text
stringlengths 29
317k
| id
stringlengths 22
166
| metadata
dict | __index_level_0__
int64 0
231
|
---|---|---|---|
"""
coding=utf-8
Copyright 2018, Antonio Mendoza Hao Tan, Mohit Bansal
Adapted From Facebook Inc, Detectron2
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.import copy
"""
import colorsys
import io
import cv2
import matplotlib as mpl
import matplotlib.colors as mplc
import matplotlib.figure as mplfigure
import numpy as np
import torch
from matplotlib.backends.backend_agg import FigureCanvasAgg
from utils import img_tensorize
_SMALL_OBJ = 1000
class SingleImageViz:
def __init__(
self,
img,
scale=1.2,
edgecolor="g",
alpha=0.5,
linestyle="-",
saveas="test_out.jpg",
rgb=True,
pynb=False,
id2obj=None,
id2attr=None,
pad=0.7,
):
"""
img: an RGB image of shape (H, W, 3).
"""
if isinstance(img, torch.Tensor):
img = img.numpy().astype("np.uint8")
if isinstance(img, str):
img = img_tensorize(img)
assert isinstance(img, np.ndarray)
width, height = img.shape[1], img.shape[0]
fig = mplfigure.Figure(frameon=False)
dpi = fig.get_dpi()
width_in = (width * scale + 1e-2) / dpi
height_in = (height * scale + 1e-2) / dpi
fig.set_size_inches(width_in, height_in)
ax = fig.add_axes([0.0, 0.0, 1.0, 1.0])
ax.axis("off")
ax.set_xlim(0.0, width)
ax.set_ylim(height)
self.saveas = saveas
self.rgb = rgb
self.pynb = pynb
self.img = img
self.edgecolor = edgecolor
self.alpha = 0.5
self.linestyle = linestyle
self.font_size = int(np.sqrt(min(height, width)) * scale // 3)
self.width = width
self.height = height
self.scale = scale
self.fig = fig
self.ax = ax
self.pad = pad
self.id2obj = id2obj
self.id2attr = id2attr
self.canvas = FigureCanvasAgg(fig)
def add_box(self, box, color=None):
if color is None:
color = self.edgecolor
(x0, y0, x1, y1) = box
width = x1 - x0
height = y1 - y0
self.ax.add_patch(
mpl.patches.Rectangle(
(x0, y0),
width,
height,
fill=False,
edgecolor=color,
linewidth=self.font_size // 3,
alpha=self.alpha,
linestyle=self.linestyle,
)
)
def draw_boxes(self, boxes, obj_ids=None, obj_scores=None, attr_ids=None, attr_scores=None):
if len(boxes.shape) > 2:
boxes = boxes[0]
if len(obj_ids.shape) > 1:
obj_ids = obj_ids[0]
if len(obj_scores.shape) > 1:
obj_scores = obj_scores[0]
if len(attr_ids.shape) > 1:
attr_ids = attr_ids[0]
if len(attr_scores.shape) > 1:
attr_scores = attr_scores[0]
if isinstance(boxes, torch.Tensor):
boxes = boxes.numpy()
if isinstance(boxes, list):
boxes = np.array(boxes)
assert isinstance(boxes, np.ndarray)
areas = np.prod(boxes[:, 2:] - boxes[:, :2], axis=1)
sorted_idxs = np.argsort(-areas).tolist()
boxes = boxes[sorted_idxs] if boxes is not None else None
obj_ids = obj_ids[sorted_idxs] if obj_ids is not None else None
obj_scores = obj_scores[sorted_idxs] if obj_scores is not None else None
attr_ids = attr_ids[sorted_idxs] if attr_ids is not None else None
attr_scores = attr_scores[sorted_idxs] if attr_scores is not None else None
assigned_colors = [self._random_color(maximum=1) for _ in range(len(boxes))]
assigned_colors = [assigned_colors[idx] for idx in sorted_idxs]
if obj_ids is not None:
labels = self._create_text_labels_attr(obj_ids, obj_scores, attr_ids, attr_scores)
for i in range(len(boxes)):
color = assigned_colors[i]
self.add_box(boxes[i], color)
self.draw_labels(labels[i], boxes[i], color)
def draw_labels(self, label, box, color):
x0, y0, x1, y1 = box
text_pos = (x0, y0)
instance_area = (y1 - y0) * (x1 - x0)
small = _SMALL_OBJ * self.scale
if instance_area < small or y1 - y0 < 40 * self.scale:
if y1 >= self.height - 5:
text_pos = (x1, y0)
else:
text_pos = (x0, y1)
height_ratio = (y1 - y0) / np.sqrt(self.height * self.width)
lighter_color = self._change_color_brightness(color, brightness_factor=0.7)
font_size = np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2)
font_size *= 0.75 * self.font_size
self.draw_text(
text=label,
position=text_pos,
color=lighter_color,
)
def draw_text(
self,
text,
position,
color="g",
ha="left",
):
rotation = 0
font_size = self.font_size
color = np.maximum(list(mplc.to_rgb(color)), 0.2)
color[np.argmax(color)] = max(0.8, np.max(color))
bbox = {
"facecolor": "black",
"alpha": self.alpha,
"pad": self.pad,
"edgecolor": "none",
}
x, y = position
self.ax.text(
x,
y,
text,
size=font_size * self.scale,
family="sans-serif",
bbox=bbox,
verticalalignment="top",
horizontalalignment=ha,
color=color,
zorder=10,
rotation=rotation,
)
def save(self, saveas=None):
if saveas is None:
saveas = self.saveas
if saveas.lower().endswith(".jpg") or saveas.lower().endswith(".png"):
cv2.imwrite(
saveas,
self._get_buffer()[:, :, ::-1],
)
else:
self.fig.savefig(saveas)
def _create_text_labels_attr(self, classes, scores, attr_classes, attr_scores):
labels = [self.id2obj[i] for i in classes]
attr_labels = [self.id2attr[i] for i in attr_classes]
labels = [
f"{label} {score:.2f} {attr} {attr_score:.2f}"
for label, score, attr, attr_score in zip(labels, scores, attr_labels, attr_scores)
]
return labels
def _create_text_labels(self, classes, scores):
labels = [self.id2obj[i] for i in classes]
if scores is not None:
if labels is None:
labels = ["{:.0f}%".format(s * 100) for s in scores]
else:
labels = ["{} {:.0f}%".format(li, s * 100) for li, s in zip(labels, scores)]
return labels
def _random_color(self, maximum=255):
idx = np.random.randint(0, len(_COLORS))
ret = _COLORS[idx] * maximum
if not self.rgb:
ret = ret[::-1]
return ret
def _get_buffer(self):
if not self.pynb:
s, (width, height) = self.canvas.print_to_buffer()
if (width, height) != (self.width, self.height):
img = cv2.resize(self.img, (width, height))
else:
img = self.img
else:
buf = io.BytesIO() # works for cairo backend
self.canvas.print_rgba(buf)
width, height = self.width, self.height
s = buf.getvalue()
img = self.img
buffer = np.frombuffer(s, dtype="uint8")
img_rgba = buffer.reshape(height, width, 4)
rgb, alpha = np.split(img_rgba, [3], axis=2)
try:
import numexpr as ne # fuse them with numexpr
visualized_image = ne.evaluate("img * (1 - alpha / 255.0) + rgb * (alpha / 255.0)")
except ImportError:
alpha = alpha.astype("float32") / 255.0
visualized_image = img * (1 - alpha) + rgb * alpha
return visualized_image.astype("uint8")
def _change_color_brightness(self, color, brightness_factor):
assert brightness_factor >= -1.0 and brightness_factor <= 1.0
color = mplc.to_rgb(color)
polygon_color = colorsys.rgb_to_hls(*mplc.to_rgb(color))
modified_lightness = polygon_color[1] + (brightness_factor * polygon_color[1])
modified_lightness = 0.0 if modified_lightness < 0.0 else modified_lightness
modified_lightness = 1.0 if modified_lightness > 1.0 else modified_lightness
modified_color = colorsys.hls_to_rgb(polygon_color[0], modified_lightness, polygon_color[2])
return modified_color
# Color map
_COLORS = (
np.array(
[
0.000,
0.447,
0.741,
0.850,
0.325,
0.098,
0.929,
0.694,
0.125,
0.494,
0.184,
0.556,
0.466,
0.674,
0.188,
0.301,
0.745,
0.933,
0.635,
0.078,
0.184,
0.300,
0.300,
0.300,
0.600,
0.600,
0.600,
1.000,
0.000,
0.000,
1.000,
0.500,
0.000,
0.749,
0.749,
0.000,
0.000,
1.000,
0.000,
0.000,
0.000,
1.000,
0.667,
0.000,
1.000,
0.333,
0.333,
0.000,
0.333,
0.667,
0.000,
0.333,
1.000,
0.000,
0.667,
0.333,
0.000,
0.667,
0.667,
0.000,
0.667,
1.000,
0.000,
1.000,
0.333,
0.000,
1.000,
0.667,
0.000,
1.000,
1.000,
0.000,
0.000,
0.333,
0.500,
0.000,
0.667,
0.500,
0.000,
1.000,
0.500,
0.333,
0.000,
0.500,
0.333,
0.333,
0.500,
0.333,
0.667,
0.500,
0.333,
1.000,
0.500,
0.667,
0.000,
0.500,
0.667,
0.333,
0.500,
0.667,
0.667,
0.500,
0.667,
1.000,
0.500,
1.000,
0.000,
0.500,
1.000,
0.333,
0.500,
1.000,
0.667,
0.500,
1.000,
1.000,
0.500,
0.000,
0.333,
1.000,
0.000,
0.667,
1.000,
0.000,
1.000,
1.000,
0.333,
0.000,
1.000,
0.333,
0.333,
1.000,
0.333,
0.667,
1.000,
0.333,
1.000,
1.000,
0.667,
0.000,
1.000,
0.667,
0.333,
1.000,
0.667,
0.667,
1.000,
0.667,
1.000,
1.000,
1.000,
0.000,
1.000,
1.000,
0.333,
1.000,
1.000,
0.667,
1.000,
0.333,
0.000,
0.000,
0.500,
0.000,
0.000,
0.667,
0.000,
0.000,
0.833,
0.000,
0.000,
1.000,
0.000,
0.000,
0.000,
0.167,
0.000,
0.000,
0.333,
0.000,
0.000,
0.500,
0.000,
0.000,
0.667,
0.000,
0.000,
0.833,
0.000,
0.000,
1.000,
0.000,
0.000,
0.000,
0.167,
0.000,
0.000,
0.333,
0.000,
0.000,
0.500,
0.000,
0.000,
0.667,
0.000,
0.000,
0.833,
0.000,
0.000,
1.000,
0.000,
0.000,
0.000,
0.143,
0.143,
0.143,
0.857,
0.857,
0.857,
1.000,
1.000,
1.000,
]
)
.astype(np.float32)
.reshape(-1, 3)
)
|
transformers/examples/research_projects/visual_bert/visualizing_image.py/0
|
{
"file_path": "transformers/examples/research_projects/visual_bert/visualizing_image.py",
"repo_id": "transformers",
"token_count": 8190
}
| 84 |
#!/usr/bin/env bash
python run_asr.py \
--output_dir="./wav2vec2-large-xlsr-53-arabic-speech-corpus" \
--num_train_epochs="50" \
--per_device_train_batch_size="1" \
--per_device_eval_batch_size="1" \
--gradient_accumulation_steps="8" \
--eval_strategy="steps" \
--save_steps="500" \
--eval_steps="100" \
--logging_steps="50" \
--learning_rate="5e-4" \
--warmup_steps="3000" \
--model_name_or_path="elgeish/wav2vec2-large-xlsr-53-arabic" \
--fp16 \
--dataset_name="arabic_speech_corpus" \
--train_split_name="train" \
--validation_split_name="test" \
--max_duration_in_seconds="15" \
--orthography="buckwalter" \
--preprocessing_num_workers="$(nproc)" \
--group_by_length \
--freeze_feature_extractor \
--target_feature_extractor_sampling_rate \
--verbose_logging \
|
transformers/examples/research_projects/wav2vec2/finetune_large_xlsr_53_arabic_speech_corpus.sh/0
|
{
"file_path": "transformers/examples/research_projects/wav2vec2/finetune_large_xlsr_53_arabic_speech_corpus.sh",
"repo_id": "transformers",
"token_count": 323
}
| 85 |
<!---
Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# Multiple-choice training (e.g. SWAG)
This folder contains the `run_swag.py` script, showing an examples of *multiple-choice answering* with the
🤗 Transformers library. For straightforward use-cases you may be able to use these scripts without modification,
although we have also included comments in the code to indicate areas that you may need to adapt to your own projects.
### Multi-GPU and TPU usage
By default, the script uses a `MirroredStrategy` and will use multiple GPUs effectively if they are available. TPUs
can also be used by passing the name of the TPU resource with the `--tpu` argument.
### Memory usage and data loading
One thing to note is that all data is loaded into memory in this script. Most multiple-choice datasets are small
enough that this is not an issue, but if you have a very large dataset you will need to modify the script to handle
data streaming. This is particularly challenging for TPUs, given the stricter requirements and the sheer volume of data
required to keep them fed. A full explanation of all the possible pitfalls is a bit beyond this example script and
README, but for more information you can see the 'Input Datasets' section of
[this document](https://www.tensorflow.org/guide/tpu).
### Example command
```bash
python run_swag.py \
--model_name_or_path distilbert/distilbert-base-cased \
--output_dir output \
--do_eval \
--do_train
```
|
transformers/examples/tensorflow/multiple-choice/README.md/0
|
{
"file_path": "transformers/examples/tensorflow/multiple-choice/README.md",
"repo_id": "transformers",
"token_count": 513
}
| 86 |
#!/usr/bin/env bash
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script evals the following fsmt models
# it covers:
# - facebook/wmt19-ru-en
# - facebook/wmt19-en-ru
# - facebook/wmt19-de-en
# - facebook/wmt19-en-de
# this script needs to be run from the top level of the transformers repo
if [ ! -d "src/transformers" ]; then
echo "Error: This script needs to be run from the top of the transformers repo"
exit 1
fi
# In these scripts you may have to lower BS if you get CUDA OOM (or increase it if you have a large GPU)
### a short estimate version for quick testing ###
export PAIR=en-ru
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=8
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src | head -10 > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref | head -10 > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
### Normal eval ###
# ru-en
export PAIR=ru-en
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=50
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
# (target BLEU: 41.3 http://matrix.statmt.org/matrix/output/1907?run_id=6937)
# en-ru
export PAIR=en-ru
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=50
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
# (target BLEU: 36.4 http://matrix.statmt.org/matrix/output/1914?score_id=37605)
# en-de
export PAIR=en-de
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
# (target BLEU: 43.1 http://matrix.statmt.org/matrix/output/1909?run_id=6862)
# de-en
export PAIR=de-en
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=50
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
# (target BLEU: 42.3 http://matrix.statmt.org/matrix/output/1902?run_id=6750)
### Searching hparams eval ###
# en-ru
export PAIR=ru-en
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=32
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
CUDA_VISIBLE_DEVICES="0" PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval_search.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --search="num_beams=5 length_penalty=0.6:0.7:0.8:0.9:1.0:1.1"
# en-ru
export PAIR=en-ru
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=16
mkdir -p $DATA_DIR
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
CUDA_VISIBLE_DEVICES="0" PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval_search.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --search="num_beams=5:8:11:15 length_penalty=0.6:0.7:0.8:0.9:1.0:1.1 early_stopping=true:false"
# en-de
export PAIR=en-de
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=16
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
CUDA_VISIBLE_DEVICES="1" PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval_search.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --search="num_beams=5:8:11:15 length_penalty=0.6:0.7:0.8:0.9:1.0:1.1 early_stopping=true:false"
# de-en
export PAIR=de-en
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=16
mkdir -p $DATA_DIR
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
CUDA_VISIBLE_DEVICES="1" PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval_search.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --search="num_beams=5:8:11:15 length_penalty=0.6:0.7:0.8:0.9:1.0:1.1 early_stopping=true:false"
|
transformers/scripts/fsmt/eval-facebook-wmt19.sh/0
|
{
"file_path": "transformers/scripts/fsmt/eval-facebook-wmt19.sh",
"repo_id": "transformers",
"token_count": 2623
}
| 87 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ..utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
_import_structure = {
"agents": ["Agent", "CodeAgent", "ManagedAgent", "ReactAgent", "ReactCodeAgent", "ReactJsonAgent", "Toolbox"],
"llm_engine": ["HfApiEngine", "TransformersEngine"],
"monitoring": ["stream_to_gradio"],
"tools": ["PipelineTool", "Tool", "ToolCollection", "launch_gradio_demo", "load_tool", "tool"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["default_tools"] = ["FinalAnswerTool", "PythonInterpreterTool"]
_import_structure["document_question_answering"] = ["DocumentQuestionAnsweringTool"]
_import_structure["image_question_answering"] = ["ImageQuestionAnsweringTool"]
_import_structure["search"] = ["DuckDuckGoSearchTool", "VisitWebpageTool"]
_import_structure["speech_to_text"] = ["SpeechToTextTool"]
_import_structure["text_to_speech"] = ["TextToSpeechTool"]
_import_structure["translation"] = ["TranslationTool"]
if TYPE_CHECKING:
from .agents import Agent, CodeAgent, ManagedAgent, ReactAgent, ReactCodeAgent, ReactJsonAgent, Toolbox
from .llm_engine import HfApiEngine, TransformersEngine
from .monitoring import stream_to_gradio
from .tools import PipelineTool, Tool, ToolCollection, launch_gradio_demo, load_tool, tool
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .default_tools import FinalAnswerTool, PythonInterpreterTool
from .document_question_answering import DocumentQuestionAnsweringTool
from .image_question_answering import ImageQuestionAnsweringTool
from .search import DuckDuckGoSearchTool, VisitWebpageTool
from .speech_to_text import SpeechToTextTool
from .text_to_speech import TextToSpeechTool
from .translation import TranslationTool
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
transformers/src/transformers/agents/__init__.py/0
|
{
"file_path": "transformers/src/transformers/agents/__init__.py",
"repo_id": "transformers",
"token_count": 949
}
| 88 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team and the librosa & torchaudio authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Audio processing functions to extract features from audio waveforms. This code is pure numpy to support all frameworks
and remove unnecessary dependencies.
"""
import warnings
from typing import List, Optional, Tuple, Union
import numpy as np
def hertz_to_mel(freq: Union[float, np.ndarray], mel_scale: str = "htk") -> Union[float, np.ndarray]:
"""
Convert frequency from hertz to mels.
Args:
freq (`float` or `np.ndarray`):
The frequency, or multiple frequencies, in hertz (Hz).
mel_scale (`str`, *optional*, defaults to `"htk"`):
The mel frequency scale to use, `"htk"`, `"kaldi"` or `"slaney"`.
Returns:
`float` or `np.ndarray`: The frequencies on the mel scale.
"""
if mel_scale not in ["slaney", "htk", "kaldi"]:
raise ValueError('mel_scale should be one of "htk", "slaney" or "kaldi".')
if mel_scale == "htk":
return 2595.0 * np.log10(1.0 + (freq / 700.0))
elif mel_scale == "kaldi":
return 1127.0 * np.log(1.0 + (freq / 700.0))
min_log_hertz = 1000.0
min_log_mel = 15.0
logstep = 27.0 / np.log(6.4)
mels = 3.0 * freq / 200.0
if isinstance(freq, np.ndarray):
log_region = freq >= min_log_hertz
mels[log_region] = min_log_mel + np.log(freq[log_region] / min_log_hertz) * logstep
elif freq >= min_log_hertz:
mels = min_log_mel + np.log(freq / min_log_hertz) * logstep
return mels
def mel_to_hertz(mels: Union[float, np.ndarray], mel_scale: str = "htk") -> Union[float, np.ndarray]:
"""
Convert frequency from mels to hertz.
Args:
mels (`float` or `np.ndarray`):
The frequency, or multiple frequencies, in mels.
mel_scale (`str`, *optional*, `"htk"`):
The mel frequency scale to use, `"htk"`, `"kaldi"` or `"slaney"`.
Returns:
`float` or `np.ndarray`: The frequencies in hertz.
"""
if mel_scale not in ["slaney", "htk", "kaldi"]:
raise ValueError('mel_scale should be one of "htk", "slaney" or "kaldi".')
if mel_scale == "htk":
return 700.0 * (np.power(10, mels / 2595.0) - 1.0)
elif mel_scale == "kaldi":
return 700.0 * (np.exp(mels / 1127.0) - 1.0)
min_log_hertz = 1000.0
min_log_mel = 15.0
logstep = np.log(6.4) / 27.0
freq = 200.0 * mels / 3.0
if isinstance(mels, np.ndarray):
log_region = mels >= min_log_mel
freq[log_region] = min_log_hertz * np.exp(logstep * (mels[log_region] - min_log_mel))
elif mels >= min_log_mel:
freq = min_log_hertz * np.exp(logstep * (mels - min_log_mel))
return freq
def hertz_to_octave(
freq: Union[float, np.ndarray], tuning: Optional[float] = 0.0, bins_per_octave: Optional[int] = 12
):
"""
Convert frequency from hertz to fractional octave numbers.
Adapted from *librosa*.
Args:
freq (`float` or `np.ndarray`):
The frequency, or multiple frequencies, in hertz (Hz).
tuning (`float`, defaults to `0.`):
Tuning deviation from the Stuttgart pitch (A440) in (fractional) bins per octave.
bins_per_octave (`int`, defaults to `12`):
Number of bins per octave.
Returns:
`float` or `np.ndarray`: The frequencies on the octave scale.
"""
stuttgart_pitch = 440.0 * 2.0 ** (tuning / bins_per_octave)
octave = np.log2(freq / (float(stuttgart_pitch) / 16))
return octave
def _create_triangular_filter_bank(fft_freqs: np.ndarray, filter_freqs: np.ndarray) -> np.ndarray:
"""
Creates a triangular filter bank.
Adapted from *torchaudio* and *librosa*.
Args:
fft_freqs (`np.ndarray` of shape `(num_frequency_bins,)`):
Discrete frequencies of the FFT bins in Hz.
filter_freqs (`np.ndarray` of shape `(num_mel_filters,)`):
Center frequencies of the triangular filters to create, in Hz.
Returns:
`np.ndarray` of shape `(num_frequency_bins, num_mel_filters)`
"""
filter_diff = np.diff(filter_freqs)
slopes = np.expand_dims(filter_freqs, 0) - np.expand_dims(fft_freqs, 1)
down_slopes = -slopes[:, :-2] / filter_diff[:-1]
up_slopes = slopes[:, 2:] / filter_diff[1:]
return np.maximum(np.zeros(1), np.minimum(down_slopes, up_slopes))
def chroma_filter_bank(
num_frequency_bins: int,
num_chroma: int,
sampling_rate: int,
tuning: float = 0.0,
power: Optional[float] = 2.0,
weighting_parameters: Optional[Tuple[float]] = (5.0, 2),
start_at_c_chroma: Optional[bool] = True,
):
"""
Creates a chroma filter bank, i.e a linear transformation to project spectrogram bins onto chroma bins.
Adapted from *librosa*.
Args:
num_frequency_bins (`int`):
Number of frequencies used to compute the spectrogram (should be the same as in `stft`).
num_chroma (`int`):
Number of chroma bins (i.e pitch classes).
sampling_rate (`float`):
Sample rate of the audio waveform.
tuning (`float`):
Tuning deviation from A440 in fractions of a chroma bin.
power (`float`, *optional*, defaults to 2.0):
If 12.0, normalizes each column with their L2 norm. If 1.0, normalizes each column with their L1 norm.
weighting_parameters (`Tuple[float]`, *optional*, defaults to `(5., 2.)`):
If specified, apply a Gaussian weighting parameterized by the first element of the tuple being the center and
the second element being the Gaussian half-width.
start_at_c_chroma (`float`, *optional*, defaults to `True`):
If True, the filter bank will start at the 'C' pitch class. Otherwise, it will start at 'A'.
Returns:
`np.ndarray` of shape `(num_frequency_bins, num_chroma)`
"""
# Get the FFT bins, not counting the DC component
frequencies = np.linspace(0, sampling_rate, num_frequency_bins, endpoint=False)[1:]
freq_bins = num_chroma * hertz_to_octave(frequencies, tuning=tuning, bins_per_octave=num_chroma)
# make up a value for the 0 Hz bin = 1.5 octaves below bin 1
# (so chroma is 50% rotated from bin 1, and bin width is broad)
freq_bins = np.concatenate(([freq_bins[0] - 1.5 * num_chroma], freq_bins))
bins_width = np.concatenate((np.maximum(freq_bins[1:] - freq_bins[:-1], 1.0), [1]))
chroma_filters = np.subtract.outer(freq_bins, np.arange(0, num_chroma, dtype="d")).T
num_chroma2 = np.round(float(num_chroma) / 2)
# Project into range -num_chroma/2 .. num_chroma/2
# add on fixed offset of 10*num_chroma to ensure all values passed to
# rem are positive
chroma_filters = np.remainder(chroma_filters + num_chroma2 + 10 * num_chroma, num_chroma) - num_chroma2
# Gaussian bumps - 2*D to make them narrower
chroma_filters = np.exp(-0.5 * (2 * chroma_filters / np.tile(bins_width, (num_chroma, 1))) ** 2)
# normalize each column
if power is not None:
chroma_filters = chroma_filters / np.sum(chroma_filters**power, axis=0, keepdims=True) ** (1.0 / power)
# Maybe apply scaling for fft bins
if weighting_parameters is not None:
center, half_width = weighting_parameters
chroma_filters *= np.tile(
np.exp(-0.5 * (((freq_bins / num_chroma - center) / half_width) ** 2)),
(num_chroma, 1),
)
if start_at_c_chroma:
chroma_filters = np.roll(chroma_filters, -3 * (num_chroma // 12), axis=0)
# remove aliasing columns, copy to ensure row-contiguity
return np.ascontiguousarray(chroma_filters[:, : int(1 + num_frequency_bins / 2)])
def mel_filter_bank(
num_frequency_bins: int,
num_mel_filters: int,
min_frequency: float,
max_frequency: float,
sampling_rate: int,
norm: Optional[str] = None,
mel_scale: str = "htk",
triangularize_in_mel_space: bool = False,
) -> np.ndarray:
"""
Creates a frequency bin conversion matrix used to obtain a mel spectrogram. This is called a *mel filter bank*, and
various implementation exist, which differ in the number of filters, the shape of the filters, the way the filters
are spaced, the bandwidth of the filters, and the manner in which the spectrum is warped. The goal of these
features is to approximate the non-linear human perception of the variation in pitch with respect to the frequency.
Different banks of mel filters were introduced in the literature. The following variations are supported:
- MFCC FB-20: introduced in 1980 by Davis and Mermelstein, it assumes a sampling frequency of 10 kHz and a speech
bandwidth of `[0, 4600]` Hz.
- MFCC FB-24 HTK: from the Cambridge HMM Toolkit (HTK) (1995) uses a filter bank of 24 filters for a speech
bandwidth of `[0, 8000]` Hz. This assumes sampling rate ≥ 16 kHz.
- MFCC FB-40: from the Auditory Toolbox for MATLAB written by Slaney in 1998, assumes a sampling rate of 16 kHz and
speech bandwidth of `[133, 6854]` Hz. This version also includes area normalization.
- HFCC-E FB-29 (Human Factor Cepstral Coefficients) of Skowronski and Harris (2004), assumes a sampling rate of
12.5 kHz and speech bandwidth of `[0, 6250]` Hz.
This code is adapted from *torchaudio* and *librosa*. Note that the default parameters of torchaudio's
`melscale_fbanks` implement the `"htk"` filters while librosa uses the `"slaney"` implementation.
Args:
num_frequency_bins (`int`):
Number of frequencies used to compute the spectrogram (should be the same as in `stft`).
num_mel_filters (`int`):
Number of mel filters to generate.
min_frequency (`float`):
Lowest frequency of interest in Hz.
max_frequency (`float`):
Highest frequency of interest in Hz. This should not exceed `sampling_rate / 2`.
sampling_rate (`int`):
Sample rate of the audio waveform.
norm (`str`, *optional*):
If `"slaney"`, divide the triangular mel weights by the width of the mel band (area normalization).
mel_scale (`str`, *optional*, defaults to `"htk"`):
The mel frequency scale to use, `"htk"`, `"kaldi"` or `"slaney"`.
triangularize_in_mel_space (`bool`, *optional*, defaults to `False`):
If this option is enabled, the triangular filter is applied in mel space rather than frequency space. This
should be set to `true` in order to get the same results as `torchaudio` when computing mel filters.
Returns:
`np.ndarray` of shape (`num_frequency_bins`, `num_mel_filters`): Triangular filter bank matrix. This is a
projection matrix to go from a spectrogram to a mel spectrogram.
"""
if norm is not None and norm != "slaney":
raise ValueError('norm must be one of None or "slaney"')
# center points of the triangular mel filters
mel_min = hertz_to_mel(min_frequency, mel_scale=mel_scale)
mel_max = hertz_to_mel(max_frequency, mel_scale=mel_scale)
mel_freqs = np.linspace(mel_min, mel_max, num_mel_filters + 2)
filter_freqs = mel_to_hertz(mel_freqs, mel_scale=mel_scale)
if triangularize_in_mel_space:
# frequencies of FFT bins in Hz, but filters triangularized in mel space
fft_bin_width = sampling_rate / (num_frequency_bins * 2)
fft_freqs = hertz_to_mel(fft_bin_width * np.arange(num_frequency_bins), mel_scale=mel_scale)
filter_freqs = mel_freqs
else:
# frequencies of FFT bins in Hz
fft_freqs = np.linspace(0, sampling_rate // 2, num_frequency_bins)
mel_filters = _create_triangular_filter_bank(fft_freqs, filter_freqs)
if norm is not None and norm == "slaney":
# Slaney-style mel is scaled to be approx constant energy per channel
enorm = 2.0 / (filter_freqs[2 : num_mel_filters + 2] - filter_freqs[:num_mel_filters])
mel_filters *= np.expand_dims(enorm, 0)
if (mel_filters.max(axis=0) == 0.0).any():
warnings.warn(
"At least one mel filter has all zero values. "
f"The value for `num_mel_filters` ({num_mel_filters}) may be set too high. "
f"Or, the value for `num_frequency_bins` ({num_frequency_bins}) may be set too low."
)
return mel_filters
def optimal_fft_length(window_length: int) -> int:
"""
Finds the best FFT input size for a given `window_length`. This function takes a given window length and, if not
already a power of two, rounds it up to the next power or two.
The FFT algorithm works fastest when the length of the input is a power of two, which may be larger than the size
of the window or analysis frame. For example, if the window is 400 samples, using an FFT input size of 512 samples
is more optimal than an FFT size of 400 samples. Using a larger FFT size does not affect the detected frequencies,
it simply gives a higher frequency resolution (i.e. the frequency bins are smaller).
"""
return 2 ** int(np.ceil(np.log2(window_length)))
def window_function(
window_length: int,
name: str = "hann",
periodic: bool = True,
frame_length: Optional[int] = None,
center: bool = True,
) -> np.ndarray:
"""
Returns an array containing the specified window. This window is intended to be used with `stft`.
The following window types are supported:
- `"boxcar"`: a rectangular window
- `"hamming"`: the Hamming window
- `"hann"`: the Hann window
- `"povey"`: the Povey window
Args:
window_length (`int`):
The length of the window in samples.
name (`str`, *optional*, defaults to `"hann"`):
The name of the window function.
periodic (`bool`, *optional*, defaults to `True`):
Whether the window is periodic or symmetric.
frame_length (`int`, *optional*):
The length of the analysis frames in samples. Provide a value for `frame_length` if the window is smaller
than the frame length, so that it will be zero-padded.
center (`bool`, *optional*, defaults to `True`):
Whether to center the window inside the FFT buffer. Only used when `frame_length` is provided.
Returns:
`np.ndarray` of shape `(window_length,)` or `(frame_length,)` containing the window.
"""
length = window_length + 1 if periodic else window_length
if name == "boxcar":
window = np.ones(length)
elif name in ["hamming", "hamming_window"]:
window = np.hamming(length)
elif name in ["hann", "hann_window"]:
window = np.hanning(length)
elif name in ["povey"]:
window = np.power(np.hanning(length), 0.85)
else:
raise ValueError(f"Unknown window function '{name}'")
if periodic:
window = window[:-1]
if frame_length is None:
return window
if window_length > frame_length:
raise ValueError(
f"Length of the window ({window_length}) may not be larger than frame_length ({frame_length})"
)
padded_window = np.zeros(frame_length)
offset = (frame_length - window_length) // 2 if center else 0
padded_window[offset : offset + window_length] = window
return padded_window
# TODO This method does not support batching yet as we are mainly focused on inference.
def spectrogram(
waveform: np.ndarray,
window: np.ndarray,
frame_length: int,
hop_length: int,
fft_length: Optional[int] = None,
power: Optional[float] = 1.0,
center: bool = True,
pad_mode: str = "reflect",
onesided: bool = True,
preemphasis: Optional[float] = None,
mel_filters: Optional[np.ndarray] = None,
mel_floor: float = 1e-10,
log_mel: Optional[str] = None,
reference: float = 1.0,
min_value: float = 1e-10,
db_range: Optional[float] = None,
remove_dc_offset: Optional[bool] = None,
dtype: np.dtype = np.float32,
) -> np.ndarray:
"""
Calculates a spectrogram over one waveform using the Short-Time Fourier Transform.
This function can create the following kinds of spectrograms:
- amplitude spectrogram (`power = 1.0`)
- power spectrogram (`power = 2.0`)
- complex-valued spectrogram (`power = None`)
- log spectrogram (use `log_mel` argument)
- mel spectrogram (provide `mel_filters`)
- log-mel spectrogram (provide `mel_filters` and `log_mel`)
How this works:
1. The input waveform is split into frames of size `frame_length` that are partially overlapping by `frame_length
- hop_length` samples.
2. Each frame is multiplied by the window and placed into a buffer of size `fft_length`.
3. The DFT is taken of each windowed frame.
4. The results are stacked into a spectrogram.
We make a distinction between the following "blocks" of sample data, each of which may have a different lengths:
- The analysis frame. This is the size of the time slices that the input waveform is split into.
- The window. Each analysis frame is multiplied by the window to avoid spectral leakage.
- The FFT input buffer. The length of this determines how many frequency bins are in the spectrogram.
In this implementation, the window is assumed to be zero-padded to have the same size as the analysis frame. A
padded window can be obtained from `window_function()`. The FFT input buffer may be larger than the analysis frame,
typically the next power of two.
Note: This function is not optimized for speed yet. It should be mostly compatible with `librosa.stft` and
`torchaudio.functional.transforms.Spectrogram`, although it is more flexible due to the different ways spectrograms
can be constructed.
Args:
waveform (`np.ndarray` of shape `(length,)`):
The input waveform. This must be a single real-valued, mono waveform.
window (`np.ndarray` of shape `(frame_length,)`):
The windowing function to apply, including zero-padding if necessary. The actual window length may be
shorter than `frame_length`, but we're assuming the array has already been zero-padded.
frame_length (`int`):
The length of the analysis frames in samples. With librosa this is always equal to `fft_length` but we also
allow smaller sizes.
hop_length (`int`):
The stride between successive analysis frames in samples.
fft_length (`int`, *optional*):
The size of the FFT buffer in samples. This determines how many frequency bins the spectrogram will have.
For optimal speed, this should be a power of two. If `None`, uses `frame_length`.
power (`float`, *optional*, defaults to 1.0):
If 1.0, returns the amplitude spectrogram. If 2.0, returns the power spectrogram. If `None`, returns
complex numbers.
center (`bool`, *optional*, defaults to `True`):
Whether to pad the waveform so that frame `t` is centered around time `t * hop_length`. If `False`, frame
`t` will start at time `t * hop_length`.
pad_mode (`str`, *optional*, defaults to `"reflect"`):
Padding mode used when `center` is `True`. Possible values are: `"constant"` (pad with zeros), `"edge"`
(pad with edge values), `"reflect"` (pads with mirrored values).
onesided (`bool`, *optional*, defaults to `True`):
If True, only computes the positive frequencies and returns a spectrogram containing `fft_length // 2 + 1`
frequency bins. If False, also computes the negative frequencies and returns `fft_length` frequency bins.
preemphasis (`float`, *optional*)
Coefficient for a low-pass filter that applies pre-emphasis before the DFT.
mel_filters (`np.ndarray` of shape `(num_freq_bins, num_mel_filters)`, *optional*):
The mel filter bank. If supplied, applies a this filter bank to create a mel spectrogram.
mel_floor (`float`, *optional*, defaults to 1e-10):
Minimum value of mel frequency banks.
log_mel (`str`, *optional*):
How to convert the spectrogram to log scale. Possible options are: `None` (don't convert), `"log"` (take
the natural logarithm) `"log10"` (take the base-10 logarithm), `"dB"` (convert to decibels). Can only be
used when `power` is not `None`.
reference (`float`, *optional*, defaults to 1.0):
Sets the input spectrogram value that corresponds to 0 dB. For example, use `np.max(spectrogram)` to set
the loudest part to 0 dB. Must be greater than zero.
min_value (`float`, *optional*, defaults to `1e-10`):
The spectrogram will be clipped to this minimum value before conversion to decibels, to avoid taking
`log(0)`. For a power spectrogram, the default of `1e-10` corresponds to a minimum of -100 dB. For an
amplitude spectrogram, the value `1e-5` corresponds to -100 dB. Must be greater than zero.
db_range (`float`, *optional*):
Sets the maximum dynamic range in decibels. For example, if `db_range = 80`, the difference between the
peak value and the smallest value will never be more than 80 dB. Must be greater than zero.
remove_dc_offset (`bool`, *optional*):
Subtract mean from waveform on each frame, applied before pre-emphasis. This should be set to `true` in
order to get the same results as `torchaudio.compliance.kaldi.fbank` when computing mel filters.
dtype (`np.dtype`, *optional*, defaults to `np.float32`):
Data type of the spectrogram tensor. If `power` is None, this argument is ignored and the dtype will be
`np.complex64`.
Returns:
`nd.array` containing a spectrogram of shape `(num_frequency_bins, length)` for a regular spectrogram or shape
`(num_mel_filters, length)` for a mel spectrogram.
"""
window_length = len(window)
if fft_length is None:
fft_length = frame_length
if frame_length > fft_length:
raise ValueError(f"frame_length ({frame_length}) may not be larger than fft_length ({fft_length})")
if window_length != frame_length:
raise ValueError(f"Length of the window ({window_length}) must equal frame_length ({frame_length})")
if hop_length <= 0:
raise ValueError("hop_length must be greater than zero")
if waveform.ndim != 1:
raise ValueError(f"Input waveform must have only one dimension, shape is {waveform.shape}")
if np.iscomplexobj(waveform):
raise ValueError("Complex-valued input waveforms are not currently supported")
if power is None and mel_filters is not None:
raise ValueError(
"You have provided `mel_filters` but `power` is `None`. Mel spectrogram computation is not yet supported for complex-valued spectrogram."
"Specify `power` to fix this issue."
)
# center pad the waveform
if center:
padding = [(int(frame_length // 2), int(frame_length // 2))]
waveform = np.pad(waveform, padding, mode=pad_mode)
# promote to float64, since np.fft uses float64 internally
waveform = waveform.astype(np.float64)
window = window.astype(np.float64)
# split waveform into frames of frame_length size
num_frames = int(1 + np.floor((waveform.size - frame_length) / hop_length))
num_frequency_bins = (fft_length // 2) + 1 if onesided else fft_length
spectrogram = np.empty((num_frames, num_frequency_bins), dtype=np.complex64)
# rfft is faster than fft
fft_func = np.fft.rfft if onesided else np.fft.fft
buffer = np.zeros(fft_length)
timestep = 0
for frame_idx in range(num_frames):
buffer[:frame_length] = waveform[timestep : timestep + frame_length]
if remove_dc_offset:
buffer[:frame_length] = buffer[:frame_length] - buffer[:frame_length].mean()
if preemphasis is not None:
buffer[1:frame_length] -= preemphasis * buffer[: frame_length - 1]
buffer[0] *= 1 - preemphasis
buffer[:frame_length] *= window
spectrogram[frame_idx] = fft_func(buffer)
timestep += hop_length
# note: ** is much faster than np.power
if power is not None:
spectrogram = np.abs(spectrogram, dtype=np.float64) ** power
spectrogram = spectrogram.T
if mel_filters is not None:
spectrogram = np.maximum(mel_floor, np.dot(mel_filters.T, spectrogram))
if power is not None and log_mel is not None:
if log_mel == "log":
spectrogram = np.log(spectrogram)
elif log_mel == "log10":
spectrogram = np.log10(spectrogram)
elif log_mel == "dB":
if power == 1.0:
spectrogram = amplitude_to_db(spectrogram, reference, min_value, db_range)
elif power == 2.0:
spectrogram = power_to_db(spectrogram, reference, min_value, db_range)
else:
raise ValueError(f"Cannot use log_mel option '{log_mel}' with power {power}")
else:
raise ValueError(f"Unknown log_mel option: {log_mel}")
spectrogram = np.asarray(spectrogram, dtype)
return spectrogram
def spectrogram_batch(
waveform_list: List[np.ndarray],
window: np.ndarray,
frame_length: int,
hop_length: int,
fft_length: Optional[int] = None,
power: Optional[float] = 1.0,
center: bool = True,
pad_mode: str = "reflect",
onesided: bool = True,
preemphasis: Optional[float] = None,
mel_filters: Optional[np.ndarray] = None,
mel_floor: float = 1e-10,
log_mel: Optional[str] = None,
reference: float = 1.0,
min_value: float = 1e-10,
db_range: Optional[float] = None,
remove_dc_offset: Optional[bool] = None,
dtype: np.dtype = np.float32,
) -> List[np.ndarray]:
"""
Calculates spectrograms for a list of waveforms using the Short-Time Fourier Transform, optimized for batch processing.
This function extends the capabilities of the `spectrogram` function to handle multiple waveforms efficiently by leveraging broadcasting.
It supports generating various types of spectrograms:
- amplitude spectrogram (`power = 1.0`)
- power spectrogram (`power = 2.0`)
- complex-valued spectrogram (`power = None`)
- log spectrogram (use `log_mel` argument)
- mel spectrogram (provide `mel_filters`)
- log-mel spectrogram (provide `mel_filters` and `log_mel`)
How this works:
1. The input waveform is split into frames of size `frame_length` that are partially overlapping by `frame_length
- hop_length` samples.
2. Each frame is multiplied by the window and placed into a buffer of size `fft_length`.
3. The DFT is taken of each windowed frame.
4. The results are stacked into a spectrogram.
We make a distinction between the following "blocks" of sample data, each of which may have a different lengths:
- The analysis frame. This is the size of the time slices that the input waveform is split into.
- The window. Each analysis frame is multiplied by the window to avoid spectral leakage.
- The FFT input buffer. The length of this determines how many frequency bins are in the spectrogram.
In this implementation, the window is assumed to be zero-padded to have the same size as the analysis frame. A
padded window can be obtained from `window_function()`. The FFT input buffer may be larger than the analysis frame,
typically the next power of two.
Note: This function is designed for efficient batch processing of multiple waveforms but retains compatibility with individual waveform processing methods like `librosa.stft`.
Args:
waveform_list (`List[np.ndarray]` with arrays of shape `(length,)`):
The list of input waveforms, each a single-channel (mono) signal.
window (`np.ndarray` of shape `(frame_length,)`):
The windowing function to apply, including zero-padding if necessary.
frame_length (`int`):
The length of each frame for analysis.
hop_length (`int`):
The step size between successive frames.
fft_length (`int`, *optional*):
The size of the FFT buffer, defining frequency bin resolution.
power (`float`, *optional*, defaults to 1.0):
Determines the type of spectrogram: 1.0 for amplitude, 2.0 for power, None for complex.
center (`bool`, *optional*, defaults to `True`):
Whether to center-pad the waveform frames.
pad_mode (`str`, *optional*, defaults to `"reflect"`):
The padding strategy when `center` is `True`.
onesided (`bool`, *optional*, defaults to `True`):
If True, returns a one-sided spectrogram for real input signals.
preemphasis (`float`, *optional*):
Applies a pre-emphasis filter to each frame.
mel_filters (`np.ndarray`, *optional*):
Mel filter bank for converting to mel spectrogram.
mel_floor (`float`, *optional*, defaults to 1e-10):
Floor value for mel spectrogram to avoid log(0).
log_mel (`str`, *optional*):
Specifies log scaling strategy; options are None, "log", "log10", "dB".
reference (`float`, *optional*, defaults to 1.0):
Reference value for dB conversion in log_mel.
min_value (`float`, *optional*, defaults to 1e-10):
Minimum floor value for log scale conversions.
db_range (`float`, *optional*):
Dynamic range for dB scale spectrograms.
remove_dc_offset (`bool`, *optional*):
Whether to remove the DC offset from each frame.
dtype (`np.dtype`, *optional*, defaults to `np.float32`):
Data type of the output spectrogram.
Returns:
List[`np.ndarray`]: A list of spectrogram arrays, one for each input waveform.
"""
window_length = len(window)
if fft_length is None:
fft_length = frame_length
if frame_length > fft_length:
raise ValueError(f"frame_length ({frame_length}) may not be larger than fft_length ({fft_length})")
if window_length != frame_length:
raise ValueError(f"Length of the window ({window_length}) must equal frame_length ({frame_length})")
if hop_length <= 0:
raise ValueError("hop_length must be greater than zero")
# Check the dimensions of the waveform , and if waveform is complex
for waveform in waveform_list:
if waveform.ndim != 1:
raise ValueError(f"Input waveform must have only one dimension, shape is {waveform.shape}")
if np.iscomplexobj(waveform):
raise ValueError("Complex-valued input waveforms are not currently supported")
# Center pad the waveform
if center:
padding = [(int(frame_length // 2), int(frame_length // 2))]
waveform_list = [
np.pad(
waveform,
padding,
mode=pad_mode,
)
for waveform in waveform_list
]
original_waveform_lengths = [
len(waveform) for waveform in waveform_list
] # these lengths will be used to remove padding later
# Batch pad the waveform
max_length = max(original_waveform_lengths)
padded_waveform_batch = np.array(
[
np.pad(waveform, (0, max_length - len(waveform)), mode="constant", constant_values=0)
for waveform in waveform_list
],
dtype=dtype,
)
# Promote to float64, since np.fft uses float64 internally
padded_waveform_batch = padded_waveform_batch.astype(np.float64)
window = window.astype(np.float64)
# Split waveform into frames of frame_length size
num_frames = int(1 + np.floor((padded_waveform_batch.shape[1] - frame_length) / hop_length))
# these lengths will be used to remove padding later
true_num_frames = [int(1 + np.floor((length - frame_length) / hop_length)) for length in original_waveform_lengths]
num_batches = padded_waveform_batch.shape[0]
num_frequency_bins = (fft_length // 2) + 1 if onesided else fft_length
spectrogram = np.empty((num_batches, num_frames, num_frequency_bins), dtype=np.complex64)
# rfft is faster than fft
fft_func = np.fft.rfft if onesided else np.fft.fft
buffer = np.zeros((num_batches, fft_length))
for frame_idx in range(num_frames):
timestep = frame_idx * hop_length
buffer[:, :frame_length] = padded_waveform_batch[:, timestep : timestep + frame_length]
if remove_dc_offset:
buffer[:, :frame_length] -= buffer[:, :frame_length].mean(axis=1, keepdims=True)
if preemphasis is not None:
buffer[:, 1:frame_length] -= preemphasis * buffer[:, : frame_length - 1]
buffer[:, 0] *= 1 - preemphasis
buffer[:, :frame_length] *= window
spectrogram[:, frame_idx] = fft_func(buffer)
# Note: ** is much faster than np.power
if power is not None:
spectrogram = np.abs(spectrogram, dtype=np.float64) ** power
# Apply mel filters if provided
if mel_filters is not None:
result = np.tensordot(spectrogram, mel_filters.T, axes=([2], [1]))
spectrogram = np.maximum(mel_floor, result)
# Convert to log scale if specified
if power is not None and log_mel is not None:
if log_mel == "log":
spectrogram = np.log(spectrogram)
elif log_mel == "log10":
spectrogram = np.log10(spectrogram)
elif log_mel == "dB":
if power == 1.0:
spectrogram = amplitude_to_db_batch(spectrogram, reference, min_value, db_range)
elif power == 2.0:
spectrogram = power_to_db_batch(spectrogram, reference, min_value, db_range)
else:
raise ValueError(f"Cannot use log_mel option '{log_mel}' with power {power}")
else:
raise ValueError(f"Unknown log_mel option: {log_mel}")
spectrogram = np.asarray(spectrogram, dtype)
spectrogram_list = [spectrogram[i, : true_num_frames[i], :].T for i in range(len(true_num_frames))]
return spectrogram_list
def power_to_db(
spectrogram: np.ndarray,
reference: float = 1.0,
min_value: float = 1e-10,
db_range: Optional[float] = None,
) -> np.ndarray:
"""
Converts a power spectrogram to the decibel scale. This computes `10 * log10(spectrogram / reference)`, using basic
logarithm properties for numerical stability.
The motivation behind applying the log function on the (mel) spectrogram is that humans do not hear loudness on a
linear scale. Generally to double the perceived volume of a sound we need to put 8 times as much energy into it.
This means that large variations in energy may not sound all that different if the sound is loud to begin with.
This compression operation makes the (mel) spectrogram features match more closely what humans actually hear.
Based on the implementation of `librosa.power_to_db`.
Args:
spectrogram (`np.ndarray`):
The input power (mel) spectrogram. Note that a power spectrogram has the amplitudes squared!
reference (`float`, *optional*, defaults to 1.0):
Sets the input spectrogram value that corresponds to 0 dB. For example, use `np.max(spectrogram)` to set
the loudest part to 0 dB. Must be greater than zero.
min_value (`float`, *optional*, defaults to `1e-10`):
The spectrogram will be clipped to this minimum value before conversion to decibels, to avoid taking
`log(0)`. The default of `1e-10` corresponds to a minimum of -100 dB. Must be greater than zero.
db_range (`float`, *optional*):
Sets the maximum dynamic range in decibels. For example, if `db_range = 80`, the difference between the
peak value and the smallest value will never be more than 80 dB. Must be greater than zero.
Returns:
`np.ndarray`: the spectrogram in decibels
"""
if reference <= 0.0:
raise ValueError("reference must be greater than zero")
if min_value <= 0.0:
raise ValueError("min_value must be greater than zero")
reference = max(min_value, reference)
spectrogram = np.clip(spectrogram, a_min=min_value, a_max=None)
spectrogram = 10.0 * (np.log10(spectrogram) - np.log10(reference))
if db_range is not None:
if db_range <= 0.0:
raise ValueError("db_range must be greater than zero")
spectrogram = np.clip(spectrogram, a_min=spectrogram.max() - db_range, a_max=None)
return spectrogram
def power_to_db_batch(
spectrogram: np.ndarray,
reference: float = 1.0,
min_value: float = 1e-10,
db_range: Optional[float] = None,
) -> np.ndarray:
"""
Converts a batch of power spectrograms to the decibel scale. This computes `10 * log10(spectrogram / reference)`,
using basic logarithm properties for numerical stability.
This function supports batch processing, where each item in the batch is an individual power (mel) spectrogram.
Args:
spectrogram (`np.ndarray`):
The input batch of power (mel) spectrograms. Expected shape is (batch_size, *spectrogram_shape).
Note that a power spectrogram has the amplitudes squared!
reference (`float`, *optional*, defaults to 1.0):
Sets the input spectrogram value that corresponds to 0 dB. For example, use `np.max(spectrogram)` to set
the loudest part to 0 dB. Must be greater than zero.
min_value (`float`, *optional*, defaults to `1e-10`):
The spectrogram will be clipped to this minimum value before conversion to decibels, to avoid taking
`log(0)`. The default of `1e-10` corresponds to a minimum of -100 dB. Must be greater than zero.
db_range (`float`, *optional*):
Sets the maximum dynamic range in decibels. For example, if `db_range = 80`, the difference between the
peak value and the smallest value will never be more than 80 dB. Must be greater than zero.
Returns:
`np.ndarray`: the batch of spectrograms in decibels
"""
if reference <= 0.0:
raise ValueError("reference must be greater than zero")
if min_value <= 0.0:
raise ValueError("min_value must be greater than zero")
reference = max(min_value, reference)
spectrogram = np.clip(spectrogram, a_min=min_value, a_max=None)
spectrogram = 10.0 * (np.log10(spectrogram) - np.log10(reference))
if db_range is not None:
if db_range <= 0.0:
raise ValueError("db_range must be greater than zero")
# Apply db_range clipping per batch item
max_values = spectrogram.max(axis=(1, 2), keepdims=True)
spectrogram = np.clip(spectrogram, a_min=max_values - db_range, a_max=None)
return spectrogram
def amplitude_to_db(
spectrogram: np.ndarray,
reference: float = 1.0,
min_value: float = 1e-5,
db_range: Optional[float] = None,
) -> np.ndarray:
"""
Converts an amplitude spectrogram to the decibel scale. This computes `20 * log10(spectrogram / reference)`, using
basic logarithm properties for numerical stability.
The motivation behind applying the log function on the (mel) spectrogram is that humans do not hear loudness on a
linear scale. Generally to double the perceived volume of a sound we need to put 8 times as much energy into it.
This means that large variations in energy may not sound all that different if the sound is loud to begin with.
This compression operation makes the (mel) spectrogram features match more closely what humans actually hear.
Args:
spectrogram (`np.ndarray`):
The input amplitude (mel) spectrogram.
reference (`float`, *optional*, defaults to 1.0):
Sets the input spectrogram value that corresponds to 0 dB. For example, use `np.max(spectrogram)` to set
the loudest part to 0 dB. Must be greater than zero.
min_value (`float`, *optional*, defaults to `1e-5`):
The spectrogram will be clipped to this minimum value before conversion to decibels, to avoid taking
`log(0)`. The default of `1e-5` corresponds to a minimum of -100 dB. Must be greater than zero.
db_range (`float`, *optional*):
Sets the maximum dynamic range in decibels. For example, if `db_range = 80`, the difference between the
peak value and the smallest value will never be more than 80 dB. Must be greater than zero.
Returns:
`np.ndarray`: the spectrogram in decibels
"""
if reference <= 0.0:
raise ValueError("reference must be greater than zero")
if min_value <= 0.0:
raise ValueError("min_value must be greater than zero")
reference = max(min_value, reference)
spectrogram = np.clip(spectrogram, a_min=min_value, a_max=None)
spectrogram = 20.0 * (np.log10(spectrogram) - np.log10(reference))
if db_range is not None:
if db_range <= 0.0:
raise ValueError("db_range must be greater than zero")
spectrogram = np.clip(spectrogram, a_min=spectrogram.max() - db_range, a_max=None)
return spectrogram
def amplitude_to_db_batch(
spectrogram: np.ndarray, reference: float = 1.0, min_value: float = 1e-5, db_range: Optional[float] = None
) -> np.ndarray:
"""
Converts a batch of amplitude spectrograms to the decibel scale. This computes `20 * log10(spectrogram / reference)`,
using basic logarithm properties for numerical stability.
The function supports batch processing, where each item in the batch is an individual amplitude (mel) spectrogram.
Args:
spectrogram (`np.ndarray`):
The input batch of amplitude (mel) spectrograms. Expected shape is (batch_size, *spectrogram_shape).
reference (`float`, *optional*, defaults to 1.0):
Sets the input spectrogram value that corresponds to 0 dB. For example, use `np.max(spectrogram)` to set
the loudest part to 0 dB. Must be greater than zero.
min_value (`float`, *optional*, defaults to `1e-5`):
The spectrogram will be clipped to this minimum value before conversion to decibels, to avoid taking
`log(0)`. The default of `1e-5` corresponds to a minimum of -100 dB. Must be greater than zero.
db_range (`float`, *optional*):
Sets the maximum dynamic range in decibels. For example, if `db_range = 80`, the difference between the
peak value and the smallest value will never be more than 80 dB. Must be greater than zero.
