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids.contiguous()} # `contiguous()` needed for compilation use cases model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": use_cache, "attention_mask": attention_mask, "logits_to_keep": self.config.num_logits_to_keep, "cache_position": cache_position, } ) return model_inputs @add_start_docstrings( """ The Zamba2 Model with a sequence classification head on top (linear layer). [`Zamba2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, ZAMBA2_START_DOCSTRING, ) class Zamba2ForSequenceClassification(Zamba2PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = Zamba2Model(config) self._tied_weights_keys = self.model._tied_weights_keys self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(ZAMBA2_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(logits.device) else: sequence_lengths = -1 pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) __all__ = ["Zamba2ForCausalLM", "Zamba2ForSequenceClassification", "Zamba2Model", "Zamba2PreTrainedModel"]
transformers/src/transformers/models/zamba2/modeling_zamba2.py/0
{ "file_path": "transformers/src/transformers/models/zamba2/modeling_zamba2.py", "repo_id": "transformers", "token_count": 42525 }
183