Returns:
`np.ndarray`: the batch of spectrograms in decibels
"""
if reference <= 0.0:
raise ValueError("reference must be greater than zero")
if min_value <= 0.0:
raise ValueError("min_value must be greater than zero")
reference = max(min_value, reference)
spectrogram = np.clip(spectrogram, a_min=min_value, a_max=None)
spectrogram = 20.0 * (np.log10(spectrogram) - np.log10(reference))
if db_range is not None:
if db_range <= 0.0:
raise ValueError("db_range must be greater than zero")
# Apply db_range clipping per batch item
max_values = spectrogram.max(axis=(1, 2), keepdims=True)
spectrogram = np.clip(spectrogram, a_min=max_values - db_range, a_max=None)
return spectrogram
### deprecated functions below this line ###
def get_mel_filter_banks(
nb_frequency_bins: int,
nb_mel_filters: int,
frequency_min: float,
frequency_max: float,
sample_rate: int,
norm: Optional[str] = None,
mel_scale: str = "htk",
) -> np.array:
warnings.warn(
"The function `get_mel_filter_banks` is deprecated and will be removed in version 4.31.0 of Transformers",
FutureWarning,
)
return mel_filter_bank(
num_frequency_bins=nb_frequency_bins,
num_mel_filters=nb_mel_filters,
min_frequency=frequency_min,
max_frequency=frequency_max,
sampling_rate=sample_rate,
norm=norm,
mel_scale=mel_scale,
)
def fram_wave(waveform: np.array, hop_length: int = 160, fft_window_size: int = 400, center: bool = True):
"""
In order to compute the short time fourier transform, the waveform needs to be split in overlapping windowed
segments called `frames`.
The window length (window_length) defines how much of the signal is contained in each frame, while the hop length
defines the step between the beginning of each new frame.
Args:
waveform (`np.array` of shape `(sample_length,)`):
The raw waveform which will be split into smaller chunks.
hop_length (`int`, *optional*, defaults to 160):
Step between each window of the waveform.
fft_window_size (`int`, *optional*, defaults to 400):
Defines the size of the window.
center (`bool`, defaults to `True`):
Whether or not to center each frame around the middle of the frame. Centering is done by reflecting the
waveform on the left and on the right.
Return:
framed_waveform (`np.array` of shape `(waveform.shape // hop_length , fft_window_size)`):
The framed waveforms that can be fed to `np.fft`.
"""
warnings.warn(
"The function `fram_wave` is deprecated and will be removed in version 4.31.0 of Transformers",
FutureWarning,
)
frames = []
for i in range(0, waveform.shape[0] + 1, hop_length):
if center:
half_window = (fft_window_size - 1) // 2 + 1
start = i - half_window if i > half_window else 0
end = i + half_window if i < waveform.shape[0] - half_window else waveform.shape[0]
frame = waveform[start:end]
if start == 0:
padd_width = (-i + half_window, 0)
frame = np.pad(frame, pad_width=padd_width, mode="reflect")
elif end == waveform.shape[0]:
padd_width = (0, (i - waveform.shape[0] + half_window))
frame = np.pad(frame, pad_width=padd_width, mode="reflect")
else:
frame = waveform[i : i + fft_window_size]
frame_width = frame.shape[0]
if frame_width < waveform.shape[0]:
frame = np.lib.pad(
frame, pad_width=(0, fft_window_size - frame_width), mode="constant", constant_values=0
)
frames.append(frame)
frames = np.stack(frames, 0)
return frames
def stft(frames: np.array, windowing_function: np.array, fft_window_size: int = None):
"""
Calculates the complex Short-Time Fourier Transform (STFT) of the given framed signal. Should give the same results
as `torch.stft`.
Args:
frames (`np.array` of dimension `(num_frames, fft_window_size)`):
A framed audio signal obtained using `audio_utils.fram_wav`.
windowing_function (`np.array` of dimension `(nb_frequency_bins, nb_mel_filters)`:
A array representing the function that will be used to reduces the amplitude of the discontinuities at the
boundaries of each frame when computing the STFT. Each frame will be multiplied by the windowing_function.
For more information on the discontinuities, called *Spectral leakage*, refer to [this
tutorial]https://download.ni.com/evaluation/pxi/Understanding%20FFTs%20and%20Windowing.pdf
fft_window_size (`int`, *optional*):
Size of the window om which the Fourier transform is applied. This controls the frequency resolution of the
spectrogram. 400 means that the fourrier transform is computed on windows of 400 samples. The number of
frequency bins (`nb_frequency_bins`) used to divide the window into equal strips is equal to
`(1+fft_window_size)//2`. An increase of the fft_window_size slows the calculus time proportionnally.
Example:
```python
>>> from transformers.audio_utils import stft, fram_wave
>>> import numpy as np
>>> audio = np.random.rand(50)
>>> fft_window_size = 10
>>> hop_length = 2
>>> framed_audio = fram_wave(audio, hop_length, fft_window_size)
>>> spectrogram = stft(framed_audio, np.hanning(fft_window_size + 1))
```
Returns:
spectrogram (`np.ndarray`):
A spectrogram of shape `(num_frames, nb_frequency_bins)` obtained using the STFT algorithm
"""
warnings.warn(
"The function `stft` is deprecated and will be removed in version 4.31.0 of Transformers",
FutureWarning,
)
frame_size = frames.shape[1]
if fft_window_size is None:
fft_window_size = frame_size
if fft_window_size < frame_size:
raise ValueError("FFT size must greater or equal the frame size")
# number of FFT bins to store
nb_frequency_bins = (fft_window_size >> 1) + 1
spectrogram = np.empty((len(frames), nb_frequency_bins), dtype=np.complex64)
fft_signal = np.zeros(fft_window_size)
for f, frame in enumerate(frames):
if windowing_function is not None:
np.multiply(frame, windowing_function, out=fft_signal[:frame_size])
else:
fft_signal[:frame_size] = frame
spectrogram[f] = np.fft.fft(fft_signal, axis=0)[:nb_frequency_bins]
return spectrogram.T
|
transformers/src/transformers/audio_utils.py/0
|
{
"file_path": "transformers/src/transformers/audio_utils.py",
"repo_id": "transformers",
"token_count": 19128
}
| 89 |
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert pytorch checkpoints to TensorFlow"""
import argparse
import os
from . import (
AlbertConfig,
BartConfig,
BertConfig,
CamembertConfig,
CTRLConfig,
DistilBertConfig,
DPRConfig,
ElectraConfig,
FlaubertConfig,
GPT2Config,
LayoutLMConfig,
LxmertConfig,
OpenAIGPTConfig,
RobertaConfig,
T5Config,
TFAlbertForPreTraining,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFCamembertForMaskedLM,
TFCTRLLMHeadModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
TFElectraForPreTraining,
TFFlaubertWithLMHeadModel,
TFGPT2LMHeadModel,
TFLayoutLMForMaskedLM,
TFLxmertForPreTraining,
TFLxmertVisualFeatureEncoder,
TFOpenAIGPTLMHeadModel,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForSequenceClassification,
TFT5ForConditionalGeneration,
TFTransfoXLLMHeadModel,
TFWav2Vec2Model,
TFXLMRobertaForMaskedLM,
TFXLMWithLMHeadModel,
TFXLNetLMHeadModel,
TransfoXLConfig,
Wav2Vec2Config,
Wav2Vec2Model,
XLMConfig,
XLMRobertaConfig,
XLNetConfig,
is_torch_available,
load_pytorch_checkpoint_in_tf2_model,
)
from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging
if is_torch_available():
import numpy as np
import torch
from . import (
AlbertForPreTraining,
BartForConditionalGeneration,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
CamembertForMaskedLM,
CTRLLMHeadModel,
DistilBertForMaskedLM,
DistilBertForQuestionAnswering,
DPRContextEncoder,
DPRQuestionEncoder,
DPRReader,
ElectraForPreTraining,
FlaubertWithLMHeadModel,
GPT2LMHeadModel,
LayoutLMForMaskedLM,
LxmertForPreTraining,
LxmertVisualFeatureEncoder,
OpenAIGPTLMHeadModel,
RobertaForMaskedLM,
RobertaForSequenceClassification,
T5ForConditionalGeneration,
TransfoXLLMHeadModel,
XLMRobertaForMaskedLM,
XLMWithLMHeadModel,
XLNetLMHeadModel,
)
logging.set_verbosity_info()
MODEL_CLASSES = {
"bart": (
BartConfig,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
BartForConditionalGeneration,
),
"bert": (
BertConfig,
TFBertForPreTraining,
BertForPreTraining,
),
"google-bert/bert-large-uncased-whole-word-masking-finetuned-squad": (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
),
"google-bert/bert-large-cased-whole-word-masking-finetuned-squad": (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
),
"google-bert/bert-base-cased-finetuned-mrpc": (
BertConfig,
TFBertForSequenceClassification,
BertForSequenceClassification,
),
"dpr": (
DPRConfig,
TFDPRQuestionEncoder,
TFDPRContextEncoder,
TFDPRReader,
DPRQuestionEncoder,
DPRContextEncoder,
DPRReader,
),
"openai-community/gpt2": (
GPT2Config,
TFGPT2LMHeadModel,
GPT2LMHeadModel,
),
"xlnet": (
XLNetConfig,
TFXLNetLMHeadModel,
XLNetLMHeadModel,
),
"xlm": (
XLMConfig,
TFXLMWithLMHeadModel,
XLMWithLMHeadModel,
),
"xlm-roberta": (
XLMRobertaConfig,
TFXLMRobertaForMaskedLM,
XLMRobertaForMaskedLM,
),
"transfo-xl": (
TransfoXLConfig,
TFTransfoXLLMHeadModel,
TransfoXLLMHeadModel,
),
"openai-community/openai-gpt": (
OpenAIGPTConfig,
TFOpenAIGPTLMHeadModel,
OpenAIGPTLMHeadModel,
),
"roberta": (
RobertaConfig,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
RobertaForMaskedLM,
),
"layoutlm": (
LayoutLMConfig,
TFLayoutLMForMaskedLM,
LayoutLMForMaskedLM,
),
"FacebookAI/roberta-large-mnli": (
RobertaConfig,
TFRobertaForSequenceClassification,
RobertaForSequenceClassification,
),
"camembert": (
CamembertConfig,
TFCamembertForMaskedLM,
CamembertForMaskedLM,
),
"flaubert": (
FlaubertConfig,
TFFlaubertWithLMHeadModel,
FlaubertWithLMHeadModel,
),
"distilbert": (
DistilBertConfig,
TFDistilBertForMaskedLM,
DistilBertForMaskedLM,
),
"distilbert-base-distilled-squad": (
DistilBertConfig,
TFDistilBertForQuestionAnswering,
DistilBertForQuestionAnswering,
),
"lxmert": (
LxmertConfig,
TFLxmertForPreTraining,
LxmertForPreTraining,
),
"lxmert-visual-feature-encoder": (
LxmertConfig,
TFLxmertVisualFeatureEncoder,
LxmertVisualFeatureEncoder,
),
"Salesforce/ctrl": (
CTRLConfig,
TFCTRLLMHeadModel,
CTRLLMHeadModel,
),
"albert": (
AlbertConfig,
TFAlbertForPreTraining,
AlbertForPreTraining,
),
"t5": (
T5Config,
TFT5ForConditionalGeneration,
T5ForConditionalGeneration,
),
"electra": (
ElectraConfig,
TFElectraForPreTraining,
ElectraForPreTraining,
),
"wav2vec2": (
Wav2Vec2Config,
TFWav2Vec2Model,
Wav2Vec2Model,
),
}
def convert_pt_checkpoint_to_tf(
model_type, pytorch_checkpoint_path, config_file, tf_dump_path, compare_with_pt_model=False, use_cached_models=True
):
if model_type not in MODEL_CLASSES:
raise ValueError(f"Unrecognized model type, should be one of {list(MODEL_CLASSES.keys())}.")
config_class, model_class, pt_model_class, aws_config_map = MODEL_CLASSES[model_type]
# Initialise TF model
if config_file in aws_config_map:
config_file = cached_file(config_file, CONFIG_NAME, force_download=not use_cached_models)
config = config_class.from_json_file(config_file)
config.output_hidden_states = True
config.output_attentions = True
print(f"Building TensorFlow model from configuration: {config}")
tf_model = model_class(config)
# Load weights from tf checkpoint
if pytorch_checkpoint_path in aws_config_map.keys():
pytorch_checkpoint_path = cached_file(
pytorch_checkpoint_path, WEIGHTS_NAME, force_download=not use_cached_models
)
# Load PyTorch checkpoint in tf2 model:
tf_model = load_pytorch_checkpoint_in_tf2_model(tf_model, pytorch_checkpoint_path)
if compare_with_pt_model:
tfo = tf_model(tf_model.dummy_inputs, training=False) # build the network
weights_only_kwarg = {"weights_only": True}
state_dict = torch.load(
pytorch_checkpoint_path,
map_location="cpu",
**weights_only_kwarg,
)
pt_model = pt_model_class.from_pretrained(
pretrained_model_name_or_path=None, config=config, state_dict=state_dict
)
with torch.no_grad():
pto = pt_model(**pt_model.dummy_inputs)
np_pt = pto[0].numpy()
np_tf = tfo[0].numpy()
diff = np.amax(np.abs(np_pt - np_tf))
print(f"Max absolute difference between models outputs {diff}")
assert diff <= 2e-2, f"Error, model absolute difference is >2e-2: {diff}"
# Save pytorch-model
print(f"Save TensorFlow model to {tf_dump_path}")
tf_model.save_weights(tf_dump_path, save_format="h5")
def convert_all_pt_checkpoints_to_tf(
args_model_type,
tf_dump_path,
model_shortcut_names_or_path=None,
config_shortcut_names_or_path=None,
compare_with_pt_model=False,
use_cached_models=False,
remove_cached_files=False,
only_convert_finetuned_models=False,
):
if args_model_type is None:
model_types = list(MODEL_CLASSES.keys())
else:
model_types = [args_model_type]
for j, model_type in enumerate(model_types, start=1):
print("=" * 100)
print(f" Converting model type {j}/{len(model_types)}: {model_type}")
print("=" * 100)
if model_type not in MODEL_CLASSES:
raise ValueError(f"Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys())}.")
config_class, model_class, pt_model_class, aws_model_maps, aws_config_map = MODEL_CLASSES[model_type]
if model_shortcut_names_or_path is None:
model_shortcut_names_or_path = list(aws_model_maps.keys())
if config_shortcut_names_or_path is None:
config_shortcut_names_or_path = model_shortcut_names_or_path
for i, (model_shortcut_name, config_shortcut_name) in enumerate(
zip(model_shortcut_names_or_path, config_shortcut_names_or_path), start=1
):
print("-" * 100)
if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name:
if not only_convert_finetuned_models:
print(f" Skipping finetuned checkpoint {model_shortcut_name}")
continue
model_type = model_shortcut_name
elif only_convert_finetuned_models:
print(f" Skipping not finetuned checkpoint {model_shortcut_name}")
continue
print(
f" Converting checkpoint {i}/{len(aws_config_map)}: {model_shortcut_name} - model_type {model_type}"
)
print("-" * 100)
if config_shortcut_name in aws_config_map:
config_file = cached_file(config_shortcut_name, CONFIG_NAME, force_download=not use_cached_models)
else:
config_file = config_shortcut_name
if model_shortcut_name in aws_model_maps:
model_file = cached_file(model_shortcut_name, WEIGHTS_NAME, force_download=not use_cached_models)
else:
model_file = model_shortcut_name
if os.path.isfile(model_shortcut_name):
model_shortcut_name = "converted_model"
convert_pt_checkpoint_to_tf(
model_type=model_type,
pytorch_checkpoint_path=model_file,
config_file=config_file,
tf_dump_path=os.path.join(tf_dump_path, model_shortcut_name + "-tf_model.h5"),
compare_with_pt_model=compare_with_pt_model,
)
if remove_cached_files:
os.remove(config_file)
os.remove(model_file)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_dump_path", default=None, type=str, required=True, help="Path to the output Tensorflow dump file."
)
parser.add_argument(
"--model_type",
default=None,
type=str,
help=(
f"Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and "
"convert all the models from AWS."
),
)
parser.add_argument(
"--pytorch_checkpoint_path",
default=None,
type=str,
help=(
"Path to the PyTorch checkpoint path or shortcut name to download from AWS. "
"If not given, will download and convert all the checkpoints from AWS."
),
)
parser.add_argument(
"--config_file",
default=None,
type=str,
help=(
"The config json file corresponding to the pre-trained model. \n"
"This specifies the model architecture. If not given and "
"--pytorch_checkpoint_path is not given or is a shortcut name "
"use the configuration associated to the shortcut name on the AWS"
),
)
parser.add_argument(
"--compare_with_pt_model", action="store_true", help="Compare Tensorflow and PyTorch model predictions."
)
parser.add_argument(
"--use_cached_models",
action="store_true",
help="Use cached models if possible instead of updating to latest checkpoint versions.",
)
parser.add_argument(
"--remove_cached_files",
action="store_true",
help="Remove pytorch models after conversion (save memory when converting in batches).",
)
parser.add_argument("--only_convert_finetuned_models", action="store_true", help="Only convert finetuned models.")
args = parser.parse_args()
# if args.pytorch_checkpoint_path is not None:
# convert_pt_checkpoint_to_tf(args.model_type.lower(),
# args.pytorch_checkpoint_path,
# args.config_file if args.config_file is not None else args.pytorch_checkpoint_path,
# args.tf_dump_path,
# compare_with_pt_model=args.compare_with_pt_model,
# use_cached_models=args.use_cached_models)
# else:
convert_all_pt_checkpoints_to_tf(
args.model_type.lower() if args.model_type is not None else None,
args.tf_dump_path,
model_shortcut_names_or_path=[args.pytorch_checkpoint_path]
if args.pytorch_checkpoint_path is not None
else None,
config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None,
compare_with_pt_model=args.compare_with_pt_model,
use_cached_models=args.use_cached_models,
remove_cached_files=args.remove_cached_files,
only_convert_finetuned_models=args.only_convert_finetuned_models,
)
|
transformers/src/transformers/convert_pytorch_checkpoint_to_tf2.py/0
|
{
"file_path": "transformers/src/transformers/convert_pytorch_checkpoint_to_tf2.py",
"repo_id": "transformers",
"token_count": 6724
}
| 90 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""XNLI utils (dataset loading and evaluation)"""
import os
from ...utils import logging
from .utils import DataProcessor, InputExample
logger = logging.get_logger(__name__)
class XnliProcessor(DataProcessor):
"""
Processor for the XNLI dataset. Adapted from
https://github.com/google-research/bert/blob/f39e881b169b9d53bea03d2d341b31707a6c052b/run_classifier.py#L207
"""
def __init__(self, language, train_language=None):
self.language = language
self.train_language = train_language
def get_train_examples(self, data_dir):
"""See base class."""
lg = self.language if self.train_language is None else self.train_language
lines = self._read_tsv(os.path.join(data_dir, f"XNLI-MT-1.0/multinli/multinli.train.{lg}.tsv"))
examples = []
for i, line in enumerate(lines):
if i == 0:
continue
guid = f"train-{i}"
text_a = line[0]
text_b = line[1]
label = "contradiction" if line[2] == "contradictory" else line[2]
if not isinstance(text_a, str):
raise TypeError(f"Training input {text_a} is not a string")
if not isinstance(text_b, str):
raise TypeError(f"Training input {text_b} is not a string")
if not isinstance(label, str):
raise TypeError(f"Training label {label} is not a string")
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def get_test_examples(self, data_dir):
"""See base class."""
lines = self._read_tsv(os.path.join(data_dir, "XNLI-1.0/xnli.test.tsv"))
examples = []
for i, line in enumerate(lines):
if i == 0:
continue
language = line[0]
if language != self.language:
continue
guid = f"test-{i}"
text_a = line[6]
text_b = line[7]
label = line[1]
if not isinstance(text_a, str):
raise TypeError(f"Training input {text_a} is not a string")
if not isinstance(text_b, str):
raise TypeError(f"Training input {text_b} is not a string")
if not isinstance(label, str):
raise TypeError(f"Training label {label} is not a string")
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def get_labels(self):
"""See base class."""
return ["contradiction", "entailment", "neutral"]
xnli_processors = {
"xnli": XnliProcessor,
}
xnli_output_modes = {
"xnli": "classification",
}
xnli_tasks_num_labels = {
"xnli": 3,
}
|
transformers/src/transformers/data/processors/xnli.py/0
|
{
"file_path": "transformers/src/transformers/data/processors/xnli.py",
"repo_id": "transformers",
"token_count": 1505
}
| 91 |
import time
import warnings
from abc import ABC
from collections import OrderedDict
from copy import deepcopy
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
import torch
from torch.nn import functional as F
from ..pytorch_utils import isin_mps_friendly
from ..tokenization_utils_base import PreTrainedTokenizerBase
from ..utils import add_start_docstrings, logging
logger = logging.get_logger(__name__)
# We maintain a module-level cache of the embedding vectors for the stop string criterion
# because they are slow to compute
STOP_STRING_EMBEDDING_CACHE = OrderedDict()
STOPPING_CRITERIA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):
Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax
or scores for each vocabulary token after SoftMax. If this stopping criteria depends on the `scores` input,
make sure you pass `return_dict_in_generate=True, output_scores=True` to `generate`.
kwargs (`Dict[str, Any]`, *optional*):
Additional stopping criteria specific kwargs.
Return:
`torch.BoolTensor`. (`torch.BoolTensor` of shape `(batch_size, 1)`), where `True` indicates we stop generation
for a particular row, `True` indicates we should continue.
"""
class StoppingCriteria(ABC):
"""Abstract base class for all stopping criteria that can be applied during generation.
If your stopping criteria depends on the `scores` input, make sure you pass `return_dict_in_generate=True,
output_scores=True` to `generate`.
"""
@add_start_docstrings(STOPPING_CRITERIA_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> torch.BoolTensor:
raise NotImplementedError("StoppingCriteria needs to be subclassed")
class MaxLengthCriteria(StoppingCriteria):
"""
This class can be used to stop generation whenever the full generated number of tokens exceeds `max_length`. Keep
in mind for decoder-only type of transformers, this will include the initial prompted tokens.
Args:
max_length (`int`):
The maximum length that the output sequence can have in number of tokens.
max_position_embeddings (`int`, *optional*):
The maximum model length, as defined by the model's `config.max_position_embeddings` attribute.
"""
def __init__(self, max_length: int, max_position_embeddings: Optional[int] = None):
self.max_length = max_length
self.max_position_embeddings = max_position_embeddings
@add_start_docstrings(STOPPING_CRITERIA_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> torch.BoolTensor:
cur_len = input_ids.shape[-1]
is_done = cur_len >= self.max_length
if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings:
logger.warning_once(
"This is a friendly reminder - the current text generation call will exceed the model's predefined "
f"maximum length ({self.max_position_embeddings}). Depending on the model, you may observe "
"exceptions, performance degradation, or nothing at all."
)
return torch.full((input_ids.shape[0],), is_done, device=input_ids.device, dtype=torch.bool)
class MaxTimeCriteria(StoppingCriteria):
"""
This class can be used to stop generation whenever the full generation exceeds some amount of time. By default, the
time will start being counted when you initialize this function. You can override this by passing an
`initial_time`.
Args:
max_time (`float`):
The maximum allowed time in seconds for the generation.
initial_time (`float`, *optional*, defaults to `time.time()`):
The start of the generation allowed time.
"""
def __init__(self, max_time: float, initial_timestamp: Optional[float] = None):
self.max_time = max_time
self.initial_timestamp = time.time() if initial_timestamp is None else initial_timestamp
@add_start_docstrings(STOPPING_CRITERIA_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> torch.BoolTensor:
is_done = time.time() - self.initial_timestamp > self.max_time
return torch.full((input_ids.shape[0],), is_done, device=input_ids.device, dtype=torch.bool)
class StopStringCriteria(StoppingCriteria):
"""
This class can be used to stop generation whenever specific string sequences are generated. It preprocesses
the strings together with the tokenizer vocab to find positions where tokens can validly complete the stop strings.
Generation is stopped as soon as a token is generated that completes any of the stop strings.
We want to catch any instance in which the stop string would be present in the decoded output, which means
we must also catch cases with "overhangs" off one or both ends. To make this more concrete, for the stop string
"stop", any of the following token sequences would trigger the match:
- ["st", "op"]
- ["stop"]
- ["st", "opera"]
- ["sto", "pper"]
- ["las", "topper"]
- ["s", "to", "pped"]
Note that a match will only be triggered if the stop string is at the end of the generated sequence. In other
words, these sequences will not trigger a match:
- ["stop", "at"]
- ["st", "op", "at"]
- ["st", "opera", "tion"]
The reason these are not a match is that the stop string does not overlap with the final token. If you can remove
one or more tokens from the end of the sequence without destroying the stop string, then this criterion will not
match that stop string. This is by design; because this check is run after each token is generated, we can't miss a
valid stop string if one is generated, but we don't want to halt generation just because the stop string exists
somewhere in the past input_ids.
How is the match actually performed, though? We do it in quite a confusing way, because we want the entire match
process to be compilable with Torch or XLA, which means we cannot use standard string methods. However, it is possible,
with some work, to do string matching with pure tensor operations. We'll begin by describing the algorithm we use
with standard string operations, and then at the end we'll explain how this is converted to pure tensor operations.
The key to the algorithm is an observation: Because the stop string must overlap with the end of the token sequence, we can start at
the end of the sequence and work backwards. Specifically, we check that there is an overlap between the start of
the final token and the end of the stop_string, or to put it another way, stop_string[-i:] == token[:i] for
some i > 0. If you look at the positive examples above, you'll see the last token in all of them fulfills this
property:
- ["st", "op"] (overlap is "op", overlap length == 2)
- ["stop"] (overlap is "stop", overlap length == 4)
- ["st", "opera"] (overlap is "op", overlap length == 2)
- ["sto", "pper"] (overlap is "p", overlap length == 1)
- ["las", "topper"] (overlap is "top", overlap length == 3)
- ["s", "to", "pped"] (overlap is "p", overlap length == 1)
It's impossible to construct a matching sequence that does not have this property (feel free to verify this
yourself). However, although this overlap between the start of the final token and the end of the stop string is
necessary for a match, it is not sufficient. We also need to check that the rest of the token sequence is
consistent with the stop string.
How do we do that? Let's use ["s", "to", "pped"] as an example. We know that the final token, "pped", has an
overlap of 1 with the stop string, "stop". We then go back to the previous token, "to". Since we have already
matched 1 character from the stop string, the remainder to check is "sto". We check that the next token "to"
matches the end of the remainder, which it does. We have now matched 3 characters from the stop string, and the
remainder to match is "s". We go back to the previous token again, which is also "s". This is a match, and so
we have matched the entire stop string.
How does it work when the tokens run off the start of the stop string, though? Let's consider the example of
["las", "topper"]. The final token, "topper", has an overlap of 3 with the stop string, "stop". Therefore,
the remaining stop string to match is "s". We go back to the previous token, "las". Because the remainder to
match is just "s", with length 1, we consider only the final 1 character from the token, which is "s". This
matches the stop string, and so the entire string is matched.
How do we compute these matches with tensor operations, though? Simply: we efficiently precompute the necessary
information for all tokens! For every token, we compute:
- Its overlap with the end of the stop string, if any
- The positions inside the stop string where the token matches, including matches that run off the start.
- The total length of the token
For example, for the token "pped", we would compute an end overlap of 1, no internal matching positions,
and a length of 4. For the token "to", we would compute no end overlap, a single internal matching position
of 1 (counting from the end), and a length of 2. For the token "s", we would compute no end overlap,
a single internal matching position of 3 (again counting from the end) and a length of 1.
As long as we have this information, we can execute the algorithm above without any string comparison
operations. We simply perform the following steps:
- Check if the final token has an end-overlap with the start string
- Continue backwards, keeping track of how much of the stop string we've matched so far
- At each point, check if the next token has the current position as one of its valid positions
- Continue until either a match fails, or we completely match the whole stop string
Again, consider ["s", "to", "pped"] as an example. "pped" has an end overlap of 1, so we can begin a match.
We have matched 1 character so far, so we check that the next token "to", has 1 as a valid position (again,
counting from the end). It does, so we add the length of "to" to our position tracker. We have now matched
3 characters, so we check that the next token "s" has 3 as a valid position. It does, so we add its length
to the position tracker. The position tracker is now 4, which is the length of the stop string. We have matched the
entire stop string.
In the second case, ["las", "topper"], "topper" has an end overlap of 3, so we can begin a match. We have
matched 3 characters so far, so we check that the next token "las" has 3 as a valid position. It does, because we
allow tokens to match positions that run off the start of the stop string. We add its length to the position
tracker. The position tracker is now 6, which is greater than the length of the stop string! Don't panic, though -
this also counts as a match of the stop string. We have matched the entire stop string.
Args:
tokenizer (`PreTrainedTokenizer`):
The model's associated tokenizer (necessary to extract vocab and tokenize the termination sequences)
stop_strings (`Union[str, List[str]]`):
A list of strings that should end generation. If a string is passed, it will be treated like a
list with a single element.
Examples:
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2")
>>> model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2")
>>> inputs = tokenizer("The biggest states in the USA by land area:", return_tensors="pt")
>>> gen_out = model.generate(**inputs)
>>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0])
The biggest states in the USA by land area:
- Alaska
- Texas
- California
>>> # Passing one or more stop strings will halt generation after those strings are emitted
>>> # Note that generating with stop strings requires you to pass the tokenizer too
>>> gen_out = model.generate(**inputs, stop_strings=["Texas"], tokenizer=tokenizer)
>>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0])
The biggest states in the USA by land area:
- Alaska
- Texas
```
"""
def __init__(self, tokenizer: PreTrainedTokenizerBase, stop_strings: Union[str, List[str]]):
if isinstance(stop_strings, str):
stop_strings = [stop_strings]
self.stop_strings: Tuple[str, ...] = tuple(stop_strings)
vocab = tokenizer.get_vocab()
token_list, token_indices = tuple(vocab.keys()), tuple(vocab.values())
self.embedding_vec, self.max_valid_positions, self.max_valid_end_lens = self.clean_and_embed_tokens_with_cache(
token_list, token_indices, self.stop_strings, tokenizer
)
self.maximum_token_len = max([len(stop_string) for stop_string in self.stop_strings])
self.num_stop_strings = len(self.stop_strings)
self.target_lens = torch.tensor([len(stop_string) for stop_string in stop_strings], dtype=torch.int32)
def clean_and_embed_tokens_with_cache(self, token_list, token_indices, stop_strings, tokenizer):
# We don't use the tokenizer in the cache key, because I don't trust it to have well-behaved equality
if (token_list, token_indices, stop_strings) in STOP_STRING_EMBEDDING_CACHE:
embedding_vec, max_valid_positions, max_valid_end_lens = STOP_STRING_EMBEDDING_CACHE[
(token_list, token_indices, self.stop_strings)
]
STOP_STRING_EMBEDDING_CACHE.move_to_end((token_list, token_indices, stop_strings))
else:
clean_token_list, clean_token_indices = self.clean_tokenizer_vocab(tokenizer)
embedding_vec, max_valid_positions, max_valid_end_lens = self._stop_string_create_embedding_vec(
clean_token_list, clean_token_indices, stop_strings
)
STOP_STRING_EMBEDDING_CACHE[(token_list, token_indices, stop_strings)] = (
embedding_vec,
max_valid_positions,
max_valid_end_lens,
)
if len(STOP_STRING_EMBEDDING_CACHE) > 8:
STOP_STRING_EMBEDDING_CACHE.popitem(last=False) # Pop from the start, the least recently used item
return embedding_vec, max_valid_positions, max_valid_end_lens
@staticmethod
def clean_tokenizer_vocab(tokenizer, static_prefix="abcdef"):
"""
This method turns a tokenizer vocab into a "clean" vocab where each token represents the actual string
it will yield, without any special prefixes like "##" or "Ġ". This is trickier than it looks - the method
tokenizer.convert_tokens_to_string() does not always return the correct string because of issues with prefix
space addition/removal. To work around this, we add a static prefix to the start of the token, then remove
it (and any prefix that may have been introduced with it) after calling convert_tokens_to_string().
"""
vocab = tokenizer.get_vocab()
clean_token_list = []
clean_token_indices = []
sentence_base = tokenizer(static_prefix, add_special_tokens=False)["input_ids"]
tokens_base = [tokenizer._convert_id_to_token(tok) for tok in sentence_base]
for token, token_idx in vocab.items():
token_string = tokenizer.convert_tokens_to_string(tokens_base + [token])
token_string = token_string[token_string.index(static_prefix) + len(static_prefix) :]
clean_token_list.append(token_string)
clean_token_indices.append(token_idx)
return tuple(clean_token_list), tuple(clean_token_indices)
@staticmethod
def _stop_string_get_matching_positions(
token_list, token_indices, stop_strings
) -> Tuple[Dict[str, Dict[str, List[int]]], Dict[str, Dict[str, List[int]]]]:
"""This function preprocesses stop strings and the tokenizer vocabulary to determine where tokens can
validly appear in the stop strings. For each token, it computes a list of positions in the stop string where the
token appears, as well as a list of the possible "end overlaps" for that token - that is, the number of characters
from the end of the stop string that overlap with the start of the token, which can have more than one value.
The reason for computing these may seem a bit cryptic - please see the docstring for StopStringCriteria for a full
explanation of what these values are for!"""
token_valid_positions = {}
token_end_overlaps = {}
for stop_string in stop_strings:
reversed_stop_string = stop_string[::-1]
token_valid_positions[stop_string] = {}
token_end_overlaps[stop_string] = {}
for token, tok_idx in zip(token_list, token_indices):
reversed_token = token[::-1]
matching_positions = []
possible_end_lengths = []
for i in range(1 - len(token), len(stop_string)):
if i < 0:
tok = reversed_token[-i:]
i = 0
else:
tok = reversed_token
stop = reversed_stop_string[i : i + len(tok)]
if tok.startswith(stop):
if i == 0:
possible_end_lengths.append(min(len(tok), len(stop)))
else:
matching_positions.append(i)
if matching_positions:
token_valid_positions[stop_string][tok_idx] = matching_positions
if possible_end_lengths:
token_end_overlaps[stop_string][tok_idx] = possible_end_lengths
return token_valid_positions, token_end_overlaps
@staticmethod
def _stop_string_create_embedding_vec(token_list, token_indices, stop_strings) -> Dict[str, torch.tensor]:
"""This function precomputes everything needed for the run-time checks in StopStringCriteria, and packs
them into an embedding tensor that can be accessed with pure tensor operations. For the specifics of the values
that are precomputed and what they are used for, please refer to the StopStringCriteria docstring!"""
token_valid_positions, token_end_overlaps = StopStringCriteria._stop_string_get_matching_positions(
token_list, token_indices, stop_strings
)
all_valid_positions = [len(val) for positions in token_valid_positions.values() for val in positions.values()]
# In some cases, tokens may have no valid internal positions (such as single-character stop strings), so
# we need a fallback to handle this case
max_valid_positions = max(all_valid_positions) if all_valid_positions else 1
# There should always be at least one valid end_len, however, so no fallback needed here
valid_end_lens = [len(val) for positions in token_end_overlaps.values() for val in positions.values()]
if not valid_end_lens:
raise ValueError(
"Stop string preprocessing was unable to identify tokens matching one or more of the "
"supplied stop string(s). This is most often caused by the stop "
"strings containing unusual characters that are not in the tokenizer vocabulary."
)
max_valid_end_lens = max(valid_end_lens)
vec_size = len(stop_strings) * (max_valid_positions + max_valid_end_lens) + 1
gather_vec = np.full((len(token_list), vec_size), dtype=np.int32, fill_value=-1)
for i, stop_string in enumerate(stop_strings):
positions = token_valid_positions[stop_string]
end_lens = token_end_overlaps[stop_string]
# Since this is lots of very small assignments of lists, we build it with numpy rather
# than torch for speed + simplicity, then convert to torch at the end
for token_idx, valid_positions in positions.items():
gather_vec[token_idx, max_valid_positions * i : max_valid_positions * i + len(valid_positions)] = (
valid_positions
)
for token_idx, possible_end_lens in end_lens.items():
gather_vec[
token_idx,
max_valid_positions * len(stop_strings) + max_valid_end_lens * i : max_valid_positions
* len(stop_strings)
+ max_valid_end_lens * i
+ len(possible_end_lens),
] = possible_end_lens
for token, token_idx in zip(token_list, token_indices):
gather_vec[token_idx, -1] = len(token)
gather_vec = torch.tensor(gather_vec, dtype=torch.int32)
return gather_vec, max_valid_positions, max_valid_end_lens
@add_start_docstrings(STOPPING_CRITERIA_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> torch.Tensor:
self.embedding_vec = self.embedding_vec.to(input_ids.device)
self.target_lens = self.target_lens.to(input_ids.device)
# The maximum length we need to consider is 1 token per character. Note that input_ids can also be
# *shorter* than the global max, and the code below should be ready for that
input_ids = input_ids[:, -self.maximum_token_len :]
# Flip input_ids because we're only matching strings at the end of the generated sequence
flipped_ids = torch.flip(input_ids, (1,))
# Size of the vector of positions a single token can match
max_valid_positions = self.max_valid_positions
# The embedding vec contains the valid positions, end_lengths and total lengths for each token
embedded = F.embedding(flipped_ids, self.embedding_vec)
# Now we split the embedding vector. valid_positions is the positions in the stop string the token can fit
valid_positions = embedded[:, 1:, : max_valid_positions * self.num_stop_strings].unflatten(
-1, (self.num_stop_strings, -1)
)
# end_lengths is the number of characters from the string, counting from the end, that the token
# contains. It can have multiple values if the same token can overlap different end lengths
end_lengths = embedded[:, :1, max_valid_positions * self.num_stop_strings : -1].unflatten(
-1, (self.num_stop_strings, -1)
)
# Lengths is the total length of each token. Unlike the others, it always has a single value
lengths = embedded[:, 1:, None, -1:] # Insert a dummy dimension for stop_strings even though lengths are const
# Concatenate lengths onto each possible end_lengths value
lengths = lengths.expand((-1, -1, end_lengths.shape[-2], end_lengths.shape[-1]))
lengths_with_ends = torch.cat([end_lengths, lengths], dim=1)
# cumsum() to get the number of matched characters in the stop string after each token
cumsum = lengths_with_ends.cumsum(dim=1) # B x maximum_token_len x num_stop_strings x max_valid_end_lens
# The calculation above assumes that all tokens are in valid positions. Now we mask the ones that are not.
# First, tokens match the start of the string if they have a positive value in the end_lengths vector
initial_match = end_lengths > 0
# Tokens continue the string if the cumsum() so far is one of the valid positions for that token
# Note that we're actually tracking one cumsum() for for each possible end_length
later_match = torch.any(cumsum[:, :-1, :, None] == valid_positions[:, :, :, :, None], axis=-2)
# The match vector is a boolean vector that indicates which positions have valid tokens
match = torch.cat([initial_match, later_match], dim=1)
# Once a single position does not match, all positions following that position are masked
mask = (~match).cumsum(dim=1, dtype=torch.int32)
mask = mask == 0
# The string is matched if we reached a cumsum equal to or greater than the length of the string
# before hitting the mask
string_matches = torch.amax(cumsum * mask, dim=(1, -1)) >= self.target_lens[None, :]
# We return a per-sample vector that is True if any stop string is matched for that sample
return torch.any(string_matches, dim=-1)
class EosTokenCriteria(StoppingCriteria):
"""
This class can be used to stop generation whenever the "end-of-sequence" token is generated.
By default, it uses the `model.generation_config.eos_token_id`.
Args:
eos_token_id (`Union[int, List[int], torch.Tensor]`):
The id(s) of the *end-of-sequence* token.
"""
def __init__(self, eos_token_id: Union[int, List[int], torch.Tensor]):
if not isinstance(eos_token_id, torch.Tensor):
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
eos_token_id = torch.tensor(eos_token_id)
self.eos_token_id = eos_token_id
@add_start_docstrings(STOPPING_CRITERIA_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> torch.BoolTensor:
self.eos_token_id = self.eos_token_id.to(input_ids.device)
is_done = isin_mps_friendly(input_ids[:, -1], self.eos_token_id)
return is_done
class ConfidenceCriteria(StoppingCriteria):
"""
This class can be used to stop generation whenever assistant model's confidence in its prediction for the current token is lower than the threshold
`model.generation_config.assistant_confidence_threshold` even if the number of speculative tokens (defined by `num_assistant_tokens`) is not yet reached.
Args:
assistant_confidence_threshold (`float`):
The value of the threshold.
"""
def __init__(self, assistant_confidence_threshold):
self.assistant_confidence_threshold = assistant_confidence_threshold
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> torch.BoolTensor:
probs = scores[-1].softmax(-1)
p = probs[0, input_ids[0, -1]].item()
if p < self.assistant_confidence_threshold:
return True
return False
class StoppingCriteriaList(list):
@add_start_docstrings(STOPPING_CRITERIA_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> torch.BoolTensor:
is_done = torch.full((input_ids.shape[0],), False, device=input_ids.device, dtype=torch.bool)
for criteria in self:
is_done = is_done | criteria(input_ids, scores, **kwargs)
return is_done
@property
def max_length(self) -> Optional[int]:
for stopping_criterium in self:
if isinstance(stopping_criterium, MaxLengthCriteria):
return stopping_criterium.max_length
return None
def validate_stopping_criteria(stopping_criteria: StoppingCriteriaList, max_length: int) -> StoppingCriteriaList:
stopping_max_length = stopping_criteria.max_length
new_stopping_criteria = deepcopy(stopping_criteria)
if stopping_max_length is not None and stopping_max_length != max_length:
warnings.warn("You set different `max_length` for stopping criteria and `max_length` parameter", UserWarning)
elif stopping_max_length is None:
new_stopping_criteria.append(MaxLengthCriteria(max_length=max_length))
return new_stopping_criteria
|
transformers/src/transformers/generation/stopping_criteria.py/0
|
{
"file_path": "transformers/src/transformers/generation/stopping_criteria.py",
"repo_id": "transformers",
"token_count": 10401
}
| 92 |
from ..utils import is_accelerate_available, is_torch_available, logging
if is_accelerate_available():
from accelerate import init_empty_weights
if is_torch_available():
import torch
import torch.nn as nn
import torch.nn.functional as F
logger = logging.get_logger(__name__)
# the weights are ternary so can be represented with 2 bits, and they are packed in uint8 tensors, hence the number of values per item is 4
VALUES_PER_ITEM = 4
def pack_weights(quantized_weights: torch.Tensor) -> torch.Tensor:
"""
Packs a tensor of quantized weights into a compact format using 2 bits per value.
Parameters:
-----------
quantized_weights : torch.Tensor
A tensor containing ternary quantized weights with values in {-1, 0, 1}. These values are adjusted to
{0, 1, 2} before being packed.
Returns:
--------
torch.Tensor
A packed tensor where each element stores 4 quantized values (each using 2 bits) in an 8-bit format.
"""
original_shape = quantized_weights.shape
row_dim = (original_shape[0] + VALUES_PER_ITEM - 1) // VALUES_PER_ITEM
if len(original_shape) == 1:
packed_tensor_shape = (row_dim,)
else:
packed_tensor_shape = (row_dim, *original_shape[1:])
quantized_weights += 1
packed = torch.zeros(packed_tensor_shape, device=quantized_weights.device, dtype=torch.uint8)
unpacked = quantized_weights.to(torch.uint8)
it = min(VALUES_PER_ITEM, (original_shape[0] // row_dim) + 1)
for i in range(it):
start = i * row_dim
end = min(start + row_dim, original_shape[0])
packed[: (end - start)] |= unpacked[start:end] << 2 * i
return packed
@torch.compile
def unpack_weights(packed: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
"""
Unpacks a tensor of quantized weights that were stored in a packed format using 2 bits per value.
Parameters:
-----------
packed : torch.Tensor
A tensor containing packed weights where each element represents 4 quantized values (using 2 bits per value).
dtype : torch.dtype
The dtype of the returned Tensor
Returns:
--------
torch.Tensor
A tensor of unpacked weights, where each value is converted from its packed 2-bit representation.
Example:
--------
packed = torch.tensor([[0b10100001, 0b00011000],
[0b10010000, 0b00001010]], dtype=torch.uint8)
# Unpack the values
unpacked = unpack_weights(packed)
# Resulting unpacked tensor
print(unpacked)
# Output: tensor([[ 0, -1],
[-1, 1],
[-1, 1],
[-1, 1],
[ 1, 0],
[ 0, -1],
[ 1, -1],
[ 1, -1]])
Explanation of the example:
---------------------------
Let's take the first value for example 0b10100001, we we will only focus on the first column,
because every element is unpacked across the first dimension
- First 2 bits: `01` → 0 at [0][0]
- Second 2 bits: `00` → -1 at [0][2]
- Third 2 bits: `10` → 1 at [0][4]
- Fourth 2 bits: `10` → 1 at [0][6]
the second value of the same row (0b10010000) will give the values for [0][1], [0][3], [0][5], [0][7]
We subtract 1 because during the packing process, it's easier to work with values like 0, 1, and 2. To make this possible,
we add 1 to the original ternary weights (which are typically -1, 0, and 1) when packing them. When unpacking, we reverse
this by subtracting 1 to restore the original ternary values.
"""
packed_shape = packed.shape
if len(packed_shape) == 1:
original_row_dim = packed_shape[0] * VALUES_PER_ITEM
unpacked_shape = (original_row_dim,)
else:
original_row_dim = packed_shape[0] * VALUES_PER_ITEM
unpacked_shape = (original_row_dim, *packed_shape[1:])
unpacked = torch.zeros(unpacked_shape, device=packed.device, dtype=torch.uint8)
for i in range(VALUES_PER_ITEM):
start = i * packed_shape[0]
end = start + packed_shape[0]
mask = 3 << (2 * i)
unpacked[start:end] = (packed & mask) >> (2 * i)
return unpacked.to(dtype) - 1
class BitLinear(nn.Module):
def __init__(self, in_features: int, out_features: int, bias: bool, device=None, dtype=None):
super().__init__()
self.dtype = dtype
self.in_features = in_features
self.out_features = out_features
self.register_buffer(
"weight",
torch.zeros(
(out_features // VALUES_PER_ITEM, in_features),
dtype=torch.uint8,
device=device,
),
)
self.register_buffer(
"weight_scale",
torch.ones(
(1),
dtype=dtype,
device=device,
),
)
if bias:
self.register_buffer("bias", torch.zeros((out_features), dtype=dtype, device=device))
else:
self.bias = None
@torch.compile
def activation_quant(self, input, num_bits=8):
"""
Activation function : Performs symmetric, per-token quantization on the input activations.
Parameters:
-----------
x : torch.Tensor
Input activations to be quantized.
num_bits : int, optional (default=8)
Number of bits to use for quantization, determining the quantization range.
Returns:
--------
result : torch.Tensor
Quantized activation tensor, with values mapped to an `int8` range.
scale : torch.Tensor
The per-channel scaling factors used to quantize the tensor.
"""
Qn = -(2 ** (num_bits - 1))
Qp = 2 ** (num_bits - 1) - 1
scale = Qp / input.abs().max(dim=-1, keepdim=True).values.clamp(min=1e-5)
result = (input * scale).round().clamp(Qn, Qp)
return result.to(torch.int8), scale
@torch.compile
def post_quant_process(self, input, input_scale, weight_scale):
out = input / (input_scale * weight_scale)
return out
def forward(self, input):
w = self.weight
w_quant = unpack_weights(w, dtype=self.dtype)
input_quant, input_scale = self.activation_quant(input)
y = F.linear(input_quant.to(self.dtype), w_quant)
y = self.post_quant_process(y, self.weight_scale, input_scale)
if self.bias is not None:
y += self.bias.view(1, -1).expand_as(y)
return y
def _replace_with_bitnet_linear(
model,
modules_to_not_convert=None,
current_key_name=None,
quantization_config=None,
has_been_replaced=False,
pre_quantized=False,
):
"""
Private method that wraps the recursion for module replacement.
Returns the converted model and a boolean that indicates if the conversion has been successfull or not.
"""
if current_key_name is None:
current_key_name = []
for name, module in model.named_children():
if current_key_name is None:
current_key_name = []
current_key_name.append(name)
# Check if the current key is not in the `modules_to_not_convert`
if not any(key in ".".join(current_key_name) for key in modules_to_not_convert):
with init_empty_weights():
if isinstance(module, nn.Linear) and name not in modules_to_not_convert:
in_features = module.in_features
out_features = module.out_features
model._modules[name] = BitLinear(
in_features=in_features,
out_features=out_features,
bias=module.bias is not None,
device=module.weight.device,
dtype=module.weight.dtype,
)
has_been_replaced = True
model._modules[name].requires_grad_(False)
if len(list(module.children())) > 0:
_, has_been_replaced = _replace_with_bitnet_linear(
module,
modules_to_not_convert=modules_to_not_convert,
current_key_name=current_key_name,
quantization_config=quantization_config,
has_been_replaced=has_been_replaced,
)
# Remove the last key for recursion
current_key_name.pop(-1)
return model, has_been_replaced
def replace_with_bitnet_linear(
model,
modules_to_not_convert=None,
current_key_name=None,
quantization_config=None,
pre_quantized=False,
):
"""
A helper function to replace all `torch.nn.Linear` modules by `BitLinear158` modules`.
The function will be run recursively and replace all `torch.nn.Linear` modules except for the `lm_head` that should
be kept as a `torch.nn.Linear` module. The replacement is done under `init_empty_weights` context manager so no
CPU/GPU memory is required to run this function. Each weight will be quantized along the channel.
Parameters:
model (`torch.nn.Module`):
Input model or `torch.nn.Module` as the function is run recursively.
modules_to_not_convert (`List[`str`]`, *optional*, defaults to `["lm_head"]`):
Names of the modules to not convert in `EetqLinear`. In practice we keep the `lm_head` in full precision
for numerical stability reasons.
current_key_name (`List[`str`]`, *optional*):
An array to track the current key of the recursion. This is used to check whether the current key (part of
it) is not in the list of modules to not convert (for instances modules that are offloaded to `cpu` or
`disk`).
"""
modules_to_not_convert = ["lm_head"] if modules_to_not_convert is None else modules_to_not_convert
if quantization_config and quantization_config.modules_to_not_convert is not None:
modules_to_not_convert.extend(quantization_config.modules_to_not_convert)
modules_to_not_convert = list(set(modules_to_not_convert))
model, has_been_replaced = _replace_with_bitnet_linear(
model,
modules_to_not_convert,
current_key_name,
quantization_config,
pre_quantized=pre_quantized,
)
if not has_been_replaced:
logger.warning(
"You are loading your model using bitnet but no linear modules were found in your model."
" Please double check your model architecture, or submit an issue on github if you think this is"
" a bug."
)
return model
|
transformers/src/transformers/integrations/bitnet.py/0
|
{
"file_path": "transformers/src/transformers/integrations/bitnet.py",
"repo_id": "transformers",
"token_count": 4597
}
| 93 |
from pathlib import Path
from typing import Any
from transformers.convert_slow_tokenizer import TikTokenConverter
from transformers.tokenization_utils_fast import TIKTOKEN_VOCAB_FILE, TOKENIZER_FILE
def convert_tiktoken_to_fast(encoding: Any, output_dir: str):
"""
Converts given `tiktoken` encoding to `PretrainedTokenizerFast` and saves the configuration of converted tokenizer
on disk.
Args:
encoding (`str` or `tiktoken.Encoding`):
Tokenizer from `tiktoken` library. If `encoding` is `str`, the tokenizer will be loaded with
`tiktoken.get_encoding(encoding)`.
output_dir (`str`):
Save path for converted tokenizer configuration file.
"""
output_dir = Path(output_dir)
output_dir.mkdir(exist_ok=True)
save_file = output_dir / "tiktoken" / TIKTOKEN_VOCAB_FILE
tokenizer_file = output_dir / TOKENIZER_FILE
save_file_absolute = str(save_file.absolute())
output_file_absolute = str(tokenizer_file.absolute())
try:
from tiktoken import get_encoding
from tiktoken.load import dump_tiktoken_bpe
if isinstance(encoding, str):
encoding = get_encoding(encoding)
dump_tiktoken_bpe(encoding._mergeable_ranks, save_file_absolute)
except ImportError:
raise ValueError(
"`tiktoken` is required to save a `tiktoken` file. Install it with " "`pip install tiktoken`."
)
tokenizer = TikTokenConverter(
vocab_file=save_file_absolute, pattern=encoding._pat_str, additional_special_tokens=encoding._special_tokens
).tokenizer()
tokenizer.save(output_file_absolute)
|
transformers/src/transformers/integrations/tiktoken.py/0
|
{
"file_path": "transformers/src/transformers/integrations/tiktoken.py",
"repo_id": "transformers",
"token_count": 647
}
| 94 |
/*!
**************************************************************************************************
* Deformable DETR
* Copyright (c) 2020 SenseTime. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
**************************************************************************************************
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
**************************************************************************************************
*/
#include <vector>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <THC/THCAtomics.cuh>
#define CUDA_KERNEL_LOOP(i, n) \
for (int i = blockIdx.x * blockDim.x + threadIdx.x; \
i < (n); \
i += blockDim.x * gridDim.x)
at::Tensor ms_deform_attn_cuda_forward(
const at::Tensor &value,
const at::Tensor &spatial_shapes,
const at::Tensor &level_start_index,
const at::Tensor &sampling_loc,
const at::Tensor &attn_weight,
const int im2col_step)
{
AT_ASSERTM(value.is_contiguous(), "value tensor has to be contiguous");
AT_ASSERTM(spatial_shapes.is_contiguous(), "spatial_shapes tensor has to be contiguous");
AT_ASSERTM(level_start_index.is_contiguous(), "level_start_index tensor has to be contiguous");
AT_ASSERTM(sampling_loc.is_contiguous(), "sampling_loc tensor has to be contiguous");
AT_ASSERTM(attn_weight.is_contiguous(), "attn_weight tensor has to be contiguous");
AT_ASSERTM(value.type().is_cuda(), "value must be a CUDA tensor");
AT_ASSERTM(spatial_shapes.type().is_cuda(), "spatial_shapes must be a CUDA tensor");
AT_ASSERTM(level_start_index.type().is_cuda(), "level_start_index must be a CUDA tensor");
AT_ASSERTM(sampling_loc.type().is_cuda(), "sampling_loc must be a CUDA tensor");
AT_ASSERTM(attn_weight.type().is_cuda(), "attn_weight must be a CUDA tensor");
const int batch = value.size(0);
const int spatial_size = value.size(1);
const int num_heads = value.size(2);
const int channels = value.size(3);
const int num_levels = spatial_shapes.size(0);
const int num_query = sampling_loc.size(1);
const int num_point = sampling_loc.size(4);
const int im2col_step_ = std::min(batch, im2col_step);
AT_ASSERTM(batch % im2col_step_ == 0, "batch(%d) must divide im2col_step(%d)", batch, im2col_step_);
auto output = at::zeros({batch, num_query, num_heads, channels}, value.options());
const int batch_n = im2col_step_;
auto output_n = output.view({batch/im2col_step_, batch_n, num_query, num_heads, channels});
auto per_value_size = spatial_size * num_heads * channels;
auto per_sample_loc_size = num_query * num_heads * num_levels * num_point * 2;
auto per_attn_weight_size = num_query * num_heads * num_levels * num_point;
for (int n = 0; n < batch/im2col_step_; ++n)
{
auto columns = output_n.select(0, n);
AT_DISPATCH_FLOATING_TYPES(value.type(), "ms_deform_attn_forward_cuda", ([&] {
ms_deformable_im2col_cuda(at::cuda::getCurrentCUDAStream(),
value.data<scalar_t>() + n * im2col_step_ * per_value_size,
spatial_shapes.data<int64_t>(),
level_start_index.data<int64_t>(),
sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size,
attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size,
batch_n, spatial_size, num_heads, channels, num_levels, num_query, num_point,
columns.data<scalar_t>());
}));
}
output = output.view({batch, num_query, num_heads*channels});
return output;
}
std::vector<at::Tensor> ms_deform_attn_cuda_backward(
const at::Tensor &value,
const at::Tensor &spatial_shapes,
const at::Tensor &level_start_index,
const at::Tensor &sampling_loc,
const at::Tensor &attn_weight,
const at::Tensor &grad_output,
const int im2col_step)
{
AT_ASSERTM(value.is_contiguous(), "value tensor has to be contiguous");
AT_ASSERTM(spatial_shapes.is_contiguous(), "spatial_shapes tensor has to be contiguous");
AT_ASSERTM(level_start_index.is_contiguous(), "level_start_index tensor has to be contiguous");
AT_ASSERTM(sampling_loc.is_contiguous(), "sampling_loc tensor has to be contiguous");
AT_ASSERTM(attn_weight.is_contiguous(), "attn_weight tensor has to be contiguous");
AT_ASSERTM(grad_output.is_contiguous(), "grad_output tensor has to be contiguous");
AT_ASSERTM(value.type().is_cuda(), "value must be a CUDA tensor");
AT_ASSERTM(spatial_shapes.type().is_cuda(), "spatial_shapes must be a CUDA tensor");
AT_ASSERTM(level_start_index.type().is_cuda(), "level_start_index must be a CUDA tensor");
AT_ASSERTM(sampling_loc.type().is_cuda(), "sampling_loc must be a CUDA tensor");
AT_ASSERTM(attn_weight.type().is_cuda(), "attn_weight must be a CUDA tensor");
AT_ASSERTM(grad_output.type().is_cuda(), "grad_output must be a CUDA tensor");
const int batch = value.size(0);
const int spatial_size = value.size(1);
const int num_heads = value.size(2);
const int channels = value.size(3);
const int num_levels = spatial_shapes.size(0);
const int num_query = sampling_loc.size(1);
const int num_point = sampling_loc.size(4);
const int im2col_step_ = std::min(batch, im2col_step);
AT_ASSERTM(batch % im2col_step_ == 0, "batch(%d) must divide im2col_step(%d)", batch, im2col_step_);
auto grad_value = at::zeros_like(value);
auto grad_sampling_loc = at::zeros_like(sampling_loc);
auto grad_attn_weight = at::zeros_like(attn_weight);
const int batch_n = im2col_step_;
auto per_value_size = spatial_size * num_heads * channels;
auto per_sample_loc_size = num_query * num_heads * num_levels * num_point * 2;
auto per_attn_weight_size = num_query * num_heads * num_levels * num_point;
auto grad_output_n = grad_output.view({batch/im2col_step_, batch_n, num_query, num_heads, channels});
for (int n = 0; n < batch/im2col_step_; ++n)
{
auto grad_output_g = grad_output_n.select(0, n);
AT_DISPATCH_FLOATING_TYPES(value.type(), "ms_deform_attn_backward_cuda", ([&] {
ms_deformable_col2im_cuda(at::cuda::getCurrentCUDAStream(),
grad_output_g.data<scalar_t>(),
value.data<scalar_t>() + n * im2col_step_ * per_value_size,
spatial_shapes.data<int64_t>(),
level_start_index.data<int64_t>(),
sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size,
attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size,
batch_n, spatial_size, num_heads, channels, num_levels, num_query, num_point,
grad_value.data<scalar_t>() + n * im2col_step_ * per_value_size,
grad_sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size,
grad_attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size);
}));
}
return {
grad_value, grad_sampling_loc, grad_attn_weight
};
}
const int CUDA_NUM_THREADS = 1024;
inline int GET_BLOCKS(const int N, const int num_threads)
{
return (N + num_threads - 1) / num_threads;
}
template <typename scalar_t>
__device__ scalar_t ms_deform_attn_im2col_bilinear(const scalar_t* &bottom_data,
const int &height, const int &width, const int &nheads, const int &channels,
const scalar_t &h, const scalar_t &w, const int &m, const int &c)
{
const int h_low = floor(h);
const int w_low = floor(w);
const int h_high = h_low + 1;
const int w_high = w_low + 1;
const scalar_t lh = h - h_low;
const scalar_t lw = w - w_low;
const scalar_t hh = 1 - lh, hw = 1 - lw;
const int w_stride = nheads * channels;
const int h_stride = width * w_stride;
const int h_low_ptr_offset = h_low * h_stride;
const int h_high_ptr_offset = h_low_ptr_offset + h_stride;
const int w_low_ptr_offset = w_low * w_stride;
const int w_high_ptr_offset = w_low_ptr_offset + w_stride;
const int base_ptr = m * channels + c;
scalar_t v1 = 0;
if (h_low >= 0 && w_low >= 0)
{
const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr;
v1 = bottom_data[ptr1];
}
scalar_t v2 = 0;
if (h_low >= 0 && w_high <= width - 1)
{
const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr;
v2 = bottom_data[ptr2];
}
scalar_t v3 = 0;
if (h_high <= height - 1 && w_low >= 0)
{
const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr;
v3 = bottom_data[ptr3];
}
scalar_t v4 = 0;
if (h_high <= height - 1 && w_high <= width - 1)
{
const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr;
v4 = bottom_data[ptr4];
}
const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
return val;
}
template <typename scalar_t>
__device__ void ms_deform_attn_col2im_bilinear(const scalar_t* &bottom_data,
const int &height, const int &width, const int &nheads, const int &channels,
const scalar_t &h, const scalar_t &w, const int &m, const int &c,
const scalar_t &top_grad,
const scalar_t &attn_weight,
scalar_t* &grad_value,
scalar_t* grad_sampling_loc,
scalar_t* grad_attn_weight)
{
const int h_low = floor(h);
const int w_low = floor(w);
const int h_high = h_low + 1;
const int w_high = w_low + 1;
const scalar_t lh = h - h_low;
const scalar_t lw = w - w_low;
const scalar_t hh = 1 - lh, hw = 1 - lw;
const int w_stride = nheads * channels;
const int h_stride = width * w_stride;
const int h_low_ptr_offset = h_low * h_stride;
const int h_high_ptr_offset = h_low_ptr_offset + h_stride;
const int w_low_ptr_offset = w_low * w_stride;
const int w_high_ptr_offset = w_low_ptr_offset + w_stride;
const int base_ptr = m * channels + c;
const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
const scalar_t top_grad_value = top_grad * attn_weight;
scalar_t grad_h_weight = 0, grad_w_weight = 0;
scalar_t v1 = 0;
if (h_low >= 0 && w_low >= 0)
{
const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr;
v1 = bottom_data[ptr1];
grad_h_weight -= hw * v1;
grad_w_weight -= hh * v1;
atomicAdd(grad_value+ptr1, w1*top_grad_value);
}
scalar_t v2 = 0;
if (h_low >= 0 && w_high <= width - 1)
{
const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr;
v2 = bottom_data[ptr2];
grad_h_weight -= lw * v2;
grad_w_weight += hh * v2;
atomicAdd(grad_value+ptr2, w2*top_grad_value);
}
scalar_t v3 = 0;
if (h_high <= height - 1 && w_low >= 0)
{
const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr;
v3 = bottom_data[ptr3];
grad_h_weight += hw * v3;
grad_w_weight -= lh * v3;
atomicAdd(grad_value+ptr3, w3*top_grad_value);
}
scalar_t v4 = 0;
if (h_high <= height - 1 && w_high <= width - 1)
{
const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr;
v4 = bottom_data[ptr4];
grad_h_weight += lw * v4;
grad_w_weight += lh * v4;
atomicAdd(grad_value+ptr4, w4*top_grad_value);
}
const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
*grad_attn_weight = top_grad * val;
*grad_sampling_loc = width * grad_w_weight * top_grad_value;
*(grad_sampling_loc + 1) = height * grad_h_weight * top_grad_value;
}
template <typename scalar_t>
__device__ void ms_deform_attn_col2im_bilinear_gm(const scalar_t* &bottom_data,
const int &height, const int &width, const int &nheads, const int &channels,
const scalar_t &h, const scalar_t &w, const int &m, const int &c,
const scalar_t &top_grad,
const scalar_t &attn_weight,
scalar_t* &grad_value,
scalar_t* grad_sampling_loc,
scalar_t* grad_attn_weight)
{
const int h_low = floor(h);
const int w_low = floor(w);
const int h_high = h_low + 1;
const int w_high = w_low + 1;
const scalar_t lh = h - h_low;
const scalar_t lw = w - w_low;
const scalar_t hh = 1 - lh, hw = 1 - lw;
const int w_stride = nheads * channels;
const int h_stride = width * w_stride;
const int h_low_ptr_offset = h_low * h_stride;
const int h_high_ptr_offset = h_low_ptr_offset + h_stride;
const int w_low_ptr_offset = w_low * w_stride;
const int w_high_ptr_offset = w_low_ptr_offset + w_stride;
const int base_ptr = m * channels + c;
const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
const scalar_t top_grad_value = top_grad * attn_weight;
scalar_t grad_h_weight = 0, grad_w_weight = 0;
scalar_t v1 = 0;
if (h_low >= 0 && w_low >= 0)
{
const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr;
v1 = bottom_data[ptr1];
grad_h_weight -= hw * v1;
grad_w_weight -= hh * v1;
atomicAdd(grad_value+ptr1, w1*top_grad_value);
}
scalar_t v2 = 0;
if (h_low >= 0 && w_high <= width - 1)
{
const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr;
v2 = bottom_data[ptr2];
grad_h_weight -= lw * v2;
grad_w_weight += hh * v2;
atomicAdd(grad_value+ptr2, w2*top_grad_value);
}
scalar_t v3 = 0;
if (h_high <= height - 1 && w_low >= 0)
{
const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr;
v3 = bottom_data[ptr3];
grad_h_weight += hw * v3;
grad_w_weight -= lh * v3;
atomicAdd(grad_value+ptr3, w3*top_grad_value);
}
scalar_t v4 = 0;
if (h_high <= height - 1 && w_high <= width - 1)
{
const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr;
v4 = bottom_data[ptr4];
grad_h_weight += lw * v4;
grad_w_weight += lh * v4;
atomicAdd(grad_value+ptr4, w4*top_grad_value);
}
const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
atomicAdd(grad_attn_weight, top_grad * val);
atomicAdd(grad_sampling_loc, width * grad_w_weight * top_grad_value);
atomicAdd(grad_sampling_loc + 1, height * grad_h_weight * top_grad_value);
}
template <typename scalar_t>
__global__ void ms_deformable_im2col_gpu_kernel(const int n,
const scalar_t *data_value,
const int64_t *data_spatial_shapes,
const int64_t *data_level_start_index,
const scalar_t *data_sampling_loc,
const scalar_t *data_attn_weight,
const int batch_size,
const int spatial_size,
const int num_heads,
const int channels,
const int num_levels,
const int num_query,
const int num_point,
scalar_t *data_col)
{
CUDA_KERNEL_LOOP(index, n)
{
int _temp = index;
const int c_col = _temp % channels;
_temp /= channels;
const int sampling_index = _temp;
const int m_col = _temp % num_heads;
_temp /= num_heads;
const int q_col = _temp % num_query;
_temp /= num_query;
const int b_col = _temp;
scalar_t *data_col_ptr = data_col + index;
int data_weight_ptr = sampling_index * num_levels * num_point;
int data_loc_w_ptr = data_weight_ptr << 1;
const int qid_stride = num_heads * channels;
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
scalar_t col = 0;
for (int l_col=0; l_col < num_levels; ++l_col)
{
const int level_start_id = data_level_start_index[l_col];
const int spatial_h_ptr = l_col << 1;
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
const scalar_t *data_value_ptr = data_value + (data_value_ptr_init_offset + level_start_id * qid_stride);
for (int p_col=0; p_col < num_point; ++p_col)
{
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
const scalar_t weight = data_attn_weight[data_weight_ptr];
const scalar_t h_im = loc_h * spatial_h - 0.5;
const scalar_t w_im = loc_w * spatial_w - 0.5;
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
{
col += ms_deform_attn_im2col_bilinear(data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col) * weight;
}
data_weight_ptr += 1;
data_loc_w_ptr += 2;
}
}
*data_col_ptr = col;
}
}
template <typename scalar_t, unsigned int blockSize>
__global__ void ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1(const int n,
const scalar_t *grad_col,
const scalar_t *data_value,
const int64_t *data_spatial_shapes,
const int64_t *data_level_start_index,
const scalar_t *data_sampling_loc,
const scalar_t *data_attn_weight,
const int batch_size,
const int spatial_size,
const int num_heads,
const int channels,
const int num_levels,
const int num_query,
const int num_point,
scalar_t *grad_value,
scalar_t *grad_sampling_loc,
scalar_t *grad_attn_weight)
{
CUDA_KERNEL_LOOP(index, n)
{
__shared__ scalar_t cache_grad_sampling_loc[blockSize * 2];
__shared__ scalar_t cache_grad_attn_weight[blockSize];
unsigned int tid = threadIdx.x;
int _temp = index;
const int c_col = _temp % channels;
_temp /= channels;
const int sampling_index = _temp;
const int m_col = _temp % num_heads;
_temp /= num_heads;
const int q_col = _temp % num_query;
_temp /= num_query;
const int b_col = _temp;
const scalar_t top_grad = grad_col[index];
int data_weight_ptr = sampling_index * num_levels * num_point;
int data_loc_w_ptr = data_weight_ptr << 1;
const int grad_sampling_ptr = data_weight_ptr;
grad_sampling_loc += grad_sampling_ptr << 1;
grad_attn_weight += grad_sampling_ptr;
const int grad_weight_stride = 1;
const int grad_loc_stride = 2;
const int qid_stride = num_heads * channels;
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
for (int l_col=0; l_col < num_levels; ++l_col)
{
const int level_start_id = data_level_start_index[l_col];
const int spatial_h_ptr = l_col << 1;
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
for (int p_col=0; p_col < num_point; ++p_col)
{
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
const scalar_t weight = data_attn_weight[data_weight_ptr];
const scalar_t h_im = loc_h * spatial_h - 0.5;
const scalar_t w_im = loc_w * spatial_w - 0.5;
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
*(cache_grad_attn_weight+threadIdx.x)=0;
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
{
ms_deform_attn_col2im_bilinear(
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
top_grad, weight, grad_value_ptr,
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
}
__syncthreads();
if (tid == 0)
{
scalar_t _grad_w=cache_grad_sampling_loc[0], _grad_h=cache_grad_sampling_loc[1], _grad_a=cache_grad_attn_weight[0];
int sid=2;
for (unsigned int tid = 1; tid < blockSize; ++tid)
{
_grad_w += cache_grad_sampling_loc[sid];
_grad_h += cache_grad_sampling_loc[sid + 1];
_grad_a += cache_grad_attn_weight[tid];
sid += 2;
}
*grad_sampling_loc = _grad_w;
*(grad_sampling_loc + 1) = _grad_h;
*grad_attn_weight = _grad_a;
}
__syncthreads();
data_weight_ptr += 1;
data_loc_w_ptr += 2;
grad_attn_weight += grad_weight_stride;
grad_sampling_loc += grad_loc_stride;
}
}
}
}
template <typename scalar_t, unsigned int blockSize>
__global__ void ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2(const int n,
const scalar_t *grad_col,
const scalar_t *data_value,
const int64_t *data_spatial_shapes,
const int64_t *data_level_start_index,
const scalar_t *data_sampling_loc,
const scalar_t *data_attn_weight,
const int batch_size,
const int spatial_size,
const int num_heads,
const int channels,
const int num_levels,
const int num_query,
const int num_point,
scalar_t *grad_value,
scalar_t *grad_sampling_loc,
scalar_t *grad_attn_weight)
{
CUDA_KERNEL_LOOP(index, n)
{
__shared__ scalar_t cache_grad_sampling_loc[blockSize * 2];
__shared__ scalar_t cache_grad_attn_weight[blockSize];
unsigned int tid = threadIdx.x;
int _temp = index;
const int c_col = _temp % channels;
_temp /= channels;
const int sampling_index = _temp;
const int m_col = _temp % num_heads;
_temp /= num_heads;
const int q_col = _temp % num_query;
_temp /= num_query;
const int b_col = _temp;
const scalar_t top_grad = grad_col[index];
int data_weight_ptr = sampling_index * num_levels * num_point;
int data_loc_w_ptr = data_weight_ptr << 1;
const int grad_sampling_ptr = data_weight_ptr;
grad_sampling_loc += grad_sampling_ptr << 1;
grad_attn_weight += grad_sampling_ptr;
const int grad_weight_stride = 1;
const int grad_loc_stride = 2;
const int qid_stride = num_heads * channels;
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
for (int l_col=0; l_col < num_levels; ++l_col)
{
const int level_start_id = data_level_start_index[l_col];
const int spatial_h_ptr = l_col << 1;
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
for (int p_col=0; p_col < num_point; ++p_col)
{
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
const scalar_t weight = data_attn_weight[data_weight_ptr];
const scalar_t h_im = loc_h * spatial_h - 0.5;
const scalar_t w_im = loc_w * spatial_w - 0.5;
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
*(cache_grad_attn_weight+threadIdx.x)=0;
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
{
ms_deform_attn_col2im_bilinear(
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
top_grad, weight, grad_value_ptr,
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
}
__syncthreads();
for (unsigned int s=blockSize/2; s>0; s>>=1)
{
if (tid < s) {
const unsigned int xid1 = tid << 1;
const unsigned int xid2 = (tid + s) << 1;
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s];
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2];
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1];
}
__syncthreads();
}
if (tid == 0)
{
*grad_sampling_loc = cache_grad_sampling_loc[0];
*(grad_sampling_loc + 1) = cache_grad_sampling_loc[1];
*grad_attn_weight = cache_grad_attn_weight[0];
}
__syncthreads();
data_weight_ptr += 1;
data_loc_w_ptr += 2;
grad_attn_weight += grad_weight_stride;
grad_sampling_loc += grad_loc_stride;
}
}
}
}
template <typename scalar_t>
__global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v1(const int n,
const scalar_t *grad_col,
const scalar_t *data_value,
const int64_t *data_spatial_shapes,
const int64_t *data_level_start_index,
const scalar_t *data_sampling_loc,
const scalar_t *data_attn_weight,
const int batch_size,
const int spatial_size,
const int num_heads,
const int channels,
const int num_levels,
const int num_query,
const int num_point,
scalar_t *grad_value,
scalar_t *grad_sampling_loc,
scalar_t *grad_attn_weight)
{
CUDA_KERNEL_LOOP(index, n)
{
extern __shared__ int _s[];
scalar_t* cache_grad_sampling_loc = (scalar_t*)_s;
scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x;
unsigned int tid = threadIdx.x;
int _temp = index;
const int c_col = _temp % channels;
_temp /= channels;
const int sampling_index = _temp;
const int m_col = _temp % num_heads;
_temp /= num_heads;
const int q_col = _temp % num_query;
_temp /= num_query;
const int b_col = _temp;
const scalar_t top_grad = grad_col[index];
int data_weight_ptr = sampling_index * num_levels * num_point;
int data_loc_w_ptr = data_weight_ptr << 1;
const int grad_sampling_ptr = data_weight_ptr;
grad_sampling_loc += grad_sampling_ptr << 1;
grad_attn_weight += grad_sampling_ptr;
const int grad_weight_stride = 1;
const int grad_loc_stride = 2;
const int qid_stride = num_heads * channels;
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
for (int l_col=0; l_col < num_levels; ++l_col)
{
const int level_start_id = data_level_start_index[l_col];
const int spatial_h_ptr = l_col << 1;
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
for (int p_col=0; p_col < num_point; ++p_col)
{
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
const scalar_t weight = data_attn_weight[data_weight_ptr];
const scalar_t h_im = loc_h * spatial_h - 0.5;
const scalar_t w_im = loc_w * spatial_w - 0.5;
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
*(cache_grad_attn_weight+threadIdx.x)=0;
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
{
ms_deform_attn_col2im_bilinear(
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
top_grad, weight, grad_value_ptr,
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
}
__syncthreads();
if (tid == 0)
{
scalar_t _grad_w=cache_grad_sampling_loc[0], _grad_h=cache_grad_sampling_loc[1], _grad_a=cache_grad_attn_weight[0];
int sid=2;
for (unsigned int tid = 1; tid < blockDim.x; ++tid)
{
_grad_w += cache_grad_sampling_loc[sid];
_grad_h += cache_grad_sampling_loc[sid + 1];
_grad_a += cache_grad_attn_weight[tid];
sid += 2;
}
*grad_sampling_loc = _grad_w;
*(grad_sampling_loc + 1) = _grad_h;
*grad_attn_weight = _grad_a;
}
__syncthreads();
data_weight_ptr += 1;
data_loc_w_ptr += 2;
grad_attn_weight += grad_weight_stride;
grad_sampling_loc += grad_loc_stride;
}
}
}
}
template <typename scalar_t>
__global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v2(const int n,
const scalar_t *grad_col,
const scalar_t *data_value,
const int64_t *data_spatial_shapes,
const int64_t *data_level_start_index,
const scalar_t *data_sampling_loc,
const scalar_t *data_attn_weight,
const int batch_size,
const int spatial_size,
const int num_heads,
const int channels,
const int num_levels,
const int num_query,
const int num_point,
scalar_t *grad_value,
scalar_t *grad_sampling_loc,
scalar_t *grad_attn_weight)
{
CUDA_KERNEL_LOOP(index, n)
{
extern __shared__ int _s[];
scalar_t* cache_grad_sampling_loc = (scalar_t*)_s;
scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x;
unsigned int tid = threadIdx.x;
int _temp = index;
const int c_col = _temp % channels;
_temp /= channels;
const int sampling_index = _temp;
const int m_col = _temp % num_heads;
_temp /= num_heads;
const int q_col = _temp % num_query;
_temp /= num_query;
const int b_col = _temp;
const scalar_t top_grad = grad_col[index];
int data_weight_ptr = sampling_index * num_levels * num_point;
int data_loc_w_ptr = data_weight_ptr << 1;
const int grad_sampling_ptr = data_weight_ptr;
grad_sampling_loc += grad_sampling_ptr << 1;
grad_attn_weight += grad_sampling_ptr;
const int grad_weight_stride = 1;
const int grad_loc_stride = 2;
const int qid_stride = num_heads * channels;
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
for (int l_col=0; l_col < num_levels; ++l_col)
{
const int level_start_id = data_level_start_index[l_col];
const int spatial_h_ptr = l_col << 1;
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
for (int p_col=0; p_col < num_point; ++p_col)
{
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
const scalar_t weight = data_attn_weight[data_weight_ptr];
const scalar_t h_im = loc_h * spatial_h - 0.5;
const scalar_t w_im = loc_w * spatial_w - 0.5;
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
*(cache_grad_attn_weight+threadIdx.x)=0;
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
{
ms_deform_attn_col2im_bilinear(
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
top_grad, weight, grad_value_ptr,
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
}
__syncthreads();
for (unsigned int s=blockDim.x/2, spre=blockDim.x; s>0; s>>=1, spre>>=1)
{
if (tid < s) {
const unsigned int xid1 = tid << 1;
const unsigned int xid2 = (tid + s) << 1;
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s];
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2];
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1];
if (tid + (s << 1) < spre)
{
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + (s << 1)];
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2 + (s << 1)];
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1 + (s << 1)];
}
}
__syncthreads();
}
if (tid == 0)
{
*grad_sampling_loc = cache_grad_sampling_loc[0];
*(grad_sampling_loc + 1) = cache_grad_sampling_loc[1];
*grad_attn_weight = cache_grad_attn_weight[0];
}
__syncthreads();
data_weight_ptr += 1;
data_loc_w_ptr += 2;
grad_attn_weight += grad_weight_stride;
grad_sampling_loc += grad_loc_stride;
}
}
}
}
template <typename scalar_t>
__global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v2_multi_blocks(const int n,
const scalar_t *grad_col,
const scalar_t *data_value,
const int64_t *data_spatial_shapes,
const int64_t *data_level_start_index,
const scalar_t *data_sampling_loc,
const scalar_t *data_attn_weight,
const int batch_size,
const int spatial_size,
const int num_heads,
const int channels,
const int num_levels,
const int num_query,
const int num_point,
scalar_t *grad_value,
scalar_t *grad_sampling_loc,
scalar_t *grad_attn_weight)
{
CUDA_KERNEL_LOOP(index, n)
{
extern __shared__ int _s[];
scalar_t* cache_grad_sampling_loc = (scalar_t*)_s;
scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x;
unsigned int tid = threadIdx.x;
int _temp = index;
const int c_col = _temp % channels;
_temp /= channels;
const int sampling_index = _temp;
const int m_col = _temp % num_heads;
_temp /= num_heads;
const int q_col = _temp % num_query;
_temp /= num_query;
const int b_col = _temp;
const scalar_t top_grad = grad_col[index];
int data_weight_ptr = sampling_index * num_levels * num_point;
int data_loc_w_ptr = data_weight_ptr << 1;
const int grad_sampling_ptr = data_weight_ptr;
grad_sampling_loc += grad_sampling_ptr << 1;
grad_attn_weight += grad_sampling_ptr;
const int grad_weight_stride = 1;
const int grad_loc_stride = 2;
const int qid_stride = num_heads * channels;
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
for (int l_col=0; l_col < num_levels; ++l_col)
{
const int level_start_id = data_level_start_index[l_col];
const int spatial_h_ptr = l_col << 1;
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
for (int p_col=0; p_col < num_point; ++p_col)
{
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
const scalar_t weight = data_attn_weight[data_weight_ptr];
const scalar_t h_im = loc_h * spatial_h - 0.5;
const scalar_t w_im = loc_w * spatial_w - 0.5;
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
*(cache_grad_attn_weight+threadIdx.x)=0;
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
{
ms_deform_attn_col2im_bilinear(
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
top_grad, weight, grad_value_ptr,
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
}
__syncthreads();
for (unsigned int s=blockDim.x/2, spre=blockDim.x; s>0; s>>=1, spre>>=1)
{
if (tid < s) {
const unsigned int xid1 = tid << 1;
const unsigned int xid2 = (tid + s) << 1;
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s];
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2];
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1];
if (tid + (s << 1) < spre)
{
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + (s << 1)];
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2 + (s << 1)];
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1 + (s << 1)];
}
}
__syncthreads();
}
if (tid == 0)
{
atomicAdd(grad_sampling_loc, cache_grad_sampling_loc[0]);
atomicAdd(grad_sampling_loc + 1, cache_grad_sampling_loc[1]);
atomicAdd(grad_attn_weight, cache_grad_attn_weight[0]);
}
__syncthreads();
data_weight_ptr += 1;
data_loc_w_ptr += 2;
grad_attn_weight += grad_weight_stride;
grad_sampling_loc += grad_loc_stride;
}
}
}
}
template <typename scalar_t>
__global__ void ms_deformable_col2im_gpu_kernel_gm(const int n,
const scalar_t *grad_col,
const scalar_t *data_value,
const int64_t *data_spatial_shapes,
const int64_t *data_level_start_index,
const scalar_t *data_sampling_loc,
const scalar_t *data_attn_weight,
const int batch_size,
const int spatial_size,
const int num_heads,
const int channels,
const int num_levels,
const int num_query,
const int num_point,
scalar_t *grad_value,
scalar_t *grad_sampling_loc,
scalar_t *grad_attn_weight)
{
CUDA_KERNEL_LOOP(index, n)
{
int _temp = index;
const int c_col = _temp % channels;
_temp /= channels;
const int sampling_index = _temp;
const int m_col = _temp % num_heads;
_temp /= num_heads;
const int q_col = _temp % num_query;
_temp /= num_query;
const int b_col = _temp;
const scalar_t top_grad = grad_col[index];
int data_weight_ptr = sampling_index * num_levels * num_point;
int data_loc_w_ptr = data_weight_ptr << 1;
const int grad_sampling_ptr = data_weight_ptr;
grad_sampling_loc += grad_sampling_ptr << 1;
grad_attn_weight += grad_sampling_ptr;
const int grad_weight_stride = 1;
const int grad_loc_stride = 2;
const int qid_stride = num_heads * channels;
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
for (int l_col=0; l_col < num_levels; ++l_col)
{
const int level_start_id = data_level_start_index[l_col];
const int spatial_h_ptr = l_col << 1;
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
for (int p_col=0; p_col < num_point; ++p_col)
{
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
const scalar_t weight = data_attn_weight[data_weight_ptr];
const scalar_t h_im = loc_h * spatial_h - 0.5;
const scalar_t w_im = loc_w * spatial_w - 0.5;
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
{
ms_deform_attn_col2im_bilinear_gm(
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
top_grad, weight, grad_value_ptr,
grad_sampling_loc, grad_attn_weight);
}
data_weight_ptr += 1;
data_loc_w_ptr += 2;
grad_attn_weight += grad_weight_stride;
grad_sampling_loc += grad_loc_stride;
}
}
}
}
template <typename scalar_t>
void ms_deformable_im2col_cuda(cudaStream_t stream,
const scalar_t* data_value,
const int64_t* data_spatial_shapes,
const int64_t* data_level_start_index,
const scalar_t* data_sampling_loc,
const scalar_t* data_attn_weight,
const int batch_size,
const int spatial_size,
const int num_heads,
const int channels,
const int num_levels,
const int num_query,
const int num_point,
scalar_t* data_col)
{
const int num_kernels = batch_size * num_query * num_heads * channels;
const int num_actual_kernels = batch_size * num_query * num_heads * channels;
const int num_threads = CUDA_NUM_THREADS;
ms_deformable_im2col_gpu_kernel<scalar_t>
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
0, stream>>>(
num_kernels, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight,
batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, data_col);
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess)
{
printf("error in ms_deformable_im2col_cuda: %s\n", cudaGetErrorString(err));
}
}
template <typename scalar_t>
void ms_deformable_col2im_cuda(cudaStream_t stream,
const scalar_t* grad_col,
const scalar_t* data_value,
const int64_t * data_spatial_shapes,
const int64_t * data_level_start_index,
const scalar_t * data_sampling_loc,
const scalar_t * data_attn_weight,
const int batch_size,
const int spatial_size,
const int num_heads,
const int channels,
const int num_levels,
const int num_query,
const int num_point,
scalar_t* grad_value,
scalar_t* grad_sampling_loc,
scalar_t* grad_attn_weight)
{
const int num_threads = (channels > CUDA_NUM_THREADS)?CUDA_NUM_THREADS:channels;
const int num_kernels = batch_size * num_query * num_heads * channels;
const int num_actual_kernels = batch_size * num_query * num_heads * channels;
if (channels > 1024)
{
if ((channels & 1023) == 0)
{
ms_deformable_col2im_gpu_kernel_shm_reduce_v2_multi_blocks<scalar_t>
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
num_threads*3*sizeof(scalar_t), stream>>>(
num_kernels,
grad_col,
data_value,
data_spatial_shapes,
data_level_start_index,
data_sampling_loc,
data_attn_weight,
batch_size,
spatial_size,
num_heads,
channels,
num_levels,
num_query,
num_point,
grad_value,
grad_sampling_loc,
grad_attn_weight);
}
else
{
ms_deformable_col2im_gpu_kernel_gm<scalar_t>
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
0, stream>>>(
num_kernels,
grad_col,
data_value,
data_spatial_shapes,
data_level_start_index,
data_sampling_loc,
data_attn_weight,
batch_size,
spatial_size,
num_heads,
channels,
num_levels,
num_query,
num_point,
grad_value,
grad_sampling_loc,
grad_attn_weight);
}
}
else{
switch(channels)
{
case 1:
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 1>
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
0, stream>>>(
num_kernels,
grad_col,
data_value,
data_spatial_shapes,
data_level_start_index,
data_sampling_loc,
data_attn_weight,
batch_size,
spatial_size,
num_heads,
channels,
num_levels,
num_query,
num_point,
grad_value,
grad_sampling_loc,
grad_attn_weight);
break;
case 2:
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 2>
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
0, stream>>>(
num_kernels,
grad_col,
data_value,
data_spatial_shapes,
data_level_start_index,
data_sampling_loc,
data_attn_weight,
batch_size,
spatial_size,
num_heads,
channels,
num_levels,
num_query,
num_point,
grad_value,
grad_sampling_loc,
grad_attn_weight);
break;
case 4:
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 4>
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
0, stream>>>(
num_kernels,
grad_col,
data_value,
data_spatial_shapes,
data_level_start_index,
data_sampling_loc,
data_attn_weight,
batch_size,
spatial_size,
num_heads,
channels,
num_levels,
num_query,
num_point,
grad_value,
grad_sampling_loc,
grad_attn_weight);
break;
case 8:
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 8>
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
0, stream>>>(
num_kernels,
grad_col,
data_value,
data_spatial_shapes,
data_level_start_index,
data_sampling_loc,
data_attn_weight,
batch_size,
spatial_size,
num_heads,
channels,
num_levels,
num_query,
num_point,
grad_value,
grad_sampling_loc,
grad_attn_weight);
break;
case 16:
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 16>
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
0, stream>>>(
num_kernels,
grad_col,
data_value,
data_spatial_shapes,
data_level_start_index,
data_sampling_loc,
data_attn_weight,
batch_size,
spatial_size,
num_heads,
channels,
num_levels,
num_query,
num_point,
grad_value,
grad_sampling_loc,
grad_attn_weight);
break;
case 32:
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 32>
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
0, stream>>>(
num_kernels,
grad_col,
data_value,
data_spatial_shapes,
data_level_start_index,
data_sampling_loc,
data_attn_weight,
batch_size,
spatial_size,
num_heads,
channels,
num_levels,
num_query,
num_point,
grad_value,
grad_sampling_loc,
grad_attn_weight);
break;
case 64:
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 64>
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
0, stream>>>(
num_kernels,
grad_col,
data_value,
data_spatial_shapes,
data_level_start_index,
data_sampling_loc,
data_attn_weight,
batch_size,
spatial_size,
num_heads,
channels,
num_levels,
num_query,
num_point,
grad_value,
grad_sampling_loc,
grad_attn_weight);
break;
case 128:
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 128>
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
0, stream>>>(
num_kernels,
grad_col,
data_value,
data_spatial_shapes,
data_level_start_index,
data_sampling_loc,
data_attn_weight,
batch_size,
spatial_size,
num_heads,
channels,
num_levels,
num_query,
num_point,
grad_value,
grad_sampling_loc,
grad_attn_weight);
break;
case 256:
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 256>
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
0, stream>>>(
num_kernels,
grad_col,
data_value,
data_spatial_shapes,
data_level_start_index,
data_sampling_loc,
data_attn_weight,
batch_size,
spatial_size,
num_heads,
channels,
num_levels,
num_query,
num_point,
grad_value,
grad_sampling_loc,
grad_attn_weight);
break;
case 512:
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 512>
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
0, stream>>>(
num_kernels,
grad_col,
data_value,
data_spatial_shapes,
data_level_start_index,
data_sampling_loc,
data_attn_weight,
batch_size,
spatial_size,
num_heads,
channels,
num_levels,
num_query,
num_point,
grad_value,
grad_sampling_loc,
grad_attn_weight);
break;
case 1024:
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 1024>
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
0, stream>>>(
num_kernels,
grad_col,
data_value,
data_spatial_shapes,
data_level_start_index,
data_sampling_loc,
data_attn_weight,
batch_size,
spatial_size,
num_heads,
channels,
num_levels,
num_query,
num_point,
grad_value,
grad_sampling_loc,
grad_attn_weight);
break;
default:
if (channels < 64)
{
ms_deformable_col2im_gpu_kernel_shm_reduce_v1<scalar_t>
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
num_threads*3*sizeof(scalar_t), stream>>>(
num_kernels,
grad_col,
data_value,
data_spatial_shapes,
data_level_start_index,
data_sampling_loc,
data_attn_weight,
batch_size,
spatial_size,
num_heads,
channels,
num_levels,
num_query,
num_point,
grad_value,
grad_sampling_loc,
grad_attn_weight);
}
else
{
ms_deformable_col2im_gpu_kernel_shm_reduce_v2<scalar_t>
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
num_threads*3*sizeof(scalar_t), stream>>>(
num_kernels,
grad_col,
data_value,
data_spatial_shapes,
data_level_start_index,
data_sampling_loc,
data_attn_weight,
batch_size,
spatial_size,
num_heads,
channels,
num_levels,
num_query,
num_point,
grad_value,
grad_sampling_loc,
grad_attn_weight);
}
}
}
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess)
{
printf("error in ms_deformable_col2im_cuda: %s\n", cudaGetErrorString(err));
}
}
|
transformers/src/transformers/kernels/deta/cuda/ms_deform_attn_cuda.cuh/0
|
{
"file_path": "transformers/src/transformers/kernels/deta/cuda/ms_deform_attn_cuda.cuh",
"repo_id": "transformers",
"token_count": 34691
}
| 95 |
#define MAX_THREADS_PER_BLOCK 1024
#define OPTIMAL_THREADS_PER_BLOCK 256
#define WARP_SIZE 32
#define MAX_NUM_BLOCK_X 2147483647
#define MAX_NUM_BLOCK_Y 65535
#define MAX_NUM_BLOCK_Z 65535
#define MAX_SHARED_MEM_PER_BLOCK 48000
#define FULL_MASK 0xffffffff
|
transformers/src/transformers/kernels/yoso/common_cuda.h/0
|
{
"file_path": "transformers/src/transformers/kernels/yoso/common_cuda.h",
"repo_id": "transformers",
"token_count": 110
}
| 96 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch - Flax general utilities."""
import os
from pickle import UnpicklingError
from typing import Dict, Tuple
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict, unflatten_dict
import transformers
from . import is_safetensors_available, is_torch_available
from .utils import logging
if is_torch_available():
import torch
if is_safetensors_available():
from safetensors import safe_open
from safetensors.flax import load_file as safe_load_file
logger = logging.get_logger(__name__)
#####################
# PyTorch => Flax #
#####################
def load_pytorch_checkpoint_in_flax_state_dict(
flax_model, pytorch_checkpoint_path, is_sharded, allow_missing_keys=False
):
"""Load pytorch checkpoints in a flax model"""
if not is_sharded:
pt_path = os.path.abspath(pytorch_checkpoint_path)
logger.info(f"Loading PyTorch weights from {pt_path}")
if pt_path.endswith(".safetensors"):
pt_state_dict = {}
with safe_open(pt_path, framework="flax") as f:
for k in f.keys():
pt_state_dict[k] = f.get_tensor(k)
else:
try:
import torch # noqa: F401
except (ImportError, ModuleNotFoundError):
logger.error(
"Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see"
" https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation"
" instructions."
)
raise
weights_only_kwarg = {"weights_only": True}
pt_state_dict = torch.load(pt_path, map_location="cpu", **weights_only_kwarg)
logger.info(f"PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values()):,} parameters.")
flax_state_dict = convert_pytorch_state_dict_to_flax(pt_state_dict, flax_model)
else:
# model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files
flax_state_dict = convert_pytorch_sharded_state_dict_to_flax(pytorch_checkpoint_path, flax_model)
return flax_state_dict
def rename_key_and_reshape_tensor(
pt_tuple_key: Tuple[str],
pt_tensor: np.ndarray,
random_flax_state_dict: Dict[str, jnp.ndarray],
model_prefix: str,
) -> (Tuple[str], np.ndarray):
"""Rename PT weight names to corresponding Flax weight names and reshape tensor if necessary"""
def is_key_or_prefix_key_in_dict(key: Tuple[str]) -> bool:
"""Checks if `key` of `(prefix,) + key` is in random_flax_state_dict"""
return len(set(random_flax_state_dict) & {key, (model_prefix,) + key}) > 0
# layer norm
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("scale",)
if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(renamed_pt_tuple_key):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer mean
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("mean",)
if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(pt_tuple_key):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer var
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("var",)
if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(pt_tuple_key):
return renamed_pt_tuple_key, pt_tensor
# embedding
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("embedding",)
if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(renamed_pt_tuple_key):
return renamed_pt_tuple_key, pt_tensor
# conv layer
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("kernel",)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(pt_tuple_key):
pt_tensor = pt_tensor.transpose(2, 3, 1, 0)
return renamed_pt_tuple_key, pt_tensor
# linear layer
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("kernel",)
if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(pt_tuple_key):
pt_tensor = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("weight",)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("bias",)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
name = None
if pt_tuple_key[-3::2] == ("parametrizations", "original0"):
name = pt_tuple_key[-2] + "_g"
elif pt_tuple_key[-3::2] == ("parametrizations", "original1"):
name = pt_tuple_key[-2] + "_v"
if name is not None:
renamed_pt_tuple_key = pt_tuple_key[:-3] + (name,)
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def convert_pytorch_state_dict_to_flax(pt_state_dict, flax_model):
# convert pytorch tensor to numpy
from_bin = is_torch_available() and isinstance(next(iter(pt_state_dict.values())), torch.Tensor)
bfloat16 = torch.bfloat16 if from_bin else "bfloat16"
weight_dtypes = {k: v.dtype for k, v in pt_state_dict.items()}
if from_bin:
for k, v in pt_state_dict.items():
# numpy currently does not support bfloat16, need to go over float32 in this case to not lose precision
if v.dtype == bfloat16:
v = v.float()
pt_state_dict[k] = v.cpu().numpy()
model_prefix = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers
if "params" in flax_model.params:
flax_model_params = flax_model.params["params"]
else:
flax_model_params = flax_model.params
random_flax_state_dict = flatten_dict(flax_model_params)
# add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
flax_batch_stats = flatten_dict(flax_model.params["batch_stats"])
random_flax_state_dict.update(flax_batch_stats)
flax_state_dict = {}
load_model_with_head_into_base_model = (model_prefix not in flax_model_params) and (
model_prefix in {k.split(".")[0] for k in pt_state_dict.keys()}
)
load_base_model_into_model_with_head = (model_prefix in flax_model_params) and (
model_prefix not in {k.split(".")[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
pt_tuple_key = tuple(pt_key.split("."))
is_bfloat_16 = weight_dtypes[pt_key] == bfloat16
# remove base model prefix if necessary
has_base_model_prefix = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
pt_tuple_key = pt_tuple_key[1:]
# Correctly rename weight parameters
flax_key, flax_tensor = rename_key_and_reshape_tensor(
pt_tuple_key, pt_tensor, random_flax_state_dict, model_prefix
)
# add model prefix if necessary
require_base_model_prefix = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
flax_key = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape "
f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}."
)
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1] or "var" in flax_key[-1]:
flax_state_dict[("batch_stats",) + flax_key] = jnp.asarray(flax_tensor)
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(flax_key, None)
continue
# also add unexpected weight so that warning is thrown
flax_state_dict[("params",) + flax_key] = (
jnp.asarray(flax_tensor) if not is_bfloat_16 else jnp.asarray(flax_tensor, dtype=jnp.bfloat16)
)
else:
# also add unexpected weight so that warning is thrown
flax_state_dict[flax_key] = (
jnp.asarray(flax_tensor) if not is_bfloat_16 else jnp.asarray(flax_tensor, dtype=jnp.bfloat16)
)
return unflatten_dict(flax_state_dict)
############################
# Sharded Pytorch => Flax #
############################
def convert_pytorch_sharded_state_dict_to_flax(shard_filenames, flax_model):
import torch
# Load the index
flax_state_dict = {}
for shard_file in shard_filenames:
# load using msgpack utils
weights_only_kwarg = {"weights_only": True}
pt_state_dict = torch.load(shard_file, **weights_only_kwarg)
weight_dtypes = {k: v.dtype for k, v in pt_state_dict.items()}
pt_state_dict = {
k: v.numpy() if v.dtype != torch.bfloat16 else v.float().numpy() for k, v in pt_state_dict.items()
}
model_prefix = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
flax_model_params = flax_model.params["params"]
random_flax_state_dict = flatten_dict(flax_model_params)
random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"]))
else:
flax_model_params = flax_model.params
random_flax_state_dict = flatten_dict(flax_model_params)
load_model_with_head_into_base_model = (model_prefix not in flax_model_params) and (
model_prefix in {k.split(".")[0] for k in pt_state_dict.keys()}
)
load_base_model_into_model_with_head = (model_prefix in flax_model_params) and (
model_prefix not in {k.split(".")[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
pt_tuple_key = tuple(pt_key.split("."))
is_bfloat_16 = weight_dtypes[pt_key] == torch.bfloat16
# remove base model prefix if necessary
has_base_model_prefix = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
pt_tuple_key = pt_tuple_key[1:]
# Correctly rename weight parameters
flax_key, flax_tensor = rename_key_and_reshape_tensor(
pt_tuple_key, pt_tensor, random_flax_state_dict, model_prefix
)
# add model prefix if necessary
require_base_model_prefix = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
flax_key = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape "
f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}."
)
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1]:
flax_state_dict[("batch_stats",) + flax_key] = jnp.asarray(flax_tensor)
continue
if "var" in flax_key[-1]:
flax_state_dict[("batch_stats",) + flax_key] = jnp.asarray(flax_tensor)
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(flax_key, None)
continue
# also add unexpected weight so that warning is thrown
flax_state_dict[("params",) + flax_key] = (
jnp.asarray(flax_tensor) if not is_bfloat_16 else jnp.asarray(flax_tensor, dtype=jnp.bfloat16)
)
else:
# also add unexpected weight so that warning is thrown
flax_state_dict[flax_key] = (
jnp.asarray(flax_tensor) if not is_bfloat_16 else jnp.asarray(flax_tensor, dtype=jnp.bfloat16)
)
return unflatten_dict(flax_state_dict)
#####################
# Flax => PyTorch #
#####################
def load_flax_checkpoint_in_pytorch_model(model, flax_checkpoint_path):
"""Load flax checkpoints in a PyTorch model"""
flax_checkpoint_path = os.path.abspath(flax_checkpoint_path)
logger.info(f"Loading Flax weights from {flax_checkpoint_path}")
# import correct flax class
flax_cls = getattr(transformers, "Flax" + model.__class__.__name__)
# load flax weight dict
if flax_checkpoint_path.endswith(".safetensors"):
flax_state_dict = safe_load_file(flax_checkpoint_path)
flax_state_dict = unflatten_dict(flax_state_dict, sep=".")
else:
with open(flax_checkpoint_path, "rb") as state_f:
try:
flax_state_dict = from_bytes(flax_cls, state_f.read())
except UnpicklingError:
raise EnvironmentError(f"Unable to convert {flax_checkpoint_path} to Flax deserializable object. ")
return load_flax_weights_in_pytorch_model(model, flax_state_dict)
def load_flax_weights_in_pytorch_model(pt_model, flax_state):
"""Load flax checkpoints in a PyTorch model"""
try:
import torch # noqa: F401
except (ImportError, ModuleNotFoundError):
logger.error(
"Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see"
" https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation"
" instructions."
)
raise
# check if we have bf16 weights
is_type_bf16 = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype == jnp.bfloat16, flax_state)).values()
if any(is_type_bf16):
# convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
"Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` "
"before loading those in PyTorch model."
)
flax_state = jax.tree_util.tree_map(
lambda params: params.astype(np.float32) if params.dtype == jnp.bfloat16 else params, flax_state
)
flax_state_dict = flatten_dict(flax_state)
pt_model_dict = pt_model.state_dict()
load_model_with_head_into_base_model = (pt_model.base_model_prefix in flax_state) and (
pt_model.base_model_prefix not in {k.split(".")[0] for k in pt_model_dict.keys()}
)
load_base_model_into_model_with_head = (pt_model.base_model_prefix not in flax_state) and (
pt_model.base_model_prefix in {k.split(".")[0] for k in pt_model_dict.keys()}
)
# keep track of unexpected & missing keys
unexpected_keys = []
missing_keys = set(pt_model_dict.keys())
for flax_key_tuple, flax_tensor in flax_state_dict.items():
has_base_model_prefix = flax_key_tuple[0] == pt_model.base_model_prefix
require_base_model_prefix = ".".join((pt_model.base_model_prefix,) + flax_key_tuple) in pt_model_dict
# adapt flax_key to prepare for loading from/to base model only
if load_model_with_head_into_base_model and has_base_model_prefix:
flax_key_tuple = flax_key_tuple[1:]
elif load_base_model_into_model_with_head and require_base_model_prefix:
flax_key_tuple = (pt_model.base_model_prefix,) + flax_key_tuple
# rename flax weights to PyTorch format
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(flax_key_tuple) not in pt_model_dict:
# conv layer
flax_key_tuple = flax_key_tuple[:-1] + ("weight",)
flax_tensor = jnp.transpose(flax_tensor, (3, 2, 0, 1))
elif flax_key_tuple[-1] == "kernel" and ".".join(flax_key_tuple) not in pt_model_dict:
# linear layer
flax_key_tuple = flax_key_tuple[:-1] + ("weight",)
flax_tensor = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
flax_key_tuple = flax_key_tuple[:-1] + ("weight",)
# adding batch stats from flax batch norm to pt
elif "mean" in flax_key_tuple[-1]:
flax_key_tuple = flax_key_tuple[:-1] + ("running_mean",)
elif "var" in flax_key_tuple[-1]:
flax_key_tuple = flax_key_tuple[:-1] + ("running_var",)
if "batch_stats" in flax_state:
flax_key = ".".join(flax_key_tuple[1:]) # Remove the params/batch_stats header
else:
flax_key = ".".join(flax_key_tuple)
# We also need to look at `pt_model_dict` and see if there are keys requiring further transformation.
special_pt_names = {}
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
for key in pt_model_dict:
key_components = key.split(".")
name = None
if key_components[-3::2] == ["parametrizations", "original0"]:
name = key_components[-2] + "_g"
elif key_components[-3::2] == ["parametrizations", "original1"]:
name = key_components[-2] + "_v"
if name is not None:
key_components = key_components[:-3] + [name]
key_to_check = ".".join(key_components)
special_pt_names[key_to_check] = key
if flax_key in special_pt_names:
flax_key = special_pt_names[flax_key]
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
f"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected "
f"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}."
)
else:
# add weight to pytorch dict
flax_tensor = np.asarray(flax_tensor) if not isinstance(flax_tensor, np.ndarray) else flax_tensor
pt_model_dict[flax_key] = torch.from_numpy(flax_tensor)
# remove from missing keys
missing_keys.remove(flax_key)
else:
# weight is not expected by PyTorch model
unexpected_keys.append(flax_key)
pt_model.load_state_dict(pt_model_dict)
# re-transform missing_keys to list
missing_keys = list(missing_keys)
if len(unexpected_keys) > 0:
logger.warning(
"Some weights of the Flax model were not used when initializing the PyTorch model"
f" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing"
f" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture"
" (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This"
f" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect"
" to be exactly identical (e.g. initializing a BertForSequenceClassification model from a"
" FlaxBertForSequenceClassification model)."
)
else:
logger.warning(f"All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n")
if len(missing_keys) > 0:
logger.warning(
f"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly"
f" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to"
" use it for predictions and inference."
)
else:
logger.warning(
f"All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n"
"If your task is similar to the task the model of the checkpoint was trained on, "
f"you can already use {pt_model.__class__.__name__} for predictions without further training."
)
return pt_model
|
transformers/src/transformers/modeling_flax_pytorch_utils.py/0
|
{
"file_path": "transformers/src/transformers/modeling_flax_pytorch_utils.py",
"repo_id": "transformers",
"token_count": 9749
}
| 97 |
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for ALBERT model."""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
from ...utils.import_utils import export
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
SPIECE_UNDERLINE = "▁"
@export(backends=("sentencepiece",))
class AlbertTokenizer(PreTrainedTokenizer):
"""
Construct an ALBERT tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
contains the vocabulary necessary to instantiate a tokenizer.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
remove_space (`bool`, *optional*, defaults to `True`):
Whether or not to strip the text when tokenizing (removing excess spaces before and after the string).
keep_accents (`bool`, *optional*, defaults to `False`):
Whether or not to keep accents when tokenizing.
bos_token (`str`, *optional*, defaults to `"[CLS]"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"[SEP]"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
sp_model_kwargs (`dict`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
Attributes:
sp_model (`SentencePieceProcessor`):
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
"""
vocab_files_names = VOCAB_FILES_NAMES
def __init__(
self,
vocab_file,
do_lower_case=True,
remove_space=True,
keep_accents=False,
bos_token="[CLS]",
eos_token="[SEP]",
unk_token="<unk>",
sep_token="[SEP]",
pad_token="<pad>",
cls_token="[CLS]",
mask_token="[MASK]",
sp_model_kwargs: Optional[Dict[str, Any]] = None,
**kwargs,
) -> None:
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
mask_token = (
AddedToken(mask_token, lstrip=True, rstrip=False, normalized=False)
if isinstance(mask_token, str)
else mask_token
)
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
self.do_lower_case = do_lower_case
self.remove_space = remove_space
self.keep_accents = keep_accents
self.vocab_file = vocab_file
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(vocab_file)
super().__init__(
do_lower_case=do_lower_case,
remove_space=remove_space,
keep_accents=keep_accents,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
sp_model_kwargs=self.sp_model_kwargs,
**kwargs,
)
@property
def vocab_size(self) -> int:
return len(self.sp_model)
def get_vocab(self) -> Dict[str, int]:
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
return state
def __setstate__(self, d):
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def preprocess_text(self, inputs):
if self.remove_space:
outputs = " ".join(inputs.strip().split())
else:
outputs = inputs
outputs = outputs.replace("``", '"').replace("''", '"')
if not self.keep_accents:
outputs = unicodedata.normalize("NFKD", outputs)
outputs = "".join([c for c in outputs if not unicodedata.combining(c)])
if self.do_lower_case:
outputs = outputs.lower()
return outputs
def _tokenize(self, text: str) -> List[str]:
"""Tokenize a string."""
text = self.preprocess_text(text)
pieces = self.sp_model.encode(text, out_type=str)
new_pieces = []
for piece in pieces:
if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit():
# Logic to handle special cases see https://github.com/google-research/bert/blob/master/README.md#tokenization
# `9,9` -> ['▁9', ',', '9'] instead of [`_9,`, '9']
cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, ""))
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0]) == 1:
cur_pieces = cur_pieces[1:]
else:
cur_pieces[0] = cur_pieces[0][1:]
cur_pieces.append(piece[-1])
new_pieces.extend(cur_pieces)
else:
new_pieces.append(piece)
return new_pieces
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.sp_model.PieceToId(token)
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.sp_model.IdToPiece(index)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
current_sub_tokens = []
out_string = ""
prev_is_special = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(current_sub_tokens) + token
prev_is_special = True
current_sub_tokens = []
else:
current_sub_tokens.append(token)
prev_is_special = False
out_string += self.sp_model.decode(current_sub_tokens)
return out_string.strip()
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An ALBERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return cls + token_ids_0 + sep
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)
__all__ = ["AlbertTokenizer"]
|
transformers/src/transformers/models/albert/tokenization_albert.py/0
|
{
"file_path": "transformers/src/transformers/models/albert/tokenization_albert.py",
"repo_id": "transformers",
"token_count": 6280
}
| 98 |
# coding=utf-8
# Copyright 2024 The Rhymes-AI Teams Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...activations import ACT2FN
from ...configuration_utils import PretrainedConfig
from ...generation import GenerationMixin
from ...image_processing_utils import BaseImageProcessor, BatchFeature, select_best_resolution
from ...image_transforms import PaddingMode, convert_to_rgb, pad, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
infer_channel_dimension_format,
to_numpy_array,
valid_images,
validate_preprocess_arguments,
)
from ...modeling_utils import PreTrainedModel
from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
from ...tokenization_utils import (
PreTokenizedInput,
TextInput,
)
from ...utils import (
TensorType,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.deprecation import deprecate_kwarg
from ...utils.import_utils import is_torch_available
from ..auto import CONFIG_MAPPING, AutoConfig, AutoModel, AutoModelForCausalLM, AutoTokenizer
from ..llama.configuration_llama import LlamaConfig
from ..llama.modeling_llama import (
LlamaDecoderLayer,
LlamaForCausalLM,
LlamaMLP,
LlamaModel,
LlamaPreTrainedModel,
LlamaRMSNorm,
)
from ..llava.modeling_llava import LlavaCausalLMOutputWithPast
from ..llava_next.image_processing_llava_next import divide_to_patches, make_batched_images
logger = logging.get_logger(__name__)
if is_torch_available():
import torch
from torch import nn
def sequential_experts_gemm(token_states, expert_weights, tokens_per_expert):
"""
Compute the matrix multiplication (GEMM) for each expert sequentially. This approach is computationally inefficient, especially when dealing with a large number of experts.
Args:
token_states (torch.Tensor): Input tensor of shape (num_tokens, in_features).
expert_weights (torch.Tensor): Weight tensor of shape (num_experts, in_features, out_features).
tokens_per_expert (torch.Tensor): Number of tokens assigned to each expert.
Returns:
torch.Tensor: Output tensor of shape (num_tokens, out_features).
"""
num_tokens = token_states.shape[0]
out_features = expert_weights.shape[-1]
output = torch.zeros(num_tokens, out_features, dtype=token_states.dtype, device=token_states.device)
cumsum_num_tokens = torch.cumsum(tokens_per_expert, dim=0)
# Insert zero at the begining for offset index's convenience
zero_tensor = torch.zeros(1, dtype=torch.long, device=cumsum_num_tokens.device)
cumsum_num_tokens = torch.cat((zero_tensor, cumsum_num_tokens))
for expert_num in range(expert_weights.shape[0]):
start = cumsum_num_tokens[expert_num]
end = cumsum_num_tokens[expert_num + 1]
tokens = token_states[start:end]
out = torch.matmul(tokens, expert_weights[expert_num])
output[start:end] = out
return output
class AriaTextConfig(LlamaConfig):
r"""
This class handles the configuration for the text component of the Aria model.
Instantiating a configuration with the defaults will yield a similar configuration to that of the model of the Aria
[rhymes-ai/Aria](https://huggingface.co/rhymes-ai/Aria) architecture.
This class extends the LlamaConfig to include additional parameters specific to the Mixture of Experts (MoE) architecture.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`LlamaModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 4096):
The size of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
Llama 2 up to 4096, CodeLlama up to 16384.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 2):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 1):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 2):
End of stream token id.
pretraining_tp (`int`, *optional*, defaults to 1):
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
mlp_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
head_dim (`int`, *optional*):
The attention head dimension. If None, it will default to hidden_size // num_heads
moe_num_experts (`int`, *optional*, defaults to 8):
The number of experts in the MoE layer.
moe_topk (`int`, *optional*, defaults to 2):
The number of top experts to route to for each token.
moe_num_shared_experts (`int`, *optional*, defaults to 2):
The number of shared experts.
"""
model_type = "aria_text"
base_config_key = "text_config"
def __init__(
self,
intermediate_size: int = 4096,
moe_num_experts: int = 8,
moe_topk: int = 2,
moe_num_shared_experts: int = 2,
pad_token_id=2,
**super_kwargs,
):
super().__init__(pad_token_id=pad_token_id, **super_kwargs)
self.intermediate_size = intermediate_size
self.moe_num_experts = moe_num_experts
self.moe_topk = moe_topk
self.moe_num_shared_experts = moe_num_shared_experts
class AriaConfig(PretrainedConfig):
r"""
This class handles the configuration for both vision and text components of the Aria model,
as well as additional parameters for image token handling and projector mapping.
Instantiating a configuration with the defaults will yield a similar configuration to that of the model of the Aria
[rhymes-ai/Aria](https://huggingface.co/rhymes-ai/Aria) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (`AriaVisionConfig` or `dict`, *optional*):
Configuration for the vision component.
vision_feature_layer (`int`, *optional*, defaults to -1):
The index of the layer to select the vision feature.
text_config (`AriaTextConfig` or `dict`, *optional*):
Configuration for the text component.
projector_patch_to_query_dict (`dict`, *optional*):
Mapping of patch sizes to query dimensions.
image_token_index (`int`, *optional*, defaults to 9):
Index used to represent image tokens.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated normal initializer for initializing all weight matrices.
Attributes:
model_type (`str`):
Type of the model, set to `"aria"`.
image_token_index (`int`):
Index used to represent image tokens.
projector_patch_to_query_dict (`dict`):
Mapping of patch sizes to query dimensions.
vision_config (`AriaVisionConfig`):
Configuration for the vision component.
text_config (`AriaTextConfig`):
Configuration for the text component.
"""
model_type = "aria"
sub_configs = {"text_config": AriaTextConfig, "vision_config": AutoConfig}
def __init__(
self,
vision_config=None,
vision_feature_layer: int = -1,
text_config: AriaTextConfig = None,
projector_patch_to_query_dict: Dict = None,
image_token_index: int = 9,
initializer_range: float = 0.02,
**kwargs,
):
self.image_token_index = image_token_index
# Convert the keys and values of projector_patch_to_query_dict to integers
# This ensures consistency even if they were provided as strings
if projector_patch_to_query_dict is None:
projector_patch_to_query_dict = {
1225: 128,
4900: 256,
}
self.projector_patch_to_query_dict = {int(k): int(v) for k, v in projector_patch_to_query_dict.items()}
self.max_value_projector_patch_to_query_dict = max(self.projector_patch_to_query_dict.values())
self.vision_feature_layer = vision_feature_layer
if isinstance(vision_config, dict):
vision_config["model_type"] = "idefics3_vision"
vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
elif vision_config is None:
vision_config = CONFIG_MAPPING["idefics3_vision"]()
self.vision_config = vision_config
self.initializer_range = initializer_range
if isinstance(text_config, dict) and "model_type" in text_config:
text_config = AriaTextConfig(**text_config)
elif text_config is None:
text_config = AriaTextConfig()
self.text_config = text_config
super().__init__(**kwargs)
class AriaTextRMSNorm(LlamaRMSNorm):
pass
class AriaProjectorMLP(nn.Module):
"""
Feed-Forward Network module for the Aria Projector.
Args:
in_features (`int`):
Input embedding dimension.
hidden_features (`int`):
Hidden dimension of the feed-forward network.
output_dim (`int`):
Output dimension.
"""
def __init__(self, in_features, hidden_features, output_dim):
super().__init__()
self.linear_in = nn.Linear(in_features, hidden_features, bias=False)
self.linear_out = nn.Linear(hidden_features, output_dim, bias=False)
self.act = ACT2FN["gelu_new"]
def forward(self, hidden_states):
hidden_states = self.act(self.linear_in(hidden_states))
hidden_states = self.linear_out(hidden_states)
return hidden_states
class AriaCrossAttention(nn.Module):
"""
Aria Cross-Attention module.
Args:
config (`AriaConfig`):
The configuration to use.
"""
def __init__(self, config: AriaConfig, dropout_rate: float = 0):
super().__init__()
hidden_size = config.vision_config.hidden_size
num_heads = config.vision_config.num_attention_heads
self.num_heads = num_heads
self.q_proj = nn.Linear(hidden_size, hidden_size, bias=False)
self.k_proj = nn.Linear(hidden_size, hidden_size, bias=False)
self.v_proj = nn.Linear(hidden_size, hidden_size, bias=False)
# Original code here: https://github.com/rhymes-ai/Aria/blob/719ff4e52b727443cba3793b0e27fe64e0244fe1/aria/model/projector.py#L48
self.multihead_attn = nn.MultiheadAttention(hidden_size, num_heads, batch_first=True)
self.linear = nn.Linear(hidden_size, hidden_size)
self.dropout = nn.Dropout(dropout_rate)
self.layer_norm = nn.LayerNorm(hidden_size)
self.layer_norm_kv = nn.LayerNorm(hidden_size)
def forward(self, key_value_states, hidden_states, attn_mask=None):
"""
Forward pass of the AriaCrossAttention module.
Args:
key_value_states (`torch.Tensor`):
Input tensor for key and value.
hidden_states (`torch.Tensor`):
Input tensor for query.
attn_mask (`torch.Tensor`, *optional*, defaults to None):
Attention mask.
Returns:
torch.Tensor:
Output tensor after cross-attention.
"""
query = self.q_proj(self.layer_norm(hidden_states))
key_value_states = self.layer_norm_kv(key_value_states)
key = self.k_proj(key_value_states)
value = self.v_proj(key_value_states)
attn_output, _ = self.multihead_attn(query, key, value, attn_mask=attn_mask)
attn_output = self.dropout(self.linear(attn_output))
return attn_output
class AriaProjector(nn.Module):
"""
Aria Projector module.
This module projects vision features into the language model's embedding space, enabling interaction between vision and language components.
Args:
config (`AriaConfig`):
Configuration object for the model.
"""
def __init__(
self,
config: AriaConfig,
):
super().__init__()
self.patch_to_query_dict = config.projector_patch_to_query_dict
self.in_features = config.vision_config.hidden_size
self.num_heads = config.vision_config.num_attention_heads
self.kv_dim = config.vision_config.hidden_size
self.hidden_features = config.text_config.hidden_size
self.output_dim = config.text_config.hidden_size
self.query = nn.Parameter(torch.zeros(config.max_value_projector_patch_to_query_dict, self.in_features))
self.cross_attn = AriaCrossAttention(config)
self.layer_norm = nn.LayerNorm(self.in_features)
self.feed_forward = AriaProjectorMLP(self.in_features, self.hidden_features, self.output_dim)
def forward(self, key_value_states: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
"""
Forward pass of the Projector module.
Args:
key_value_states (`torch.Tensor`):
Input tensor of shape (batch_size, num_patches, kv_dim).
attn_mask (`torch.Tensor`, *optional*, default is None):
Attention mask.
Returns:
`torch.Tensor`: Output tensor of shape (batch_size, query_number, output_dim).
"""
batch_size, num_patches = key_value_states.shape[0], key_value_states.shape[1]
if num_patches not in self.patch_to_query_dict.keys():
raise KeyError(
f"Number of patches {num_patches} not found in patch_to_query_dict amongst possible values {self.patch_to_query_dict.keys()}."
)
query_num = self.patch_to_query_dict[num_patches]
queries = self.query[:query_num].unsqueeze(0).repeat(batch_size, 1, 1)
if attn_mask is not None:
attn_mask = attn_mask.repeat_interleave(self.num_heads, 0)
attn_mask = attn_mask.unsqueeze(1).expand(-1, queries.size(1), -1)
attention_out = self.cross_attn(key_value_states, queries, attn_mask=attn_mask)
out = self.feed_forward(self.layer_norm(attention_out))
return out
def _get_patch_output_size(image, target_resolution, input_data_format):
original_height, original_width = get_image_size(image, channel_dim=input_data_format)
target_height, target_width = target_resolution
scale_w = target_width / original_width
scale_h = target_height / original_height
if scale_w < scale_h:
new_width = target_width
new_height = min(math.ceil(original_height * scale_w), target_height)
else:
new_height = target_height
new_width = min(math.ceil(original_width * scale_h), target_width)
return new_height, new_width
class AriaImageProcessor(BaseImageProcessor):
"""
A vision processor for the Aria model that handles image preprocessing.
Initialize the AriaImageProcessor.
Args:
image_mean (`list`, *optional*, defaults to [0.5, 0.5, 0.5]):
Mean values for normalization.
image_std (`list`, *optional*, defaults to [0.5, 0.5, 0.5]):
Standard deviation values for normalization.
max_image_size (`int`, *optional*, defaults to 980):
Maximum image size.
min_image_size (`int`, *optional*, defaults to 336):
Minimum image size.
split_resolutions (`list`, *optional*, defaults to a list of optimal,resolutions as tuples):
The optimal resolutions for splitting the image.
split_image (`bool`, *optional*, defaults to `False`):
Whether to split the image.
do_convert_rgb (`bool`, *optional*, defaults to `True`):
Whether to convert the image to RGB.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image.
resample (PILImageResampling, *optional*, defaults to `BICUBIC`):
The resampling filter to use if resizing the image.
"""
def __init__(
self,
image_mean: List[float] = None,
image_std: List[float] = None,
max_image_size: int = 980,
min_image_size: int = 336,
split_resolutions: Optional[List[Tuple[int, int]]] = None,
split_image: Optional[bool] = False,
do_convert_rgb: Optional[bool] = True,
do_normalize: Optional[bool] = True,
resample: PILImageResampling = PILImageResampling.BICUBIC,
**kwargs,
):
super().__init__(**kwargs)
if image_mean is None:
image_mean = [0.5, 0.5, 0.5]
if image_std is None:
image_std = [0.5, 0.5, 0.5]
self.max_image_size = max_image_size
self.min_image_size = min_image_size
self.image_mean = image_mean
self.image_std = image_std
self.split_image = split_image
if split_resolutions is None:
split_resolutions = [(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (2, 4), (2, 3), (2, 2), (2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (5, 1), (6, 1), (7, 1), (8, 1)] # fmt: skip
split_resolutions = [(el[0] * 490, el[1] * 490) for el in split_resolutions]
self.split_resolutions = split_resolutions
self.do_convert_rgb = do_convert_rgb
self.do_normalize = do_normalize
self.resample = resample
def preprocess(
self,
images: Union[ImageInput, List[ImageInput]],
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
max_image_size: Optional[int] = None,
min_image_size: Optional[int] = None,
split_image: Optional[bool] = None,
do_convert_rgb: Optional[bool] = None,
do_normalize: Optional[bool] = None,
resample: PILImageResampling = None,
return_tensors: Optional[Union[str, TensorType]] = "pt",
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""
Process a list of images.
Args:
images (ImageInput or list of ImageInput):
The input image or a list of images.
image_mean (`list`, *optional*, defaults to [0.5, 0.5, 0.5]):
Mean values for normalization.
image_std (`list`, *optional*, defaults to [0.5, 0.5, 0.5]):
Standard deviation values for normalization.
max_image_size (`int`, *optional*, defaults to `self.max_image_size` (980)):
Maximum image size.
min_image_size (`int`, *optional*, defaults to `self.min_image_size` (336)):
Minimum image size.
split_image (`bool`, *optional*, defaults to `self.split_image` (False)):
Whether to split the image.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb` (True)):
Whether to convert the image to RGB.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize` (True)):
Whether to normalize the image.
resample (PILImageResampling, *optional*, defaults to `self.resample` (BICUBIC)):
The resampling filter to use if resizing the image.
return_tensors (`str` or `TensorType`, *optional*, defaults to "pt"):
The type of tensor to return.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`:
image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`:
image in (height, width, num_channels) format.
If unset, will use same as the input image.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`:
image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`:
image in (height, width, num_channels) format.
If unset, will use the inferred format of the input image.
Returns:
BatchFeature:
A BatchFeature object containing:
- 'pixel_values':
Tensor of processed image pixel values.
- 'pixel_mask':
Boolean pixel mask. This mask is a 2D tensor of shape (max_image_size, max_image_size) where:
- True (1) values indicate pixels that belong to the original resized image.
- False (0) values indicate pixels that are part of the padding.
The mask helps distinguish between actual image content and padded areas in subsequent processing steps.
- 'num_crops':
The maximum number of crops across all images.
"""
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
max_image_size = max_image_size if max_image_size is not None else self.max_image_size
min_image_size = min_image_size if min_image_size is not None else self.min_image_size
split_image = split_image if split_image is not None else self.split_image
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
resample = resample if resample is not None else self.resample
if max_image_size not in [490, 980]:
raise ValueError("max_image_size must be either 490 or 980")
images = make_batched_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
resample=resample,
)
if do_convert_rgb:
images = [convert_to_rgb(image) for image in images]
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
pixel_values = []
pixel_masks = []
num_crops = None
for image in images:
if split_image:
crop_images = self.get_image_patches(
image,
self.split_resolutions,
max_image_size,
resample,
data_format=input_data_format,
input_data_format=input_data_format,
)
else:
crop_images = [image]
if num_crops is None or len(crop_images) > num_crops:
num_crops = len(crop_images)
for crop_image in crop_images:
# At this point the scale is the rescaling factor that would bring the image to max_size in its larger dimension
h, w = get_image_size(crop_image)
scale = max_image_size / max(h, w)
if w >= h:
new_size = (max(int(h * scale), min_image_size), max_image_size) # h, w
else:
new_size = (max_image_size, max(int(w * scale), min_image_size)) # h, w
crop_image_resized = resize(
crop_image,
new_size,
resample=resample,
data_format=input_data_format,
input_data_format=input_data_format,
)
padding_bottom, padding_right = max_image_size - new_size[0], max_image_size - new_size[1]
crop_image_padded = pad(
crop_image_resized,
((0, padding_bottom), (0, padding_right)),
data_format=input_data_format,
input_data_format=input_data_format,
)
# Create a pixel mask
pixel_mask = np.zeros((max_image_size, max_image_size), dtype=bool)
pixel_mask[: new_size[0], : new_size[1]] = 1
pixel_masks.append(pixel_mask)
if do_normalize:
crop_image_padded = self.normalize(
crop_image_padded / 255.0,
self.image_mean,
self.image_std,
data_format=input_data_format,
input_data_format=input_data_format,
)
crop_image_padded = (
to_channel_dimension_format(crop_image_padded, data_format, input_data_format)
if data_format is not None
else crop_image_padded
)
pixel_values.append(crop_image_padded)
return BatchFeature(
data={
"pixel_values": np.stack(pixel_values, axis=0),
"pixel_mask": np.stack(pixel_masks, axis=0),
"num_crops": num_crops,
},
tensor_type=return_tensors,
)
def _resize_for_patching(
self, image: np.array, target_resolution: tuple, resample, input_data_format: ChannelDimension
) -> np.array:
"""
Resizes an image to a target resolution while maintaining aspect ratio.
Args:
image (np.array):
The input image.
target_resolution (tuple):
The target resolution (height, width) of the image.
resample (`PILImageResampling`):
Resampling filter to use if resizing the image.
input_data_format (`ChannelDimension` or `str`):
The channel dimension format of the input image.
Returns:
np.array: The resized and padded image.
"""
new_height, new_width = _get_patch_output_size(image, target_resolution, input_data_format)
# Resize the image
resized_image = resize(image, (new_height, new_width), resample=resample, input_data_format=input_data_format)
return resized_image
def _pad_for_patching(
self, image: np.array, target_resolution: tuple, input_data_format: ChannelDimension
) -> np.array:
"""
Pad an image to a target resolution while maintaining aspect ratio.
"""
target_height, target_width = target_resolution
new_height, new_width = _get_patch_output_size(image, target_resolution, input_data_format)
paste_x = (target_width - new_width) // 2
paste_y = (target_height - new_height) // 2
padded_image = self.pad(image, padding=((paste_y, paste_y), (paste_x, paste_x)))
return padded_image
def pad(
self,
image: np.ndarray,
padding: Union[int, Tuple[int, int], Iterable[Tuple[int, int]]],
mode: PaddingMode = PaddingMode.CONSTANT,
constant_values: Union[float, Iterable[float]] = 0.0,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Pads the `image` with the specified `padding` and `mode`. Padding can be in the (`height`, `width`)
dimension of in the (`num_patches`) dimension. In the second case an iterable if tuples is expected
as input.
Args:
image (`np.ndarray`):
The image to pad.
padding (`int` or `Tuple[int, int]` or `Iterable[Tuple[int, int]]`):
Padding to apply to the edges of the height, width axes. Can be one of three formats:
- `((before_height, after_height), (before_width, after_width))` unique pad widths for each axis.
- `((before, after),)` yields same before and after pad for height and width.
- `(pad,)` or int is a shortcut for before = after = pad width for all axes.
mode (`PaddingMode`):
The padding mode to use. Can be one of:
- `"constant"`: pads with a constant value.
- `"reflect"`: pads with the reflection of the vector mirrored on the first and last values of the
vector along each axis.
- `"replicate"`: pads with the replication of the last value on the edge of the array along each axis.
- `"symmetric"`: pads with the reflection of the vector mirrored along the edge of the array.
constant_values (`float` or `Iterable[float]`, *optional*):
The value to use for the padding if `mode` is `"constant"`.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
If unset, will use same as the input image.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
If unset, will use the inferred format of the input image.
Returns:
`np.ndarray`: The padded image.
"""
# call the general `pad` if padding on `height/width`, otherwise it's the `num_patched` dim
if isinstance(padding, int) or len(padding) != 4:
return pad(image, padding, mode, constant_values, data_format, input_data_format)
if input_data_format is None:
input_data_format = infer_channel_dimension_format(image)
padding_mode_mapping = {
PaddingMode.CONSTANT: "constant",
PaddingMode.REFLECT: "reflect",
PaddingMode.REPLICATE: "edge",
PaddingMode.SYMMETRIC: "symmetric",
}
image = np.pad(image, padding, mode=padding_mode_mapping[mode], constant_values=constant_values)
image = (
to_channel_dimension_format(image, data_format, input_data_format) if data_format is not None else image
)
return image
def get_image_patches(
self,
image: np.array,
grid_pinpoints: List[Tuple[int, int]],
patch_size: int,
resample: PILImageResampling,
data_format: ChannelDimension,
input_data_format: ChannelDimension,
) -> List[np.array]:
"""
Process an image with variable resolutions by dividing it into patches.
Args:
image (`np.array`):
The input image to be processed.
grid_pinpoints (List[Tuple[int, int]]):
A list of possible resolutions as tuples.
patch_size (`int`):
Size of the patches to divide the image into.
resample (`PILImageResampling`):
Resampling filter to use if resizing the image.
data_format (`ChannelDimension` or `str`):
The channel dimension format for the output image.
input_data_format (`ChannelDimension` or `str`):
The channel dimension format of the input image.
Returns:
`List[np.array]`: A list of NumPy arrays containing the processed image patches.
"""
if not isinstance(grid_pinpoints, list):
raise TypeError("grid_pinpoints must be a list of possible resolutions.")
possible_resolutions = grid_pinpoints
image_size = get_image_size(image, channel_dim=input_data_format)
best_resolution = select_best_resolution(image_size, possible_resolutions)
resized_image = self._resize_for_patching(
image, best_resolution, resample=resample, input_data_format=input_data_format
)
padded_image = self._pad_for_patching(resized_image, best_resolution, input_data_format=input_data_format)
patches = divide_to_patches(padded_image, patch_size=patch_size, input_data_format=input_data_format)
# make sure that all patches are in the input data format
patches = [
to_channel_dimension_format(patch, channel_dim=data_format, input_channel_dim=input_data_format)
for patch in patches
]
return patches
class AriaProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {
"text_kwargs": {
"padding": False,
},
"images_kwargs": {
"max_image_size": 980,
"split_image": False,
},
"return_tensors": TensorType.PYTORCH,
}
class AriaProcessor(ProcessorMixin):
"""
AriaProcessor is a processor for the Aria model which wraps the Aria image preprocessor and the LLama slow tokenizer.
Args:
image_processor (`AriaImageProcessor`, *optional*):
The AriaImageProcessor to use for image preprocessing.
tokenizer (`PreTrainedTokenizerBase`, *optional*):
An instance of [`PreTrainedTokenizerBase`]. This should correspond with the model's text model. The tokenizer is a required input.
chat_template (`str`, *optional*):
A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string.
size_conversion (`Dict`, *optional*):
A dictionary indicating size conversions for images.
"""
attributes = ["image_processor", "tokenizer"]
valid_kwargs = ["chat_template", "size_conversion"]
image_processor_class = "AriaImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(
self,
image_processor=None,
tokenizer: Union[AutoTokenizer, str] = None,
chat_template: Optional[str] = None,
size_conversion: Optional[Dict[Union[float, int], int]] = None,
):
if size_conversion is None:
size_conversion = {490: 128, 980: 256}
self.size_conversion = {int(k): v for k, v in size_conversion.items()}
if tokenizer is not None and tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.unk_token
super().__init__(image_processor, tokenizer, chat_template=chat_template)
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
images: Optional[ImageInput] = None,
audio=None,
videos=None,
**kwargs: Unpack[AriaProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s).
Args:
text (`TextInput`, `PreTokenizedInput`, `List[TextInput]`, `List[PreTokenizedInput]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`ImageInput`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
- **pixel_mask** -- Pixel mask to be fed to a model. Returned when `images` is not `None`.
"""
output_kwargs = self._merge_kwargs(
AriaProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if isinstance(text, str):
text = [text]
elif not isinstance(text, list) and not isinstance(text[0], str):
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
if images is not None:
image_inputs = self.image_processor(
images,
**output_kwargs["images_kwargs"],
)
# expand the image_token according to the num_crops and tokens per image
tokens_per_image = self.size_conversion[image_inputs.pixel_values.shape[2]]
prompt_strings = []
num_crops = image_inputs.pop("num_crops") * tokens_per_image
for sample in text:
sample = sample.replace(self.tokenizer.image_token, self.tokenizer.image_token * num_crops)
prompt_strings.append(sample)
else:
image_inputs = {}
prompt_strings = text
text_inputs = self.tokenizer(
prompt_strings,
**output_kwargs["text_kwargs"],
)
return BatchFeature(data={**text_inputs, **image_inputs})
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
class AriaSharedExpertsMLP(LlamaMLP):
"""
Shared Expert MLP for shared experts.
Unlike routed experts, shared experts process all tokens without routing.
This class reconfigures the intermediate size in comparison to the LlamaMLP.
Args:
config (`AriaTextConfig`): Configuration object for the Aria language model.
"""
def __init__(self, config: AriaTextConfig):
super().__init__(self)
self.intermediate_size = config.intermediate_size * config.moe_num_shared_experts
class AriaGroupedExpertsGemm(nn.Module):
"""
Grouped GEMM (General Matrix Multiplication) module for efficient expert computation.
This module utilizes the grouped_gemm library (https://github.com/fanshiqing/grouped_gemm)
for optimized performance. If the grouped_gemm library is not installed, it gracefully
falls back to a sequential GEMM implementation, which may be slower but ensures
functionality.
Args:
in_features (`int`):
Number of input features.
out_features (`int`):
Number of output features.
groups (`int`):
Number of expert groups.
"""
def __init__(self, in_features, out_features, groups):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.groups = groups
self.weight = nn.Parameter(torch.empty(groups, in_features, out_features))
def forward(self, input, tokens_per_expert):
"""
Perform grouped matrix multiplication.
Args:
input (`torch.Tensor`):
Input tensor of shape (num_tokens, in_features).
tokens_per_expert (`torch.Tensor`):
Number of tokens assigned to each expert.
Returns:
torch.Tensor: Output tensor of shape (num_tokens, out_features).
"""
return sequential_experts_gemm(
input,
self.weight,
tokens_per_expert.cpu(),
)
class AriaGroupedExpertsMLP(nn.Module):
"""
Grouped MLP module for Mixture of Experts.
Args:
config (`AriaTextConfig`):
Configuration object for the model.
"""
def __init__(self, config: AriaTextConfig) -> None:
super().__init__()
self.config = config
self.fc1 = AriaGroupedExpertsGemm(config.hidden_size, config.intermediate_size * 2, config.moe_num_experts)
self.fc2 = AriaGroupedExpertsGemm(config.intermediate_size, config.hidden_size, config.moe_num_experts)
def forward(self, permuted_tokens, tokens_per_expert):
"""
Forward pass of the Grouped MLP.
Args:
permuted_tokens (torch.Tensor): Permuted input tokens.
tokens_per_expert (torch.Tensor): Number of tokens assigned to each expert.
Returns:
torch.Tensor: Output tensor after passing through the MLP.
"""
fc1_output = self.fc1(permuted_tokens, tokens_per_expert)
projection, gate = torch.chunk(fc1_output, 2, dim=-1)
fc1_output = nn.functional.silu(projection) * gate
fc2_output = self.fc2(fc1_output, tokens_per_expert)
return fc2_output
# Token permutation adapted from https://github.com/NVIDIA/Megatron-LM/blob/54f1f78529cbc2b9cddad313e7f9d96ac0420a27/megatron/core/transformer/moe/token_dispatcher.py#L291-L587
class AriaTextMoELayer(nn.Module):
"""
Aria Text Mixture of Experts (MoE) Layer.
This layer applies a gating mechanism to route input tokens to different experts.
Args:
config (`AriaTextConfig`):
Configuration object for the text component of the model.
"""
def __init__(self, config: AriaTextConfig):
super().__init__()
self.router = nn.Linear(config.hidden_size, config.moe_num_experts, bias=False)
self.experts = AriaGroupedExpertsMLP(config)
self.shared_experts = AriaSharedExpertsMLP(config)
self.config = config
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
"""
Forward pass of the MoE Layer.
Args:
hidden_states (`torch.Tensor`):
Input tensor of shape (batch_size, sequence_length, hidden_size).
Returns:
torch.Tensor: Output tensor after passing through the MoE layer.
Process:
1. Route tokens to experts using the router.
2. Permute tokens based on routing decisions.
3. Process tokens through experts.
4. Unpermute and combine expert outputs.
5. Add shared expert output to the final result.
"""
original_shape = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_states.size(-1))
# Top K Routing
logits = self.router(hidden_states)
top_logits, top_indices = torch.topk(logits, k=self.config.moe_topk, dim=1)
scores = nn.functional.softmax(top_logits, dim=-1)
original_dtype = top_indices.dtype
tokens_per_expert = torch.histc(
top_indices.flatten().to(torch.float32),
bins=self.config.moe_num_experts,
min=0,
max=self.config.moe_num_experts - 1,
).to(original_dtype)
indices = top_indices
# Token permutation
flatten_indices = indices.view(-1)
sorted_indices = torch.argsort(flatten_indices)
permuted_tokens = hidden_states.index_select(0, sorted_indices // self.config.moe_topk)
# Process through experts
expert_output = self.experts(permuted_tokens, tokens_per_expert)
# Token unpermutation
unpermuted_tokens = torch.zeros(
(scores.shape[0] * self.config.moe_topk, expert_output.size(1)),
dtype=expert_output.dtype,
device=expert_output.device,
)
unpermuted_tokens.index_copy_(0, sorted_indices, expert_output)
unpermuted_tokens = unpermuted_tokens.view(-1, self.config.moe_topk, expert_output.size(1))
output = (unpermuted_tokens * scores.unsqueeze(-1)).sum(dim=1).view(original_shape)
# Add shared expert output
shared_expert_output = self.shared_experts(hidden_states.view(original_shape))
return output + shared_expert_output
class AriaTextDecoderLayer(LlamaDecoderLayer):
"""
Aria Text Decoder Layer.
This class defines a single decoder layer in the language model, incorporating self-attention and Mixture of Experts (MoE) feed-forward network.
Args:
config (`AriaTextConfig`):
Configuration object for the text component of the model.
layer_idx (`int`):
Index of the layer.
"""
def __init__(self, config: AriaTextConfig, layer_idx: int):
super().__init__(self)
self.mlp = AriaTextMoELayer(config)
class AriaTextPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models.
"""
config_class = AriaConfig
base_model_prefix = "model"
_no_split_modules = ["AriaTextDecoderLayer", "AriaGroupedExpertsGemm"]
supports_gradient_checkpointing = True
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = False
_supports_sdpa = True
_supports_cache_class = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, AriaGroupedExpertsGemm):
module.weight.data.normal_(mean=0.0, std=std)
elif isinstance(module, nn.Conv2d):
module.weight.data.normal_(mean=0.0, std=std)
if hasattr(module, "bias") and module.bias is not None:
module.bias.data.zero_()
class AriaPreTrainedModel(LlamaPreTrainedModel):
_supports_attention_backend = False
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, AriaProjector):
nn.init.trunc_normal_(module.query, std=std)
class AriaTextModel(LlamaModel):
def __init__(self, config: AriaTextConfig):
super().__init__(config)
self.layers = nn.ModuleList(
[AriaTextDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.gradient_checkpointing = False
self.post_init()
class AriaTextForCausalLM(AriaTextPreTrainedModel, LlamaForCausalLM):
"""
Aria model for causal language modeling tasks.
This class extends `LlamaForCausalLM` to incorporate the Mixture of Experts (MoE) approach,
allowing for more efficient and scalable language modeling.
Args:
config (`AriaTextConfig`):
Configuration object for the model.
"""
_tied_weights_keys = ["lm_head.weight"]
config_class = AriaTextConfig
def __init__(self, config: AriaTextConfig):
super().__init__(config)
self.model = AriaTextModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
class AriaCausalLMOutputWithPast(LlavaCausalLMOutputWithPast):
pass
ARIA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor`, *optional*):
Input token IDs.
pixel_values (`torch.FloatTensor`, *optional*):
Pixel values of the images.
pixel_mask (`torch.LongTensor`, *optional*):
Mask for the pixel values.
attention_mask (`torch.Tensor`, *optional*):
Attention mask.
position_ids (`torch.LongTensor`, *optional*):
Position IDs.
past_key_values (`List[torch.FloatTensor]`, *optional*):
Past key values for efficient processing.
inputs_embeds (`torch.FloatTensor`, *optional*):
Input embeddings.
labels (`torch.LongTensor`, *optional*):
Labels for computing the language modeling loss.
use_cache (`bool`, *optional*):
Whether to use the model's cache mechanism.
output_attentions (`bool`, *optional*):
Whether to output attention weights.
output_hidden_states (`bool`, *optional*):
Whether to output hidden states.
return_dict (`bool`, *optional*):
Whether to return a `ModelOutput` object.
logits_to_keep (`int` or `torch.Tensor`, *optional*, defaults to 0):
If an `int`, calculate logits for the last `logits_to_keep` tokens, or all `input_ids` if `0`.
Otherwise, slice according to the 1D tensor in the sequence length dimension
cache_position (`torch.LongTensor`, *optional*):
Cache positions.
**loss_kwargs:
Additional keyword arguments for loss calculation.
"""
ARIA_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config (`AriaConfig`):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"""Aria model for conditional generation tasks.
This model combines a vision tower, a multi-modal projector, and a language model
to perform tasks that involve both image and text inputs.""",
ARIA_START_DOCSTRING,
)
class AriaForConditionalGeneration(AriaPreTrainedModel, GenerationMixin):
config_class = AriaConfig
_supports_flash_attn_2 = False
_supports_sdpa = False
_tied_weights_keys = ["language_model.lm_head.weight"]
def __init__(self, config: AriaConfig):
super().__init__(config)
self.vision_tower = AutoModel.from_config(config.vision_config)
self.multi_modal_projector = AriaProjector(config)
self.vocab_size = config.text_config.vocab_size
self.language_model = AutoModelForCausalLM.from_config(config.text_config)
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
self._use_flash_attention_2 = config.text_config._attn_implementation == "flash_attention_2"
self.post_init()
def _create_patch_attention_mask(self, pixel_mask):
if pixel_mask is None:
return None
patches_subgrid = pixel_mask.unfold(
dimension=1,
size=self.vision_tower.config.patch_size,
step=self.vision_tower.config.patch_size,
)
patches_subgrid = patches_subgrid.unfold(
dimension=2,
size=self.vision_tower.config.patch_size,
step=self.vision_tower.config.patch_size,
)
return (patches_subgrid.sum(dim=(-1, -2)) > 0).bool()
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
def set_decoder(self, decoder):
self.language_model.set_decoder(decoder)
def get_decoder(self):
return self.language_model.get_decoder()
def get_image_features(
self,
pixel_values: torch.FloatTensor,
pixel_mask: torch.FloatTensor = None,
vision_feature_layer: int = -1,
):
patch_attention_mask = self._create_patch_attention_mask(pixel_mask)
image_outputs = self.vision_tower(
pixel_values, patch_attention_mask=patch_attention_mask, output_hidden_states=True
)
image_attn_mask = None
if patch_attention_mask is not None:
flattened_mask = patch_attention_mask.flatten(1)
image_attn_mask = torch.logical_not(flattened_mask)
selected_image_feature = image_outputs.hidden_states[vision_feature_layer]
image_features = self.multi_modal_projector(selected_image_feature, attn_mask=image_attn_mask)
return image_features
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(ARIA_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=AriaCausalLMOutputWithPast, config_class=AriaConfig)
def forward(
self,
input_ids: torch.LongTensor = None,
pixel_values: torch.FloatTensor = None,
pixel_mask: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
cache_position: Optional[torch.LongTensor] = None,
**loss_kwargs,
) -> Union[Tuple, AriaCausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or `model.image_token_id` (where `model` is your instance of `Idefics3ForConditionalGeneration`).
Tokens with indices set to `model.image_token_id` are ignored (masked), the loss is only
computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> import requests
>>> import torch
>>> from PIL import Image
>>> from io import BytesIO
>>> from transformers import AutoProcessor, AutoModel
>>> from transformers.image_utils import load_image
>>> # Note that passing the image urls (instead of the actual pil images) to the processor is also possible
>>> image1 = load_image("https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg")
>>> image2 = load_image("https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg")
>>> image3 = load_image("https://cdn.britannica.com/68/170868-050-8DDE8263/Golden-Gate-Bridge-San-Francisco.jpg")
>>> processor = AutoProcessor.from_pretrained("Rhymes-AI/Aria")
>>> model = AutoModel.from_pretrained("Rhymes-AI/Aria", torch_dtype=torch.bfloat16, device_map="auto")
>>> # Create inputs
>>> messages = [
... {
... "role": "user",
... "content": [
... {"type": "image"},
... {"type": "text", "text": "In this image, we can see the city of New York, and more specifically the Statue of Liberty."},
... {"type": "image"},
... {"type": "text", "text": "What can we see in this image?"},
... ]
... },
... {
... "role": "user",
... "content": [
... {"type": "image"},
... {"type": "text", "text": "In which city is that bridge located?"},
... ]
... }
... ]
>>> prompts = [processor.apply_chat_template([message], add_generation_prompt=True) for message in messages]
>>> images = [[image1, image2], [image3]]
>>> inputs = processor(text=prompts, images=images, padding=True, return_tensors="pt").to(model.device)
>>> # Generate
>>> generated_ids = model.generate(**inputs, max_new_tokens=256)
>>> generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
>>> print(generated_texts[0])
Assistant: There are buildings, trees, lights, and water visible in this image.
>>> print(generated_texts[1])
Assistant: The bridge is in San Francisco.
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if inputs_embeds is None:
inputs_embeds = self.get_input_embeddings()(input_ids)
# 2. Merge text and images
if pixel_values is not None and inputs_embeds.shape[1] != 1:
if input_ids is None:
special_image_mask = inputs_embeds == self.get_input_embeddings()(
torch.tensor(self.config.image_token_index, dtype=torch.long, device=inputs_embeds.device)
)
n_image_tokens = (special_image_mask).sum(dim=1).sum(dim=0)[0]
else:
image_embeds = input_ids == self.config.image_token_index
special_image_mask = image_embeds.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
n_image_tokens = (image_embeds).sum(dim=1).sum(dim=0)
image_features = self.get_image_features(
pixel_values=pixel_values,
pixel_mask=pixel_mask,
vision_feature_layer=self.config.vision_feature_layer,
)
n_images, n_features_per_image = image_features.shape[0], image_features.shape[1]
n_image_features = n_images * n_features_per_image
if n_image_tokens != n_image_features:
raise ValueError(
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
)
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
outputs = self.language_model(
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
logits_to_keep=logits_to_keep,
)
logits = outputs[0]
loss = None
if labels is not None:
loss = self.loss_function(
logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **loss_kwargs
)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return AriaCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
inputs_embeds=None,
pixel_values=None,
pixel_mask=None,
attention_mask=None,
cache_position=None,
logits_to_keep=None,
**kwargs,
):
model_inputs = self.language_model.prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
logits_to_keep=logits_to_keep,
**kwargs,
)
if cache_position[0] == 0:
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
# Otherwise we need pixel values to be passed to model
model_inputs["pixel_values"] = pixel_values
model_inputs["pixel_mask"] = pixel_mask
return model_inputs
__all__ = [
"AriaConfig",
"AriaTextConfig",
"AriaImageProcessor",
"AriaProcessor",
"AriaForConditionalGeneration",
"AriaPreTrainedModel",
"AriaTextPreTrainedModel",
"AriaTextModel",
"AriaTextForCausalLM",
]
|
transformers/src/transformers/models/aria/modular_aria.py/0
|
{
"file_path": "transformers/src/transformers/models/aria/modular_aria.py",
"repo_id": "transformers",
"token_count": 29875
}
| 99 |
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Auto Tokenizer class."""
import importlib
import json
import os
import warnings
from collections import OrderedDict
from typing import TYPE_CHECKING, Dict, Optional, Tuple, Union
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...modeling_gguf_pytorch_utils import load_gguf_checkpoint
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import TOKENIZER_CONFIG_FILE
from ...utils import (
cached_file,
extract_commit_hash,
is_g2p_en_available,
is_sentencepiece_available,
is_tokenizers_available,
logging,
)
from ..encoder_decoder import EncoderDecoderConfig
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
config_class_to_model_type,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
if is_tokenizers_available():
from ...tokenization_utils_fast import PreTrainedTokenizerFast
else:
PreTrainedTokenizerFast = None
logger = logging.get_logger(__name__)
if TYPE_CHECKING:
# This significantly improves completion suggestion performance when
# the transformers package is used with Microsoft's Pylance language server.
TOKENIZER_MAPPING_NAMES: OrderedDict[str, Tuple[Optional[str], Optional[str]]] = OrderedDict()
else:
TOKENIZER_MAPPING_NAMES = OrderedDict(
[
(
"albert",
(
"AlbertTokenizer" if is_sentencepiece_available() else None,
"AlbertTokenizerFast" if is_tokenizers_available() else None,
),
),
("align", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
("aria", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("bark", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
("bart", ("BartTokenizer", "BartTokenizerFast")),
(
"barthez",
(
"BarthezTokenizer" if is_sentencepiece_available() else None,
"BarthezTokenizerFast" if is_tokenizers_available() else None,
),
),
("bartpho", ("BartphoTokenizer", None)),
("bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
("bert-generation", ("BertGenerationTokenizer" if is_sentencepiece_available() else None, None)),
("bert-japanese", ("BertJapaneseTokenizer", None)),
("bertweet", ("BertweetTokenizer", None)),
(
"big_bird",
(
"BigBirdTokenizer" if is_sentencepiece_available() else None,
"BigBirdTokenizerFast" if is_tokenizers_available() else None,
),
),
("bigbird_pegasus", ("PegasusTokenizer", "PegasusTokenizerFast" if is_tokenizers_available() else None)),
("biogpt", ("BioGptTokenizer", None)),
("blenderbot", ("BlenderbotTokenizer", "BlenderbotTokenizerFast")),
("blenderbot-small", ("BlenderbotSmallTokenizer", None)),
("blip", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
("blip-2", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
("bloom", (None, "BloomTokenizerFast" if is_tokenizers_available() else None)),
("bridgetower", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)),
("bros", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
("byt5", ("ByT5Tokenizer", None)),
(
"camembert",
(
"CamembertTokenizer" if is_sentencepiece_available() else None,
"CamembertTokenizerFast" if is_tokenizers_available() else None,
),
),
("canine", ("CanineTokenizer", None)),
(
"chameleon",
(
"LlamaTokenizer" if is_sentencepiece_available() else None,
"LlamaTokenizerFast" if is_tokenizers_available() else None,
),
),
("chinese_clip", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
(
"clap",
(
"RobertaTokenizer",
"RobertaTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"clip",
(
"CLIPTokenizer",
"CLIPTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"clipseg",
(
"CLIPTokenizer",
"CLIPTokenizerFast" if is_tokenizers_available() else None,
),
),
("clvp", ("ClvpTokenizer", None)),
(
"code_llama",
(
"CodeLlamaTokenizer" if is_sentencepiece_available() else None,
"CodeLlamaTokenizerFast" if is_tokenizers_available() else None,
),
),
("codegen", ("CodeGenTokenizer", "CodeGenTokenizerFast" if is_tokenizers_available() else None)),
("cohere", (None, "CohereTokenizerFast" if is_tokenizers_available() else None)),
("cohere2", (None, "CohereTokenizerFast" if is_tokenizers_available() else None)),
("colpali", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("convbert", ("ConvBertTokenizer", "ConvBertTokenizerFast" if is_tokenizers_available() else None)),
(
"cpm",
(
"CpmTokenizer" if is_sentencepiece_available() else None,
"CpmTokenizerFast" if is_tokenizers_available() else None,
),
),
("cpmant", ("CpmAntTokenizer", None)),
("ctrl", ("CTRLTokenizer", None)),
("data2vec-audio", ("Wav2Vec2CTCTokenizer", None)),
("data2vec-text", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)),
("dbrx", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
("deberta", ("DebertaTokenizer", "DebertaTokenizerFast" if is_tokenizers_available() else None)),
(
"deberta-v2",
(
"DebertaV2Tokenizer" if is_sentencepiece_available() else None,
"DebertaV2TokenizerFast" if is_tokenizers_available() else None,
),
),
(
"diffllama",
(
"LlamaTokenizer" if is_sentencepiece_available() else None,
"LlamaTokenizerFast" if is_tokenizers_available() else None,
),
),
("distilbert", ("DistilBertTokenizer", "DistilBertTokenizerFast" if is_tokenizers_available() else None)),
(
"dpr",
(
"DPRQuestionEncoderTokenizer",
"DPRQuestionEncoderTokenizerFast" if is_tokenizers_available() else None,
),
),
("electra", ("ElectraTokenizer", "ElectraTokenizerFast" if is_tokenizers_available() else None)),
("emu3", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
("ernie", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
("ernie_m", ("ErnieMTokenizer" if is_sentencepiece_available() else None, None)),
("esm", ("EsmTokenizer", None)),
("falcon", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)),
("falcon_mamba", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)),
(
"fastspeech2_conformer",
("FastSpeech2ConformerTokenizer" if is_g2p_en_available() else None, None),
),
("flaubert", ("FlaubertTokenizer", None)),
("fnet", ("FNetTokenizer", "FNetTokenizerFast" if is_tokenizers_available() else None)),
("fsmt", ("FSMTTokenizer", None)),
("funnel", ("FunnelTokenizer", "FunnelTokenizerFast" if is_tokenizers_available() else None)),
(
"gemma",
(
"GemmaTokenizer" if is_sentencepiece_available() else None,
"GemmaTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"gemma2",
(
"GemmaTokenizer" if is_sentencepiece_available() else None,
"GemmaTokenizerFast" if is_tokenizers_available() else None,
),
),
("git", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
("glm", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)),
("gpt-sw3", ("GPTSw3Tokenizer" if is_sentencepiece_available() else None, None)),
("gpt2", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
("gpt_bigcode", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
("gpt_neo", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
("gpt_neox", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)),
("gpt_neox_japanese", ("GPTNeoXJapaneseTokenizer", None)),
("gptj", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
("gptsan-japanese", ("GPTSanJapaneseTokenizer", None)),
("grounding-dino", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
("groupvit", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)),
("helium", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)),
("herbert", ("HerbertTokenizer", "HerbertTokenizerFast" if is_tokenizers_available() else None)),
("hubert", ("Wav2Vec2CTCTokenizer", None)),
("ibert", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)),
("idefics", (None, "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("idefics2", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("idefics3", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("instructblip", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
("instructblipvideo", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
(
"jamba",
(
"LlamaTokenizer" if is_sentencepiece_available() else None,
"LlamaTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"jetmoe",
(
"LlamaTokenizer" if is_sentencepiece_available() else None,
"LlamaTokenizerFast" if is_tokenizers_available() else None,
),
),
("jukebox", ("JukeboxTokenizer", None)),
(
"kosmos-2",
(
"XLMRobertaTokenizer" if is_sentencepiece_available() else None,
"XLMRobertaTokenizerFast" if is_tokenizers_available() else None,
),
),
("layoutlm", ("LayoutLMTokenizer", "LayoutLMTokenizerFast" if is_tokenizers_available() else None)),
("layoutlmv2", ("LayoutLMv2Tokenizer", "LayoutLMv2TokenizerFast" if is_tokenizers_available() else None)),
("layoutlmv3", ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast" if is_tokenizers_available() else None)),
("layoutxlm", ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast" if is_tokenizers_available() else None)),
("led", ("LEDTokenizer", "LEDTokenizerFast" if is_tokenizers_available() else None)),
("lilt", ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast" if is_tokenizers_available() else None)),
(
"llama",
(
"LlamaTokenizer" if is_sentencepiece_available() else None,
"LlamaTokenizerFast" if is_tokenizers_available() else None,
),
),
("llava", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("llava_next", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("llava_next_video", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("llava_onevision", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("longformer", ("LongformerTokenizer", "LongformerTokenizerFast" if is_tokenizers_available() else None)),
(
"longt5",
(
"T5Tokenizer" if is_sentencepiece_available() else None,
"T5TokenizerFast" if is_tokenizers_available() else None,
),
),
("luke", ("LukeTokenizer", None)),
("lxmert", ("LxmertTokenizer", "LxmertTokenizerFast" if is_tokenizers_available() else None)),
("m2m_100", ("M2M100Tokenizer" if is_sentencepiece_available() else None, None)),
("mamba", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)),
("mamba2", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)),
("marian", ("MarianTokenizer" if is_sentencepiece_available() else None, None)),
(
"mbart",
(
"MBartTokenizer" if is_sentencepiece_available() else None,
"MBartTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"mbart50",
(
"MBart50Tokenizer" if is_sentencepiece_available() else None,
"MBart50TokenizerFast" if is_tokenizers_available() else None,
),
),
("mega", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)),
("megatron-bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
("mgp-str", ("MgpstrTokenizer", None)),
(
"mistral",
(
"LlamaTokenizer" if is_sentencepiece_available() else None,
"LlamaTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"mixtral",
(
"LlamaTokenizer" if is_sentencepiece_available() else None,
"LlamaTokenizerFast" if is_tokenizers_available() else None,
),
),
("mllama", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("mluke", ("MLukeTokenizer" if is_sentencepiece_available() else None, None)),
("mobilebert", ("MobileBertTokenizer", "MobileBertTokenizerFast" if is_tokenizers_available() else None)),
("modernbert", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)),
("moonshine", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)),
("moshi", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)),
("mpnet", ("MPNetTokenizer", "MPNetTokenizerFast" if is_tokenizers_available() else None)),
("mpt", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)),
("mra", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)),
(
"mt5",
(
"MT5Tokenizer" if is_sentencepiece_available() else None,
"MT5TokenizerFast" if is_tokenizers_available() else None,
),
),
("musicgen", ("T5Tokenizer", "T5TokenizerFast" if is_tokenizers_available() else None)),
("musicgen_melody", ("T5Tokenizer", "T5TokenizerFast" if is_tokenizers_available() else None)),
("mvp", ("MvpTokenizer", "MvpTokenizerFast" if is_tokenizers_available() else None)),
("myt5", ("MyT5Tokenizer", None)),
("nemotron", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)),
("nezha", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
(
"nllb",
(
"NllbTokenizer" if is_sentencepiece_available() else None,
"NllbTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"nllb-moe",
(
"NllbTokenizer" if is_sentencepiece_available() else None,
"NllbTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"nystromformer",
(
"AlbertTokenizer" if is_sentencepiece_available() else None,
"AlbertTokenizerFast" if is_tokenizers_available() else None,
),
),
("olmo", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)),
("olmo2", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)),
("olmoe", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)),
(
"omdet-turbo",
("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None),
),
("oneformer", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)),
(
"openai-gpt",
("OpenAIGPTTokenizer", "OpenAIGPTTokenizerFast" if is_tokenizers_available() else None),
),
("opt", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
("owlv2", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)),
("owlvit", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)),
("paligemma", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
(
"pegasus",
(
"PegasusTokenizer" if is_sentencepiece_available() else None,
"PegasusTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"pegasus_x",
(
"PegasusTokenizer" if is_sentencepiece_available() else None,
"PegasusTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"perceiver",
(
"PerceiverTokenizer",
None,
),
),
(
"persimmon",
(
"LlamaTokenizer" if is_sentencepiece_available() else None,
"LlamaTokenizerFast" if is_tokenizers_available() else None,
),
),
("phi", ("CodeGenTokenizer", "CodeGenTokenizerFast" if is_tokenizers_available() else None)),
("phi3", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("phimoe", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("phobert", ("PhobertTokenizer", None)),
("pix2struct", ("T5Tokenizer", "T5TokenizerFast" if is_tokenizers_available() else None)),
("pixtral", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)),
("plbart", ("PLBartTokenizer" if is_sentencepiece_available() else None, None)),
("prophetnet", ("ProphetNetTokenizer", None)),
("qdqbert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
(
"qwen2",
(
"Qwen2Tokenizer",
"Qwen2TokenizerFast" if is_tokenizers_available() else None,
),
),
("qwen2_5_vl", ("Qwen2Tokenizer", "Qwen2TokenizerFast" if is_tokenizers_available() else None)),
("qwen2_audio", ("Qwen2Tokenizer", "Qwen2TokenizerFast" if is_tokenizers_available() else None)),
(
"qwen2_moe",
(
"Qwen2Tokenizer",
"Qwen2TokenizerFast" if is_tokenizers_available() else None,
),
),
("qwen2_vl", ("Qwen2Tokenizer", "Qwen2TokenizerFast" if is_tokenizers_available() else None)),
("rag", ("RagTokenizer", None)),
("realm", ("RealmTokenizer", "RealmTokenizerFast" if is_tokenizers_available() else None)),
(
"recurrent_gemma",
(
"GemmaTokenizer" if is_sentencepiece_available() else None,
"GemmaTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"reformer",
(
"ReformerTokenizer" if is_sentencepiece_available() else None,
"ReformerTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"rembert",
(
"RemBertTokenizer" if is_sentencepiece_available() else None,
"RemBertTokenizerFast" if is_tokenizers_available() else None,
),
),
("retribert", ("RetriBertTokenizer", "RetriBertTokenizerFast" if is_tokenizers_available() else None)),
("roberta", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)),
(
"roberta-prelayernorm",
("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None),
),
("roc_bert", ("RoCBertTokenizer", None)),
("roformer", ("RoFormerTokenizer", "RoFormerTokenizerFast" if is_tokenizers_available() else None)),
("rwkv", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)),
(
"seamless_m4t",
(
"SeamlessM4TTokenizer" if is_sentencepiece_available() else None,
"SeamlessM4TTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"seamless_m4t_v2",
(
"SeamlessM4TTokenizer" if is_sentencepiece_available() else None,
"SeamlessM4TTokenizerFast" if is_tokenizers_available() else None,
),
),
("siglip", ("SiglipTokenizer" if is_sentencepiece_available() else None, None)),
("speech_to_text", ("Speech2TextTokenizer" if is_sentencepiece_available() else None, None)),
("speech_to_text_2", ("Speech2Text2Tokenizer", None)),
("speecht5", ("SpeechT5Tokenizer" if is_sentencepiece_available() else None, None)),
("splinter", ("SplinterTokenizer", "SplinterTokenizerFast")),
(
"squeezebert",
("SqueezeBertTokenizer", "SqueezeBertTokenizerFast" if is_tokenizers_available() else None),
),
("stablelm", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)),
("starcoder2", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
(
"switch_transformers",
(
"T5Tokenizer" if is_sentencepiece_available() else None,
"T5TokenizerFast" if is_tokenizers_available() else None,
),
),
(
"t5",
(
"T5Tokenizer" if is_sentencepiece_available() else None,
"T5TokenizerFast" if is_tokenizers_available() else None,
),
),
("tapas", ("TapasTokenizer", None)),
("tapex", ("TapexTokenizer", None)),
("transfo-xl", ("TransfoXLTokenizer", None)),
("tvp", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
(
"udop",
(
"UdopTokenizer" if is_sentencepiece_available() else None,
"UdopTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"umt5",
(
"T5Tokenizer" if is_sentencepiece_available() else None,
"T5TokenizerFast" if is_tokenizers_available() else None,
),
),
("video_llava", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("vilt", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
("vipllava", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("visual_bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
("vits", ("VitsTokenizer", None)),
("wav2vec2", ("Wav2Vec2CTCTokenizer", None)),
("wav2vec2-bert", ("Wav2Vec2CTCTokenizer", None)),
("wav2vec2-conformer", ("Wav2Vec2CTCTokenizer", None)),
("wav2vec2_phoneme", ("Wav2Vec2PhonemeCTCTokenizer", None)),
("whisper", ("WhisperTokenizer", "WhisperTokenizerFast" if is_tokenizers_available() else None)),
("xclip", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)),
(
"xglm",
(
"XGLMTokenizer" if is_sentencepiece_available() else None,
"XGLMTokenizerFast" if is_tokenizers_available() else None,
),
),
("xlm", ("XLMTokenizer", None)),
("xlm-prophetnet", ("XLMProphetNetTokenizer" if is_sentencepiece_available() else None, None)),
(
"xlm-roberta",
(
"XLMRobertaTokenizer" if is_sentencepiece_available() else None,
"XLMRobertaTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"xlm-roberta-xl",
(
"XLMRobertaTokenizer" if is_sentencepiece_available() else None,
"XLMRobertaTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"xlnet",
(
"XLNetTokenizer" if is_sentencepiece_available() else None,
"XLNetTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"xmod",
(
"XLMRobertaTokenizer" if is_sentencepiece_available() else None,
"XLMRobertaTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"yoso",
(
"AlbertTokenizer" if is_sentencepiece_available() else None,
"AlbertTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"zamba",
(
"LlamaTokenizer" if is_sentencepiece_available() else None,
"LlamaTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"zamba2",
(
"LlamaTokenizer" if is_sentencepiece_available() else None,
"LlamaTokenizerFast" if is_tokenizers_available() else None,
),
),
]
)
TOKENIZER_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, TOKENIZER_MAPPING_NAMES)
CONFIG_TO_TYPE = {v: k for k, v in CONFIG_MAPPING_NAMES.items()}
def tokenizer_class_from_name(class_name: str):
if class_name == "PreTrainedTokenizerFast":
return PreTrainedTokenizerFast
for module_name, tokenizers in TOKENIZER_MAPPING_NAMES.items():
if class_name in tokenizers:
module_name = model_type_to_module_name(module_name)
module = importlib.import_module(f".{module_name}", "transformers.models")
try:
return getattr(module, class_name)
except AttributeError:
continue
for config, tokenizers in TOKENIZER_MAPPING._extra_content.items():
for tokenizer in tokenizers:
if getattr(tokenizer, "__name__", None) == class_name:
return tokenizer
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
main_module = importlib.import_module("transformers")
if hasattr(main_module, class_name):
return getattr(main_module, class_name)
return None
def get_tokenizer_config(
pretrained_model_name_or_path: Union[str, os.PathLike],
cache_dir: Optional[Union[str, os.PathLike]] = None,
force_download: bool = False,
resume_download: Optional[bool] = None,
proxies: Optional[Dict[str, str]] = None,
token: Optional[Union[bool, str]] = None,
revision: Optional[str] = None,
local_files_only: bool = False,
subfolder: str = "",
**kwargs,
):
"""
Loads the tokenizer configuration from a pretrained model tokenizer configuration.
Args:
pretrained_model_name_or_path (`str` or `os.PathLike`):
This can be either:
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on
huggingface.co.
- a path to a *directory* containing a configuration file saved using the
[`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
cache_dir (`str` or `os.PathLike`, *optional*):
Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
cache should not be used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force to (re-)download the configuration files and override the cached versions if they
exist.
resume_download:
Deprecated and ignored. All downloads are now resumed by default when possible.
Will be removed in v5 of Transformers.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
when running `huggingface-cli login` (stored in `~/.huggingface`).
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
local_files_only (`bool`, *optional*, defaults to `False`):
If `True`, will only try to load the tokenizer configuration from local files.
subfolder (`str`, *optional*, defaults to `""`):
In case the tokenizer config is located inside a subfolder of the model repo on huggingface.co, you can
specify the folder name here.
<Tip>
Passing `token=True` is required when you want to use a private model.
</Tip>
Returns:
`Dict`: The configuration of the tokenizer.
Examples:
```python
# Download configuration from huggingface.co and cache.
tokenizer_config = get_tokenizer_config("google-bert/bert-base-uncased")
# This model does not have a tokenizer config so the result will be an empty dict.
tokenizer_config = get_tokenizer_config("FacebookAI/xlm-roberta-base")
# Save a pretrained tokenizer locally and you can reload its config
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased")
tokenizer.save_pretrained("tokenizer-test")
tokenizer_config = get_tokenizer_config("tokenizer-test")
```"""
use_auth_token = kwargs.pop("use_auth_token", None)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
token = use_auth_token
commit_hash = kwargs.get("_commit_hash", None)
resolved_config_file = cached_file(
pretrained_model_name_or_path,
TOKENIZER_CONFIG_FILE,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
token=token,
revision=revision,
local_files_only=local_files_only,
subfolder=subfolder,
_raise_exceptions_for_gated_repo=False,
_raise_exceptions_for_missing_entries=False,
_raise_exceptions_for_connection_errors=False,
_commit_hash=commit_hash,
)
if resolved_config_file is None:
logger.info("Could not locate the tokenizer configuration file, will try to use the model config instead.")
return {}
commit_hash = extract_commit_hash(resolved_config_file, commit_hash)
with open(resolved_config_file, encoding="utf-8") as reader:
result = json.load(reader)
result["_commit_hash"] = commit_hash
return result
class AutoTokenizer:
r"""
This is a generic tokenizer class that will be instantiated as one of the tokenizer classes of the library when
created with the [`AutoTokenizer.from_pretrained`] class method.
This class cannot be instantiated directly using `__init__()` (throws an error).
"""
def __init__(self):
raise EnvironmentError(
"AutoTokenizer is designed to be instantiated "
"using the `AutoTokenizer.from_pretrained(pretrained_model_name_or_path)` method."
)
@classmethod
@replace_list_option_in_docstrings(TOKENIZER_MAPPING_NAMES)
def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
r"""
Instantiate one of the tokenizer classes of the library from a pretrained model vocabulary.
The tokenizer class to instantiate is selected based on the `model_type` property of the config object (either
passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by
falling back to using pattern matching on `pretrained_model_name_or_path`:
List options
Params:
pretrained_model_name_or_path (`str` or `os.PathLike`):
Can be either:
- A string, the *model id* of a predefined tokenizer hosted inside a model repo on huggingface.co.
- A path to a *directory* containing vocabulary files required by the tokenizer, for instance saved
using the [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
- A path or url to a single saved vocabulary file if and only if the tokenizer only requires a
single vocabulary file (like Bert or XLNet), e.g.: `./my_model_directory/vocab.txt`. (Not
applicable to all derived classes)
inputs (additional positional arguments, *optional*):
Will be passed along to the Tokenizer `__init__()` method.
config ([`PretrainedConfig`], *optional*)
The configuration object used to determine the tokenizer class to instantiate.
cache_dir (`str` or `os.PathLike`, *optional*):
Path to a directory in which a downloaded pretrained model configuration should be cached if the
standard cache should not be used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download the model weights and configuration files and override the
cached versions if they exist.
resume_download:
Deprecated and ignored. All downloads are now resumed by default when possible.
Will be removed in v5 of Transformers.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
subfolder (`str`, *optional*):
In case the relevant files are located inside a subfolder of the model repo on huggingface.co (e.g. for
facebook/rag-token-base), specify it here.
use_fast (`bool`, *optional*, defaults to `True`):
Use a [fast Rust-based tokenizer](https://huggingface.co/docs/tokenizers/index) if it is supported for
a given model. If a fast tokenizer is not available for a given model, a normal Python-based tokenizer
is returned instead.
tokenizer_type (`str`, *optional*):
Tokenizer type to be loaded.
trust_remote_code (`bool`, *optional*, defaults to `False`):
Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
should only be set to `True` for repositories you trust and in which you have read the code, as it will
execute code present on the Hub on your local machine.
kwargs (additional keyword arguments, *optional*):
Will be passed to the Tokenizer `__init__()` method. Can be used to set special tokens like
`bos_token`, `eos_token`, `unk_token`, `sep_token`, `pad_token`, `cls_token`, `mask_token`,
`additional_special_tokens`. See parameters in the `__init__()` for more details.
Examples:
```python
>>> from transformers import AutoTokenizer
>>> # Download vocabulary from huggingface.co and cache.
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> # Download vocabulary from huggingface.co (user-uploaded) and cache.
>>> tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-german-cased")
>>> # If vocabulary files are in a directory (e.g. tokenizer was saved using *save_pretrained('./test/saved_model/')*)
>>> # tokenizer = AutoTokenizer.from_pretrained("./test/bert_saved_model/")
>>> # Download vocabulary from huggingface.co and define model-specific arguments
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base", add_prefix_space=True)
```"""
use_auth_token = kwargs.pop("use_auth_token", None)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if kwargs.get("token", None) is not None:
raise ValueError(
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
)
kwargs["token"] = use_auth_token
config = kwargs.pop("config", None)
kwargs["_from_auto"] = True
use_fast = kwargs.pop("use_fast", True)
tokenizer_type = kwargs.pop("tokenizer_type", None)
trust_remote_code = kwargs.pop("trust_remote_code", None)
gguf_file = kwargs.get("gguf_file", None)
# First, let's see whether the tokenizer_type is passed so that we can leverage it
if tokenizer_type is not None:
tokenizer_class = None
tokenizer_class_tuple = TOKENIZER_MAPPING_NAMES.get(tokenizer_type, None)
if tokenizer_class_tuple is None:
raise ValueError(
f"Passed `tokenizer_type` {tokenizer_type} does not exist. `tokenizer_type` should be one of "
f"{', '.join(c for c in TOKENIZER_MAPPING_NAMES.keys())}."
)
tokenizer_class_name, tokenizer_fast_class_name = tokenizer_class_tuple
if use_fast:
if tokenizer_fast_class_name is not None:
tokenizer_class = tokenizer_class_from_name(tokenizer_fast_class_name)
else:
logger.warning(
"`use_fast` is set to `True` but the tokenizer class does not have a fast version. "
" Falling back to the slow version."
)
if tokenizer_class is None:
tokenizer_class = tokenizer_class_from_name(tokenizer_class_name)
if tokenizer_class is None:
raise ValueError(f"Tokenizer class {tokenizer_class_name} is not currently imported.")
return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
# Next, let's try to use the tokenizer_config file to get the tokenizer class.
tokenizer_config = get_tokenizer_config(pretrained_model_name_or_path, **kwargs)
if "_commit_hash" in tokenizer_config:
kwargs["_commit_hash"] = tokenizer_config["_commit_hash"]
config_tokenizer_class = tokenizer_config.get("tokenizer_class")
tokenizer_auto_map = None
if "auto_map" in tokenizer_config:
if isinstance(tokenizer_config["auto_map"], (tuple, list)):
# Legacy format for dynamic tokenizers
tokenizer_auto_map = tokenizer_config["auto_map"]
else:
tokenizer_auto_map = tokenizer_config["auto_map"].get("AutoTokenizer", None)
# If that did not work, let's try to use the config.
if config_tokenizer_class is None:
if not isinstance(config, PretrainedConfig):
if gguf_file:
gguf_path = cached_file(pretrained_model_name_or_path, gguf_file, **kwargs)
config_dict = load_gguf_checkpoint(gguf_path, return_tensors=False)["config"]
config = AutoConfig.for_model(**config_dict)
else:
config = AutoConfig.from_pretrained(
pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs
)
config_tokenizer_class = config.tokenizer_class
if hasattr(config, "auto_map") and "AutoTokenizer" in config.auto_map:
tokenizer_auto_map = config.auto_map["AutoTokenizer"]
has_remote_code = tokenizer_auto_map is not None
has_local_code = type(config) in TOKENIZER_MAPPING or (
config_tokenizer_class is not None
and (
tokenizer_class_from_name(config_tokenizer_class) is not None
or tokenizer_class_from_name(config_tokenizer_class + "Fast") is not None
)
)
trust_remote_code = resolve_trust_remote_code(
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code
)
if has_remote_code and trust_remote_code:
if use_fast and tokenizer_auto_map[1] is not None:
class_ref = tokenizer_auto_map[1]
else:
class_ref = tokenizer_auto_map[0]
tokenizer_class = get_class_from_dynamic_module(class_ref, pretrained_model_name_or_path, **kwargs)
_ = kwargs.pop("code_revision", None)
if os.path.isdir(pretrained_model_name_or_path):
tokenizer_class.register_for_auto_class()
return tokenizer_class.from_pretrained(
pretrained_model_name_or_path, *inputs, trust_remote_code=trust_remote_code, **kwargs
)
elif config_tokenizer_class is not None:
tokenizer_class = None
if use_fast and not config_tokenizer_class.endswith("Fast"):
tokenizer_class_candidate = f"{config_tokenizer_class}Fast"
tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate)
if tokenizer_class is None:
tokenizer_class_candidate = config_tokenizer_class
tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate)
if tokenizer_class is None:
raise ValueError(
f"Tokenizer class {tokenizer_class_candidate} does not exist or is not currently imported."
)
return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
# Otherwise we have to be creative.
# if model is an encoder decoder, the encoder tokenizer class is used by default
if isinstance(config, EncoderDecoderConfig):
if type(config.decoder) is not type(config.encoder): # noqa: E721
logger.warning(
f"The encoder model config class: {config.encoder.__class__} is different from the decoder model "
f"config class: {config.decoder.__class__}. It is not recommended to use the "
"`AutoTokenizer.from_pretrained()` method in this case. Please use the encoder and decoder "
"specific tokenizer classes."
)
config = config.encoder
model_type = config_class_to_model_type(type(config).__name__)
if model_type is not None:
tokenizer_class_py, tokenizer_class_fast = TOKENIZER_MAPPING[type(config)]
if tokenizer_class_fast and (use_fast or tokenizer_class_py is None):
return tokenizer_class_fast.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
else:
if tokenizer_class_py is not None:
return tokenizer_class_py.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
else:
raise ValueError(
"This tokenizer cannot be instantiated. Please make sure you have `sentencepiece` installed "
"in order to use this tokenizer."
)
raise ValueError(
f"Unrecognized configuration class {config.__class__} to build an AutoTokenizer.\n"
f"Model type should be one of {', '.join(c.__name__ for c in TOKENIZER_MAPPING.keys())}."
)
def register(config_class, slow_tokenizer_class=None, fast_tokenizer_class=None, exist_ok=False):
"""
Register a new tokenizer in this mapping.
Args:
config_class ([`PretrainedConfig`]):
The configuration corresponding to the model to register.
slow_tokenizer_class ([`PretrainedTokenizer`], *optional*):
The slow tokenizer to register.
fast_tokenizer_class ([`PretrainedTokenizerFast`], *optional*):
The fast tokenizer to register.
"""
if slow_tokenizer_class is None and fast_tokenizer_class is None:
raise ValueError("You need to pass either a `slow_tokenizer_class` or a `fast_tokenizer_class")
if slow_tokenizer_class is not None and issubclass(slow_tokenizer_class, PreTrainedTokenizerFast):
raise ValueError("You passed a fast tokenizer in the `slow_tokenizer_class`.")
if fast_tokenizer_class is not None and issubclass(fast_tokenizer_class, PreTrainedTokenizer):
raise ValueError("You passed a slow tokenizer in the `fast_tokenizer_class`.")
if (
slow_tokenizer_class is not None
and fast_tokenizer_class is not None
and issubclass(fast_tokenizer_class, PreTrainedTokenizerFast)
and fast_tokenizer_class.slow_tokenizer_class != slow_tokenizer_class
):
raise ValueError(
"The fast tokenizer class you are passing has a `slow_tokenizer_class` attribute that is not "
"consistent with the slow tokenizer class you passed (fast tokenizer has "
f"{fast_tokenizer_class.slow_tokenizer_class} and you passed {slow_tokenizer_class}. Fix one of those "
"so they match!"
)
# Avoid resetting a set slow/fast tokenizer if we are passing just the other ones.
if config_class in TOKENIZER_MAPPING._extra_content:
existing_slow, existing_fast = TOKENIZER_MAPPING[config_class]
if slow_tokenizer_class is None:
slow_tokenizer_class = existing_slow
if fast_tokenizer_class is None:
fast_tokenizer_class = existing_fast
TOKENIZER_MAPPING.register(config_class, (slow_tokenizer_class, fast_tokenizer_class), exist_ok=exist_ok)
|
transformers/src/transformers/models/auto/tokenization_auto.py/0
|
{
"file_path": "transformers/src/transformers/models/auto/tokenization_auto.py",
"repo_id": "transformers",
"token_count": 24145
}
| 100 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Beit."""
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import INIT_SERVICE_KWARGS, BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
validate_preprocess_arguments,
)
from ...utils import (
TensorType,
filter_out_non_signature_kwargs,
is_torch_available,
is_torch_tensor,
is_vision_available,
logging,
)
from ...utils.deprecation import deprecate_kwarg
if is_vision_available():
import PIL
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
class BeitImageProcessor(BaseImageProcessor):
r"""
Constructs a BEiT image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
`do_resize` parameter in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"height": 256, "width": 256}`):
Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
method.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
`preprocess` method.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image
is padded with 0's and then center cropped. Can be overridden by the `do_center_crop` parameter in the
`preprocess` method.
crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
Desired output size when applying center-cropping. Only has an effect if `do_center_crop` is set to `True`.
Can be overridden by the `crop_size` parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
The mean to use if normalizing the image. This is a float or list of floats of length of the number of
channels of the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
The standard deviation to use if normalizing the image. This is a float or list of floats of length of the
number of channels of the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
do_reduce_labels (`bool`, *optional*, defaults to `False`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is
used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The
background label will be replaced by 255. Can be overridden by the `do_reduce_labels` parameter in the
`preprocess` method.
"""
model_input_names = ["pixel_values"]
@deprecate_kwarg("reduce_labels", new_name="do_reduce_labels", version="4.41.0")
@filter_out_non_signature_kwargs(extra=INIT_SERVICE_KWARGS)
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
rescale_factor: Union[int, float] = 1 / 255,
do_rescale: bool = True,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_reduce_labels: bool = False,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 256, "width": 256}
size = get_size_dict(size)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size, param_name="crop_size")
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
self.do_reduce_labels = do_reduce_labels
@classmethod
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
"""
Overrides the `from_dict` method from the base class to save support of deprecated `reduce_labels` in old configs
"""
image_processor_dict = image_processor_dict.copy()
if "reduce_labels" in image_processor_dict:
image_processor_dict["do_reduce_labels"] = image_processor_dict.pop("reduce_labels")
return super().from_dict(image_processor_dict, **kwargs)
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image to (size["height"], size["width"]).
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PIL.Image.BICUBIC`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
size = get_size_dict(size, default_to_square=True, param_name="size")
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` argument must contain `height` and `width` keys. Got {size.keys()}")
return resize(
image,
size=(size["height"], size["width"]),
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def reduce_label(self, label: ImageInput) -> np.ndarray:
label = to_numpy_array(label)
# Avoid using underflow conversion
label[label == 0] = 255
label = label - 1
label[label == 254] = 255
return label
def _preprocess(
self,
image: ImageInput,
do_reduce_labels: bool = None,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
if do_reduce_labels:
image = self.reduce_label(image)
if do_resize:
image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
if do_center_crop:
image = self.center_crop(image=image, size=crop_size, input_data_format=input_data_format)
if do_rescale:
image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
if do_normalize:
image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
return image
def _preprocess_image(
self,
image: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""Preprocesses a single image."""
# All transformations expect numpy arrays.
image = to_numpy_array(image)
if do_rescale and is_scaled_image(image):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
input_data_format = infer_channel_dimension_format(image)
image = self._preprocess(
image,
do_reduce_labels=False,
do_resize=do_resize,
size=size,
resample=resample,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
input_data_format=input_data_format,
)
if data_format is not None:
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
return image
def _preprocess_segmentation_map(
self,
segmentation_map: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_reduce_labels: bool = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""Preprocesses a single segmentation map."""
# All transformations expect numpy arrays.
segmentation_map = to_numpy_array(segmentation_map)
# Add an axis to the segmentation maps for transformations.
if segmentation_map.ndim == 2:
segmentation_map = segmentation_map[None, ...]
added_dimension = True
input_data_format = ChannelDimension.FIRST
else:
added_dimension = False
if input_data_format is None:
input_data_format = infer_channel_dimension_format(segmentation_map, num_channels=1)
segmentation_map = self._preprocess(
image=segmentation_map,
do_reduce_labels=do_reduce_labels,
do_resize=do_resize,
resample=resample,
size=size,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_normalize=False,
do_rescale=False,
input_data_format=ChannelDimension.FIRST,
)
# Remove extra axis if added
if added_dimension:
segmentation_map = np.squeeze(segmentation_map, axis=0)
segmentation_map = segmentation_map.astype(np.int64)
return segmentation_map
def __call__(self, images, segmentation_maps=None, **kwargs):
# Overrides the `__call__` method of the `Preprocessor` class such that the images and segmentation maps can both
# be passed in as positional arguments.
return super().__call__(images, segmentation_maps=segmentation_maps, **kwargs)
@deprecate_kwarg("reduce_labels", new_name="do_reduce_labels", version="4.41.0")
@filter_out_non_signature_kwargs()
def preprocess(
self,
images: ImageInput,
segmentation_maps: Optional[ImageInput] = None,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_reduce_labels: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
segmentation_maps (`ImageInput`, *optional*)
Segmentation maps to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
has an effect if `do_resize` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the image after center crop. If one edge the image is smaller than `crop_size`, it will be
padded with zeros and then cropped
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
do_reduce_labels (`bool`, *optional*, defaults to `self.do_reduce_labels`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0
is used for background, and background itself is not included in all classes of a dataset (e.g.
ADE20k). The background label will be replaced by 255.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size, default_to_square=True, param_name="size")
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
do_reduce_labels = do_reduce_labels if do_reduce_labels is not None else self.do_reduce_labels
images = make_list_of_images(images)
if segmentation_maps is not None:
segmentation_maps = make_list_of_images(segmentation_maps, expected_ndims=2)
if segmentation_maps is not None and not valid_images(segmentation_maps):
raise ValueError(
"Invalid segmentation_maps type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_resize=do_resize,
size=size,
resample=resample,
)
images = [
self._preprocess_image(
image=img,
do_resize=do_resize,
do_center_crop=do_center_crop,
do_rescale=do_rescale,
do_normalize=do_normalize,
resample=resample,
size=size,
rescale_factor=rescale_factor,
crop_size=crop_size,
image_mean=image_mean,
image_std=image_std,
data_format=data_format,
input_data_format=input_data_format,
)
for img in images
]
data = {"pixel_values": images}
if segmentation_maps is not None:
segmentation_maps = [
self._preprocess_segmentation_map(
segmentation_map=segmentation_map,
do_reduce_labels=do_reduce_labels,
do_resize=do_resize,
resample=resample,
size=size,
do_center_crop=do_center_crop,
crop_size=crop_size,
)
for segmentation_map in segmentation_maps
]
data["labels"] = segmentation_maps
return BatchFeature(data=data, tensor_type=return_tensors)
def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None):
"""
Converts the output of [`BeitForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch.
Args:
outputs ([`BeitForSemanticSegmentation`]):
Raw outputs of the model.
target_sizes (`List[Tuple]` of length `batch_size`, *optional*):
List of tuples corresponding to the requested final size (height, width) of each prediction. If unset,
predictions will not be resized.
Returns:
semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic
segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is
specified). Each entry of each `torch.Tensor` correspond to a semantic class id.
"""
# TODO: add support for other frameworks
logits = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(logits) != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
if is_torch_tensor(target_sizes):
target_sizes = target_sizes.numpy()
semantic_segmentation = []
for idx in range(len(logits)):
resized_logits = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
)
semantic_map = resized_logits[0].argmax(dim=0)
semantic_segmentation.append(semantic_map)
else:
semantic_segmentation = logits.argmax(dim=1)
semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
return semantic_segmentation
__all__ = ["BeitImageProcessor"]
|
transformers/src/transformers/models/beit/image_processing_beit.py/0
|
{
"file_path": "transformers/src/transformers/models/beit/image_processing_beit.py",
"repo_id": "transformers",
"token_count": 10668
}
| 101 |
# coding=utf-8
# Copyright 2020 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BertGeneration model configuration"""
from ...configuration_utils import PretrainedConfig
class BertGenerationConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`BertGenerationPreTrainedModel`]. It is used to
instantiate a BertGeneration model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the BertGeneration
[google/bert_for_seq_generation_L-24_bbc_encoder](https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50358):
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`BertGeneration`].
hidden_size (`int`, *optional*, defaults to 1024):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often called feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 2):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 1):
End of stream token id.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
Examples:
```python
>>> from transformers import BertGenerationConfig, BertGenerationEncoder
>>> # Initializing a BertGeneration config
>>> configuration = BertGenerationConfig()
>>> # Initializing a model (with random weights) from the config
>>> model = BertGenerationEncoder(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "bert-generation"
def __init__(
self,
vocab_size=50358,
hidden_size=1024,
num_hidden_layers=24,
num_attention_heads=16,
intermediate_size=4096,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
bos_token_id=2,
eos_token_id=1,
position_embedding_type="absolute",
use_cache=True,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
__all__ = ["BertGenerationConfig"]
|
transformers/src/transformers/models/bert_generation/configuration_bert_generation.py/0
|
{
"file_path": "transformers/src/transformers/models/bert_generation/configuration_bert_generation.py",
"repo_id": "transformers",
"token_count": 2328
}
| 102 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration
INIT_COMMON = [
# tf -> hf
("/", "."),
("layer_", "layers."),
("kernel", "weight"),
("beta", "bias"),
("gamma", "weight"),
("pegasus", "model"),
]
END_COMMON = [
(".output.dense", ".fc2"),
("intermediate.LayerNorm", "final_layer_norm"),
("intermediate.dense", "fc1"),
]
DECODER_PATTERNS = (
INIT_COMMON
+ [
("attention.self.LayerNorm", "self_attn_layer_norm"),
("attention.output.dense", "self_attn.out_proj"),
("attention.self", "self_attn"),
("attention.encdec.LayerNorm", "encoder_attn_layer_norm"),
("attention.encdec_output.dense", "encoder_attn.out_proj"),
("attention.encdec", "encoder_attn"),
("key", "k_proj"),
("value", "v_proj"),
("query", "q_proj"),
("decoder.LayerNorm", "decoder.layernorm_embedding"),
]
+ END_COMMON
)
REMAINING_PATTERNS = (
INIT_COMMON
+ [
("embeddings.word_embeddings", "shared.weight"),
("embeddings.position_embeddings", "embed_positions.weight"),
("attention.self.LayerNorm", "self_attn_layer_norm"),
("attention.output.dense", "self_attn.output"),
("attention.self", "self_attn.self"),
("encoder.LayerNorm", "encoder.layernorm_embedding"),
]
+ END_COMMON
)
KEYS_TO_IGNORE = [
"encdec/key/bias",
"encdec/query/bias",
"encdec/value/bias",
"self/key/bias",
"self/query/bias",
"self/value/bias",
"encdec_output/dense/bias",
"attention/output/dense/bias",
]
def rename_state_dict_key(k, patterns):
for tf_name, hf_name in patterns:
k = k.replace(tf_name, hf_name)
return k
def convert_bigbird_pegasus(tf_weights: dict, config_update: dict) -> BigBirdPegasusForConditionalGeneration:
cfg = BigBirdPegasusConfig(**config_update)
torch_model = BigBirdPegasusForConditionalGeneration(cfg)
state_dict = torch_model.state_dict()
mapping = {}
# separating decoder weights
decoder_weights = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder")}
remaining_weights = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder")}
for k, v in tqdm(decoder_weights.items(), "tf -> hf conversion"):
conditions = [k.endswith(ending) for ending in KEYS_TO_IGNORE]
if any(conditions):
continue
patterns = DECODER_PATTERNS
new_k = rename_state_dict_key(k, patterns)
if new_k not in state_dict:
raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})")
if any(True if i in k else False for i in ["dense", "query", "key", "value"]):
v = v.T
mapping[new_k] = torch.from_numpy(v)
assert v.shape == state_dict[new_k].shape, f"{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}"
for k, v in tqdm(remaining_weights.items(), "tf -> hf conversion"):
conditions = [k.endswith(ending) for ending in KEYS_TO_IGNORE]
if any(conditions):
continue
patterns = REMAINING_PATTERNS
new_k = rename_state_dict_key(k, patterns)
if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings":
raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})")
if any(True if i in k else False for i in ["dense", "query", "key", "value"]):
v = v.T
mapping[new_k] = torch.from_numpy(v)
if k != "pegasus/embeddings/position_embeddings":
assert v.shape == state_dict[new_k].shape, f"{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}"
mapping["model.encoder.embed_positions.weight"] = mapping["model.embed_positions.weight"]
mapping["model.decoder.embed_positions.weight"] = mapping.pop("model.embed_positions.weight")
missing, extra = torch_model.load_state_dict(mapping, strict=False)
unexpected_missing = [
k
for k in missing
if k
not in [
"final_logits_bias",
"model.encoder.embed_tokens.weight",
"model.decoder.embed_tokens.weight",
"lm_head.weight",
]
]
assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}"
assert extra == [], f"no matches found for the following tf keys {extra}"
return torch_model
def get_tf_weights_as_numpy(path) -> Dict:
init_vars = tf.train.list_variables(path)
tf_weights = {}
ignore_name = ["global_step"]
for name, shape in tqdm(init_vars, desc="converting tf checkpoint to dict"):
skip_key = any(pat in name for pat in ignore_name)
if skip_key:
continue
array = tf.train.load_variable(path, name)
tf_weights[name] = array
return tf_weights
def convert_bigbird_pegasus_ckpt_to_pytorch(ckpt_path: str, save_dir: str, config_update: dict):
tf_weights = get_tf_weights_as_numpy(ckpt_path)
torch_model = convert_bigbird_pegasus(tf_weights, config_update)
torch_model.save_pretrained(save_dir)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables")
parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.")
args = parser.parse_args()
config_update = {}
convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
|
transformers/src/transformers/models/bigbird_pegasus/convert_bigbird_pegasus_tf_to_pytorch.py/0
|
{
"file_path": "transformers/src/transformers/models/bigbird_pegasus/convert_bigbird_pegasus_tf_to_pytorch.py",
"repo_id": "transformers",
"token_count": 2618
}
| 103 |
# coding=utf-8
# Copyright 2021 The Fairseq Authors and The Google Flax Team Authors And The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Flax Blenderbot model."""
import math
import random
from functools import partial
from typing import Callable, Optional, Tuple
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from jax.random import PRNGKey
from ...modeling_flax_outputs import (
FlaxBaseModelOutput,
FlaxBaseModelOutputWithPastAndCrossAttentions,
FlaxCausalLMOutputWithCrossAttentions,
FlaxSeq2SeqLMOutput,
FlaxSeq2SeqModelOutput,
)
from ...modeling_flax_utils import (
ACT2FN,
FlaxPreTrainedModel,
append_call_sample_docstring,
append_replace_return_docstrings,
overwrite_call_docstring,
)
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_blenderbot import BlenderbotConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "BlenderbotConfig"
_CHECKPOINT_FOR_DOC = "facebook/blenderbot-400M-distill"
BLENDERBOT_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a Flax Linen
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`BlenderbotConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
"""
BLENDERBOT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
For translation and summarization training, `decoder_input_ids` should be provided. If no
`decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
for denoising pre-training following the paper.
decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the
paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range `[0, config.max_position_embeddings - 1]`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
BLENDERBOT_ENCODE_INPUTS_DOCSTRING = r"""
Args:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
BLENDERBOT_DECODE_INPUTS_DOCSTRING = r"""
Args:
decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
For translation and summarization training, `decoder_input_ids` should be provided. If no
`decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
for denoising pre-training following the paper.
encoder_outputs (`tuple(tuple(jnp.ndarray)`):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the
paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range `[0, config.max_position_embeddings - 1]`.
past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right
def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
"""
Shift input ids one token to the right.
"""
shifted_input_ids = jnp.zeros_like(input_ids)
shifted_input_ids = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1])
shifted_input_ids = shifted_input_ids.at[:, 0].set(decoder_start_token_id)
shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids)
return shifted_input_ids
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention with Bart->Blenderbot
class FlaxBlenderbotAttention(nn.Module):
config: BlenderbotConfig
embed_dim: int
num_heads: int
dropout: float = 0.0
causal: bool = False
bias: bool = True
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self) -> None:
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {self.num_heads})."
)
dense = partial(
nn.Dense,
self.embed_dim,
use_bias=self.bias,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()
self.out_proj = dense()
self.dropout_layer = nn.Dropout(rate=self.dropout)
if self.causal:
self.causal_mask = make_causal_mask(
jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
)
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
@nn.compact
def _concatenate_to_cache(self, key, value, query, attention_mask):
"""
This function takes projected key, value states from a single input token and concatenates the states to cached
states from previous steps. This function is slighly adapted from the official Flax repository:
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
"""
# detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable("cache", "cached_key")
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
# update key, value caches with our new 1d spatial slices
cur_index = cache_index.value
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = lax.dynamic_update_slice(cached_key.value, key, indices)
value = lax.dynamic_update_slice(cached_value.value, value, indices)
cached_key.value = key
cached_value.value = value
num_updated_cache_vectors = query.shape[1]
cache_index.value = cache_index.value + num_updated_cache_vectors
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
pad_mask = jnp.broadcast_to(
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
)
attention_mask = combine_masks(pad_mask, attention_mask)
return key, value, attention_mask
def __call__(
self,
hidden_states: jnp.ndarray,
key_value_states: Optional[jnp.ndarray] = None,
attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
) -> Tuple[jnp.ndarray]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
batch_size = hidden_states.shape[0]
# get query proj
query_states = self.q_proj(hidden_states)
# get key, value proj
if is_cross_attention:
# cross_attentions
key_states = self.k_proj(key_value_states)
value_states = self.v_proj(key_value_states)
else:
# self_attention
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = self._split_heads(query_states)
key_states = self._split_heads(key_states)
value_states = self._split_heads(value_states)
# handle cache prepare causal attention mask
if self.causal:
query_length, key_length = query_states.shape[1], key_states.shape[1]
if self.has_variable("cache", "cached_key"):
mask_shift = self.variables["cache"]["cache_index"]
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
causal_mask = lax.dynamic_slice(
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
)
else:
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
# combine masks if needed
if attention_mask is not None and self.causal:
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
attention_mask = combine_masks(attention_mask, causal_mask)
elif self.causal:
attention_mask = causal_mask
elif attention_mask is not None:
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
key_states, value_states, attention_mask = self._concatenate_to_cache(
key_states, value_states, query_states, attention_mask
)
# Convert the boolean attention mask to an attention bias.
if attention_mask is not None:
# attention mask in the form of attention bias
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
)
else:
attention_bias = None
dropout_rng = None
if not deterministic and self.dropout > 0.0:
dropout_rng = self.make_rng("dropout")
attn_weights = dot_product_attention_weights(
query_states,
key_states,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.dropout,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
precision=None,
)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
attn_output = self._merge_heads(attn_output)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights
# Copied from transformers.models.mbart.modeling_flax_mbart.FlaxMBartEncoderLayer with MBart->Blenderbot
class FlaxBlenderbotEncoderLayer(nn.Module):
config: BlenderbotConfig
dtype: jnp.dtype = jnp.float32
def setup(self) -> None:
self.embed_dim = self.config.d_model
self.self_attn = FlaxBlenderbotAttention(
config=self.config,
embed_dim=self.embed_dim,
num_heads=self.config.encoder_attention_heads,
dropout=self.config.attention_dropout,
dtype=self.dtype,
)
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
self.activation_fn = ACT2FN[self.config.activation_function]
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
self.fc1 = nn.Dense(
self.config.encoder_ffn_dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.fc2 = nn.Dense(
self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
)
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
def __call__(
self,
hidden_states: jnp.ndarray,
attention_mask: jnp.ndarray,
output_attentions: bool = True,
deterministic: bool = True,
) -> Tuple[jnp.ndarray]:
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartEncoderLayerCollection with Bart->Blenderbot
class FlaxBlenderbotEncoderLayerCollection(nn.Module):
config: BlenderbotConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layers = [
FlaxBlenderbotEncoderLayer(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.encoder_layers)
]
self.layerdrop = self.config.encoder_layerdrop
def __call__(
self,
hidden_states,
attention_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for encoder_layer in self.layers:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if not deterministic and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
output_attentions,
deterministic,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states += (hidden_states,)
outputs = (hidden_states, all_hidden_states, all_attentions)
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
# Copied from transformers.models.mbart.modeling_flax_mbart.FlaxMBartDecoderLayer with MBart->Blenderbot
class FlaxBlenderbotDecoderLayer(nn.Module):
config: BlenderbotConfig
dtype: jnp.dtype = jnp.float32
def setup(self) -> None:
self.embed_dim = self.config.d_model
self.self_attn = FlaxBlenderbotAttention(
config=self.config,
embed_dim=self.embed_dim,
num_heads=self.config.decoder_attention_heads,
dropout=self.config.attention_dropout,
causal=True,
dtype=self.dtype,
)
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
self.activation_fn = ACT2FN[self.config.activation_function]
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
self.encoder_attn = FlaxBlenderbotAttention(
config=self.config,
embed_dim=self.embed_dim,
num_heads=self.config.decoder_attention_heads,
dropout=self.config.attention_dropout,
dtype=self.dtype,
)
self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
self.fc1 = nn.Dense(
self.config.decoder_ffn_dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.fc2 = nn.Dense(
self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
)
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
def __call__(
self,
hidden_states: jnp.ndarray,
attention_mask: jnp.ndarray,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
output_attentions: bool = True,
deterministic: bool = True,
) -> Tuple[jnp.ndarray]:
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache
)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
hidden_states, cross_attn_weights = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderLayerCollection with Bart->Blenderbot
class FlaxBlenderbotDecoderLayerCollection(nn.Module):
config: BlenderbotConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layers = [
FlaxBlenderbotDecoderLayer(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.decoder_layers)
]
self.layerdrop = self.config.decoder_layerdrop
def __call__(
self,
hidden_states,
attention_mask,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if not deterministic and (dropout_probability < self.layerdrop):
layer_outputs = (None, None, None)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
init_cache=init_cache,
output_attentions=output_attentions,
deterministic=deterministic,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions]
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
class FlaxBlenderbotEncoder(nn.Module):
config: BlenderbotConfig
embed_tokens: nn.Embed
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
embed_dim = self.config.d_model
self.padding_idx = self.config.pad_token_id
self.max_source_positions = self.config.max_position_embeddings
self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0
self.embed_positions = nn.Embed(
self.config.max_position_embeddings,
embed_dim,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
)
self.layers = FlaxBlenderbotEncoderLayerCollection(self.config, self.dtype)
self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
input_shape = input_ids.shape
input_ids = input_ids.reshape(-1, input_shape[-1])
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
embed_pos = self.embed_positions(position_ids)
hidden_states = inputs_embeds + embed_pos
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
outputs = self.layers(
hidden_states,
attention_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_states = outputs[0]
last_hidden_states = self.layer_norm(last_hidden_states)
# update the last element in `hidden_states` after applying `layernorm` above
hidden_states = None
if output_hidden_states:
hidden_states = outputs[1]
hidden_states = hidden_states[:-1] + (last_hidden_states,)
if not return_dict:
outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:])
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=last_hidden_states,
hidden_states=hidden_states,
attentions=outputs.attentions,
)
class FlaxBlenderbotDecoder(nn.Module):
config: BlenderbotConfig
embed_tokens: nn.Embed
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
embed_dim = self.config.d_model
self.padding_idx = self.config.pad_token_id
self.max_target_positions = self.config.max_position_embeddings
self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0
self.embed_positions = nn.Embed(
self.config.max_position_embeddings,
embed_dim,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
)
self.layers = FlaxBlenderbotDecoderLayerCollection(self.config, self.dtype)
self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
input_shape = input_ids.shape
input_ids = input_ids.reshape(-1, input_shape[-1])
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
# embed positions
positions = self.embed_positions(position_ids)
hidden_states = inputs_embeds + positions
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
outputs = self.layers(
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_states = outputs[0]
last_hidden_states = self.layer_norm(last_hidden_states)
# update the last element in `hidden_states` after applying `layernorm` above
hidden_states = None
if output_hidden_states:
hidden_states = outputs[1]
hidden_states = hidden_states[:-1] + (last_hidden_states,)
if not return_dict:
outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:])
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=last_hidden_states,
hidden_states=hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartModule with Bart->Blenderbot
class FlaxBlenderbotModule(nn.Module):
config: BlenderbotConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.shared = nn.Embed(
self.config.vocab_size,
self.config.d_model,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
dtype=self.dtype,
)
self.encoder = FlaxBlenderbotEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
self.decoder = FlaxBlenderbotDecoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
def _get_encoder_module(self):
return self.encoder
def _get_decoder_module(self):
return self.decoder
def __call__(
self,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask,
position_ids,
decoder_position_ids,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
position_ids=decoder_position_ids,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return FlaxSeq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
class FlaxBlenderbotPreTrainedModel(FlaxPreTrainedModel):
config_class = BlenderbotConfig
base_model_prefix: str = "model"
module_class: nn.Module = None
def __init__(
self,
config: BlenderbotConfig,
input_shape: Tuple[int] = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
# make sure initialization pass will work for FlaxBlenderbotForSequenceClassificationModule
input_ids = input_ids.at[(..., -1)].set(self.config.eos_token_id)
attention_mask = jnp.ones_like(input_ids)
decoder_input_ids = input_ids
decoder_attention_mask = jnp.ones_like(input_ids)
batch_size, sequence_length = input_ids.shape
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
random_params = self.module.init(
rngs,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask,
position_ids,
decoder_position_ids,
)["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
def init_cache(self, batch_size, max_length, encoder_outputs):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`):
`encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*:
`attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*)
is a sequence of hidden-states at the output of the last layer of the encoder. Used in the
cross-attention of the decoder.
"""
# init input variables to retrieve cache
decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4")
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
decoder_position_ids = jnp.broadcast_to(
jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape
)
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
decoder_module = module._get_decoder_module()
return decoder_module(
decoder_input_ids,
decoder_attention_mask,
decoder_position_ids,
**kwargs,
)
init_variables = self.module.init(
jax.random.PRNGKey(0),
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
decoder_position_ids=decoder_position_ids,
encoder_hidden_states=encoder_outputs[0],
init_cache=True,
method=_decoder_forward, # we only need to call the decoder to init the cache
)
return unfreeze(init_variables["cache"])
@add_start_docstrings(BLENDERBOT_ENCODE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=BlenderbotConfig)
def encode(
self,
input_ids: jnp.ndarray,
attention_mask: Optional[jnp.ndarray] = None,
position_ids: Optional[jnp.ndarray] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, FlaxBlenderbotForConditionalGeneration
>>> model = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
if position_ids is None:
batch_size, sequence_length = input_ids.shape
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs):
encode_module = module._get_encoder_module()
return encode_module(input_ids, attention_mask, position_ids, **kwargs)
return self.module.apply(
{"params": params or self.params},
input_ids=jnp.array(input_ids, dtype="i4"),
attention_mask=jnp.array(attention_mask, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
method=_encoder_forward,
)
@add_start_docstrings(BLENDERBOT_DECODE_INPUTS_DOCSTRING)
@replace_return_docstrings(
output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=BlenderbotConfig
)
def decode(
self,
decoder_input_ids,
encoder_outputs,
encoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_position_ids: Optional[jnp.ndarray] = None,
past_key_values: dict = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Example:
```python
>>> import jax.numpy as jnp
>>> from transformers import AutoTokenizer, FlaxBlenderbotForConditionalGeneration
>>> model = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> last_decoder_hidden_states = outputs.last_hidden_state
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
encoder_hidden_states = encoder_outputs[0]
if encoder_attention_mask is None:
batch_size, sequence_length = encoder_hidden_states.shape[:2]
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
batch_size, sequence_length = decoder_input_ids.shape
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
if decoder_position_ids is None:
if past_key_values is not None:
raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")
decoder_position_ids = jnp.broadcast_to(
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
# it can be changed by FlaxBlenderbotAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
decoder_module = module._get_decoder_module()
return decoder_module(
decoder_input_ids,
decoder_attention_mask,
decoder_position_ids,
**kwargs,
)
outputs = self.module.apply(
inputs,
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
mutable=mutable,
method=_decoder_forward,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past = outputs
outputs["past_key_values"] = unfreeze(past["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past = outputs
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
return outputs
@add_start_docstrings_to_model_forward(BLENDERBOT_INPUTS_DOCSTRING)
def __call__(
self,
input_ids: jnp.ndarray,
attention_mask: Optional[jnp.ndarray] = None,
decoder_input_ids: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
position_ids: Optional[jnp.ndarray] = None,
decoder_position_ids: Optional[jnp.ndarray] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
# prepare encoder inputs
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
if position_ids is None:
batch_size, sequence_length = input_ids.shape
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
# prepare decoder inputs
if decoder_input_ids is None:
decoder_input_ids = shift_tokens_right(
input_ids, self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id
)
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
if decoder_position_ids is None:
batch_size, sequence_length = decoder_input_ids.shape
decoder_position_ids = jnp.broadcast_to(
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
)
# Handle any PRNG if needed
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
return self.module.apply(
{"params": params or self.params},
input_ids=jnp.array(input_ids, dtype="i4"),
attention_mask=jnp.array(attention_mask, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
)
@add_start_docstrings(
"The bare MBart Model transformer outputting raw hidden-states without any specific head on top.",
BLENDERBOT_START_DOCSTRING,
)
class FlaxBlenderbotModel(FlaxBlenderbotPreTrainedModel):
config: BlenderbotConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
module_class = FlaxBlenderbotModule
append_call_sample_docstring(FlaxBlenderbotModel, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC)
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartForConditionalGenerationModule with Bart->Blenderbot
class FlaxBlenderbotForConditionalGenerationModule(nn.Module):
config: BlenderbotConfig
dtype: jnp.dtype = jnp.float32
bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros
def setup(self):
self.model = FlaxBlenderbotModule(config=self.config, dtype=self.dtype)
self.lm_head = nn.Dense(
self.model.shared.num_embeddings,
use_bias=False,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.model.shared.num_embeddings))
def _get_encoder_module(self):
return self.model.encoder
def _get_decoder_module(self):
return self.model.decoder
def __call__(
self,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask,
position_ids,
decoder_position_ids,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
position_ids=position_ids,
decoder_position_ids=decoder_position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = self.model.variables["params"]["shared"]["embedding"]
lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
else:
lm_logits = self.lm_head(hidden_states)
lm_logits += jax.lax.stop_gradient(self.final_logits_bias.astype(self.dtype))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return output
return FlaxSeq2SeqLMOutput(
logits=lm_logits,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
@add_start_docstrings(
"The Blenderbot Model with a language modeling head. Can be used for summarization.", BLENDERBOT_START_DOCSTRING
)
class FlaxBlenderbotForConditionalGeneration(FlaxBlenderbotPreTrainedModel):
module_class = FlaxBlenderbotForConditionalGenerationModule
dtype: jnp.dtype = jnp.float32
@add_start_docstrings(BLENDERBOT_DECODE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=BlenderbotConfig)
def decode(
self,
decoder_input_ids,
encoder_outputs,
encoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_position_ids: Optional[jnp.ndarray] = None,
past_key_values: dict = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Example:
```python
>>> import jax.numpy as jnp
>>> from transformers import AutoTokenizer, FlaxBlenderbotForConditionalGeneration
>>> model = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> logits = outputs.logits
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
encoder_hidden_states = encoder_outputs[0]
if encoder_attention_mask is None:
batch_size, sequence_length = encoder_hidden_states.shape[:2]
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
batch_size, sequence_length = decoder_input_ids.shape
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
if decoder_position_ids is None:
if past_key_values is not None:
raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")
decoder_position_ids = jnp.broadcast_to(
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
# it can be changed by FlaxBlenderbotAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
decoder_module = module._get_decoder_module()
outputs = decoder_module(
decoder_input_ids,
decoder_attention_mask,
decoder_position_ids,
**kwargs,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = module.model.variables["params"]["shared"]["embedding"]
lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
else:
lm_logits = module.lm_head(hidden_states)
lm_logits += module.final_logits_bias
return lm_logits, outputs
outputs = self.module.apply(
inputs,
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
mutable=mutable,
method=_decoder_forward,
)
if past_key_values is None:
lm_logits, decoder_outputs = outputs
else:
(lm_logits, decoder_outputs), past = outputs
if return_dict:
outputs = FlaxCausalLMOutputWithCrossAttentions(
logits=lm_logits,
hidden_states=decoder_outputs.hidden_states,
attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
)
else:
outputs = (lm_logits,) + decoder_outputs[1:]
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs["past_key_values"] = unfreeze(past["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
return outputs
def prepare_inputs_for_generation(
self,
decoder_input_ids,
max_length,
attention_mask: Optional[jax.Array] = None,
decoder_attention_mask: Optional[jax.Array] = None,
encoder_outputs=None,
**kwargs,
):
# initializing the cache
batch_size, seq_length = decoder_input_ids.shape
past_key_values = self.init_cache(batch_size, max_length, encoder_outputs)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since the decoder uses a causal mask, those positions are masked anyways.
# Thus we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if decoder_attention_mask is not None:
position_ids = decoder_attention_mask.cumsum(axis=-1) - 1
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0))
else:
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
return {
"past_key_values": past_key_values,
"encoder_outputs": encoder_outputs,
"encoder_attention_mask": attention_mask,
"decoder_attention_mask": extended_attention_mask,
"decoder_position_ids": position_ids,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1
return model_kwargs
FLAX_BLENDERBOT_CONDITIONAL_GENERATION_DOCSTRING = r"""
Returns:
Conversation example::
```py
>>> from transformers import AutoTokenizer, FlaxBlenderbotForConditionalGeneration
>>> model = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
>>> UTTERANCE = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer([UTTERANCE], max_length=1024, return_tensors="np")
>>> # Generate Reply
>>> reply_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=5, early_stopping=True).sequences
>>> print([tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in reply_ids])
```
"""
overwrite_call_docstring(
FlaxBlenderbotForConditionalGeneration,
BLENDERBOT_INPUTS_DOCSTRING + FLAX_BLENDERBOT_CONDITIONAL_GENERATION_DOCSTRING,
)
append_replace_return_docstrings(
FlaxBlenderbotForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC
)
__all__ = ["FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel"]
|
transformers/src/transformers/models/blenderbot/modeling_flax_blenderbot.py/0
|
{
"file_path": "transformers/src/transformers/models/blenderbot/modeling_flax_blenderbot.py",
"repo_id": "transformers",
"token_count": 28383
}
| 104 |
# coding=utf-8
# Copyright 2022 The Salesforce Team Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the BSD-3-clause license (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://opensource.org/licenses/BSD-3-Clause
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import Tensor, device, nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...generation import GenerationMixin
from ...modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
BaseModelOutputWithPoolingAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
)
from ...modeling_utils import (
PreTrainedModel,
apply_chunking_to_forward,
find_pruneable_heads_and_indices,
prune_linear_layer,
)
from ...utils import logging
from .configuration_blip import BlipTextConfig
logger = logging.get_logger(__name__)
# Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L52
class BlipTextEmbeddings(nn.Module):
"""Construct the embeddings from word and position embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.config = config
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values_length: int = 0,
) -> torch.Tensor:
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
embeddings = inputs_embeds
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
# Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L97
class BlipTextSelfAttention(nn.Module):
def __init__(self, config, is_cross_attention):
super().__init__()
self.config = config
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention heads (%d)"
% (config.hidden_size, config.num_attention_heads)
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
if is_cross_attention:
self.key = nn.Linear(config.encoder_hidden_size, self.all_head_size)
self.value = nn.Linear(config.encoder_hidden_size, self.all_head_size)
else:
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
def save_attn_gradients(self, attn_gradients):
self.attn_gradients = attn_gradients
def get_attn_gradients(self):
return self.attn_gradients
def save_attention_map(self, attention_map):
self.attention_map = attention_map
def get_attention_map(self):
return self.attention_map
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
seq_length = hidden_states.size()[1]
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BlipTextModel forward() function)
attention_scores = attention_scores + attention_mask.to(attention_scores.device)
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs_dropped = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs_dropped = attention_probs_dropped * head_mask
context_layer = torch.matmul(attention_probs_dropped, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
outputs = outputs + (past_key_value,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert -> BlipText
class BlipTextSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#242
class BlipTextAttention(nn.Module):
def __init__(self, config, is_cross_attention=False):
super().__init__()
self.self = BlipTextSelfAttention(config, is_cross_attention)
self.output = BlipTextSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert -> BlipText
class BlipTextIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert -> BlipText
class BlipTextOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BlipTextLayer(nn.Module):
def __init__(self, config, layer_num):
super().__init__()
self.config = config
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = BlipTextAttention(config)
self.layer_num = layer_num
if self.config.is_decoder:
self.crossattention = BlipTextAttention(config, is_cross_attention=self.config.is_decoder)
self.intermediate = BlipTextIntermediate(config)
self.output = BlipTextOutput(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
if encoder_hidden_states is not None:
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
output_attentions=output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
# Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L386
class BlipTextEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([BlipTextLayer(config, i) for i in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.is_decoder else None
next_decoder_cache = () if use_cache else None
for i in range(self.config.num_hidden_layers):
layer_module = self.layer[i]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->BlipText
class BlipTextPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->BlipText
class BlipTextPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->BlipText
class BlipTextLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = BlipTextPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def _tie_weights(self):
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->BlipText
class BlipTextOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = BlipTextLMPredictionHead(config)
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
prediction_scores = self.predictions(sequence_output)
return prediction_scores
# Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L548
class BlipTextPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = BlipTextConfig
base_model_prefix = "bert"
_no_split_modules = []
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
# Adapted from https://github.com/salesforce/BLIP/blob/3a29b7410476bf5f2ba0955827390eb6ea1f4f9d/models/med.py#L571
class BlipTextModel(BlipTextPreTrainedModel):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. argument and `is_decoder` set to `True`; an
`encoder_hidden_states` is then expected as an input to the forward pass.
"""
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.embeddings = BlipTextEmbeddings(config)
self.encoder = BlipTextEncoder(config)
self.pooler = BlipTextPooler(config) if add_pooling_layer else None
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
# Copied from transformers.models.bert.modeling_bert.BertModel._prune_heads
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
def get_extended_attention_mask(
self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool
) -> Tensor:
"""
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
Arguments:
attention_mask (`torch.Tensor`):
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
input_shape (`Tuple[int]`):
The shape of the input to the model.
device (`torch.device`):
The device of the input to the model.
Returns:
`torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
"""
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
if attention_mask.dim() == 3:
extended_attention_mask = attention_mask[:, None, :, :]
elif attention_mask.dim() == 2:
# Provided a padding mask of dimensions [batch_size, seq_length]
# - if the model is a decoder, apply a causal mask in addition to the padding mask
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
if is_decoder:
batch_size, seq_length = input_shape
seq_ids = torch.arange(seq_length, device=device)
causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
# in case past_key_values are used we need to add a prefix ones mask to the causal mask
# causal and attention masks must have same type with pytorch version < 1.3
causal_mask = causal_mask.to(attention_mask.dtype)
if causal_mask.shape[1] < attention_mask.shape[1]:
prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
causal_mask = torch.cat(
[
torch.ones(
(batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype
),
causal_mask,
],
axis=-1,
)
extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
else:
extended_attention_mask = attention_mask[:, None, None, :]
else:
raise ValueError(
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
input_shape, attention_mask.shape
)
)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
return extended_attention_mask
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
is_decoder: Optional[bool] = False,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
batch_size, seq_length = input_shape
device = input_ids.device
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size, seq_length = input_shape
device = inputs_embeds.device
elif encoder_embeds is not None:
input_shape = encoder_embeds.size()[:-1]
batch_size, seq_length = input_shape
device = encoder_embeds.device
else:
raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length))).to(device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
attention_mask, input_shape, device, is_decoder
)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if encoder_hidden_states is not None:
if isinstance(encoder_hidden_states, list):
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
else:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if isinstance(encoder_attention_mask, list):
encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
elif encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
if encoder_embeds is None:
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
else:
embedding_output = encoder_embeds
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
# Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L811
class BlipTextLMHeadModel(BlipTextPreTrainedModel, GenerationMixin):
def __init__(self, config):
super().__init__(config)
self.bert = BlipTextModel(config, add_pooling_layer=False)
self.cls = BlipTextOnlyMLMHead(config)
self.label_smoothing = config.label_smoothing
def get_input_embeddings(self):
return self.bert.get_input_embeddings()
def set_input_embeddings(self, new_embeddings):
self.bert.set_input_embeddings(new_embeddings)
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
self.cls.predictions.bias = new_embeddings.bias
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.Tensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
return_logits: Optional[bool] = False,
is_decoder: Optional[bool] = True,
reduction: Optional[str] = "mean",
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor`, *optional*): Sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is
configured as a decoder.
encoder_attention_mask (`torch.FloatTensor`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
labels (`torch.LongTensor`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
is_decoder=is_decoder,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
if return_logits:
return prediction_scores[:, :-1, :].contiguous()
lm_loss = None
if labels is not None:
# we are doing next-token prediction; shift prediction scores and input ids by one
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
labels = labels[:, 1:].contiguous().to(shifted_prediction_scores.device)
loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=self.label_smoothing)
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if reduction == "none":
lm_loss = lm_loss.view(prediction_scores.size(0), -1).sum(1)
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=lm_loss,
logits=prediction_scores,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
# Overwrite -- hardcoded key return (`is_decoder=True`)
input_shape = input_ids.shape
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_shape)
# cut decoder_input_ids if past_key_values is used
if past_key_values is not None:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = input_ids.shape[1] - 1
input_ids = input_ids[:, remove_prefix_length:]
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"past_key_values": past_key_values,
"encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
"encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
"is_decoder": True,
}
def _reorder_cache(self, past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
|
transformers/src/transformers/models/blip/modeling_blip_text.py/0
|
{
"file_path": "transformers/src/transformers/models/blip/modeling_blip_text.py",
"repo_id": "transformers",
"token_count": 18892
}
| 105 |
# coding=utf-8
# Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License=, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing=, software
# distributed under the License is distributed on an "AS IS" BASIS=,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND=, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BridgeTower model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class BridgeTowerVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the vision configuration of a [`BridgeTowerModel`]. Instantiating a
configuration with the defaults will yield a similar configuration to that of the bridgetower-base
[BridgeTower/bridgetower-base](https://huggingface.co/BridgeTower/bridgetower-base/) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in visual encoder model.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
image_size (`int`, *optional*, defaults to 288):
The size (resolution) of each image.
initializer_factor (`float`, *optional*, defaults to 1):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
stop_gradient (`bool`, *optional*, defaults to `False`):
Whether to stop gradient for training.
share_layernorm (`bool`, *optional*, defaults to `True`):
Whether LayerNorm layers are shared.
remove_last_layer (`bool`, *optional*, defaults to `False`):
Whether to remove the last layer from the vision encoder.
Example:
```python
>>> from transformers import BridgeTowerVisionConfig
>>> # Initializing a BridgeTower BridgeTower/bridgetower-base style configuration for the vision model
>>> configuration = BridgeTowerVisionConfig()
>>> # Accessing the configuration
>>> configuration
```"""
model_type = "bridgetower_vision_model"
base_config_key = "vision_config"
def __init__(
self,
hidden_size=768,
num_hidden_layers=12,
num_channels=3,
patch_size=16,
image_size=288,
initializer_factor=1,
layer_norm_eps=1e-05,
stop_gradient=False,
share_layernorm=True,
remove_last_layer=False,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.initializer_factor = initializer_factor
self.layer_norm_eps = layer_norm_eps
self.stop_gradient = stop_gradient
self.share_layernorm = share_layernorm
self.remove_last_layer = remove_last_layer
class BridgeTowerTextConfig(PretrainedConfig):
r"""
This is the configuration class to store the text configuration of a [`BridgeTowerModel`]. The default values here
are copied from RoBERTa. Instantiating a configuration with the defaults will yield a similar configuration to that
of the bridgetower-base [BridegTower/bridgetower-base](https://huggingface.co/BridgeTower/bridgetower-base/)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50265):
Vocabulary size of the text part of the model. Defines the number of different tokens that can be
represented by the `inputs_ids` passed when calling [`BridgeTowerModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 514):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids`.
initializer_factor (`float`, *optional*, defaults to 1):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
is_decoder (`bool`, *optional*, defaults to `False`):
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
Example:
```python
>>> from transformers import BridgeTowerTextConfig
>>> # Initializing a BridgeTower BridgeTower/bridgetower-base style configuration for the text model
>>> configuration = BridgeTowerTextConfig()
>>> # Accessing the configuration
>>> configuration
```"""
model_type = "bridgetower_text_model"
base_config_key = "text_config"
def __init__(
self,
vocab_size=50265,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
initializer_factor=1,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=514,
type_vocab_size=1,
layer_norm_eps=1e-05,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
position_embedding_type="absolute",
use_cache=True,
**kwargs,
):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.initializer_factor = initializer_factor
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
class BridgeTowerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`BridgeTowerModel`]. It is used to instantiate a
BridgeTower model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the bridgetower-base
[BridgeTower/bridgetower-base](https://huggingface.co/BridgeTower/bridgetower-base/) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
share_cross_modal_transformer_layers (`bool`, *optional*, defaults to `True`):
Whether cross modal transformer layers are shared.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler.
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
initializer_factor (`float`, *optional*, defaults to 1):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
share_link_tower_layers (`bool`, *optional*, defaults to `False`):
Whether the bride/link tower layers are shared.
link_tower_type (`str`, *optional*, defaults to `"add"`):
Type of the bridge/link layer.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer encoder.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie input and output embeddings.
init_layernorm_from_vision_encoder (`bool`, *optional*, defaults to `False`):
Whether to init LayerNorm from the vision encoder.
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`BridgeTowerTextConfig`].
vision_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`BridgeTowerVisionConfig`].
Example:
```python
>>> from transformers import BridgeTowerModel, BridgeTowerConfig
>>> # Initializing a BridgeTower BridgeTower/bridgetower-base style configuration
>>> configuration = BridgeTowerConfig()
>>> # Initializing a model from the BridgeTower/bridgetower-base style configuration
>>> model = BridgeTowerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "bridgetower"
sub_configs = {"text_config": BridgeTowerTextConfig, "vision_config": BridgeTowerVisionConfig}
def __init__(
self,
share_cross_modal_transformer_layers=True,
hidden_act="gelu",
hidden_size=768,
initializer_factor=1,
layer_norm_eps=1e-05,
share_link_tower_layers=False,
link_tower_type="add",
num_attention_heads=12,
num_hidden_layers=6,
tie_word_embeddings=False,
init_layernorm_from_vision_encoder=False,
text_config=None,
vision_config=None,
**kwargs,
):
# TODO: remove this once the Hub files are updated.
_ = kwargs.pop("text_config_dict", None)
_ = kwargs.pop("vision_config_dict", None)
super().__init__(**kwargs)
self.share_cross_modal_transformer_layers = share_cross_modal_transformer_layers
self.hidden_act = hidden_act
self.hidden_size = hidden_size
self.initializer_factor = initializer_factor
self.layer_norm_eps = layer_norm_eps
self.share_link_tower_layers = share_link_tower_layers
self.link_tower_type = link_tower_type
self.num_attention_heads = num_attention_heads
self.num_hidden_layers = num_hidden_layers
self.tie_word_embeddings = tie_word_embeddings
self.init_layernorm_from_vision_encoder = init_layernorm_from_vision_encoder
if text_config is None:
text_config = {}
logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.")
if vision_config is None:
vision_config = {}
logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.")
self.text_config = BridgeTowerTextConfig(**text_config)
self.vision_config = BridgeTowerVisionConfig(**vision_config)
@classmethod
def from_text_vision_configs(
cls, text_config: BridgeTowerTextConfig, vision_config: BridgeTowerVisionConfig, **kwargs
):
r"""
Instantiate a [`BridgeTowerConfig`] (or a derived class) from BridgeTower text model configuration. Returns:
[`BridgeTowerConfig`]: An instance of a configuration object
"""
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
__all__ = ["BridgeTowerConfig", "BridgeTowerTextConfig", "BridgeTowerVisionConfig"]
|
transformers/src/transformers/models/bridgetower/configuration_bridgetower.py/0
|
{
"file_path": "transformers/src/transformers/models/bridgetower/configuration_bridgetower.py",
"repo_id": "transformers",
"token_count": 5541
}
| 106 |
# coding=utf-8
# Copyright 2021 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Feature extractor class for Chinese-CLIP."""
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
logger = logging.get_logger(__name__)
class ChineseCLIPFeatureExtractor(ChineseCLIPImageProcessor):
def __init__(self, *args, **kwargs) -> None:
warnings.warn(
"The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use ChineseCLIPImageProcessor instead.",
FutureWarning,
)
super().__init__(*args, **kwargs)
__all__ = ["ChineseCLIPFeatureExtractor"]
|
transformers/src/transformers/models/chinese_clip/feature_extraction_chinese_clip.py/0
|
{
"file_path": "transformers/src/transformers/models/chinese_clip/feature_extraction_chinese_clip.py",
"repo_id": "transformers",
"token_count": 393
}
| 107 |
# coding=utf-8
# Copyright 2021 The OpenAI Team Authors, The Google Flax Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxBaseModelOutputWithPooling
from ...modeling_flax_utils import (
ACT2FN,
FlaxPreTrainedModel,
append_replace_return_docstrings,
overwrite_call_docstring,
)
from ...utils import ModelOutput, add_start_docstrings, logging
from .configuration_clip import CLIPConfig, CLIPTextConfig, CLIPVisionConfig
logger = logging.get_logger(__name__)
CLIP_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a
[flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as
a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and
behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`CLIPConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
`jax.numpy.bfloat16` (on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
"""
CLIP_TEXT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
CLIP_VISION_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
CLIP_INPUTS_DOCSTRING = r"""
Args:
input_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@flax.struct.dataclass
class FlaxCLIPTextModelOutput(ModelOutput):
"""
Base class for text model's outputs that also contains a pooling of the last hidden states.
Args:
text_embeds (`jnp.ndarray` of shape `(batch_size, output_dim`):
The text embeddings obtained by applying the projection layer to the pooled output of
[`FlaxCLIPTextModel`].
last_hidden_state (`jnp.ndarray` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
text_embeds: jnp.ndarray = None
last_hidden_state: jnp.ndarray = None
hidden_states: Optional[Tuple[jnp.ndarray, ...]] = None
attentions: Optional[Tuple[jnp.ndarray, ...]] = None
@flax.struct.dataclass
class FlaxCLIPOutput(ModelOutput):
"""
Args:
logits_per_image:(`jnp.ndarray` of shape `(image_batch_size, text_batch_size)`):
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
similarity scores.
logits_per_text:(`jnp.ndarray` of shape `(text_batch_size, image_batch_size)`):
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
similarity scores.
text_embeds(`jnp.ndarray` of shape `(batch_size, output_dim`):
The text embeddings obtained by applying the projection layer to the pooled output of
[`FlaxCLIPTextModel`].
image_embeds(`jnp.ndarray` of shape `(batch_size, output_dim`):
The image embeddings obtained by applying the projection layer to the pooled output of
[`FlaxCLIPVisionModel`].
text_model_output(`FlaxBaseModelOutputWithPooling`):
The output of the [`FlaxCLIPTextModel`].
vision_model_output(`FlaxBaseModelOutputWithPooling`):
The output of the [`FlaxCLIPVisionModel`].
"""
logits_per_image: jnp.ndarray = None
logits_per_text: jnp.ndarray = None
text_embeds: jnp.ndarray = None
image_embeds: jnp.ndarray = None
text_model_output: FlaxBaseModelOutputWithPooling = None
vision_model_output: FlaxBaseModelOutputWithPooling = None
def to_tuple(self) -> Tuple[Any]:
return tuple(
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
for k in self.keys()
)
class FlaxCLIPVisionEmbeddings(nn.Module):
config: CLIPVisionConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
embed_dim = self.config.hidden_size
image_size = self.config.image_size
patch_size = self.config.patch_size
self.class_embedding = self.param("class_embedding", jax.nn.initializers.normal(stddev=0.02), (embed_dim,))
self.patch_embedding = nn.Conv(
embed_dim,
kernel_size=(patch_size, patch_size),
strides=(patch_size, patch_size),
padding="VALID",
use_bias=False,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(),
)
self.num_patches = (image_size // patch_size) ** 2
num_positions = self.num_patches + 1
self.position_embedding = nn.Embed(num_positions, embed_dim, embedding_init=jax.nn.initializers.normal())
self.position_ids = jnp.expand_dims(jnp.arange(0, num_positions, dtype="i4"), axis=0)
def __call__(self, pixel_values):
patch_embeds = self.patch_embedding(pixel_values)
batch_size, height, width, channels = patch_embeds.shape
patch_embeds = jnp.reshape(patch_embeds, (batch_size, height * width, channels))
class_embeds = jnp.expand_dims(self.class_embedding, axis=(0, 1))
class_embeds = jnp.tile(class_embeds, (batch_size, 1, 1))
embeddings = jnp.concatenate([class_embeds, patch_embeds], axis=1)
embeddings = embeddings + self.position_embedding(self.position_ids)
return embeddings
class FlaxCLIPTextEmbeddings(nn.Module):
config: CLIPTextConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
embed_dim = self.config.hidden_size
self.token_embedding = nn.Embed(self.config.vocab_size, embed_dim, embedding_init=jax.nn.initializers.normal())
self.position_embedding = nn.Embed(
self.config.max_position_embeddings, embed_dim, embedding_init=jax.nn.initializers.normal()
)
self.position_ids = jnp.expand_dims(
jnp.arange(0, self.config.max_position_embeddings, dtype="i4"), axis=(0, 1)
)
def __call__(self, input_ids, position_ids):
input_embeds = self.token_embedding(input_ids.astype("i4"))
position_embeds = self.position_embedding(position_ids.astype("i4"))
embeddings = input_embeds + position_embeds
return embeddings
class FlaxCLIPAttention(nn.Module):
config: Union[CLIPTextConfig, CLIPVisionConfig]
dtype: jnp.dtype = jnp.float32
def setup(self):
self.embed_dim = self.config.hidden_size
self.num_heads = self.config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = self.config.attention_dropout
self.k_proj = nn.Dense(self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.01))
self.v_proj = nn.Dense(self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.01))
self.q_proj = nn.Dense(self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.01))
self.out_proj = nn.Dense(self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.01))
self.causal = isinstance(self.config, CLIPTextConfig)
if self.causal:
self.causal_mask = make_causal_mask(jnp.ones((1, self.config.max_position_embeddings), dtype="i4"))
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
def __call__(
self,
hidden_states,
attention_mask=None,
deterministic: bool = True,
output_attentions: bool = False,
):
query = self.q_proj(hidden_states)
key = self.k_proj(hidden_states)
value = self.v_proj(hidden_states)
query = self._split_heads(query)
key = self._split_heads(key)
value = self._split_heads(value)
causal_attention_mask = None
if self.causal:
query_length, key_length = query.shape[1], key.shape[1]
causal_attention_mask = self.causal_mask[:, :, key_length - query_length : key_length, :key_length]
if attention_mask is not None and causal_attention_mask is not None:
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
attention_mask = combine_masks(attention_mask, causal_attention_mask, dtype="i4")
elif causal_attention_mask is not None:
attention_mask = causal_attention_mask
elif attention_mask is not None:
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
if attention_mask is not None:
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
)
else:
attention_bias = None
dropout_rng = None
if not deterministic and self.dropout > 0.0:
dropout_rng = self.make_rng("dropout")
attn_weights = dot_product_attention_weights(
query,
key,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.dropout,
deterministic=deterministic,
dtype=self.dtype,
precision=None,
)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value)
attn_output = self._merge_heads(attn_output)
attn_output = self.out_proj(attn_output)
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
return outputs
class FlaxCLIPMLP(nn.Module):
config: Union[CLIPTextConfig, CLIPVisionConfig]
dtype: jnp.dtype = jnp.float32
def setup(self):
self.activation_fn = ACT2FN[self.config.hidden_act]
self.fc1 = nn.Dense(
self.config.intermediate_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(0.01),
)
self.fc2 = nn.Dense(self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.01))
def __call__(self, hidden_states):
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class FlaxCLIPEncoderLayer(nn.Module):
config: Union[CLIPTextConfig, CLIPVisionConfig]
dtype: jnp.dtype = jnp.float32
def setup(self):
self.self_attn = FlaxCLIPAttention(self.config, dtype=self.dtype)
self.layer_norm1 = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.mlp = FlaxCLIPMLP(self.config, dtype=self.dtype)
self.layer_norm2 = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
def __call__(
self,
hidden_states,
attention_mask,
deterministic: bool = True,
output_attentions: bool = False,
):
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
attn_outputs = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
deterministic=deterministic,
output_attentions=output_attentions,
)
hidden_states = attn_outputs[0]
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += attn_outputs[1:]
return outputs
class FlaxCLIPLayerCollection(nn.Module):
config: Union[CLIPTextConfig, CLIPVisionConfig]
dtype: jnp.dtype = jnp.float32
def setup(self):
self.layers = [
FlaxCLIPEncoderLayer(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.num_hidden_layers)
]
def __call__(
self,
hidden_states,
attention_mask=None,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = layer(
hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions += (layer_outputs[1],)
if output_hidden_states:
all_hidden_states += (hidden_states,)
outputs = (hidden_states,)
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
class FlaxCLIPEncoder(nn.Module):
config: Union[CLIPTextConfig, CLIPVisionConfig]
dtype: jnp.dtype = jnp.float32
def setup(self):
self.layers = FlaxCLIPLayerCollection(self.config, dtype=self.dtype)
def __call__(
self,
inputs_embeds,
attention_mask=None,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
return self.layers(
hidden_states=inputs_embeds,
attention_mask=attention_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
class FlaxCLIPTextTransformer(nn.Module):
config: CLIPTextConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.embeddings = FlaxCLIPTextEmbeddings(self.config, dtype=self.dtype)
self.encoder = FlaxCLIPEncoder(self.config, dtype=self.dtype)
self.final_layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
# For `pooled_output` computation
self.eos_token_id = self.config.eos_token_id
def __call__(
self,
input_ids,
attention_mask,
position_ids,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
attention_mask=attention_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
last_hidden_state = self.final_layer_norm(last_hidden_state)
if self.eos_token_id == 2:
# The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here.
# A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added
# ------------------------------------------------------------
# text_embeds.shape = [batch_size, sequence_length, transformer.width]
# take features from the EOS embedding (eos_token_id is the highest number in each sequence)
pooled_output = last_hidden_state[jnp.arange(last_hidden_state.shape[0]), input_ids.argmax(axis=-1)]
else:
# (no need to cast from bool to int after comparing to `eos_token_id`)
pooled_output = last_hidden_state[
jnp.arange(last_hidden_state.shape[0]), (input_ids == self.eos_token_id).argmax(axis=-1)
]
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return FlaxBaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class FlaxCLIPVisionTransformer(nn.Module):
config: CLIPVisionConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.embeddings = FlaxCLIPVisionEmbeddings(self.config, dtype=self.dtype)
self.pre_layrnorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.encoder = FlaxCLIPEncoder(self.config, dtype=self.dtype)
self.post_layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
def __call__(
self,
pixel_values=None,
deterministic: bool = True,
output_attentions=None,
output_hidden_states=None,
return_dict: bool = True,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
hidden_states = self.embeddings(pixel_values)
hidden_states = self.pre_layrnorm(hidden_states)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
pooled_output = last_hidden_state[:, 0, :]
pooled_output = self.post_layernorm(pooled_output)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return FlaxBaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class FlaxCLIPTextPreTrainedModel(FlaxPreTrainedModel):
config_class = CLIPTextConfig
module_class: nn.Module = None
def __init__(
self,
config: CLIPTextConfig,
input_shape=(1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensor
input_ids = jnp.zeros(input_shape, dtype="i4")
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
attention_mask = jnp.ones_like(input_ids)
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
random_params = self.module.init(rngs, input_ids, attention_mask, position_ids)["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
def __call__(
self,
input_ids,
attention_mask=None,
position_ids=None,
params: dict = None,
dropout_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
if position_ids is None:
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
return self.module.apply(
{"params": params or self.params},
jnp.array(input_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
jnp.array(position_ids, dtype="i4"),
not train,
output_attentions,
output_hidden_states,
return_dict,
rngs=rngs,
)
class FlaxCLIPVisionPreTrainedModel(FlaxPreTrainedModel):
config_class = CLIPVisionConfig
main_input_name = "pixel_values"
module_class: nn.Module = None
def __init__(
self,
config: CLIPVisionConfig,
input_shape: Optional[Tuple] = None,
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
if input_shape is None:
input_shape = (1, config.image_size, config.image_size, 3)
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensor
pixel_values = jax.random.normal(rng, input_shape)
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
random_params = self.module.init(rngs, pixel_values)["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
def __call__(
self,
pixel_values,
params: dict = None,
dropout_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
return self.module.apply(
{"params": params or self.params},
jnp.array(pixel_values, dtype=jnp.float32),
not train,
output_attentions,
output_hidden_states,
return_dict,
rngs=rngs,
)
class FlaxCLIPPreTrainedModel(FlaxPreTrainedModel):
config_class = CLIPConfig
module_class: nn.Module = None
def __init__(
self,
config: CLIPConfig,
input_shape: Optional[Tuple] = None,
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
if input_shape is None:
input_shape = ((1, 1), (1, config.vision_config.image_size, config.vision_config.image_size, 3))
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensor
input_ids = jnp.zeros(input_shape[0], dtype="i4")
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape[0])
attention_mask = jnp.ones_like(input_ids)
pixel_values = jax.random.normal(rng, input_shape[1])
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
random_params = self.module.init(rngs, input_ids, pixel_values, attention_mask, position_ids)["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
def __call__(
self,
input_ids,
pixel_values,
attention_mask=None,
position_ids=None,
params: dict = None,
dropout_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
if position_ids is None:
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
return self.module.apply(
{"params": params or self.params},
jnp.array(input_ids, dtype="i4"),
jnp.array(pixel_values, dtype=jnp.float32),
jnp.array(attention_mask, dtype="i4"),
jnp.array(position_ids, dtype="i4"),
not train,
output_attentions,
output_hidden_states,
return_dict,
rngs=rngs,
)
def get_text_features(
self,
input_ids,
attention_mask=None,
position_ids=None,
params: dict = None,
dropout_rng: jax.random.PRNGKey = None,
train=False,
):
r"""
Args:
input_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
Returns:
text_features (`jnp.ndarray` of shape `(batch_size, output_dim`): The text embeddings obtained by applying
the projection layer to the pooled output of [`FlaxCLIPTextModel`].
Examples:
```python
>>> from transformers import AutoTokenizer, FlaxCLIPModel
>>> model = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
>>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="np")
>>> text_features = model.get_text_features(**inputs)
```"""
if position_ids is None:
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
def _get_features(module, input_ids, attention_mask, position_ids, deterministic):
text_outputs = module.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
deterministic=deterministic,
)
pooled_output = text_outputs[1]
text_features = module.text_projection(pooled_output)
return text_features
return self.module.apply(
{"params": params or self.params},
jnp.array(input_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
jnp.array(position_ids, dtype="i4"),
not train,
method=_get_features,
rngs=rngs,
)
def get_image_features(
self, pixel_values, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train=False
):
r"""
Args:
pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained
using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
Returns:
image_features (`jnp.ndarray` of shape `(batch_size, output_dim`): The image embeddings obtained by
applying the projection layer to the pooled output of [`FlaxCLIPVisionModel`]
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, FlaxCLIPModel
>>> model = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="np")
>>> image_features = model.get_image_features(**inputs)
```"""
pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
def _get_features(module, pixel_values, deterministic):
vision_outputs = module.vision_model(pixel_values=pixel_values, deterministic=deterministic)
pooled_output = vision_outputs[1] # pooled_output
image_features = module.visual_projection(pooled_output)
return image_features
return self.module.apply(
{"params": params or self.params},
jnp.array(pixel_values, dtype=jnp.float32),
not train,
method=_get_features,
rngs=rngs,
)
class FlaxCLIPTextModule(nn.Module):
config: CLIPTextConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.text_model = FlaxCLIPTextTransformer(self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
return self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
class FlaxCLIPTextModel(FlaxCLIPTextPreTrainedModel):
module_class = FlaxCLIPTextModule
FLAX_CLIP_TEXT_MODEL_DOCSTRING = """
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, FlaxCLIPTextModel
>>> model = FlaxCLIPTextModel.from_pretrained("openai/clip-vit-base-patch32")
>>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="np")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooler_output = outputs.pooler_output # pooled (EOS token) states
```
"""
overwrite_call_docstring(FlaxCLIPTextModel, CLIP_TEXT_INPUTS_DOCSTRING + FLAX_CLIP_TEXT_MODEL_DOCSTRING)
append_replace_return_docstrings(
FlaxCLIPTextModel, output_type=FlaxBaseModelOutputWithPooling, config_class=CLIPTextConfig
)
class FlaxCLIPTextModelWithProjectionModule(nn.Module):
config: CLIPTextConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.text_model = FlaxCLIPTextTransformer(self.config, dtype=self.dtype)
self.text_projection = nn.Dense(self.config.projection_dim, use_bias=False, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = text_outputs[1]
text_embeds = self.text_projection(pooled_output)
if not return_dict:
return (text_embeds, text_outputs[0]) + text_outputs[2:]
return FlaxCLIPTextModelOutput(
text_embeds=text_embeds,
last_hidden_state=text_outputs.last_hidden_state,
hidden_states=text_outputs.hidden_states,
attentions=text_outputs.attentions,
)
class FlaxCLIPTextModelWithProjection(FlaxCLIPTextPreTrainedModel):
module_class = FlaxCLIPTextModelWithProjectionModule
FLAX_CLIP_TEXT_MODEL_WITH_PROJECTION_DOCSTRING = """
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, FlaxCLIPTextModelWithProjection
>>> model = FlaxCLIPTextModelWithProjection.from_pretrained("openai/clip-vit-base-patch32")
>>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="np")
>>> outputs = model(**inputs)
>>> text_embeds = outputs.text_embeds
```
"""
overwrite_call_docstring(
FlaxCLIPTextModelWithProjection, CLIP_TEXT_INPUTS_DOCSTRING + FLAX_CLIP_TEXT_MODEL_WITH_PROJECTION_DOCSTRING
)
append_replace_return_docstrings(
FlaxCLIPTextModelWithProjection, output_type=FlaxCLIPTextModelOutput, config_class=CLIPTextConfig
)
class FlaxCLIPVisionModule(nn.Module):
config: CLIPVisionConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.vision_model = FlaxCLIPVisionTransformer(self.config, dtype=self.dtype)
def __call__(
self,
pixel_values,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
return self.vision_model(
pixel_values=pixel_values,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
class FlaxCLIPVisionModel(FlaxCLIPVisionPreTrainedModel):
module_class = FlaxCLIPVisionModule
FLAX_CLIP_VISION_MODEL_DOCSTRING = """
Returns:
Example:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, FlaxCLIPVisionModel
>>> model = FlaxCLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="np")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooler_output = outputs.pooler_output # pooled CLS states
```
"""
overwrite_call_docstring(FlaxCLIPVisionModel, CLIP_VISION_INPUTS_DOCSTRING + FLAX_CLIP_VISION_MODEL_DOCSTRING)
append_replace_return_docstrings(
FlaxCLIPVisionModel, output_type=FlaxBaseModelOutputWithPooling, config_class=CLIPVisionConfig
)
class FlaxCLIPModule(nn.Module):
config: CLIPConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
text_config = self.config.text_config
vision_config = self.config.vision_config
self.projection_dim = self.config.projection_dim
self.text_embed_dim = text_config.hidden_size
self.vision_embed_dim = vision_config.hidden_size
self.text_model = FlaxCLIPTextTransformer(text_config, dtype=self.dtype)
self.vision_model = FlaxCLIPVisionTransformer(vision_config, dtype=self.dtype)
self.visual_projection = nn.Dense(
self.projection_dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(0.02),
use_bias=False,
)
self.text_projection = nn.Dense(
self.projection_dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(0.02),
use_bias=False,
)
self.logit_scale = self.param(
"logit_scale", lambda _, shape: jnp.ones(shape) * self.config.logit_scale_init_value, []
)
def __call__(
self,
input_ids=None,
pixel_values=None,
attention_mask=None,
position_ids=None,
deterministic: bool = True,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
image_embeds = vision_outputs[1]
image_embeds = self.visual_projection(image_embeds)
text_embeds = text_outputs[1]
text_embeds = self.text_projection(text_embeds)
# normalized features
image_embeds = image_embeds / jnp.linalg.norm(image_embeds, axis=-1, keepdims=True)
text_embeds = text_embeds / jnp.linalg.norm(text_embeds, axis=-1, keepdims=True)
# cosine similarity as logits
logit_scale = jnp.exp(self.logit_scale)
logits_per_text = jnp.matmul(text_embeds, image_embeds.T) * logit_scale
logits_per_image = logits_per_text.T
if not return_dict:
return (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
return FlaxCLIPOutput(
logits_per_image=logits_per_image,
logits_per_text=logits_per_text,
text_embeds=text_embeds,
image_embeds=image_embeds,
text_model_output=text_outputs,
vision_model_output=vision_outputs,
)
@add_start_docstrings(CLIP_START_DOCSTRING)
class FlaxCLIPModel(FlaxCLIPPreTrainedModel):
module_class = FlaxCLIPModule
FLAX_CLIP_MODEL_DOCSTRING = """
Returns:
Example:
```python
>>> import jax
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, FlaxCLIPModel
>>> model = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="np", padding=True
... )
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = jax.nn.softmax(logits_per_image, axis=1) # we can take the softmax to get the label probabilities
```
"""
overwrite_call_docstring(FlaxCLIPModel, CLIP_INPUTS_DOCSTRING + FLAX_CLIP_MODEL_DOCSTRING)
append_replace_return_docstrings(FlaxCLIPModel, output_type=FlaxCLIPOutput, config_class=CLIPConfig)
__all__ = [
"FlaxCLIPModel",
"FlaxCLIPPreTrainedModel",
"FlaxCLIPTextModel",
"FlaxCLIPTextPreTrainedModel",
"FlaxCLIPTextModelWithProjection",
"FlaxCLIPVisionModel",
"FlaxCLIPVisionPreTrainedModel",
]
|
transformers/src/transformers/models/clip/modeling_flax_clip.py/0
|
{
"file_path": "transformers/src/transformers/models/clip/modeling_flax_clip.py",
"repo_id": "transformers",
"token_count": 22031
}
| 108 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for CLVP
"""
from ...processing_utils import ProcessorMixin
class ClvpProcessor(ProcessorMixin):
r"""
Constructs a CLVP processor which wraps a CLVP Feature Extractor and a CLVP Tokenizer into a single processor.
[`ClvpProcessor`] offers all the functionalities of [`ClvpFeatureExtractor`] and [`ClvpTokenizer`]. See the
[`~ClvpProcessor.__call__`], [`~ClvpProcessor.decode`] and [`~ClvpProcessor.batch_decode`] for more information.
Args:
feature_extractor (`ClvpFeatureExtractor`):
An instance of [`ClvpFeatureExtractor`]. The feature extractor is a required input.
tokenizer (`ClvpTokenizer`):
An instance of [`ClvpTokenizer`]. The tokenizer is a required input.
"""
feature_extractor_class = "ClvpFeatureExtractor"
tokenizer_class = "ClvpTokenizer"
model_input_names = [
"input_ids",
"input_features",
"attention_mask",
]
def __init__(self, feature_extractor, tokenizer):
super().__init__(feature_extractor, tokenizer)
def __call__(self, *args, **kwargs):
"""
Forwards the `audio` and `sampling_rate` arguments to [`~ClvpFeatureExtractor.__call__`] and the `text`
argument to [`~ClvpTokenizer.__call__`]. Please refer to the doctsring of the above two methods for more
information.
"""
raw_speech = kwargs.pop("raw_speech", None)
sampling_rate = kwargs.pop("sampling_rate", None)
text = kwargs.pop("text", None)
if raw_speech is None and text is None:
raise ValueError("You need to specify either an `raw_speech` or `text` input to process.")
if raw_speech is not None:
inputs = self.feature_extractor(raw_speech, sampling_rate=sampling_rate, **kwargs)
if text is not None:
encodings = self.tokenizer(text, **kwargs)
if text is None:
return inputs
elif raw_speech is None:
return encodings
else:
inputs["input_ids"] = encodings["input_ids"]
inputs["attention_mask"] = encodings["attention_mask"]
return inputs
# Copied from transformers.models.whisper.processing_whisper.WhisperProcessor.batch_decode with Whisper->Clvp
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to ClvpTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.whisper.processing_whisper.WhisperProcessor.decode with Whisper->Clvp
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to ClvpTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
__all__ = ["ClvpProcessor"]
|
transformers/src/transformers/models/clvp/processing_clvp.py/0
|
{
"file_path": "transformers/src/transformers/models/clvp/processing_clvp.py",
"repo_id": "transformers",
"token_count": 1363
}
| 109 |
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/cohere2/modular_cohere2.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_cohere2.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2024 Cohere Inc. HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ...configuration_utils import PretrainedConfig
from ...modeling_rope_utils import rope_config_validation
class Cohere2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`CohereModel`]. It is used to instantiate an Cohere
model according to the specified arguments, defining the model architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information. Instantiating a configuration
with the defaults will yield a similar configuration to that of the [CohereForAI/c4ai-command-r-v01](https://huggingface.co/CohereForAI/c4ai-command-r-v01) model.
Args:
vocab_size (`int`, *optional*, defaults to 256000):
Vocabulary size of the Cohere model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`CohereModel`]
hidden_size (`int`, *optional*, defaults to 8192):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 22528):
Dimension of the MLP representations.
logit_scale (`float`, *optional*, defaults to 0.0625):
The scaling factor for the output logits.
num_hidden_layers (`int`, *optional*, defaults to 40):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 64):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 8192):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 5):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 255001):
End of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
sliding_window (`int`, *optional*, defaults to 4096):
Size of the sliding window attention context.
sliding_window_pattern (`int`, *optional*, defaults to 4):
Pattern for the sliding window attention.
cache_implementation (`str`, *optional*, defaults to `"hybrid"`): the cache type to be used with `generate`.
```python
>>> from transformers import Cohere2Model, Cohere2Config
>>> # Initializing a Cohere Nextmodel configuration
>>> configuration = Cohere2Config()
>>> # Initializing a model from the Cohere2 configuration
>>> model = Cohere2Model(configuration) # doctest: +SKIP
>>> # Accessing the model configuration
>>> configuration = model.config # doctest: +SKIP
```
"""
model_type = "cohere2"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=256000,
hidden_size=8192,
intermediate_size=22528,
logit_scale=0.0625,
num_hidden_layers=40,
num_attention_heads=64,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=8192,
initializer_range=0.02,
layer_norm_eps=1e-5,
use_cache=True,
pad_token_id=0,
bos_token_id=5,
eos_token_id=255001,
tie_word_embeddings=True,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
sliding_window=4096,
sliding_window_pattern=4,
cache_implementation="hybrid",
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.logit_scale = logit_scale
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.sliding_window = sliding_window
self.sliding_window_pattern = sliding_window_pattern
# Need to specify head_dim in the config so it can be used in the attention forward functions
self.head_dim = hidden_size // num_attention_heads
self.cache_implementation = cache_implementation
# Validate the correctness of rotary position embeddings parameters
rope_config_validation(self)
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
__all__ = ["Cohere2Config"]
|
transformers/src/transformers/models/cohere2/configuration_cohere2.py/0
|
{
"file_path": "transformers/src/transformers/models/cohere2/configuration_cohere2.py",
"repo_id": "transformers",
"token_count": 4709
}
| 110 |
# coding=utf-8
# Copyright The HuggingFace team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""ConvBERT model configuration"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class ConvBertConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ConvBertModel`]. It is used to instantiate an
ConvBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the ConvBERT
[YituTech/conv-bert-base](https://huggingface.co/YituTech/conv-bert-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the ConvBERT model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`ConvBertModel`] or [`TFConvBertModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`ConvBertModel`] or [`TFConvBertModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
head_ratio (`int`, *optional*, defaults to 2):
Ratio gamma to reduce the number of attention heads.
num_groups (`int`, *optional*, defaults to 1):
The number of groups for grouped linear layers for ConvBert model
conv_kernel_size (`int`, *optional*, defaults to 9):
The size of the convolutional kernel.
classifier_dropout (`float`, *optional*):
The dropout ratio for the classification head.
Example:
```python
>>> from transformers import ConvBertConfig, ConvBertModel
>>> # Initializing a ConvBERT convbert-base-uncased style configuration
>>> configuration = ConvBertConfig()
>>> # Initializing a model (with random weights) from the convbert-base-uncased style configuration
>>> model = ConvBertModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "convbert"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
embedding_size=768,
head_ratio=2,
conv_kernel_size=9,
num_groups=1,
classifier_dropout=None,
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
**kwargs,
)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.embedding_size = embedding_size
self.head_ratio = head_ratio
self.conv_kernel_size = conv_kernel_size
self.num_groups = num_groups
self.classifier_dropout = classifier_dropout
# Copied from transformers.models.bert.configuration_bert.BertOnnxConfig
class ConvBertOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
else:
dynamic_axis = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("token_type_ids", dynamic_axis),
]
)
__all__ = ["ConvBertConfig", "ConvBertOnnxConfig"]
|
transformers/src/transformers/models/convbert/configuration_convbert.py/0
|
{
"file_path": "transformers/src/transformers/models/convbert/configuration_convbert.py",
"repo_id": "transformers",
"token_count": 2675
}
| 111 |
# coding=utf-8
# Copyright 2023 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch ConvNextV2 model."""
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BackboneOutput,
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_convnextv2 import ConvNextV2Config
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "ConvNextV2Config"
# Base docstring
_CHECKPOINT_FOR_DOC = "facebook/convnextv2-tiny-1k-224"
_EXPECTED_OUTPUT_SHAPE = [1, 768, 7, 7]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "facebook/convnextv2-tiny-1k-224"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->ConvNextV2
class ConvNextV2DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class ConvNextV2GRN(nn.Module):
"""GRN (Global Response Normalization) layer"""
def __init__(self, dim: int):
super().__init__()
self.weight = nn.Parameter(torch.zeros(1, 1, 1, dim))
self.bias = nn.Parameter(torch.zeros(1, 1, 1, dim))
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
# Compute and normalize global spatial feature maps
global_features = torch.norm(hidden_states, p=2, dim=(1, 2), keepdim=True)
norm_features = global_features / (global_features.mean(dim=-1, keepdim=True) + 1e-6)
hidden_states = self.weight * (hidden_states * norm_features) + self.bias + hidden_states
return hidden_states
# Copied from transformers.models.convnext.modeling_convnext.ConvNextLayerNorm with ConvNext->ConvNextV2
class ConvNextV2LayerNorm(nn.Module):
r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height,
width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError(f"Unsupported data format: {self.data_format}")
self.normalized_shape = (normalized_shape,)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.data_format == "channels_last":
x = torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
elif self.data_format == "channels_first":
input_dtype = x.dtype
x = x.float()
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = x.to(dtype=input_dtype)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
# Copied from transformers.models.convnext.modeling_convnext.ConvNextEmbeddings with ConvNext->ConvNextV2
class ConvNextV2Embeddings(nn.Module):
"""This class is comparable to (and inspired by) the SwinEmbeddings class
found in src/transformers/models/swin/modeling_swin.py.
"""
def __init__(self, config):
super().__init__()
self.patch_embeddings = nn.Conv2d(
config.num_channels, config.hidden_sizes[0], kernel_size=config.patch_size, stride=config.patch_size
)
self.layernorm = ConvNextV2LayerNorm(config.hidden_sizes[0], eps=1e-6, data_format="channels_first")
self.num_channels = config.num_channels
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
num_channels = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
embeddings = self.patch_embeddings(pixel_values)
embeddings = self.layernorm(embeddings)
return embeddings
class ConvNextV2Layer(nn.Module):
"""This corresponds to the `Block` class in the original implementation.
There are two equivalent implementations: [DwConv, LayerNorm (channels_first), Conv, GELU,1x1 Conv]; all in (N, C,
H, W) (2) [DwConv, Permute to (N, H, W, C), LayerNorm (channels_last), Linear, GELU, Linear]; Permute back
The authors used (2) as they find it slightly faster in PyTorch.
Args:
config ([`ConvNextV2Config`]): Model configuration class.
dim (`int`): Number of input channels.
drop_path (`float`): Stochastic depth rate. Default: 0.0.
"""
def __init__(self, config, dim, drop_path=0):
super().__init__()
# depthwise conv
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim)
self.layernorm = ConvNextV2LayerNorm(dim, eps=1e-6)
# pointwise/1x1 convs, implemented with linear layers
self.pwconv1 = nn.Linear(dim, 4 * dim)
self.act = ACT2FN[config.hidden_act]
self.grn = ConvNextV2GRN(4 * dim)
self.pwconv2 = nn.Linear(4 * dim, dim)
self.drop_path = ConvNextV2DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
input = hidden_states
x = self.dwconv(hidden_states)
# (batch_size, num_channels, height, width) -> (batch_size, height, width, num_channels)
x = x.permute(0, 2, 3, 1)
x = self.layernorm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.grn(x)
x = self.pwconv2(x)
# (batch_size, height, width, num_channels) -> (batch_size, num_channels, height, width)
x = x.permute(0, 3, 1, 2)
x = input + self.drop_path(x)
return x
# Copied from transformers.models.convnext.modeling_convnext.ConvNextStage with ConvNeXT->ConvNeXTV2, ConvNext->ConvNextV2
class ConvNextV2Stage(nn.Module):
"""ConvNeXTV2 stage, consisting of an optional downsampling layer + multiple residual blocks.
Args:
config ([`ConvNextV2Config`]): Model configuration class.
in_channels (`int`): Number of input channels.
out_channels (`int`): Number of output channels.
depth (`int`): Number of residual blocks.
drop_path_rates(`List[float]`): Stochastic depth rates for each layer.
"""
def __init__(self, config, in_channels, out_channels, kernel_size=2, stride=2, depth=2, drop_path_rates=None):
super().__init__()
if in_channels != out_channels or stride > 1:
self.downsampling_layer = nn.Sequential(
ConvNextV2LayerNorm(in_channels, eps=1e-6, data_format="channels_first"),
nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride),
)
else:
self.downsampling_layer = nn.Identity()
drop_path_rates = drop_path_rates or [0.0] * depth
self.layers = nn.Sequential(
*[ConvNextV2Layer(config, dim=out_channels, drop_path=drop_path_rates[j]) for j in range(depth)]
)
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
hidden_states = self.downsampling_layer(hidden_states)
hidden_states = self.layers(hidden_states)
return hidden_states
# Copied from transformers.models.convnext.modeling_convnext.ConvNextEncoder with ConvNext->ConvNextV2
class ConvNextV2Encoder(nn.Module):
def __init__(self, config):
super().__init__()
self.stages = nn.ModuleList()
drop_path_rates = [
x.tolist() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths)).split(config.depths)
]
prev_chs = config.hidden_sizes[0]
for i in range(config.num_stages):
out_chs = config.hidden_sizes[i]
stage = ConvNextV2Stage(
config,
in_channels=prev_chs,
out_channels=out_chs,
stride=2 if i > 0 else 1,
depth=config.depths[i],
drop_path_rates=drop_path_rates[i],
)
self.stages.append(stage)
prev_chs = out_chs
def forward(
self,
hidden_states: torch.FloatTensor,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple, BaseModelOutputWithNoAttention]:
all_hidden_states = () if output_hidden_states else None
for i, layer_module in enumerate(self.stages):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
hidden_states = layer_module(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
return BaseModelOutputWithNoAttention(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
)
# Copied from transformers.models.convnext.modeling_convnext.ConvNextPreTrainedModel with ConvNext->ConvNextV2, convnext->convnextv2
class ConvNextV2PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = ConvNextV2Config
base_model_prefix = "convnextv2"
main_input_name = "pixel_values"
_no_split_modules = ["ConvNextV2Layer"]
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
CONVNEXTV2_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`ConvNextV2Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
CONVNEXTV2_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`ConvNextImageProcessor`]. See
[`ConvNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare ConvNextV2 model outputting raw features without any specific head on top.",
CONVNEXTV2_START_DOCSTRING,
)
# Copied from transformers.models.convnext.modeling_convnext.ConvNextModel with CONVNEXT->CONVNEXTV2, ConvNext->ConvNextV2
class ConvNextV2Model(ConvNextV2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.embeddings = ConvNextV2Embeddings(config)
self.encoder = ConvNextV2Encoder(config)
# final layernorm layer
self.layernorm = nn.LayerNorm(config.hidden_sizes[-1], eps=config.layer_norm_eps)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndNoAttention,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: torch.FloatTensor = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
embedding_output = self.embeddings(pixel_values)
encoder_outputs = self.encoder(
embedding_output,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
# global average pooling, (N, C, H, W) -> (N, C)
pooled_output = self.layernorm(last_hidden_state.mean([-2, -1]))
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
)
@add_start_docstrings(
"""
ConvNextV2 Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""",
CONVNEXTV2_START_DOCSTRING,
)
# Copied from transformers.models.convnext.modeling_convnext.ConvNextForImageClassification with CONVNEXT->CONVNEXTV2,ConvNext->ConvNextV2,convnext->convnextv2
class ConvNextV2ForImageClassification(ConvNextV2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.convnextv2 = ConvNextV2Model(config)
# Classifier head
self.classifier = (
nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutputWithNoAttention,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: torch.FloatTensor = None,
labels: Optional[torch.LongTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.convnextv2(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
pooled_output = outputs.pooler_output if return_dict else outputs[1]
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
)
@add_start_docstrings(
"""
ConvNeXT V2 backbone, to be used with frameworks like DETR and MaskFormer.
""",
CONVNEXTV2_START_DOCSTRING,
)
# Copied from transformers.models.convnext.modeling_convnext.ConvNextBackbone with CONVNEXT->CONVNEXTV2,ConvNext->ConvNextV2,facebook/convnext-tiny-224->facebook/convnextv2-tiny-1k-224
class ConvNextV2Backbone(ConvNextV2PreTrainedModel, BackboneMixin):
def __init__(self, config):
super().__init__(config)
super()._init_backbone(config)
self.embeddings = ConvNextV2Embeddings(config)
self.encoder = ConvNextV2Encoder(config)
self.num_features = [config.hidden_sizes[0]] + config.hidden_sizes
# Add layer norms to hidden states of out_features
hidden_states_norms = {}
for stage, num_channels in zip(self._out_features, self.channels):
hidden_states_norms[stage] = ConvNextV2LayerNorm(num_channels, data_format="channels_first")
self.hidden_states_norms = nn.ModuleDict(hidden_states_norms)
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.Tensor,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> BackboneOutput:
"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, AutoBackbone
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> processor = AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224")
>>> model = AutoBackbone.from_pretrained("facebook/convnextv2-tiny-1k-224")
>>> inputs = processor(image, return_tensors="pt")
>>> outputs = model(**inputs)
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
embedding_output = self.embeddings(pixel_values)
outputs = self.encoder(
embedding_output,
output_hidden_states=True,
return_dict=return_dict,
)
hidden_states = outputs.hidden_states if return_dict else outputs[1]
feature_maps = ()
for stage, hidden_state in zip(self.stage_names, hidden_states):
if stage in self.out_features:
hidden_state = self.hidden_states_norms[stage](hidden_state)
feature_maps += (hidden_state,)
if not return_dict:
output = (feature_maps,)
if output_hidden_states:
output += (hidden_states,)
return output
return BackboneOutput(
feature_maps=feature_maps,
hidden_states=hidden_states if output_hidden_states else None,
attentions=None,
)
__all__ = ["ConvNextV2ForImageClassification", "ConvNextV2Model", "ConvNextV2PreTrainedModel", "ConvNextV2Backbone"]
|
transformers/src/transformers/models/convnextv2/modeling_convnextv2.py/0
|
{
"file_path": "transformers/src/transformers/models/convnextv2/modeling_convnextv2.py",
"repo_id": "transformers",
"token_count": 9828
}
| 112 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert CvT checkpoints from the original repository.
URL: https://github.com/microsoft/CvT"""
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def embeddings(idx):
"""
The function helps in renaming embedding layer weights.
Args:
idx: stage number in original model
"""
embed = []
embed.append(
(
f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight",
f"stage{idx}.patch_embed.proj.weight",
)
)
embed.append(
(
f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias",
f"stage{idx}.patch_embed.proj.bias",
)
)
embed.append(
(
f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight",
f"stage{idx}.patch_embed.norm.weight",
)
)
embed.append(
(
f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias",
f"stage{idx}.patch_embed.norm.bias",
)
)
return embed
def attention(idx, cnt):
"""
The function helps in renaming attention block layers weights.
Args:
idx: stage number in original model
cnt: count of blocks in each stage
"""
attention_weights = []
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked",
f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight",
f"stage{idx}.blocks.{cnt}.attn.proj_q.weight",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias",
f"stage{idx}.blocks.{cnt}.attn.proj_q.bias",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight",
f"stage{idx}.blocks.{cnt}.attn.proj_k.weight",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias",
f"stage{idx}.blocks.{cnt}.attn.proj_k.bias",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight",
f"stage{idx}.blocks.{cnt}.attn.proj_v.weight",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias",
f"stage{idx}.blocks.{cnt}.attn.proj_v.bias",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight",
f"stage{idx}.blocks.{cnt}.attn.proj.weight",
)
)
attention_weights.append(
(
f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias",
f"stage{idx}.blocks.{cnt}.attn.proj.bias",
)
)
attention_weights.append(
(f"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", f"stage{idx}.blocks.{cnt}.mlp.fc1.weight")
)
attention_weights.append(
(f"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", f"stage{idx}.blocks.{cnt}.mlp.fc1.bias")
)
attention_weights.append(
(f"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", f"stage{idx}.blocks.{cnt}.mlp.fc2.weight")
)
attention_weights.append(
(f"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", f"stage{idx}.blocks.{cnt}.mlp.fc2.bias")
)
attention_weights.append(
(f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", f"stage{idx}.blocks.{cnt}.norm1.weight")
)
attention_weights.append(
(f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", f"stage{idx}.blocks.{cnt}.norm1.bias")
)
attention_weights.append(
(f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", f"stage{idx}.blocks.{cnt}.norm2.weight")
)
attention_weights.append(
(f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", f"stage{idx}.blocks.{cnt}.norm2.bias")
)
return attention_weights
def cls_token(idx):
"""
Function helps in renaming cls_token weights
"""
token = []
token.append((f"cvt.encoder.stages.{idx}.cls_token", "stage2.cls_token"))
return token
def final():
"""
Function helps in renaming final classification layer
"""
head = []
head.append(("layernorm.weight", "norm.weight"))
head.append(("layernorm.bias", "norm.bias"))
head.append(("classifier.weight", "head.weight"))
head.append(("classifier.bias", "head.bias"))
return head
def convert_cvt_checkpoint(cvt_model, image_size, cvt_file_name, pytorch_dump_folder):
"""
Fucntion to convert the microsoft cvt checkpoint to huggingface checkpoint
"""
img_labels_file = "imagenet-1k-id2label.json"
num_labels = 1000
repo_id = "huggingface/label-files"
num_labels = num_labels
id2label = json.loads(Path(hf_hub_download(repo_id, img_labels_file, repo_type="dataset")).read_text())
id2label = {int(k): v for k, v in id2label.items()}
id2label = id2label
label2id = {v: k for k, v in id2label.items()}
config = config = CvtConfig(num_labels=num_labels, id2label=id2label, label2id=label2id)
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit("/", 1)[-1][4:6] == "13":
config.depth = [1, 2, 10]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit("/", 1)[-1][4:6] == "21":
config.depth = [1, 4, 16]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
config.depth = [2, 2, 20]
config.num_heads = [3, 12, 16]
config.embed_dim = [192, 768, 1024]
model = CvtForImageClassification(config)
image_processor = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k")
image_processor.size["shortest_edge"] = image_size
original_weights = torch.load(cvt_file_name, map_location=torch.device("cpu"))
huggingface_weights = OrderedDict()
list_of_state_dict = []
for idx in range(len(config.depth)):
if config.cls_token[idx]:
list_of_state_dict = list_of_state_dict + cls_token(idx)
list_of_state_dict = list_of_state_dict + embeddings(idx)
for cnt in range(config.depth[idx]):
list_of_state_dict = list_of_state_dict + attention(idx, cnt)
list_of_state_dict = list_of_state_dict + final()
for gg in list_of_state_dict:
print(gg)
for i in range(len(list_of_state_dict)):
huggingface_weights[list_of_state_dict[i][0]] = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(huggingface_weights)
model.save_pretrained(pytorch_dump_folder)
image_processor.save_pretrained(pytorch_dump_folder)
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--cvt_model",
default="cvt-w24",
type=str,
help="Name of the cvt model you'd like to convert.",
)
parser.add_argument(
"--image_size",
default=384,
type=int,
help="Input Image Size",
)
parser.add_argument(
"--cvt_file_name",
default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth",
type=str,
help="Input Image Size",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
args = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
|
transformers/src/transformers/models/cvt/convert_cvt_original_pytorch_checkpoint_to_pytorch.py/0
|
{
"file_path": "transformers/src/transformers/models/cvt/convert_cvt_original_pytorch_checkpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 6353
}
| 113 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Data2VecText model."""
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN, gelu
from ...generation import GenerationMixin
from ...modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
BaseModelOutputWithPoolingAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
MaskedLMOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_data2vec_text import Data2VecTextConfig
logger = logging.get_logger(__name__)
_HIDDEN_STATES_START_POSITION = 2
# General docstring
_CHECKPOINT_FOR_DOC = "facebook/data2vec-text-base"
_CONFIG_FOR_DOC = "Data2VecTextConfig"
# Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->Data2VecText
class Data2VecTextForTextEmbeddings(nn.Module):
"""
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
"""
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
self.register_buffer(
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
)
# End copy
self.padding_idx = config.pad_token_id
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
)
def forward(
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
):
if position_ids is None:
if input_ids is not None:
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
else:
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
"""
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
Args:
inputs_embeds: torch.Tensor
Returns: torch.Tensor
"""
input_shape = inputs_embeds.size()[:-1]
sequence_length = input_shape[1]
position_ids = torch.arange(
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
)
return position_ids.unsqueeze(0).expand(input_shape)
# Copied from transformers.models.roberta.modeling_roberta.RobertaSelfAttention with Roberta->Data2VecText
class Data2VecTextSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
use_cache = past_key_value is not None
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
if use_cache:
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
-1, 1
)
else:
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in Data2VecTextModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
class Data2VecTextSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
DATA2VEC_TEXT_SELF_ATTENTION_CLASSES = {
"eager": Data2VecTextSelfAttention,
}
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Data2VecText,BERT->DATA2VEC_TEXT
class Data2VecTextAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self = DATA2VEC_TEXT_SELF_ATTENTION_CLASSES[config._attn_implementation](
config, position_embedding_type=position_embedding_type
)
self.output = Data2VecTextSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
class Data2VecTextIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput
class Data2VecTextOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Data2VecText
class Data2VecTextLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = Data2VecTextAttention(config)
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = Data2VecTextAttention(config, position_embedding_type="absolute")
self.intermediate = Data2VecTextIntermediate(config)
self.output = Data2VecTextOutput(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
" by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
cross_attn_past_key_value,
output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Data2VecText
class Data2VecTextEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([Data2VecTextLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.bert.modeling_bert.BertPooler
class Data2VecTextPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class Data2VecTextPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = Data2VecTextConfig
base_model_prefix = "data2vec_text"
supports_gradient_checkpointing = True
_no_split_modules = ["Data2VecTextForTextEmbeddings", "Data2VecTextLayer"]
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
if hasattr(module, "bias") and module.bias is not None:
module.bias.data.zero_()
if hasattr(module, "weight") and module.weight is not None:
module.weight.data.fill_(1.0)
DATA2VECTEXT_START_DOCSTRING = r"""
Data2VecText was proposed in [data2vec: A General Framework for Self-supervised Learning in Speech, Vision and
Language](https://arxiv.org/pdf/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu and
Michael Auli.
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`Data2VecTextConfig`]): Model configuration class with all the parameters of the
model. Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
DATA2VECTEXT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Data2VecText Model for text transformer outputting raw hidden-states without any specific head on top.",
DATA2VECTEXT_START_DOCSTRING,
)
class Data2VecTextModel(Data2VecTextPreTrainedModel):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added between the self-attention layers, following the architecture described in *Attention is
all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser and Illia Polosukhin.
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
.. _*Attention is all you need*: https://arxiv.org/abs/1706.03762
"""
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.embeddings = Data2VecTextForTextEmbeddings(config)
self.encoder = Data2VecTextEncoder(config)
self.pooler = Data2VecTextPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
# Copied from transformers.models.clap.modeling_clap.ClapTextModel.forward
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
@add_start_docstrings(
"""Data2VecText Model with a `language modeling` head on top for CLM fine-tuning.""", DATA2VECTEXT_START_DOCSTRING
)
class Data2VecTextForCausalLM(Data2VecTextPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
def __init__(self, config):
super().__init__(config)
if not config.is_decoder:
logger.warning("If you want to use `Data2VecTextLMHeadModel` as a standalone, add `is_decoder=True.`")
self.data2vec_text = Data2VecTextModel(config, add_pooling_layer=False)
self.lm_head = Data2VecTextLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.lm_head.decoder
def set_output_embeddings(self, new_embeddings):
self.lm_head.decoder = new_embeddings
@add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, Data2VecTextForCausalLM, Data2VecTextConfig
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/data2vec-text-base")
>>> config = Data2VecTextConfig.from_pretrained("facebook/data2vec-text-base")
>>> config.is_decoder = True
>>> model = Data2VecTextForCausalLM.from_pretrained("facebook/data2vec-text-base", config=config)
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
outputs = self.data2vec_text(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
lm_loss = None
if labels is not None:
# we are doing next-token prediction; shift prediction scores and input ids by one
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
labels = labels[:, 1:].contiguous()
loss_fct = CrossEntropyLoss()
labels = labels.to(shifted_prediction_scores.device)
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=lm_loss,
logits=prediction_scores,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def _reorder_cache(self, past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
@add_start_docstrings("""data2vec Model with a `language modeling` head on top.""", DATA2VECTEXT_START_DOCSTRING)
class Data2VecTextForMaskedLM(Data2VecTextPreTrainedModel):
_tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
def __init__(self, config):
super().__init__(config)
if config.is_decoder:
logger.warning(
"If you want to use `Data2VecTextForMaskedLM` make sure `config.is_decoder=False` for "
"bi-directional self-attention."
)
self.data2vec_text = Data2VecTextModel(config, add_pooling_layer=False)
self.lm_head = Data2VecTextLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.lm_head.decoder
def set_output_embeddings(self, new_embeddings):
self.lm_head.decoder = new_embeddings
@add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
mask="<mask>",
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
kwargs (`Dict[str, any]`, *optional*, defaults to *{}*):
Used to hide legacy arguments that have been deprecated.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.data2vec_text(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
labels = labels.to(prediction_scores.device)
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# Copied from transformers.models.roberta.modeling_roberta.RobertaLMHead with Roberta->Data2VecText
class Data2VecTextLMHead(nn.Module):
"""Data2VecText Head for masked language modeling."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
self.decoder.bias = self.bias
def forward(self, features, **kwargs):
x = self.dense(features)
x = gelu(x)
x = self.layer_norm(x)
# project back to size of vocabulary with bias
x = self.decoder(x)
return x
def _tie_weights(self):
# To tie those two weights if they get disconnected (on TPU or when the bias is resized)
# For accelerate compatibility and to not break backward compatibility
if self.decoder.bias.device.type == "meta":
self.decoder.bias = self.bias
else:
self.bias = self.decoder.bias
@add_start_docstrings(
"""
Data2VecText Model transformer with a sequence classification/regression head on top (a linear layer on top of the
pooled output) e.g. for GLUE tasks.
""",
DATA2VECTEXT_START_DOCSTRING,
)
class Data2VecTextForSequenceClassification(Data2VecTextPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.data2vec_text = Data2VecTextModel(config, add_pooling_layer=False)
self.classifier = Data2VecTextClassificationHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.data2vec_text(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Data2VecText Model with a multiple choice classification head on top (a linear layer on top of the pooled output
and a softmax) e.g. for RocStories/SWAG tasks.
""",
DATA2VECTEXT_START_DOCSTRING,
)
class Data2VecTextForMultipleChoice(Data2VecTextPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.data2vec_text = Data2VecTextModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(
DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
flat_inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.data2vec_text(
flat_input_ids,
position_ids=flat_position_ids,
token_type_ids=flat_token_type_ids,
attention_mask=flat_attention_mask,
head_mask=head_mask,
inputs_embeds=flat_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
labels = labels.to(reshaped_logits.device)
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Data2VecText Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
for Named-Entity-Recognition (NER) tasks.
""",
DATA2VECTEXT_START_DOCSTRING,
)
class Data2VecTextForTokenClassification(Data2VecTextPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.data2vec_text = Data2VecTextModel(config, add_pooling_layer=False)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.data2vec_text(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
labels = labels.to(logits.device)
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# Copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead with Roberta->Data2VecText
class Data2VecTextClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
@add_start_docstrings(
"""
Data2VecText Model with a span classification head on top for extractive question-answering tasks like SQuAD (a
linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
DATA2VECTEXT_START_DOCSTRING,
)
class Data2VecTextForQuestionAnswering(Data2VecTextPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.data2vec_text = Data2VecTextModel(config, add_pooling_layer=False)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.data2vec_text(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
are ignored. This is modified from fairseq's `utils.make_positions`.
Args:
x: torch.Tensor x:
Returns: torch.Tensor
"""
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = input_ids.ne(padding_idx).int()
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
return incremental_indices.long() + padding_idx
__all__ = [
"Data2VecTextForCausalLM",
"Data2VecTextForMaskedLM",
"Data2VecTextForMultipleChoice",
"Data2VecTextForQuestionAnswering",
"Data2VecTextForSequenceClassification",
"Data2VecTextForTokenClassification",
"Data2VecTextModel",
"Data2VecTextPreTrainedModel",
]
|
transformers/src/transformers/models/data2vec/modeling_data2vec_text.py/0
|
{
"file_path": "transformers/src/transformers/models/data2vec/modeling_data2vec_text.py",
"repo_id": "transformers",
"token_count": 29973
}
| 114 |
# coding=utf-8
# Copyright 2020 Microsoft and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization class for model DeBERTa."""
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as sp
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "spm.model"}
class DebertaV2Tokenizer(PreTrainedTokenizer):
r"""
Constructs a DeBERTa-v2 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
contains the vocabulary necessary to instantiate a tokenizer.
do_lower_case (`bool`, *optional*, defaults to `False`):
Whether or not to lowercase the input when tokenizing.
bos_token (`string`, *optional*, defaults to `"[CLS]"`):
The beginning of sequence token that was used during pre-training. Can be used a sequence classifier token.
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
eos_token (`string`, *optional*, defaults to `"[SEP]"`):
The end of sequence token. When building a sequence using special tokens, this is not the token that is
used for the end of sequence. The token used is the `sep_token`.
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
sp_model_kwargs (`dict`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
"""
vocab_files_names = VOCAB_FILES_NAMES
def __init__(
self,
vocab_file,
do_lower_case=False,
split_by_punct=False,
bos_token="[CLS]",
eos_token="[SEP]",
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
sp_model_kwargs: Optional[Dict[str, Any]] = None,
**kwargs,
) -> None:
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
if not os.path.isfile(vocab_file):
raise ValueError(
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
" model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
self.do_lower_case = do_lower_case
self.split_by_punct = split_by_punct
self.vocab_file = vocab_file
self._tokenizer = SPMTokenizer(
vocab_file, None, split_by_punct=split_by_punct, sp_model_kwargs=self.sp_model_kwargs
)
unk_token = AddedToken(unk_token, normalized=True, special=True) if isinstance(unk_token, str) else unk_token
super().__init__(
do_lower_case=do_lower_case,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
split_by_punct=split_by_punct,
sp_model_kwargs=self.sp_model_kwargs,
**kwargs,
)
self._tokenizer.special_tokens = self.all_special_tokens
@property
def vocab_size(self):
return len(self.vocab)
@property
def vocab(self):
return self._tokenizer.vocab
def get_vocab(self):
vocab = self.vocab.copy()
vocab.update(self.get_added_vocab())
return vocab
def _tokenize(self, text: str) -> List[str]:
"""Take as input a string and return a list of strings (tokens) for words/sub-words"""
if self.do_lower_case:
text = text.lower()
return self._tokenizer.tokenize(text)
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self._tokenizer.spm.PieceToId(token)
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self._tokenizer.spm.IdToPiece(index) if index < self.vocab_size else self.unk_token
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
return self._tokenizer.decode(tokens)
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A DeBERTa sequence has the following format:
- single sequence: [CLS] X [SEP]
- pair of sequences: [CLS] A [SEP] B [SEP]
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False):
"""
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None):
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A DeBERTa
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
add_prefix_space = kwargs.pop("add_prefix_space", False)
if is_split_into_words or add_prefix_space:
text = " " + text
return (text, kwargs)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
return self._tokenizer.save_pretrained(save_directory, filename_prefix=filename_prefix)
class SPMTokenizer:
r"""
Constructs a tokenizer based on [SentencePiece](https://github.com/google/sentencepiece).
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
contains the vocabulary necessary to instantiate a tokenizer.
sp_model_kwargs (`dict`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
"""
def __init__(
self, vocab_file, special_tokens, split_by_punct=False, sp_model_kwargs: Optional[Dict[str, Any]] = None
):
self.split_by_punct = split_by_punct
self.vocab_file = vocab_file
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
spm = sp.SentencePieceProcessor(**self.sp_model_kwargs)
if not os.path.exists(vocab_file):
raise FileNotFoundError(f"{vocab_file} does not exist!")
spm.load(vocab_file)
bpe_vocab_size = spm.GetPieceSize()
# Token map
# <unk> 0+1
# <s> 1+1
# </s> 2+1
self.vocab = {spm.IdToPiece(i): i for i in range(bpe_vocab_size)}
self.ids_to_tokens = [spm.IdToPiece(i) for i in range(bpe_vocab_size)]
# self.vocab['[PAD]'] = 0
# self.vocab['[CLS]'] = 1
# self.vocab['[SEP]'] = 2
# self.vocab['[UNK]'] = 3
self.spm = spm
self.special_tokens = special_tokens
def __getstate__(self):
state = self.__dict__.copy()
state["spm"] = None
return state
def __setstate__(self, d):
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.spm = sp.SentencePieceProcessor(**self.sp_model_kwargs)
self.spm.Load(self.vocab_file)
def tokenize(self, text):
return self._encode_as_pieces(text)
def convert_ids_to_tokens(self, ids):
tokens = []
for i in ids:
tokens.append(self.ids_to_tokens[i])
return tokens
def decode(self, tokens, start=-1, end=-1, raw_text=None):
if raw_text is None:
current_sub_tokens = []
out_string = ""
prev_is_special = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.spm.decode_pieces(current_sub_tokens) + token
prev_is_special = True
current_sub_tokens = []
else:
current_sub_tokens.append(token)
prev_is_special = False
out_string += self.spm.decode_pieces(current_sub_tokens)
return out_string.strip()
else:
words = self.split_to_words(raw_text)
word_tokens = [self.tokenize(w) for w in words]
token2words = [0] * len(tokens)
tid = 0
for i, w in enumerate(word_tokens):
for k, t in enumerate(w):
token2words[tid] = i
tid += 1
word_start = token2words[start]
word_end = token2words[end] if end < len(tokens) else len(words)
text = "".join(words[word_start:word_end])
return text
# TODO add a deprecation cycle as this can have different behaviour from our API
def add_special_token(self, token):
if token not in self.special_tokens:
self.special_tokens.append(token)
if token not in self.vocab:
self.vocab[token] = len(self.vocab) - 1
self.ids_to_tokens.append(token)
return self.id(token)
def part_of_whole_word(self, token, is_bos=False):
logger.warning_once(
"The `DebertaTokenizer.part_of_whole_word` method is deprecated and will be removed in `transformers==4.35`"
)
if is_bos:
return True
if (
len(token) == 1
and (_is_whitespace(list(token)[0]) or _is_control(list(token)[0]) or _is_punctuation(list(token)[0]))
) or token in self.special_tokens:
return False
word_start = b"\xe2\x96\x81".decode("utf-8")
return not token.startswith(word_start)
def pad(self):
return "[PAD]"
def bos(self):
return "[CLS]"
def eos(self):
return "[SEP]"
def unk(self):
return "[UNK]"
def mask(self):
return "[MASK]"
def sym(self, id):
return self.ids_to_tokens[id]
def id(self, sym):
logger.warning_once(
"The `DebertaTokenizer.id` method is deprecated and will be removed in `transformers==4.35`"
)
return self.vocab[sym] if sym in self.vocab else 1
def _encode_as_pieces(self, text):
text = convert_to_unicode(text)
if self.split_by_punct:
words = self._run_split_on_punc(text)
pieces = [self.spm.encode(w, out_type=str) for w in words]
return [p for w in pieces for p in w]
else:
return self.spm.encode(text, out_type=str)
def split_to_words(self, text):
pieces = self._encode_as_pieces(text)
word_start = b"\xe2\x96\x81".decode("utf-8")
words = []
offset = 0
prev_end = 0
for i, p in enumerate(pieces):
if p.startswith(word_start):
if offset > prev_end:
words.append(text[prev_end:offset])
prev_end = offset
w = p.replace(word_start, "")
else:
w = p
try:
s = text.index(w, offset)
pn = ""
k = i + 1
while k < len(pieces):
pn = pieces[k].replace(word_start, "")
if len(pn) > 0:
break
k += 1
if len(pn) > 0 and pn in text[offset:s]:
offset = offset + 1
else:
offset = s + len(w)
except Exception:
offset = offset + 1
if prev_end < offset:
words.append(text[prev_end:offset])
return words
def _run_split_on_punc(self, text):
"""Splits punctuation on a piece of text."""
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def save_pretrained(self, path: str, filename_prefix: str = None):
filename = VOCAB_FILES_NAMES[list(VOCAB_FILES_NAMES.keys())[0]]
if filename_prefix is not None:
filename = filename_prefix + "-" + filename
full_path = os.path.join(path, filename)
with open(full_path, "wb") as fs:
fs.write(self.spm.serialized_model_proto())
return (full_path,)
def _is_whitespace(char):
"""Checks whether `chars` is a whitespace character."""
# \t, \n, and \r are technically control characters but we treat them
# as whitespace since they are generally considered as such.
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
cat = unicodedata.category(char)
if cat == "Zs":
return True
return False
def _is_control(char):
"""Checks whether `chars` is a control character."""
# These are technically control characters but we count them as whitespace
# characters.
if char == "\t" or char == "\n" or char == "\r":
return False
cat = unicodedata.category(char)
if cat.startswith("C"):
return True
return False
def _is_punctuation(char):
"""Checks whether `chars` is a punctuation character."""
cp = ord(char)
# We treat all non-letter/number ASCII as punctuation.
# Characters such as "^", "$", and "`" are not in the Unicode
# Punctuation class but we treat them as punctuation anyways, for
# consistency.
if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126):
return True
cat = unicodedata.category(char)
if cat.startswith("P"):
return True
return False
def convert_to_unicode(text):
"""Converts `text` to Unicode (if it's not already), assuming utf-8 input."""
if isinstance(text, str):
return text
elif isinstance(text, bytes):
return text.decode("utf-8", "ignore")
else:
raise TypeError(f"Unsupported string type: {type(text)}")
__all__ = ["DebertaV2Tokenizer"]
|
transformers/src/transformers/models/deberta_v2/tokenization_deberta_v2.py/0
|
{
"file_path": "transformers/src/transformers/models/deberta_v2/tokenization_deberta_v2.py",
"repo_id": "transformers",
"token_count": 9334
}
| 115 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert DeiT distilled checkpoints from the timm library."""
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
def create_rename_keys(config, base_model=False):
rename_keys = []
for i in range(config.num_hidden_layers):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"blocks.{i}.norm1.weight", f"deit.encoder.layer.{i}.layernorm_before.weight"))
rename_keys.append((f"blocks.{i}.norm1.bias", f"deit.encoder.layer.{i}.layernorm_before.bias"))
rename_keys.append((f"blocks.{i}.attn.proj.weight", f"deit.encoder.layer.{i}.attention.output.dense.weight"))
rename_keys.append((f"blocks.{i}.attn.proj.bias", f"deit.encoder.layer.{i}.attention.output.dense.bias"))
rename_keys.append((f"blocks.{i}.norm2.weight", f"deit.encoder.layer.{i}.layernorm_after.weight"))
rename_keys.append((f"blocks.{i}.norm2.bias", f"deit.encoder.layer.{i}.layernorm_after.bias"))
rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"deit.encoder.layer.{i}.intermediate.dense.weight"))
rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"deit.encoder.layer.{i}.intermediate.dense.bias"))
rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"deit.encoder.layer.{i}.output.dense.weight"))
rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"deit.encoder.layer.{i}.output.dense.bias"))
# projection layer + position embeddings
rename_keys.extend(
[
("cls_token", "deit.embeddings.cls_token"),
("dist_token", "deit.embeddings.distillation_token"),
("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"),
("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"),
("pos_embed", "deit.embeddings.position_embeddings"),
]
)
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("norm.weight", "layernorm.weight"),
("norm.bias", "layernorm.bias"),
("pre_logits.fc.weight", "pooler.dense.weight"),
("pre_logits.fc.bias", "pooler.dense.bias"),
]
)
# if just the base model, we should remove "deit" from all keys that start with "deit"
rename_keys = [(pair[0], pair[1][4:]) if pair[1].startswith("deit") else pair for pair in rename_keys]
else:
# layernorm + classification heads
rename_keys.extend(
[
("norm.weight", "deit.layernorm.weight"),
("norm.bias", "deit.layernorm.bias"),
("head.weight", "cls_classifier.weight"),
("head.bias", "cls_classifier.bias"),
("head_dist.weight", "distillation_classifier.weight"),
("head_dist.bias", "distillation_classifier.bias"),
]
)
return rename_keys
# we split up the matrix of each encoder layer into queries, keys and values
def read_in_q_k_v(state_dict, config, base_model=False):
for i in range(config.num_hidden_layers):
if base_model:
prefix = ""
else:
prefix = "deit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight")
in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias")
# next, add query, keys and values (in that order) to the state dict
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[
: config.hidden_size, :
]
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size]
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[
-config.hidden_size :, :
]
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :]
def rename_key(dct, old, new):
val = dct.pop(old)
dct[new] = val
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
im = Image.open(requests.get(url, stream=True).raw)
return im
@torch.no_grad()
def convert_deit_checkpoint(deit_name, pytorch_dump_folder_path):
"""
Copy/paste/tweak model's weights to our DeiT structure.
"""
# define default DeiT configuration
config = DeiTConfig()
# all deit models have fine-tuned heads
base_model = False
# dataset (fine-tuned on ImageNet 2012), patch_size and image_size
config.num_labels = 1000
repo_id = "huggingface/label-files"
filename = "imagenet-1k-id2label.json"
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()}
config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()}
config.patch_size = int(deit_name[-6:-4])
config.image_size = int(deit_name[-3:])
# size of the architecture
if deit_name[9:].startswith("tiny"):
config.hidden_size = 192
config.intermediate_size = 768
config.num_hidden_layers = 12
config.num_attention_heads = 3
elif deit_name[9:].startswith("small"):
config.hidden_size = 384
config.intermediate_size = 1536
config.num_hidden_layers = 12
config.num_attention_heads = 6
if deit_name[9:].startswith("base"):
pass
elif deit_name[4:].startswith("large"):
config.hidden_size = 1024
config.intermediate_size = 4096
config.num_hidden_layers = 24
config.num_attention_heads = 16
# load original model from timm
timm_model = timm.create_model(deit_name, pretrained=True)
timm_model.eval()
# load state_dict of original model, remove and rename some keys
state_dict = timm_model.state_dict()
rename_keys = create_rename_keys(config, base_model)
for src, dest in rename_keys:
rename_key(state_dict, src, dest)
read_in_q_k_v(state_dict, config, base_model)
# load HuggingFace model
model = DeiTForImageClassificationWithTeacher(config).eval()
model.load_state_dict(state_dict)
# Check outputs on an image, prepared by DeiTImageProcessor
size = int(
(256 / 224) * config.image_size
) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103
image_processor = DeiTImageProcessor(size=size, crop_size=config.image_size)
encoding = image_processor(images=prepare_img(), return_tensors="pt")
pixel_values = encoding["pixel_values"]
outputs = model(pixel_values)
timm_logits = timm_model(pixel_values)
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(timm_logits, outputs.logits, atol=1e-3)
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
print(f"Saving model {deit_name} to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
print(f"Saving image processor to {pytorch_dump_folder_path}")
image_processor.save_pretrained(pytorch_dump_folder_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--deit_name",
default="vit_deit_base_distilled_patch16_224",
type=str,
help="Name of the DeiT timm model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
args = parser.parse_args()
convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
|
transformers/src/transformers/models/deit/convert_deit_timm_to_pytorch.py/0
|
{
"file_path": "transformers/src/transformers/models/deit/convert_deit_timm_to_pytorch.py",
"repo_id": "transformers",
"token_count": 3875
}
| 116 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert EfficientFormer checkpoints from the original repository.
URL: https://github.com/snap-research/EfficientFormer
"""
import argparse
import re
from pathlib import Path
import requests
import torch
from PIL import Image
from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
from transformers import (
EfficientFormerConfig,
EfficientFormerForImageClassificationWithTeacher,
EfficientFormerImageProcessor,
)
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def rename_key(old_name, num_meta4D_last_stage):
new_name = old_name
if "patch_embed" in old_name:
_, layer, param = old_name.split(".")
if layer == "0":
new_name = old_name.replace("0", "convolution1")
elif layer == "1":
new_name = old_name.replace("1", "batchnorm_before")
elif layer == "3":
new_name = old_name.replace("3", "convolution2")
else:
new_name = old_name.replace("4", "batchnorm_after")
if "network" in old_name and re.search(r"\d\.\d", old_name):
two_digit_num = r"\b\d{2}\b"
if bool(re.search(two_digit_num, old_name)):
match = re.search(r"\d\.\d\d.", old_name).group()
else:
match = re.search(r"\d\.\d.", old_name).group()
if int(match[0]) < 6:
trimmed_name = old_name.replace(match, "")
trimmed_name = trimmed_name.replace("network", match[0] + ".meta4D_layers.blocks." + match[2:-1])
new_name = "intermediate_stages." + trimmed_name
else:
trimmed_name = old_name.replace(match, "")
if int(match[2]) < num_meta4D_last_stage:
trimmed_name = trimmed_name.replace("network", "meta4D_layers.blocks." + match[2])
else:
layer_index = str(int(match[2]) - num_meta4D_last_stage)
trimmed_name = trimmed_name.replace("network", "meta3D_layers.blocks." + layer_index)
if "norm1" in old_name:
trimmed_name = trimmed_name.replace("norm1", "layernorm1")
elif "norm2" in old_name:
trimmed_name = trimmed_name.replace("norm2", "layernorm2")
elif "fc1" in old_name:
trimmed_name = trimmed_name.replace("fc1", "linear_in")
elif "fc2" in old_name:
trimmed_name = trimmed_name.replace("fc2", "linear_out")
new_name = "last_stage." + trimmed_name
elif "network" in old_name and re.search(r".\d.", old_name):
new_name = old_name.replace("network", "intermediate_stages")
if "fc" in new_name:
new_name = new_name.replace("fc", "convolution")
elif ("norm1" in new_name) and ("layernorm1" not in new_name):
new_name = new_name.replace("norm1", "batchnorm_before")
elif ("norm2" in new_name) and ("layernorm2" not in new_name):
new_name = new_name.replace("norm2", "batchnorm_after")
if "proj" in new_name:
new_name = new_name.replace("proj", "projection")
if "dist_head" in new_name:
new_name = new_name.replace("dist_head", "distillation_classifier")
elif "head" in new_name:
new_name = new_name.replace("head", "classifier")
elif "patch_embed" in new_name:
new_name = "efficientformer." + new_name
elif new_name == "norm.weight" or new_name == "norm.bias":
new_name = new_name.replace("norm", "layernorm")
new_name = "efficientformer." + new_name
else:
new_name = "efficientformer.encoder." + new_name
return new_name
def convert_torch_checkpoint(checkpoint, num_meta4D_last_stage):
for key in checkpoint.copy().keys():
val = checkpoint.pop(key)
checkpoint[rename_key(key, num_meta4D_last_stage)] = val
return checkpoint
# We will verify our results on a COCO image
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
return image
def convert_efficientformer_checkpoint(
checkpoint_path: Path, efficientformer_config_file: Path, pytorch_dump_path: Path, push_to_hub: bool
):
orig_state_dict = torch.load(checkpoint_path, map_location="cpu")["model"]
config = EfficientFormerConfig.from_json_file(efficientformer_config_file)
model = EfficientFormerForImageClassificationWithTeacher(config)
model_name = "_".join(checkpoint_path.split("/")[-1].split(".")[0].split("_")[:-1])
num_meta4D_last_stage = config.depths[-1] - config.num_meta3d_blocks + 1
new_state_dict = convert_torch_checkpoint(orig_state_dict, num_meta4D_last_stage)
model.load_state_dict(new_state_dict)
model.eval()
pillow_resamplings = {
"bilinear": PILImageResampling.BILINEAR,
"bicubic": PILImageResampling.BICUBIC,
"nearest": PILImageResampling.NEAREST,
}
# prepare image
image = prepare_img()
image_size = 256
crop_size = 224
processor = EfficientFormerImageProcessor(
size={"shortest_edge": image_size},
crop_size={"height": crop_size, "width": crop_size},
resample=pillow_resamplings["bicubic"],
)
pixel_values = processor(images=image, return_tensors="pt").pixel_values
# original processing pipeline
image_transforms = Compose(
[
Resize(image_size, interpolation=pillow_resamplings["bicubic"]),
CenterCrop(crop_size),
ToTensor(),
Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD),
]
)
original_pixel_values = image_transforms(image).unsqueeze(0)
assert torch.allclose(original_pixel_values, pixel_values)
outputs = model(pixel_values)
logits = outputs.logits
expected_shape = (1, 1000)
if "l1" in model_name:
expected_logits = torch.Tensor(
[-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328]
)
assert torch.allclose(logits[0, :10], expected_logits, atol=1e-3)
assert logits.shape == expected_shape
elif "l3" in model_name:
expected_logits = torch.Tensor(
[-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127]
)
assert torch.allclose(logits[0, :10], expected_logits, atol=1e-3)
assert logits.shape == expected_shape
elif "l7" in model_name:
expected_logits = torch.Tensor(
[-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878]
)
assert logits.shape == expected_shape
else:
raise ValueError(
f"Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7"
)
# Save Checkpoints
Path(pytorch_dump_path).mkdir(exist_ok=True)
model.save_pretrained(pytorch_dump_path)
print(f"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}")
processor.save_pretrained(pytorch_dump_path)
print(f"Processor successfuly saved at {pytorch_dump_path}")
if push_to_hub:
print("Pushing model to the hub...")
model.push_to_hub(
repo_id=f"Bearnardd/{pytorch_dump_path}",
commit_message="Add model",
use_temp_dir=True,
)
processor.push_to_hub(
repo_id=f"Bearnardd/{pytorch_dump_path}",
commit_message="Add image processor",
use_temp_dir=True,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--pytorch_model_path",
default=None,
type=str,
required=True,
help="Path to EfficientFormer pytorch checkpoint.",
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help="The json file for EfficientFormer model config.",
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub")
parser.add_argument(
"--no-push_to_hub",
dest="push_to_hub",
action="store_false",
help="Do not push model and image processor to the hub",
)
parser.set_defaults(push_to_hub=True)
args = parser.parse_args()
convert_efficientformer_checkpoint(
checkpoint_path=args.pytorch_model_path,
efficientformer_config_file=args.config_file,
pytorch_dump_path=args.pytorch_dump_path,
push_to_hub=args.push_to_hub,
)
|
transformers/src/transformers/models/deprecated/efficientformer/convert_efficientformer_original_pytorch_checkpoint_to_pytorch.py/0
|
{
"file_path": "transformers/src/transformers/models/deprecated/efficientformer/convert_efficientformer_original_pytorch_checkpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 4066
}
| 117 |
# coding=utf-8
# Copyright 2022 Microsoft, clefourrier and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Graphormer model configuration"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
logger = logging.get_logger(__name__)
class GraphormerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`~GraphormerModel`]. It is used to instantiate an
Graphormer model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the Graphormer
[graphormer-base-pcqm4mv1](https://huggingface.co/graphormer-base-pcqm4mv1) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_classes (`int`, *optional*, defaults to 1):
Number of target classes or labels, set to n for binary classification of n tasks.
num_atoms (`int`, *optional*, defaults to 512*9):
Number of node types in the graphs.
num_edges (`int`, *optional*, defaults to 512*3):
Number of edges types in the graph.
num_in_degree (`int`, *optional*, defaults to 512):
Number of in degrees types in the input graphs.
num_out_degree (`int`, *optional*, defaults to 512):
Number of out degrees types in the input graphs.
num_edge_dis (`int`, *optional*, defaults to 128):
Number of edge dis in the input graphs.
multi_hop_max_dist (`int`, *optional*, defaults to 20):
Maximum distance of multi hop edges between two nodes.
spatial_pos_max (`int`, *optional*, defaults to 1024):
Maximum distance between nodes in the graph attention bias matrices, used during preprocessing and
collation.
edge_type (`str`, *optional*, defaults to multihop):
Type of edge relation chosen.
max_nodes (`int`, *optional*, defaults to 512):
Maximum number of nodes which can be parsed for the input graphs.
share_input_output_embed (`bool`, *optional*, defaults to `False`):
Shares the embedding layer between encoder and decoder - careful, True is not implemented.
num_layers (`int`, *optional*, defaults to 12):
Number of layers.
embedding_dim (`int`, *optional*, defaults to 768):
Dimension of the embedding layer in encoder.
ffn_embedding_dim (`int`, *optional*, defaults to 768):
Dimension of the "intermediate" (often named feed-forward) layer in encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads in the encoder.
self_attention (`bool`, *optional*, defaults to `True`):
Model is self attentive (False not implemented).
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for the attention weights.
activation_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for the activation of the linear transformer layer.
layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
bias (`bool`, *optional*, defaults to `True`):
Uses bias in the attention module - unsupported at the moment.
embed_scale(`float`, *optional*, defaults to None):
Scaling factor for the node embeddings.
num_trans_layers_to_freeze (`int`, *optional*, defaults to 0):
Number of transformer layers to freeze.
encoder_normalize_before (`bool`, *optional*, defaults to `False`):
Normalize features before encoding the graph.
pre_layernorm (`bool`, *optional*, defaults to `False`):
Apply layernorm before self attention and the feed forward network. Without this, post layernorm will be
used.
apply_graphormer_init (`bool`, *optional*, defaults to `False`):
Apply a custom graphormer initialisation to the model before training.
freeze_embeddings (`bool`, *optional*, defaults to `False`):
Freeze the embedding layer, or train it along the model.
encoder_normalize_before (`bool`, *optional*, defaults to `False`):
Apply the layer norm before each encoder block.
q_noise (`float`, *optional*, defaults to 0.0):
Amount of quantization noise (see "Training with Quantization Noise for Extreme Model Compression"). (For
more detail, see fairseq's documentation on quant_noise).
qn_block_size (`int`, *optional*, defaults to 8):
Size of the blocks for subsequent quantization with iPQ (see q_noise).
kdim (`int`, *optional*, defaults to None):
Dimension of the key in the attention, if different from the other values.
vdim (`int`, *optional*, defaults to None):
Dimension of the value in the attention, if different from the other values.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
traceable (`bool`, *optional*, defaults to `False`):
Changes return value of the encoder's inner_state to stacked tensors.
Example:
```python
>>> from transformers import GraphormerForGraphClassification, GraphormerConfig
>>> # Initializing a Graphormer graphormer-base-pcqm4mv2 style configuration
>>> configuration = GraphormerConfig()
>>> # Initializing a model from the graphormer-base-pcqm4mv1 style configuration
>>> model = GraphormerForGraphClassification(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "graphormer"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
num_classes: int = 1,
num_atoms: int = 512 * 9,
num_edges: int = 512 * 3,
num_in_degree: int = 512,
num_out_degree: int = 512,
num_spatial: int = 512,
num_edge_dis: int = 128,
multi_hop_max_dist: int = 5, # sometimes is 20
spatial_pos_max: int = 1024,
edge_type: str = "multi_hop",
max_nodes: int = 512,
share_input_output_embed: bool = False,
num_hidden_layers: int = 12,
embedding_dim: int = 768,
ffn_embedding_dim: int = 768,
num_attention_heads: int = 32,
dropout: float = 0.1,
attention_dropout: float = 0.1,
activation_dropout: float = 0.1,
layerdrop: float = 0.0,
encoder_normalize_before: bool = False,
pre_layernorm: bool = False,
apply_graphormer_init: bool = False,
activation_fn: str = "gelu",
embed_scale: float = None,
freeze_embeddings: bool = False,
num_trans_layers_to_freeze: int = 0,
traceable: bool = False,
q_noise: float = 0.0,
qn_block_size: int = 8,
kdim: int = None,
vdim: int = None,
bias: bool = True,
self_attention: bool = True,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
**kwargs,
):
self.num_classes = num_classes
self.num_atoms = num_atoms
self.num_in_degree = num_in_degree
self.num_out_degree = num_out_degree
self.num_edges = num_edges
self.num_spatial = num_spatial
self.num_edge_dis = num_edge_dis
self.edge_type = edge_type
self.multi_hop_max_dist = multi_hop_max_dist
self.spatial_pos_max = spatial_pos_max
self.max_nodes = max_nodes
self.num_hidden_layers = num_hidden_layers
self.embedding_dim = embedding_dim
self.hidden_size = embedding_dim
self.ffn_embedding_dim = ffn_embedding_dim
self.num_attention_heads = num_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.layerdrop = layerdrop
self.encoder_normalize_before = encoder_normalize_before
self.pre_layernorm = pre_layernorm
self.apply_graphormer_init = apply_graphormer_init
self.activation_fn = activation_fn
self.embed_scale = embed_scale
self.freeze_embeddings = freeze_embeddings
self.num_trans_layers_to_freeze = num_trans_layers_to_freeze
self.share_input_output_embed = share_input_output_embed
self.traceable = traceable
self.q_noise = q_noise
self.qn_block_size = qn_block_size
# These parameters are here for future extensions
# atm, the model only supports self attention
self.kdim = kdim
self.vdim = vdim
self.self_attention = self_attention
self.bias = bias
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
**kwargs,
)
|
transformers/src/transformers/models/deprecated/graphormer/configuration_graphormer.py/0
|
{
"file_path": "transformers/src/transformers/models/deprecated/graphormer/configuration_graphormer.py",
"repo_id": "transformers",
"token_count": 4097
}
| 118 |
# coding=utf-8
# Copyright 2022 The REALM authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""REALM model configuration."""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
logger = logging.get_logger(__name__)
class RealmConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of
1. [`RealmEmbedder`]
2. [`RealmScorer`]
3. [`RealmKnowledgeAugEncoder`]
4. [`RealmRetriever`]
5. [`RealmReader`]
6. [`RealmForOpenQA`]
It is used to instantiate an REALM model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the REALM
[google/realm-cc-news-pretrained-embedder](https://huggingface.co/google/realm-cc-news-pretrained-embedder)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the REALM model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`RealmEmbedder`], [`RealmScorer`], [`RealmKnowledgeAugEncoder`], or
[`RealmReader`].
hidden_size (`int`, *optional*, defaults to 768):
Dimension of the encoder layers and the pooler layer.
retriever_proj_size (`int`, *optional*, defaults to 128):
Dimension of the retriever(embedder) projection.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
num_candidates (`int`, *optional*, defaults to 8):
Number of candidates inputted to the RealmScorer or RealmKnowledgeAugEncoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`RealmEmbedder`], [`RealmScorer`],
[`RealmKnowledgeAugEncoder`], or [`RealmReader`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
span_hidden_size (`int`, *optional*, defaults to 256):
Dimension of the reader's spans.
max_span_width (`int`, *optional*, defaults to 10):
Max span width of the reader.
reader_layer_norm_eps (`float`, *optional*, defaults to 1e-3):
The epsilon used by the reader's layer normalization layers.
reader_beam_size (`int`, *optional*, defaults to 5):
Beam size of the reader.
reader_seq_len (`int`, *optional*, defaults to 288+32):
Maximum sequence length of the reader.
num_block_records (`int`, *optional*, defaults to 13353718):
Number of block records.
searcher_beam_size (`int`, *optional*, defaults to 5000):
Beam size of the searcher. Note that when eval mode is enabled, *searcher_beam_size* will be the same as
*reader_beam_size*.
Example:
```python
>>> from transformers import RealmConfig, RealmEmbedder
>>> # Initializing a REALM realm-cc-news-pretrained-* style configuration
>>> configuration = RealmConfig()
>>> # Initializing a model (with random weights) from the google/realm-cc-news-pretrained-embedder style configuration
>>> model = RealmEmbedder(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "realm"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
retriever_proj_size=128,
num_hidden_layers=12,
num_attention_heads=12,
num_candidates=8,
intermediate_size=3072,
hidden_act="gelu_new",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
span_hidden_size=256,
max_span_width=10,
reader_layer_norm_eps=1e-3,
reader_beam_size=5,
reader_seq_len=320, # 288 + 32
num_block_records=13353718,
searcher_beam_size=5000,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
# Common config
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.retriever_proj_size = retriever_proj_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_candidates = num_candidates
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.type_vocab_size = type_vocab_size
self.layer_norm_eps = layer_norm_eps
# Reader config
self.span_hidden_size = span_hidden_size
self.max_span_width = max_span_width
self.reader_layer_norm_eps = reader_layer_norm_eps
self.reader_beam_size = reader_beam_size
self.reader_seq_len = reader_seq_len
# Retrieval config
self.num_block_records = num_block_records
self.searcher_beam_size = searcher_beam_size
|
transformers/src/transformers/models/deprecated/realm/configuration_realm.py/0
|
{
"file_path": "transformers/src/transformers/models/deprecated/realm/configuration_realm.py",
"repo_id": "transformers",
"token_count": 2947
}
| 119 |
# coding=utf-8
# Copyright 2022 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for TAPEX."""
import json
import os
import random
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ....file_utils import ExplicitEnum, PaddingStrategy, TensorType, add_end_docstrings, is_pandas_available
from ....tokenization_utils import AddedToken, PreTrainedTokenizer
from ....tokenization_utils_base import ENCODE_KWARGS_DOCSTRING, BatchEncoding, TextInput, TruncationStrategy
from ....utils import logging
if is_pandas_available():
import pandas as pd
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
class TapexTruncationStrategy(ExplicitEnum):
"""
Possible values for the `truncation` argument in [`~TapasTokenizer.__call__`]. Useful for tab-completion in an IDE.
"""
DROP_ROWS_TO_FIT = "drop_rows_to_fit"
TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r"""
add_special_tokens (`bool`, *optional*, defaults to `True`):
Whether or not to encode the sequences with the special tokens relative to their model.
padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str`, [`TapexTruncationStrategy`] or [`~tokenization_utils_base.TruncationStrategy`],
*optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `'drop_rows_to_fit'`: Truncate to a maximum length specified with the argument `max_length` or to the
maximum acceptable input length for the model if that argument is not provided. This will truncate
row by row, removing rows from the table.
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or
to the maximum acceptable input length for the model if that argument is not provided. This will
truncate token by token, removing a token from the longest sequence in the pair if a pair of
sequences (or a batch of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to
`None`, this will use the predefined model maximum length if a maximum length is required by one of the
truncation/padding parameters. If the model has no specific maximum input length (like XLNet)
truncation/padding to a maximum length will be deactivated.
stride (`int`, *optional*, defaults to 0):
If set to a number along with `max_length`, the overflowing tokens returned when
`return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence
returned to provide some overlap between truncated and overflowing sequences. The value of this
argument defines the number of overlapping tokens.
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta).
return_tensors (`str` or [`~file_utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
"""
@lru_cache()
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large #
of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset
you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe
vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
"""
bs = (
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
)
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8 + n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
def get_pairs(word):
"""
Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length
strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
class IndexedRowTableLinearize:
"""
FORMAT: col: col1 | col2 | col 3 row 1 : val1 | val2 | val3 row 2 : ...
"""
def process_table(self, table_content: Dict):
"""
Given a table, TableLinearize aims at converting it into a flatten sequence with special symbols.
"""
assert "header" in table_content and "rows" in table_content, self.PROMPT_MESSAGE
# process header
table_str = self.process_header(table_content["header"]) + " "
# process rows
for i, row_example in enumerate(table_content["rows"]):
# NOTE: the row should start from row 1 instead of 0
table_str += self.process_row(row_example, row_index=i + 1) + " "
return table_str.strip()
def process_header(self, headers: List):
"""
Given a list of headers, TableLinearize aims at converting it into a flatten sequence with special symbols.
"""
return "col : " + " | ".join(headers)
def process_row(self, row: List, row_index: int):
"""
Given a row, TableLinearize aims at converting it into a flatten sequence with special symbols.
"""
row_str = ""
row_cell_values = []
for cell_value in row:
if isinstance(cell_value, int):
row_cell_values.append(str(cell_value))
else:
row_cell_values.append(cell_value)
row_str += " | ".join(row_cell_values)
return "row " + str(row_index) + " : " + row_str
class TapexTokenizer(PreTrainedTokenizer):
r"""
Construct a TAPEX tokenizer. Based on byte-level Byte-Pair-Encoding (BPE).
This tokenizer can be used to flatten one or more table(s) and concatenate them with one or more related sentences
to be used by TAPEX models. The format that the TAPEX tokenizer creates is the following:
sentence col: col1 | col2 | col 3 row 1 : val1 | val2 | val3 row 2 : ...
The tokenizer supports a single table + single query, a single table and multiple queries (in which case the table
will be duplicated for every query), a single query and multiple tables (in which case the query will be duplicated
for every table), and multiple tables and queries. In other words, you can provide a batch of tables + questions to
the tokenizer for instance to prepare them for the model.
Tokenization itself is based on the BPE algorithm. It is identical to the one used by BART, RoBERTa and GPT-2.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
errors (`str`, *optional*, defaults to `"replace"`):
Paradigm to follow when decoding bytes to UTF-8. See
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"<s>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
add_prefix_space (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. (BART tokenizer detect beginning of words by the preceding space).
max_cell_length (`int`, *optional*, defaults to 15):
Maximum number of characters per cell when linearizing a table. If this number is exceeded, truncation
takes place.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
merges_file,
do_lower_case=True,
errors="replace",
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="<unk>",
pad_token="<pad>",
mask_token="<mask>",
add_prefix_space=False,
max_cell_length=15,
**kwargs,
):
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
with open(vocab_file, encoding="utf-8") as vocab_handle:
self.encoder = json.load(vocab_handle)
self.decoder = {v: k for k, v in self.encoder.items()}
self.errors = errors # how to handle errors in decoding
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
with open(merges_file, encoding="utf-8") as merges_handle:
bpe_merges = merges_handle.read().split("\n")[1:-1]
bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
self.cache = {}
self.add_prefix_space = add_prefix_space
self.do_lower_case = do_lower_case
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
# additional properties
super().__init__(
vocab_file=vocab_file,
merges_file=merges_file,
do_lower_case=do_lower_case,
errors=errors,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
add_prefix_space=add_prefix_space,
max_cell_length=max_cell_length,
**kwargs,
)
self.max_cell_length = max_cell_length
self.table_linearize = IndexedRowTableLinearize()
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A TAPEX sequence has the following format:
- single sequence: `<s> X </s>`
- pair of sequences: `<s> A </s></s> B </s>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Args:
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Args:
Create a mask from the two sequences passed to be used in a sequence-pair classification task. TAPEX does not:
make use of token type ids, therefore a list of zeros is returned.
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()):
text = " " + text
return (text, kwargs)
@property
def vocab_size(self):
return len(self.encoder)
def get_vocab(self):
return dict(self.encoder, **self.added_tokens_encoder)
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token)
pairs = get_pairs(word)
if not pairs:
return token
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
i = j
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = " ".join(word)
self.cache[token] = word
return word
def _tokenize(self, text):
"""Tokenize a string."""
bpe_tokens = []
for token in re.findall(self.pat, text):
token = "".join(
self.byte_encoder[b] for b in token.encode("utf-8")
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
return bpe_tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
text = "".join(tokens)
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
return text
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
merge_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
)
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
index = 0
with open(merge_file, "w", encoding="utf-8") as writer:
writer.write("#version: 0.2\n")
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!"
)
index = token_index
writer.write(" ".join(bpe_tokens) + "\n")
index += 1
return vocab_file, merge_file
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def __call__(
self,
table: Union["pd.DataFrame", List["pd.DataFrame"]] = None,
query: Optional[Union[TextInput, List[TextInput]]] = None,
answer: Union[str, List[str]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
"""
Main method to tokenize and prepare for the model one or several table-sequence pair(s).
Args:
table (`pd.DataFrame`, `List[pd.DataFrame]`):
Table(s) containing tabular data.
query (`str` or `List[str]`, *optional*):
Sentence or batch of sentences related to one or more table(s) to be encoded. Note that the number of
sentences must match the number of tables.
answer (`str` or `List[str]`, *optional*):
Optionally, the corresponding answer to the questions as supervision.
"""
if table is not None:
return self.source_call_func(
table=table,
query=query,
answer=answer,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
elif answer is not None:
return self.target_call_func(
answer=answer,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
else:
raise ValueError("You need to provide either a `table` or an `answer`.")
def source_call_func(
self,
table: Union["pd.DataFrame", List["pd.DataFrame"]],
query: Optional[Union[TextInput, List[TextInput]]] = None,
answer: Union[str, List[str]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
# Input type checking for clearer error
valid_table = False
valid_query = False
# Check that table have a valid type
if isinstance(table, pd.DataFrame):
valid_table = True
elif isinstance(table, (list, tuple)) and isinstance(table[0], pd.DataFrame):
valid_table = True
# Check that query have a valid type
if query is None or isinstance(query, str):
valid_query = True
elif isinstance(query, (list, tuple)):
if len(query) == 0 or isinstance(query[0], str):
valid_query = True
if not valid_table:
raise ValueError(
"table input must of type `pd.DataFrame` (single example), `List[pd.DataFrame]` (batch of examples). "
)
if not valid_query:
raise ValueError("query input must of type `str` (single example), `List[str]` (batch of examples). ")
is_batched = isinstance(table, (list, tuple)) or isinstance(query, (list, tuple))
if is_batched:
return self.batch_encode_plus(
table=table,
query=query,
answer=answer,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
else:
return self.encode_plus(
table=table,
query=query,
answer=answer,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def batch_encode_plus(
self,
table: Union["pd.DataFrame", List["pd.DataFrame"]],
query: Optional[List[TextInput]] = None,
answer: List[str] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str] = None,
max_length: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
"""
<Tip warning={true}>
This method is deprecated, `__call__` should be used instead.
</Tip>
"""
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
verbose=verbose,
**kwargs,
)
return self._batch_encode_plus(
table=table,
query=query,
answer=answer,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
def _batch_encode_plus(
self,
table: Union["pd.DataFrame", List["pd.DataFrame"]],
query: Optional[List[TextInput]] = None,
answer: Optional[List[str]] = None,
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
if return_offsets_mapping:
raise NotImplementedError(
"return_offset_mapping is not available when using Python tokenizers. "
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast."
)
if isinstance(table, pd.DataFrame) and isinstance(query, (list, tuple)):
# single table, many queries case
# duplicate table for every query
table = [table] * len(query)
if isinstance(table, (list, tuple)) and isinstance(query, str):
# many tables, single query case
# duplicate query for every table
query = [query] * len(table)
batch_outputs = self._batch_prepare_for_model(
table=table,
query=query,
answer=answer,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_length=return_length,
return_tensors=return_tensors,
verbose=verbose,
)
return BatchEncoding(batch_outputs)
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def _batch_prepare_for_model(
self,
table: Union["pd.DataFrame", List["pd.DataFrame"]],
query: Optional[Union[TextInput, List[TextInput]]] = None,
answer: Optional[Union[str, List[str]]] = None,
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[str] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_length: bool = False,
verbose: bool = True,
) -> BatchEncoding:
"""
This method adds special tokens, truncates sequences if overflowing while taking into account the special
tokens and manages a moving window (with user defined stride) for overflowing tokens.
"""
batch_outputs = {}
if answer is None:
answer = [None] * len(table)
for _table, _query, _answer in zip(table, query, answer):
text = self.prepare_table_query(
_table, _query, _answer, truncation_strategy=truncation_strategy, max_length=max_length
)
if self.do_lower_case:
text = text.lower()
tokens = self.tokenize(text)
outputs = self.prepare_for_model(
ids=self.convert_tokens_to_ids(tokens),
add_special_tokens=add_special_tokens,
padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterwards
truncation=truncation_strategy.value,
max_length=max_length,
stride=stride,
pad_to_multiple_of=None, # we pad in batch afterwards
return_attention_mask=False, # we pad in batch afterwards
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_length=return_length,
return_tensors=None, # We convert the whole batch to tensors at the end
prepend_batch_axis=False,
verbose=verbose,
)
for key, value in outputs.items():
if key not in batch_outputs:
batch_outputs[key] = []
batch_outputs[key].append(value)
batch_outputs = self.pad(
batch_outputs,
padding=padding_strategy.value,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
)
batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)
return batch_outputs
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING)
def encode(
self,
table: "pd.DataFrame",
query: Optional[TextInput] = None,
answer: Optional[str] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy, TapexTruncationStrategy] = None,
max_length: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs,
) -> List[int]:
"""
Prepare a table, a string and possible answer for the model. This method does not return token type IDs,
attention masks, etc. which are necessary for the model to work correctly. Use this method if you want to build
your processing on your own, otherwise refer to `__call__`.
"""
encoded_inputs = self.encode_plus(
table,
query=query,
answer=answer,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
return_tensors=return_tensors,
**kwargs,
)
return encoded_inputs["input_ids"]
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def encode_plus(
self,
table: "pd.DataFrame",
query: Optional[TextInput] = None,
answer: Optional[str] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str] = None,
max_length: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
verbose=verbose,
**kwargs,
)
return self._encode_plus(
table=table,
query=query,
answer=answer,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
def _encode_plus(
self,
table: "pd.DataFrame",
query: Optional[TextInput] = None,
answer: Optional[str] = None,
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
if return_offsets_mapping:
raise NotImplementedError(
"return_offset_mapping is not available when using Python tokenizers. "
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast. "
"More information on available tokenizers at "
"https://github.com/huggingface/transformers/pull/2674"
)
text = self.prepare_table_query(
table, query, answer, truncation_strategy=truncation_strategy, max_length=max_length
)
# if necessary, perform lower case
if self.do_lower_case:
text = text.lower()
tokens = self.tokenize(text)
return self.prepare_for_model(
ids=self.convert_tokens_to_ids(tokens),
add_special_tokens=add_special_tokens,
padding=padding_strategy.value,
truncation=truncation_strategy.value,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
prepend_batch_axis=True,
return_attention_mask=return_attention_mask,
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_length=return_length,
verbose=verbose,
)
def target_call_func(
self,
answer: Union[str, List[str]],
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
"""
The method tokenizes and prepares the answer label for the model.
Args:
answer (`str` or `List[str]`):
Corresponding answer supervision to the queries for training the model.
"""
is_batched = isinstance(answer, (list, tuple))
if is_batched:
return self.target_batch_encode_plus(
answer=answer,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
else:
return self.target_encode_plus(
answer=answer,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
def target_batch_encode_plus(
self,
answer: List[str],
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str] = None,
max_length: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
"""
Prepare answer strings for the model.
Args:
answer `List[str]`:
Corresponding answer supervision to the queries for training the model.
"""
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
verbose=verbose,
**kwargs,
)
return self._target_batch_encode_plus(
answer=answer,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
def _target_batch_encode_plus(
self,
answer: List[str],
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
batch_outputs = {}
for text in answer:
if self.do_lower_case:
text = text.lower()
tokens = self.tokenize(text)
outputs = self.prepare_for_model(
ids=self.convert_tokens_to_ids(tokens),
add_special_tokens=add_special_tokens,
padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterwards
truncation=truncation_strategy.value,
max_length=max_length,
stride=stride,
pad_to_multiple_of=None, # we pad in batch afterwards
return_attention_mask=False, # we pad in batch afterwards
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_length=return_length,
return_tensors=None, # We convert the whole batch to tensors at the end
prepend_batch_axis=False,
verbose=verbose,
)
for key, value in outputs.items():
if key not in batch_outputs:
batch_outputs[key] = []
batch_outputs[key].append(value)
batch_outputs = self.pad(
batch_outputs,
padding=padding_strategy.value,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
)
batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)
return BatchEncoding(batch_outputs)
def target_encode(
self,
answer: str,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy, TapexTruncationStrategy] = None,
max_length: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs,
) -> List[int]:
"""
Prepare the answer string for the model. This method does not return token type IDs, attention masks, etc.
which are necessary for the model to work correctly. Use this method if you want to build your processing on
your own, otherwise refer to `__call__`.
Args:
answer `str`:
Corresponding answer supervision to the queries for training the model
"""
encoded_outputs = self.target_encode_plus(
answer=answer,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
return_tensors=return_tensors,
**kwargs,
)
return encoded_outputs["input_ids"]
def target_encode_plus(
self,
answer: str,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str] = None,
max_length: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
"""
Prepare a answer string for the model.
Args:
answer `str`:
Corresponding answer supervision to the queries for training the model.
"""
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
verbose=verbose,
**kwargs,
)
return self._target_encode_plus(
answer=answer,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
def _target_encode_plus(
self,
answer: str,
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
if return_offsets_mapping:
raise NotImplementedError(
"return_offset_mapping is not available when using Python tokenizers. "
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast. "
"More information on available tokenizers at "
"https://github.com/huggingface/transformers/pull/2674"
)
text = answer
# if necessary, perform lower case
if self.do_lower_case:
text = text.lower()
tokens = self.tokenize(text)
return self.prepare_for_model(
ids=self.convert_tokens_to_ids(tokens),
add_special_tokens=add_special_tokens,
padding=padding_strategy.value,
truncation=truncation_strategy.value,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
prepend_batch_axis=True,
return_attention_mask=return_attention_mask,
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_length=return_length,
verbose=verbose,
)
def prepare_table_query(
self,
table,
query,
answer=None,
truncation_strategy=Union[str, TruncationStrategy, TapexTruncationStrategy],
max_length=None,
):
"""
This method can be used to linearize a table and add a corresponding query.
Optionally, it also handles truncation of the table (cells).
An answer can be provided for more precise truncation.
"""
if not table.empty:
# step 1: create table dictionary
table_content = {"header": list(table.columns), "rows": [list(row.values) for i, row in table.iterrows()]}
# step 2: modify table internally
# always truncate table cells based on self.max_cell_length
# optionally truncate rows if truncation_strategy is set to it
self.truncate_table_cells(table_content, query, answer)
if truncation_strategy == TapexTruncationStrategy.DROP_ROWS_TO_FIT:
self.truncate_table_rows(table_content, query, answer, max_length=max_length)
# step 3: linearize table
linear_table = self.table_linearize.process_table(table_content)
else:
linear_table = ""
if linear_table == "":
logger.warning(
"You provide an empty table, or all cells contain much tokens (e.g., >= 1024 tokens). "
+ f"Please carefully check the corresponding table with the query : {query}."
)
if query == "":
logger.warning("You provide nothing to query with respect to the table.")
# step 4: concatenate query with linear_table
separator = " " if query and linear_table else ""
joint_input = (query + separator + linear_table) if query else linear_table
return joint_input
def truncate_table_cells(self, table_content: Dict, question: str, answer: List):
# TODO (Qian): is it possible to revert the original cell if it is in the final answer?
cell_mapping = {}
for row in table_content["rows"]:
for i, cell in enumerate(row):
truncate_cell = self.truncate_cell(cell)
if truncate_cell is not None:
cell_mapping[cell] = truncate_cell
row[i] = truncate_cell
# modify the answer list
if answer is not None:
for i, case in enumerate(answer):
if case in cell_mapping.keys():
answer[i] = cell_mapping[case]
def truncate_cell(self, cell_value):
# do not process on these cases
if isinstance(cell_value, int) or isinstance(cell_value, float):
return cell_value
if cell_value.strip() != "":
try_tokens = self.tokenize(cell_value)
if len(try_tokens) >= self.max_cell_length:
retain_tokens = try_tokens[: self.max_cell_length]
retain_cell_value = self.convert_tokens_to_string(retain_tokens)
return retain_cell_value
else:
return None
else:
return cell_value
def truncate_table_rows(
self, table_content: Dict, question: str, answer: Optional[Union[str, List[str]]] = None, max_length=None
):
"""
Args:
table_content:
{"header": xxx, "rows": xxx, "id" (Optionally): xxx}
question:
natural language sentence
answer:
if for training, is the supervision; otherwise will be empty
"""
delete_ratio, remain_token_len = self.estimate_delete_ratio(table_content, question, max_length)
# randomly delete unrelated rows
self.delete_unrelated_rows(table_content, question, answer, delete_ratio)
# guarantee the result < max_length
maximum_keep_rows = 0
for ind, row_example in enumerate(table_content["rows"]):
value_string = self.table_linearize.process_row(row_example, ind + 1)
value_token_len = len(self.tokenize(value_string))
# over the size limit, and take action
if value_token_len > remain_token_len:
break
remain_token_len -= value_token_len
maximum_keep_rows += 1
del table_content["rows"][maximum_keep_rows:]
def estimate_delete_ratio(self, table_content: Dict, question: str, max_length=None):
if "header" not in table_content or "rows" not in table_content:
raise ValueError("The table content should contain both 'header' and 'rows' keys.")
# calculate the tokens of header, special tokens will only be pre-prepended into question
question_tokens = self.tokenize(question, add_special_tokens=True)
# calculate the tokens of header
header_string = self.table_linearize.process_header(table_content["header"])
header_tokens = self.tokenize(header_string, add_special_tokens=False)
# split all cell values into tokens and see how many can be accommodated
used_token_len = len(question_tokens) + len(header_tokens)
# remaining token space for rows
remain_token_len = max_length - used_token_len
value_string = ""
for _, row_example in enumerate(table_content["rows"]):
# use a general index to roughly estimate the overall token len
value_string += self.table_linearize.process_row(row_example, 100) + " "
value_token_len = len(self.tokenize(value_string))
if value_token_len < remain_token_len:
# no row will be deleted
return 0.0, remain_token_len
else:
# calc a roughly delete rate
return 1.0 - remain_token_len / value_token_len, remain_token_len
def delete_unrelated_rows(self, table_content: Dict, question: str, answer: List, delete_ratio: float):
"""
The argument answer is used only during training.
"""
truncated_unrelated_indices = []
related_indices = []
if answer is None or len(answer) == 0:
answer_set = set()
else:
answer_set = {ans_ex.lower() for ans_ex in answer}
# add question key words into answer set
if question is not None:
answer_set.update(question.split())
question_set = set(question.strip("?!.,").split(" "))
row_max_len = len(table_content["rows"])
for _row_idx, row in enumerate(table_content["rows"]):
lower_row = {str(cell).lower() for cell in row}
if len(lower_row & answer_set) == 0 and len(lower_row & question_set) == 0:
truncated_unrelated_indices.append(_row_idx)
else:
# add neighbours to preserve information aggressively
related_indices.extend([_row_idx - 2, _row_idx - 1, _row_idx, _row_idx + 1, _row_idx + 2])
# remove the neighbours
truncated_unrelated_indices = [
_row_idx for _row_idx in truncated_unrelated_indices if _row_idx not in related_indices
]
# select some cases to drop
drop_items = min(len(truncated_unrelated_indices), int(len(table_content["rows"]) * delete_ratio))
drop_row_indices = random.choices(truncated_unrelated_indices, k=drop_items)
for _row_idx in reversed(range(row_max_len)):
if _row_idx in drop_row_indices:
del table_content["rows"][_row_idx]
# only when the drop ratio is too large, logging for warning.
if "id" in table_content and len(drop_row_indices) > 0:
logger.warning("Delete {:.2f} rows in table {}".format(len(drop_row_indices), table_content["id"]))
|
transformers/src/transformers/models/deprecated/tapex/tokenization_tapex.py/0
|
{
"file_path": "transformers/src/transformers/models/deprecated/tapex/tokenization_tapex.py",
"repo_id": "transformers",
"token_count": 29313
}
| 120 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for TVLT."""
from typing import Dict, List, Optional, Union
import numpy as np
from ....image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ....image_transforms import (
get_resize_output_image_size,
resize,
to_channel_dimension_format,
)
from ....image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
is_scaled_image,
is_valid_image,
to_numpy_array,
valid_images,
validate_kwargs,
validate_preprocess_arguments,
)
from ....utils import TensorType, logging
logger = logging.get_logger(__name__)
def make_batched(videos) -> List[List[ImageInput]]:
if isinstance(videos, (list, tuple)) and isinstance(videos[0], (list, tuple)):
return videos
elif isinstance(videos, (list, tuple)) and is_valid_image(videos[0]):
videos_dim = np.array(videos[0]).ndim
if videos_dim == 3:
return [videos]
elif videos_dim == 4:
return videos
elif is_valid_image(videos):
videos_dim = np.array(videos).ndim
if videos_dim == 3:
return [[videos]]
elif videos_dim == 4:
return [videos]
elif videos_dim == 5:
return videos
raise ValueError(f"Could not make batched video from {videos}")
class TvltImageProcessor(BaseImageProcessor):
r"""
Constructs a TVLT image processor.
This processor can be used to prepare either videos or images for the model by converting images to 1-frame videos.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
`do_resize` parameter in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
Size of the output image after resizing. The shortest edge of the image will be resized to
`size["shortest_edge"]` while maintaining the aspect ratio of the original image. Can be overriden by
`size` in the `preprocess` method.
patch_size (`List[int]` *optional*, defaults to [16,16]):
The patch size of image patch embedding.
num_frames (`int` *optional*, defaults to 8):
The maximum number of video frames.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
`preprocess` method.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the image to the specified `crop_size`. Can be overridden by the `do_center_crop`
parameter in the `preprocess` method.
crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
Size of the image after applying the center crop. Can be overridden by the `crop_size` parameter in the
`preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to 1/255):
Defines the scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter
in the `preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = [
"pixel_values",
"pixel_mask",
"pixel_values_mixed",
"pixel_mask_mixed",
]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
patch_size: List[int] = [16, 16],
num_frames: int = 8,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = IMAGENET_STANDARD_MEAN,
image_std: Optional[Union[float, List[float]]] = IMAGENET_STANDARD_STD,
init_mask_generator=False,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"shortest_edge": 224}
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size, param_name="crop_size")
self.do_resize = do_resize
self.size = size
self.patch_size = patch_size
self.num_frames = num_frames
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self._valid_processor_keys = [
"videos",
"do_resize",
"size",
"patch_size",
"num_frames",
"resample",
"do_center_crop",
"crop_size",
"do_rescale",
"rescale_factor",
"do_normalize",
"image_mean",
"image_std",
"is_mixed",
"return_tensors",
"data_format",
"input_data_format",
]
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image. If `size` is of the form `{"height": h, "width": w}`, the output image will
have the size `(h, w)`. If `size` is of the form `{"shortest_edge": s}`, the output image will have its
shortest edge of length `s` while keeping the aspect ratio of the original image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
size = get_size_dict(size, default_to_square=False)
if "shortest_edge" in size:
output_size = get_resize_output_image_size(
image, size["shortest_edge"], default_to_square=False, input_data_format=input_data_format
)
elif "height" in size and "width" in size:
output_size = (size["height"], size["width"])
else:
raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}")
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def _preprocess_image(
self,
image: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""Preprocesses a single image."""
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_resize=do_resize,
size=size,
resample=resample,
)
# All transformations expect numpy arrays.
image = to_numpy_array(image)
if do_rescale and is_scaled_image(image):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
input_data_format = infer_channel_dimension_format(image)
if do_resize:
image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
if do_center_crop:
image = self.center_crop(image, size=crop_size, input_data_format=input_data_format)
if do_rescale:
image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
if do_normalize:
image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
return image
def preprocess(
self,
videos: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
patch_size: List[int] = None,
num_frames: int = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
is_mixed: bool = False,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> BatchFeature:
"""
Preprocess an videos or image or batch of videos or images.
Args:
videos (`ImageInput`):
Images or videos to preprocess. Expects a single or batch of frames with pixel values ranging from 0 to
255. If passing in frames with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after applying resize.
patch_size (`List[int]` *optional*, defaults to self.patch_size):
The patch size of image patch embedding.
num_frames (`int` *optional*, defaults to self.num_frames):
The maximum number of video frames.
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
has an effect if `do_resize` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_centre_crop`):
Whether to centre crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the image after applying the centre crop.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
is_mixed (`bool`, *optional*):
If the input video has negative samples.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the inferred channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **pixel_values** -- Pixel values to be fed to a model, of shape (batch_size, num_channels, height,
width).
- **pixel_mask** -- Pixel masks to be fed to a model, of shape (batch_size, num_pixel_patches).
- **pixel_values_mixed** -- Pixel values with both postive or negative to be fed to a model, of shape
(batch_size, num_channels, height, width).
- **pixel_mask_mixed** -- Pixel masks with both postive or negative to be fed to a model, of shape
(batch_size, num_pixel_patches).
"""
do_resize = do_resize if do_resize is not None else self.do_resize
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
size = size if size is not None else self.size
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size, param_name="crop_size")
patch_size = patch_size if patch_size is not None else self.patch_size
num_frames = num_frames if patch_size is not None else self.num_frames
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
if not valid_images(videos):
raise ValueError(
"Invalid image or video type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
videos = make_batched(videos)
# Check number of frames is fewer than maximum frames
for video in videos:
if len(video) > self.num_frames:
raise ValueError(
f"number of frames must not be greater than the maximum frames of the model {self.num_frames}."
)
max_num_frames = max([len(video) for video in videos])
num_patches_per_image = (size["shortest_edge"] // patch_size[0]) ** 2
video_masks = np.array(
[
len(video) * num_patches_per_image * [1] + (max_num_frames - len(video)) * num_patches_per_image * [0]
for video in videos
]
)
videos = [
[
self._preprocess_image(
image=img,
do_resize=do_resize,
size=size,
resample=resample,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
data_format=data_format,
input_data_format=input_data_format,
)
for img in video
]
for video in videos
]
# If videos contain both positive/negative, use mixed key for video-audio matching task
if is_mixed:
data = {"pixel_values_mixed": videos, "pixel_mask_mixed": video_masks}
else:
data = {"pixel_values": videos, "pixel_mask": video_masks}
return BatchFeature(data=data, tensor_type=return_tensors)
|
transformers/src/transformers/models/deprecated/tvlt/image_processing_tvlt.py/0
|
{
"file_path": "transformers/src/transformers/models/deprecated/tvlt/image_processing_tvlt.py",
"repo_id": "transformers",
"token_count": 8803
}
| 121 |
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/diffllama/modular_diffllama.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_diffllama.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2024 weak-kajuma and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on Llama implementations in this library and Microsoft's
# Differential Transformer implementations.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import List, Optional, Tuple, Union
import torch
from torch import nn
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_flash_attention_utils import FlashAttentionKwargs, _flash_attention_forward
from ...modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
QuestionAnsweringModelOutput,
SequenceClassifierOutputWithPast,
TokenClassifierOutput,
)
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS
from ...modeling_utils import PreTrainedModel
from ...processing_utils import Unpack
from ...utils import (
LossKwargs,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_flash_attn_greater_or_equal_2_10,
logging,
replace_return_docstrings,
)
from ...utils.deprecation import deprecate_kwarg
from .configuration_diffllama import DiffLlamaConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "kajuma/DiffLlama-0.3B-handcut"
_CONFIG_FOR_DOC = "DiffLlamaConfig"
class DiffLlamaMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def lambda_init_fn(layer_idx):
return 0.8 - 0.6 * math.exp(-0.3 * layer_idx)
class DiffLlamaAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: DiffLlamaConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.attention_dropout = config.attention_dropout
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = getattr(config, "head_dim", self.hidden_size // self.num_heads)
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
# under this are not used
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.is_causal = True
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
self.lambda_init = lambda_init_fn(layer_idx)
self.lambda_q1 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,)))
self.lambda_k1 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,)))
self.lambda_q2 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,)))
self.lambda_k2 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,)))
self.groupnorm = nn.RMSNorm(2 * self.head_dim, eps=config.rms_norm_eps, elementwise_affine=False)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, target_len, _ = hidden_states.size()
q_len = target_len
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
value_states = torch.cat(torch.chunk(value_states, 2, dim=1), dim=-1)
value_states = value_states.repeat(1, 2, 1, 1)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
lambda_1 = torch.exp(torch.sum(self.lambda_q1 * self.lambda_k1, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_2 = torch.exp(torch.sum(self.lambda_q2 * self.lambda_k2, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_full = lambda_1 - lambda_2 + self.lambda_init
attn_output = torch.matmul(attn_weights, value_states)
attn_output1, attn_output2 = torch.chunk(attn_output, 2, dim=1)
attn_output = attn_output1 - lambda_full * attn_output2
attn_output = (1 - self.lambda_init) * self.groupnorm(attn_output)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights
class DiffLlamaFlashAttention2(DiffLlamaAttention):
"""
DiffLlama flash attention module. This module inherits from `DiffLlamaAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if isinstance(past_key_value, StaticCache):
raise ValueError(
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
)
output_attentions = False
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
# Flash attention requires the input to have the shape
# batch_size x seq_length x head_dim x hidden_dim
# therefore we just need to keep the original shape
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if position_embeddings is None:
logger.warning_once(
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
"removed and `position_embeddings` will be mandatory."
)
cos, sin = self.rotary_emb(value_states, position_ids)
else:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view.
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
dropout_rate = self.attention_dropout if self.training else 0.0
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (DiffLlamaRMSNorm handles it correctly)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
value_states1, value_states2 = torch.chunk(value_states, 2, dim=2)
value_states1 = value_states1.repeat(1, 1, 2, 1)
value_states2 = value_states2.repeat(1, 1, 2, 1)
attn_output1 = _flash_attention_forward(
query_states,
key_states,
value_states1,
attention_mask,
q_len,
position_ids=position_ids,
dropout=dropout_rate,
sliding_window=getattr(self, "sliding_window", None),
use_top_left_mask=self._flash_attn_uses_top_left_mask,
is_causal=self.is_causal,
)
attn_output2 = _flash_attention_forward(
query_states,
key_states,
value_states2,
attention_mask,
q_len,
position_ids=position_ids,
dropout=dropout_rate,
sliding_window=getattr(self, "sliding_window", None),
use_top_left_mask=self._flash_attn_uses_top_left_mask,
is_causal=self.is_causal,
)
attn_output = torch.cat([attn_output1, attn_output2], dim=-1)
attn_output1, attn_output2 = torch.chunk(attn_output, 2, dim=2)
lambda_1 = torch.exp(torch.sum(self.lambda_q1 * self.lambda_k1, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_2 = torch.exp(torch.sum(self.lambda_q2 * self.lambda_k2, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_full = lambda_1 - lambda_2 + self.lambda_init
attn_output = attn_output1 - lambda_full * attn_output2
attn_output = (1 - self.lambda_init) * self.groupnorm(attn_output)
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights
class DiffLlamaSdpaAttention(DiffLlamaAttention):
"""
DiffLlama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
`DiffLlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
SDPA API.
"""
# Adapted from DiffLlamaAttention.forward
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if output_attentions:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"DiffLlamaModel is using DiffLlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
value_states = torch.cat(torch.chunk(value_states, 2, dim=1), dim=-1)
value_states = value_states.repeat(1, 2, 1, 1)
causal_mask = attention_mask
if attention_mask is not None:
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and causal_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
is_causal = True if causal_mask is None and q_len > 1 else False
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=causal_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
is_causal=is_causal,
)
attn_output1, attn_output2 = torch.chunk(attn_output, 2, dim=1)
lambda_1 = torch.exp(torch.sum(self.lambda_q1 * self.lambda_k1, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_2 = torch.exp(torch.sum(self.lambda_q2 * self.lambda_k2, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_full = lambda_1 - lambda_2 + self.lambda_init
attn_output = attn_output1 - lambda_full * attn_output2
attn_output = (1 - self.lambda_init) * self.groupnorm(attn_output)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
return attn_output, None
class DiffLlamaRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
DiffLlamaRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
DIFFLLAMA_ATTENTION_CLASSES = {
"eager": DiffLlamaAttention,
"flash_attention_2": DiffLlamaFlashAttention2,
"sdpa": DiffLlamaSdpaAttention,
}
class DiffLlamaDecoderLayer(nn.Module):
def __init__(self, config: DiffLlamaConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = DIFFLLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
self.mlp = DiffLlamaMLP(config)
self.input_layernorm = DiffLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = DiffLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
DIFFLLAMA_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`DiffLlamaConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare DiffLlama Model outputting raw hidden-states without any specific head on top.",
DIFFLLAMA_START_DOCSTRING,
)
class DiffLlamaPreTrainedModel(PreTrainedModel):
config_class = DiffLlamaConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["DiffLlamaDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = False
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = False
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class DiffLlamaRotaryEmbedding(nn.Module):
def __init__(self, config: DiffLlamaConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
def _dynamic_frequency_update(self, position_ids, device):
"""
dynamic RoPE layers should recompute `inv_freq` in the following situations:
1 - growing beyond the cached sequence length (allow scaling)
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
"""
seq_len = torch.max(position_ids) + 1
if seq_len > self.max_seq_len_cached: # growth
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
self.max_seq_len_cached = seq_len
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
# This .to() is needed if the model has been moved to a device after being initialized (because
# the buffer is automatically moved, but not the original copy)
self.original_inv_freq = self.original_inv_freq.to(device)
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
self.max_seq_len_cached = self.original_max_seq_len
@torch.no_grad()
def forward(self, x, position_ids):
if "dynamic" in self.rope_type:
self._dynamic_frequency_update(position_ids, device=x.device)
# Core RoPE block
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
device_type = x.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
cos = cos * self.attention_scaling
sin = sin * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
DIFFLLAMA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
Two formats are allowed:
- a [`~cache_utils.Cache`] instance, see our
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
cache format.
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
legacy cache format will be returned.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare DiffLlama Model outputting raw hidden-states without any specific head on top.",
DIFFLLAMA_START_DOCSTRING,
)
class DiffLlamaModel(DiffLlamaPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DiffLlamaDecoderLayer`]
Args:
config: DiffLlamaConfig
"""
def __init__(self, config: DiffLlamaConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[DiffLlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = DiffLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = DiffLlamaRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(DIFFLLAMA_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
output = BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
return output if return_dict else output.to_tuple()
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to plcae the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
class DiffLlamaForCausalLM(DiffLlamaPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
def __init__(self, config):
super().__init__(config)
self.model = DiffLlamaModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(DIFFLLAMA_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[KwargsForCausalLM],
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, DiffLlamaForCausalLM
>>> model = DiffLlamaForCausalLM.from_pretrained("google/diffllama-7b")
>>> tokenizer = AutoTokenizer.from_pretrained("google/diffllama-7b")
>>> prompt = "What is your favorite condiment?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"What is your favorite condiment?"
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs[0]
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
The DiffLlama Model transformer with a sequence classification head on top (linear layer).
[`DiffLlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
DIFFLLAMA_START_DOCSTRING,
)
class DiffLlamaForSequenceClassification(DiffLlamaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = DiffLlamaModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(DIFFLLAMA_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
sequence_lengths = sequence_lengths % input_ids.shape[-1]
sequence_lengths = sequence_lengths.to(logits.device)
else:
sequence_lengths = -1
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
The DiffLlama Model transformer with a span classification head on top for extractive question-answering tasks like
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
DIFFLLAMA_START_DOCSTRING,
)
class DiffLlamaForQuestionAnswering(DiffLlamaPreTrainedModel):
base_model_prefix = "transformer"
def __init__(self, config):
super().__init__(config)
self.transformer = DiffLlamaModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, 2)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.transformer.embed_tokens
def set_input_embeddings(self, value):
self.transformer.embed_tokens = value
@add_start_docstrings_to_model_forward(DIFFLLAMA_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
loss = None
if start_positions is not None and end_positions is not None:
loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs)
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return QuestionAnsweringModelOutput(
loss=loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
The DiffLlama Model transformer with a token classification head on top (a linear layer on top of the hidden-states
output) e.g. for Named-Entity-Recognition (NER) tasks.
""",
DIFFLLAMA_START_DOCSTRING,
)
class DiffLlamaForTokenClassification(DiffLlamaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = DiffLlamaModel(config)
if getattr(config, "classifier_dropout", None) is not None:
classifier_dropout = config.classifier_dropout
elif getattr(config, "hidden_dropout", None) is not None:
classifier_dropout = config.hidden_dropout
else:
classifier_dropout = 0.1
self.dropout = nn.Dropout(classifier_dropout)
self.score = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(DIFFLLAMA_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.score(sequence_output)
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.config)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"DiffLlamaPreTrainedModel",
"DiffLlamaModel",
"DiffLlamaForCausalLM",
"DiffLlamaForSequenceClassification",
"DiffLlamaForQuestionAnswering",
"DiffLlamaForTokenClassification",
]
|
transformers/src/transformers/models/diffllama/modeling_diffllama.py/0
|
{
"file_path": "transformers/src/transformers/models/diffllama/modeling_diffllama.py",
"repo_id": "transformers",
"token_count": 28085
}
| 122 |
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""DistilBERT model configuration"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class DistilBertConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`DistilBertModel`] or a [`TFDistilBertModel`]. It
is used to instantiate a DistilBERT model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the DistilBERT
[distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the DistilBERT model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`DistilBertModel`] or [`TFDistilBertModel`].
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
sinusoidal_pos_embds (`boolean`, *optional*, defaults to `False`):
Whether to use sinusoidal positional embeddings.
n_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer encoder.
n_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
dim (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
hidden_dim (`int`, *optional*, defaults to 3072):
The size of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
activation (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
qa_dropout (`float`, *optional*, defaults to 0.1):
The dropout probabilities used in the question answering model [`DistilBertForQuestionAnswering`].
seq_classif_dropout (`float`, *optional*, defaults to 0.2):
The dropout probabilities used in the sequence classification and the multiple choice model
[`DistilBertForSequenceClassification`].
Examples:
```python
>>> from transformers import DistilBertConfig, DistilBertModel
>>> # Initializing a DistilBERT configuration
>>> configuration = DistilBertConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = DistilBertModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "distilbert"
attribute_map = {
"hidden_size": "dim",
"num_attention_heads": "n_heads",
"num_hidden_layers": "n_layers",
}
def __init__(
self,
vocab_size=30522,
max_position_embeddings=512,
sinusoidal_pos_embds=False,
n_layers=6,
n_heads=12,
dim=768,
hidden_dim=4 * 768,
dropout=0.1,
attention_dropout=0.1,
activation="gelu",
initializer_range=0.02,
qa_dropout=0.1,
seq_classif_dropout=0.2,
pad_token_id=0,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.sinusoidal_pos_embds = sinusoidal_pos_embds
self.n_layers = n_layers
self.n_heads = n_heads
self.dim = dim
self.hidden_dim = hidden_dim
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation = activation
self.initializer_range = initializer_range
self.qa_dropout = qa_dropout
self.seq_classif_dropout = seq_classif_dropout
super().__init__(**kwargs, pad_token_id=pad_token_id)
class DistilBertOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
else:
dynamic_axis = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
]
)
__all__ = ["DistilBertConfig", "DistilBertOnnxConfig"]
|
transformers/src/transformers/models/distilbert/configuration_distilbert.py/0
|
{
"file_path": "transformers/src/transformers/models/distilbert/configuration_distilbert.py",
"repo_id": "transformers",
"token_count": 2284
}
| 123 |
# coding=utf-8
# Copyright 2010, DPR authors, The Hugging Face Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""DPR model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class DPRConfig(PretrainedConfig):
r"""
[`DPRConfig`] is the configuration class to store the configuration of a *DPRModel*.
This is the configuration class to store the configuration of a [`DPRContextEncoder`], [`DPRQuestionEncoder`], or a
[`DPRReader`]. It is used to instantiate the components of the DPR model according to the specified arguments,
defining the model component architectures. Instantiating a configuration with the defaults will yield a similar
configuration to that of the DPRContextEncoder
[facebook/dpr-ctx_encoder-single-nq-base](https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base)
architecture.
This class is a subclass of [`BertConfig`]. Please check the superclass for the documentation of all kwargs.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the DPR model. Defines the different tokens that can be represented by the *inputs_ids*
passed to the forward method of [`BertModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the *token_type_ids* passed into [`BertModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
projection_dim (`int`, *optional*, defaults to 0):
Dimension of the projection for the context and question encoders. If it is set to zero (default), then no
projection is done.
Example:
```python
>>> from transformers import DPRConfig, DPRContextEncoder
>>> # Initializing a DPR facebook/dpr-ctx_encoder-single-nq-base style configuration
>>> configuration = DPRConfig()
>>> # Initializing a model (with random weights) from the facebook/dpr-ctx_encoder-single-nq-base style configuration
>>> model = DPRContextEncoder(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "dpr"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
position_embedding_type="absolute",
projection_dim: int = 0,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.projection_dim = projection_dim
self.position_embedding_type = position_embedding_type
__all__ = ["DPRConfig"]
|
transformers/src/transformers/models/dpr/configuration_dpr.py/0
|
{
"file_path": "transformers/src/transformers/models/dpr/configuration_dpr.py",
"repo_id": "transformers",
"token_count": 2342
}
| 124 |
# coding=utf-8
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Dict, Iterable, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import convert_to_rgb, pad, resize, to_channel_dimension_format
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
VideoInput,
get_image_size,
infer_channel_dimension_format,
is_scaled_image,
is_valid_image,
make_list_of_images,
to_numpy_array,
valid_images,
validate_preprocess_arguments,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
from PIL import Image
logger = logging.get_logger(__name__)
def make_batched_images(images) -> List[List[ImageInput]]:
"""
Accepts images in list or nested list format, and makes a list of images for preprocessing.
Args:
images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`):
The input image.
Returns:
list: A list of images.
"""
if isinstance(images, (list, tuple)) and isinstance(images[0], (list, tuple)) and is_valid_image(images[0][0]):
return [img for img_list in images for img in img_list]
elif isinstance(images, (list, tuple)) and is_valid_image(images[0]):
return images
elif is_valid_image(images):
return [images]
raise ValueError(f"Could not make batched images from {images}")
def smart_resize(
height: int, width: int, factor: int = 28, min_pixels: int = 56 * 56, max_pixels: int = 14 * 14 * 4 * 1280
):
"""Rescales the image so that the following conditions are met:
1. Both dimensions (height and width) are divisible by 'factor'.
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
3. The aspect ratio of the image is maintained as closely as possible.
"""
if height < factor or width < factor:
raise ValueError(f"height:{height} or width:{width} must be larger than factor:{factor}")
elif max(height, width) / min(height, width) > 200:
raise ValueError(
f"absolute aspect ratio must be smaller than 200, got {max(height, width) / min(height, width)}"
)
h_bar = round(height / factor) * factor
w_bar = round(width / factor) * factor
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar = math.floor(height / beta / factor) * factor
w_bar = math.floor(width / beta / factor) * factor
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar = math.ceil(height * beta / factor) * factor
w_bar = math.ceil(width * beta / factor) * factor
return h_bar, w_bar
class Emu3ImageProcessor(BaseImageProcessor):
r"""
Constructs a Emu3 image processor that dynamically resizes images based on the original images.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
Resampling filter to use when resizing the image.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
Mean to use if normalizing the image. This is a float or list of floats for each channel in the image.
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
Standard deviation to use if normalizing the image. This is a float or list of floats for each channel in the image.
do_convert_rgb (`bool`, *optional*, defaults to `True`):
Whether to convert the image to RGB.
do_pad (`bool`, *optional*, defaults to `True`):
Whether to pad the image. If `True`, will pad the patch dimension of the images in the batch to the largest
number of patches in the batch. Padding will be applied to the bottom and right with zeros.
min_pixels (`int`, *optional*, defaults to `512 * 512`):
The min pixels of the image to resize the image.
max_pixels (`int`, *optional*, defaults to `1024 * 1024`):
The max pixels of the image to resize the image.
spatial_factor (`int`, *optional*, defaults to 8):
The spatial downsample factor the image will be downsampled in feature extracting phase
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = True,
do_pad: bool = True,
min_pixels: int = 512 * 512,
max_pixels: int = 1024 * 1024,
spatial_factor: int = 8,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.do_resize = do_resize
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
self.min_pixels = min_pixels
self.max_pixels = max_pixels
self.spatial_factor = spatial_factor
self.size = {"min_pixels": min_pixels, "max_pixels": max_pixels}
self.do_convert_rgb = do_convert_rgb
def _preprocess(
self,
images: Union[ImageInput, VideoInput],
do_resize: bool = None,
resample: PILImageResampling = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`.
vision_info (`List[Dict]`, *optional*):
Optional list of dictionaries containing additional information about vision inputs.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Scale factor to use if rescaling the image.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the image to RGB.
data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
images = make_list_of_images(images)
if do_convert_rgb:
images = [convert_to_rgb(image) for image in images]
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
height, width = get_image_size(images[0], channel_dim=input_data_format)
resized_height, resized_width = height, width
processed_images = []
for image in images:
if do_resize:
resized_height, resized_width = smart_resize(
height,
width,
factor=self.spatial_factor,
min_pixels=self.min_pixels,
max_pixels=self.max_pixels,
)
image = resize(
image, size=(resized_height, resized_width), resample=resample, input_data_format=input_data_format
)
if do_rescale:
image = self.rescale(image, scale=rescale_factor, input_data_format=input_data_format)
if do_normalize:
image = self.normalize(
image=image, mean=image_mean, std=image_std, input_data_format=input_data_format
)
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
processed_images.append(image)
images = np.array(processed_images)
return images
def _pad_for_batching(
self,
pixel_values: List[np.ndarray],
image_sizes: List[List[int]],
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""
Pads images on the `num_of_patches` dimension with zeros to form a batch of same number of patches.
Args:
pixel_values (`List[np.ndarray]`):
An array of pixel values of each images of shape (`batch_size`, `num_patches`, `image_in_3D`)
image_sizes (`List[List[int]]`):
A list of sizes for each image in `pixel_values` in (height, width) format.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
If unset, will use same as the input image.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
If unset, will use the inferred format of the input image.
Returns:
List[`np.ndarray`]: The padded images.
"""
max_shape = (
max([size[0] for size in image_sizes]),
max([size[1] for size in image_sizes]),
)
pixel_values = [
pad(
image,
padding=((0, max_shape[0] - size[0]), (0, max_shape[1] - size[1])),
data_format=data_format,
input_data_format=input_data_format,
)
for image, size in zip(pixel_values, image_sizes)
]
return pixel_values
def preprocess(
self,
images: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = None,
do_pad: bool = True,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
the longest edge resized to keep the input aspect ratio.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
has an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
`True`.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the image to RGB.
do_pad (`bool`, *optional*, defaults to `True`):
Whether to pad the image. If `True`, will pad the patch dimension of the images in the batch to the largest
number of patches in the batch. Padding will be applied to the bottom and right with zeros.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
resample = resample if resample is not None else self.resample
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
do_pad = do_pad if do_pad is not None else self.do_pad
if images is not None:
images = make_batched_images(images)
if images is not None and not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_resize=do_resize,
size=size,
resample=resample,
)
pixel_values = []
for image in images:
image = self._preprocess(
image,
do_resize=do_resize,
resample=resample,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
data_format=data_format,
do_convert_rgb=do_convert_rgb,
input_data_format=input_data_format,
)
pixel_values.extend(image)
image_sizes = [image.shape[-2:] for image in pixel_values]
if do_pad:
pixel_values = self._pad_for_batching(pixel_values, image_sizes)
pixel_values = np.array(pixel_values)
return BatchFeature(
data={"pixel_values": pixel_values, "image_sizes": image_sizes}, tensor_type=return_tensors
)
def postprocess(
self,
images: ImageInput,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Union[str, TensorType] = "PIL.Image.Image",
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""
Postprocess an image or batch of images tensor. Postprocess is the reverse process of preprocess.
The parameters should be same as in preprocess.
Args:
images (`ImageInput`):
Image to postprocess. Expects a single or batch of images with pixel values ranging from -1 to 1.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to `True`.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = 1.0 / self.rescale_factor if rescale_factor is None else rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
images = make_list_of_images(images)
if isinstance(images[0], Image.Image):
return images if len(images) > 1 else images[0]
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
pixel_values = []
for image in images:
image = to_numpy_array(image)
if do_normalize:
image = self.unnormalize(
image=image, image_mean=image_mean, image_std=image_std, input_data_format=input_data_format
)
if do_rescale:
image = self.rescale(image, scale=rescale_factor, input_data_format=input_data_format)
image = image.clip(0, 255).astype(np.uint8)
if do_normalize and do_rescale and return_tensors == "PIL.Image.Image":
image = to_channel_dimension_format(image, ChannelDimension.LAST, input_channel_dim=input_data_format)
pixel_values.append(Image.fromarray(image))
else:
pixel_values.extend(image)
data = {"pixel_values": pixel_values}
return_tensors = return_tensors if return_tensors != "PIL.Image.Image" else None
return BatchFeature(data=data, tensor_type=return_tensors)
def unnormalize(
self,
image: np.array,
image_mean: Union[float, Iterable[float]],
image_std: Union[float, Iterable[float]],
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.array:
"""
Unnormalizes `image` using the mean and standard deviation specified by `mean` and `std`.
image = (image * image_std) + image_mean
Args:
image (`torch.Tensor` of shape `(batch_size, num_channels, image_size, image_size)` or `(num_channels, image_size, image_size)`):
Batch of pixel values to postprocess.
image_mean (`float` or `Iterable[float]`):
The mean to use for unnormalization.
image_std (`float` or `Iterable[float]`):
The standard deviation to use for unnormalization.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
num_channels = 3
if isinstance(image_mean, Iterable):
if len(image_mean) != num_channels:
raise ValueError(f"mean must have {num_channels} elements if it is an iterable, got {len(image_mean)}")
else:
image_mean = [image_mean] * num_channels
if isinstance(image_std, Iterable):
if len(image_std) != num_channels:
raise ValueError(f"std must have {num_channels} elements if it is an iterable, got {len(image_std)}")
else:
image_std = [image_std] * num_channels
rev_image_mean = tuple(-mean / std for mean, std in zip(image_mean, image_std))
rev_image_std = tuple(1 / std for std in image_std)
image = self.normalize(
image=image, mean=rev_image_mean, std=rev_image_std, input_data_format=input_data_format
)
return image
__all__ = ["Emu3ImageProcessor"]
|
transformers/src/transformers/models/emu3/image_processing_emu3.py/0
|
{
"file_path": "transformers/src/transformers/models/emu3/image_processing_emu3.py",
"repo_id": "transformers",
"token_count": 11950
}
| 125 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch ERNIE model."""
import math
import warnings
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...generation import GenerationMixin
from ...modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
BaseModelOutputWithPoolingAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
MaskedLMOutput,
MultipleChoiceModelOutput,
NextSentencePredictorOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_ernie import ErnieConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "nghuyong/ernie-1.0-base-zh"
_CONFIG_FOR_DOC = "ErnieConfig"
class ErnieEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
self.use_task_id = config.use_task_id
if config.use_task_id:
self.task_type_embeddings = nn.Embedding(config.task_type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
self.register_buffer(
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
task_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values_length: int = 0,
) -> torch.Tensor:
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
# add `task_type_id` for ERNIE model
if self.use_task_id:
if task_type_ids is None:
task_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
task_type_embeddings = self.task_type_embeddings(task_type_ids)
embeddings += task_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Ernie
class ErnieSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
use_cache = past_key_value is not None
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
if use_cache:
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
-1, 1
)
else:
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in ErnieModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->Ernie
class ErnieSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
ERNIE_SELF_ATTENTION_CLASSES = {
"eager": ErnieSelfAttention,
}
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Ernie,BERT->ERNIE
class ErnieAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self = ERNIE_SELF_ATTENTION_CLASSES[config._attn_implementation](
config, position_embedding_type=position_embedding_type
)
self.output = ErnieSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Ernie
class ErnieIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->Ernie
class ErnieOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Ernie
class ErnieLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = ErnieAttention(config)
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = ErnieAttention(config, position_embedding_type="absolute")
self.intermediate = ErnieIntermediate(config)
self.output = ErnieOutput(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
" by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
cross_attn_past_key_value,
output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Ernie
class ErnieEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([ErnieLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->Ernie
class ErniePooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->Ernie
class ErniePredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Ernie
class ErnieLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = ErniePredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def _tie_weights(self):
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Ernie
class ErnieOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = ErnieLMPredictionHead(config)
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
prediction_scores = self.predictions(sequence_output)
return prediction_scores
# Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert->Ernie
class ErnieOnlyNSPHead(nn.Module):
def __init__(self, config):
super().__init__()
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, pooled_output):
seq_relationship_score = self.seq_relationship(pooled_output)
return seq_relationship_score
# Copied from transformers.models.bert.modeling_bert.BertPreTrainingHeads with Bert->Ernie
class ErniePreTrainingHeads(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = ErnieLMPredictionHead(config)
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, sequence_output, pooled_output):
prediction_scores = self.predictions(sequence_output)
seq_relationship_score = self.seq_relationship(pooled_output)
return prediction_scores, seq_relationship_score
class ErniePreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = ErnieConfig
base_model_prefix = "ernie"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
@dataclass
# Copied from transformers.models.bert.modeling_bert.BertForPreTrainingOutput with Bert->Ernie
class ErnieForPreTrainingOutput(ModelOutput):
"""
Output type of [`ErnieForPreTraining`].
Args:
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Total loss as the sum of the masked language modeling loss and the next sequence prediction
(classification) loss.
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
prediction_logits: torch.FloatTensor = None
seq_relationship_logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
ERNIE_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`ErnieConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
ERNIE_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
task_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Task type embedding is a special embedding to represent the characteristic of different tasks, such as
word-aware pre-training task, structure-aware pre-training task and semantic-aware pre-training task. We
assign a `task_type_id` to each task and the `task_type_id` is in the range `[0,
config.task_type_vocab_size-1]
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Ernie Model transformer outputting raw hidden-states without any specific head on top.",
ERNIE_START_DOCSTRING,
)
class ErnieModel(ErniePreTrainedModel):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
"""
# Copied from transformers.models.clap.modeling_clap.ClapTextModel.__init__ with ClapText->Ernie
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.embeddings = ErnieEmbeddings(config)
self.encoder = ErnieEncoder(config)
self.pooler = ErniePooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.bert.modeling_bert.BertModel.get_input_embeddings
def get_input_embeddings(self):
return self.embeddings.word_embeddings
# Copied from transformers.models.bert.modeling_bert.BertModel.set_input_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
# Copied from transformers.models.bert.modeling_bert.BertModel._prune_heads
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
task_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
task_type_ids=task_type_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
@add_start_docstrings(
"""
Ernie Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next
sentence prediction (classification)` head.
""",
ERNIE_START_DOCSTRING,
)
class ErnieForPreTraining(ErniePreTrainedModel):
_tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"]
# Copied from transformers.models.bert.modeling_bert.BertForPreTraining.__init__ with Bert->Ernie,bert->ernie
def __init__(self, config):
super().__init__(config)
self.ernie = ErnieModel(config)
self.cls = ErniePreTrainingHeads(config)
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.bert.modeling_bert.BertForPreTraining.get_output_embeddings
def get_output_embeddings(self):
return self.cls.predictions.decoder
# Copied from transformers.models.bert.modeling_bert.BertForPreTraining.set_output_embeddings
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
self.cls.predictions.bias = new_embeddings.bias
@add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=ErnieForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
task_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
next_sentence_label: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], ErnieForPreTrainingOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked),
the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence
pair (see `input_ids` docstring) Indices should be in `[0, 1]`:
- 0 indicates sequence B is a continuation of sequence A,
- 1 indicates sequence B is a random sequence.
kwargs (`Dict[str, any]`, *optional*, defaults to `{}`):
Used to hide legacy arguments that have been deprecated.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, ErnieForPreTraining
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
>>> model = ErnieForPreTraining.from_pretrained("nghuyong/ernie-1.0-base-zh")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.ernie(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
task_type_ids=task_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output, pooled_output = outputs[:2]
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
total_loss = None
if labels is not None and next_sentence_label is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
total_loss = masked_lm_loss + next_sentence_loss
if not return_dict:
output = (prediction_scores, seq_relationship_score) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return ErnieForPreTrainingOutput(
loss=total_loss,
prediction_logits=prediction_scores,
seq_relationship_logits=seq_relationship_score,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""Ernie Model with a `language modeling` head on top for CLM fine-tuning.""", ERNIE_START_DOCSTRING
)
class ErnieForCausalLM(ErniePreTrainedModel, GenerationMixin):
_tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"]
# Copied from transformers.models.bert.modeling_bert.BertLMHeadModel.__init__ with BertLMHeadModel->ErnieForCausalLM,Bert->Ernie,bert->ernie
def __init__(self, config):
super().__init__(config)
if not config.is_decoder:
logger.warning("If you want to use `ErnieForCausalLM` as a standalone, add `is_decoder=True.`")
self.ernie = ErnieModel(config, add_pooling_layer=False)
self.cls = ErnieOnlyMLMHead(config)
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.bert.modeling_bert.BertLMHeadModel.get_output_embeddings
def get_output_embeddings(self):
return self.cls.predictions.decoder
# Copied from transformers.models.bert.modeling_bert.BertLMHeadModel.set_output_embeddings
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
self.cls.predictions.bias = new_embeddings.bias
@add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=CausalLMOutputWithCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
task_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.Tensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
outputs = self.ernie(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
task_type_ids=task_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
lm_loss = None
if labels is not None:
# we are doing next-token prediction; shift prediction scores and input ids by one
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
labels = labels[:, 1:].contiguous()
loss_fct = CrossEntropyLoss()
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=lm_loss,
logits=prediction_scores,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
# Copied from transformers.models.bert.modeling_bert.BertLMHeadModel._reorder_cache
def _reorder_cache(self, past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
@add_start_docstrings("""Ernie Model with a `language modeling` head on top.""", ERNIE_START_DOCSTRING)
class ErnieForMaskedLM(ErniePreTrainedModel):
_tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"]
# Copied from transformers.models.bert.modeling_bert.BertForMaskedLM.__init__ with Bert->Ernie,bert->ernie
def __init__(self, config):
super().__init__(config)
if config.is_decoder:
logger.warning(
"If you want to use `ErnieForMaskedLM` make sure `config.is_decoder=False` for "
"bi-directional self-attention."
)
self.ernie = ErnieModel(config, add_pooling_layer=False)
self.cls = ErnieOnlyMLMHead(config)
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.bert.modeling_bert.BertForMaskedLM.get_output_embeddings
def get_output_embeddings(self):
return self.cls.predictions.decoder
# Copied from transformers.models.bert.modeling_bert.BertForMaskedLM.set_output_embeddings
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
self.cls.predictions.bias = new_embeddings.bias
@add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
expected_output="'paris'",
expected_loss=0.88,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
task_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.ernie(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
task_type_ids=task_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# Copied from transformers.models.bert.modeling_bert.BertForMaskedLM.prepare_inputs_for_generation
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
input_shape = input_ids.shape
effective_batch_size = input_shape[0]
# add a dummy token
if self.config.pad_token_id is None:
raise ValueError("The PAD token should be defined for generation")
attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1)
dummy_token = torch.full(
(effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device
)
input_ids = torch.cat([input_ids, dummy_token], dim=1)
return {"input_ids": input_ids, "attention_mask": attention_mask}
@add_start_docstrings(
"""Ernie Model with a `next sentence prediction (classification)` head on top.""",
ERNIE_START_DOCSTRING,
)
class ErnieForNextSentencePrediction(ErniePreTrainedModel):
# Copied from transformers.models.bert.modeling_bert.BertForNextSentencePrediction.__init__ with Bert->Ernie,bert->ernie
def __init__(self, config):
super().__init__(config)
self.ernie = ErnieModel(config)
self.cls = ErnieOnlyNSPHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
task_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple[torch.Tensor], NextSentencePredictorOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
(see `input_ids` docstring). Indices should be in `[0, 1]`:
- 0 indicates sequence B is a continuation of sequence A,
- 1 indicates sequence B is a random sequence.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, ErnieForNextSentencePrediction
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
>>> model = ErnieForNextSentencePrediction.from_pretrained("nghuyong/ernie-1.0-base-zh")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
>>> logits = outputs.logits
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random
```
"""
if "next_sentence_label" in kwargs:
warnings.warn(
"The `next_sentence_label` argument is deprecated and will be removed in a future version, use"
" `labels` instead.",
FutureWarning,
)
labels = kwargs.pop("next_sentence_label")
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.ernie(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
task_type_ids=task_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
seq_relationship_scores = self.cls(pooled_output)
next_sentence_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1))
if not return_dict:
output = (seq_relationship_scores,) + outputs[2:]
return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output
return NextSentencePredictorOutput(
loss=next_sentence_loss,
logits=seq_relationship_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Ernie Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
output) e.g. for GLUE tasks.
""",
ERNIE_START_DOCSTRING,
)
class ErnieForSequenceClassification(ErniePreTrainedModel):
# Copied from transformers.models.bert.modeling_bert.BertForSequenceClassification.__init__ with Bert->Ernie,bert->ernie
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.ernie = ErnieModel(config)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
task_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.ernie(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
task_type_ids=task_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Ernie Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
ERNIE_START_DOCSTRING,
)
class ErnieForMultipleChoice(ErniePreTrainedModel):
# Copied from transformers.models.bert.modeling_bert.BertForMultipleChoice.__init__ with Bert->Ernie,bert->ernie
def __init__(self, config):
super().__init__(config)
self.ernie = ErnieModel(config)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
task_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.ernie(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
task_type_ids=task_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Ernie Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
ERNIE_START_DOCSTRING,
)
class ErnieForTokenClassification(ErniePreTrainedModel):
# Copied from transformers.models.bert.modeling_bert.BertForTokenClassification.__init__ with Bert->Ernie,bert->ernie
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.ernie = ErnieModel(config, add_pooling_layer=False)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
task_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.ernie(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
task_type_ids=task_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Ernie Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
ERNIE_START_DOCSTRING,
)
class ErnieForQuestionAnswering(ErniePreTrainedModel):
# Copied from transformers.models.bert.modeling_bert.BertForQuestionAnswering.__init__ with Bert->Ernie,bert->ernie
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.ernie = ErnieModel(config, add_pooling_layer=False)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
task_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.ernie(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
task_type_ids=task_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"ErnieForCausalLM",
"ErnieForMaskedLM",
"ErnieForMultipleChoice",
"ErnieForNextSentencePrediction",
"ErnieForPreTraining",
"ErnieForQuestionAnswering",
"ErnieForSequenceClassification",
"ErnieForTokenClassification",
"ErnieModel",
"ErniePreTrainedModel",
]
|
transformers/src/transformers/models/ernie/modeling_ernie.py/0
|
{
"file_path": "transformers/src/transformers/models/ernie/modeling_ernie.py",
"repo_id": "transformers",
"token_count": 35128
}
| 126 |
# coding=utf-8
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for ESM."""
import os
from typing import List, Optional
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
def load_vocab_file(vocab_file):
with open(vocab_file, "r") as f:
lines = f.read().splitlines()
return [l.strip() for l in lines]
class EsmTokenizer(PreTrainedTokenizer):
"""
Constructs an ESM tokenizer.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
unk_token="<unk>",
cls_token="<cls>",
pad_token="<pad>",
mask_token="<mask>",
eos_token="<eos>",
**kwargs,
):
self.all_tokens = load_vocab_file(vocab_file)
self._id_to_token = dict(enumerate(self.all_tokens))
self._token_to_id = {tok: ind for ind, tok in enumerate(self.all_tokens)}
super().__init__(
unk_token=unk_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
eos_token=eos_token,
**kwargs,
)
# TODO, all the tokens are added? But they are also part of the vocab... bit strange.
# none of them are special, but they all need special splitting.
self.unique_no_split_tokens = self.all_tokens
self._update_trie(self.unique_no_split_tokens)
def _convert_id_to_token(self, index: int) -> str:
return self._id_to_token.get(index, self.unk_token)
def _convert_token_to_id(self, token: str) -> int:
return self._token_to_id.get(token, self._token_to_id.get(self.unk_token))
def _tokenize(self, text, **kwargs):
return text.split()
def get_vocab(self):
base_vocab = self._token_to_id.copy()
base_vocab.update(self.added_tokens_encoder)
return base_vocab
def token_to_id(self, token: str) -> int:
return self._token_to_id.get(token, self._token_to_id.get(self.unk_token))
def id_to_token(self, index: int) -> str:
return self._id_to_token.get(index, self.unk_token)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
cls = [self.cls_token_id]
sep = [self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_1 is None:
if self.eos_token_id is None:
return cls + token_ids_0
else:
return cls + token_ids_0 + sep
elif self.eos_token_id is None:
raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!")
return cls + token_ids_0 + sep + token_ids_1 + sep # Multiple inputs always have an EOS token
def get_special_tokens_mask(
self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
Args:
token_ids_0 (`List[int]`):
List of ids of the first sequence.
token_ids_1 (`List[int]`, *optional*):
List of ids of the second sequence.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
if token_ids_1 is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model."
)
return [1 if token in self.all_special_ids else 0 for token in token_ids_0]
mask = [1] + ([0] * len(token_ids_0)) + [1]
if token_ids_1 is not None:
mask += [0] * len(token_ids_1) + [1]
return mask
def save_vocabulary(self, save_directory, filename_prefix):
vocab_file = os.path.join(save_directory, (filename_prefix + "-" if filename_prefix else "") + "vocab.txt")
with open(vocab_file, "w") as f:
f.write("\n".join(self.all_tokens))
return (vocab_file,)
@property
def vocab_size(self) -> int:
return len(self.all_tokens)
__all__ = ["EsmTokenizer"]
|
transformers/src/transformers/models/esm/tokenization_esm.py/0
|
{
"file_path": "transformers/src/transformers/models/esm/tokenization_esm.py",
"repo_id": "transformers",
"token_count": 2328
}
| 127 |
# coding=utf-8
# Copyright 2019-present CNRS, Facebook Inc. and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Flaubert configuration"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class FlaubertConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`FlaubertModel`] or a [`TFFlaubertModel`]. It is
used to instantiate a FlauBERT model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the FlauBERT
[flaubert/flaubert_base_uncased](https://huggingface.co/flaubert/flaubert_base_uncased) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
pre_norm (`bool`, *optional*, defaults to `False`):
Whether to apply the layer normalization before or after the feed forward layer following the attention in
each layer (Vaswani et al., Tensor2Tensor for Neural Machine Translation. 2018)
layerdrop (`float`, *optional*, defaults to 0.0):
Probability to drop layers during training (Fan et al., Reducing Transformer Depth on Demand with
Structured Dropout. ICLR 2020)
vocab_size (`int`, *optional*, defaults to 30145):
Vocabulary size of the FlauBERT model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`FlaubertModel`] or [`TFFlaubertModel`].
emb_dim (`int`, *optional*, defaults to 2048):
Dimensionality of the encoder layers and the pooler layer.
n_layer (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
n_head (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for the attention mechanism
gelu_activation (`bool`, *optional*, defaults to `True`):
Whether or not to use a *gelu* activation instead of *relu*.
sinusoidal_embeddings (`bool`, *optional*, defaults to `False`):
Whether or not to use sinusoidal positional embeddings instead of absolute positional embeddings.
causal (`bool`, *optional*, defaults to `False`):
Whether or not the model should behave in a causal manner. Causal models use a triangular attention mask in
order to only attend to the left-side context instead if a bidirectional context.
asm (`bool`, *optional*, defaults to `False`):
Whether or not to use an adaptive log softmax projection layer instead of a linear layer for the prediction
layer.
n_langs (`int`, *optional*, defaults to 1):
The number of languages the model handles. Set to 1 for monolingual models.
use_lang_emb (`bool`, *optional*, defaults to `True`)
Whether to use language embeddings. Some models use additional language embeddings, see [the multilingual
models page](http://huggingface.co/transformers/multilingual.html#xlm-language-embeddings) for information
on how to use them.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
embed_init_std (`float`, *optional*, defaults to 2048^-0.5):
The standard deviation of the truncated_normal_initializer for initializing the embedding matrices.
init_std (`int`, *optional*, defaults to 50257):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices except the
embedding matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
bos_index (`int`, *optional*, defaults to 0):
The index of the beginning of sentence token in the vocabulary.
eos_index (`int`, *optional*, defaults to 1):
The index of the end of sentence token in the vocabulary.
pad_index (`int`, *optional*, defaults to 2):
The index of the padding token in the vocabulary.
unk_index (`int`, *optional*, defaults to 3):
The index of the unknown token in the vocabulary.
mask_index (`int`, *optional*, defaults to 5):
The index of the masking token in the vocabulary.
is_encoder(`bool`, *optional*, defaults to `True`):
Whether or not the initialized model should be a transformer encoder or decoder as seen in Vaswani et al.
summary_type (`string`, *optional*, defaults to "first"):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
Has to be one of the following options:
- `"last"`: Take the last token hidden state (like XLNet).
- `"first"`: Take the first token hidden state (like BERT).
- `"mean"`: Take the mean of all tokens hidden states.
- `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
- `"attn"`: Not implemented now, use multi-head attention.
summary_use_proj (`bool`, *optional*, defaults to `True`):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
Whether or not to add a projection after the vector extraction.
summary_activation (`str`, *optional*):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
Used in the sequence classification and multiple choice models.
Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
summary_first_dropout (`float`, *optional*, defaults to 0.1):
Used in the sequence classification and multiple choice models.
The dropout ratio to be used after the projection and activation.
start_n_top (`int`, *optional*, defaults to 5):
Used in the SQuAD evaluation script.
end_n_top (`int`, *optional*, defaults to 5):
Used in the SQuAD evaluation script.
mask_token_id (`int`, *optional*, defaults to 0):
Model agnostic parameter to identify masked tokens when generating text in an MLM context.
lang_id (`int`, *optional*, defaults to 1):
The ID of the language used by the model. This parameter is used when generating text in a given language.
"""
model_type = "flaubert"
attribute_map = {
"hidden_size": "emb_dim",
"num_attention_heads": "n_heads",
"num_hidden_layers": "n_layers",
"n_words": "vocab_size", # For backward compatibility
}
def __init__(
self,
pre_norm=False,
layerdrop=0.0,
vocab_size=30145,
emb_dim=2048,
n_layers=12,
n_heads=16,
dropout=0.1,
attention_dropout=0.1,
gelu_activation=True,
sinusoidal_embeddings=False,
causal=False,
asm=False,
n_langs=1,
use_lang_emb=True,
max_position_embeddings=512,
embed_init_std=2048**-0.5,
layer_norm_eps=1e-12,
init_std=0.02,
bos_index=0,
eos_index=1,
pad_index=2,
unk_index=3,
mask_index=5,
is_encoder=True,
summary_type="first",
summary_use_proj=True,
summary_activation=None,
summary_proj_to_labels=True,
summary_first_dropout=0.1,
start_n_top=5,
end_n_top=5,
mask_token_id=0,
lang_id=0,
pad_token_id=2,
bos_token_id=0,
**kwargs,
):
"""Constructs FlaubertConfig."""
self.pre_norm = pre_norm
self.layerdrop = layerdrop
self.vocab_size = vocab_size
self.emb_dim = emb_dim
self.n_layers = n_layers
self.n_heads = n_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.gelu_activation = gelu_activation
self.sinusoidal_embeddings = sinusoidal_embeddings
self.causal = causal
self.asm = asm
self.n_langs = n_langs
self.use_lang_emb = use_lang_emb
self.layer_norm_eps = layer_norm_eps
self.bos_index = bos_index
self.eos_index = eos_index
self.pad_index = pad_index
self.unk_index = unk_index
self.mask_index = mask_index
self.is_encoder = is_encoder
self.max_position_embeddings = max_position_embeddings
self.embed_init_std = embed_init_std
self.init_std = init_std
self.summary_type = summary_type
self.summary_use_proj = summary_use_proj
self.summary_activation = summary_activation
self.summary_proj_to_labels = summary_proj_to_labels
self.summary_first_dropout = summary_first_dropout
self.start_n_top = start_n_top
self.end_n_top = end_n_top
self.mask_token_id = mask_token_id
self.lang_id = lang_id
if "n_words" in kwargs:
self.n_words = kwargs["n_words"]
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, **kwargs)
class FlaubertOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
else:
dynamic_axis = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
]
)
__all__ = ["FlaubertConfig", "FlaubertOnnxConfig"]
|
transformers/src/transformers/models/flaubert/configuration_flaubert.py/0
|
{
"file_path": "transformers/src/transformers/models/flaubert/configuration_flaubert.py",
"repo_id": "transformers",
"token_count": 4413
}
| 128 |
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization class for Funnel Transformer."""
import collections
import os
import unicodedata
from typing import List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
_model_names = [
"small",
"small-base",
"medium",
"medium-base",
"intermediate",
"intermediate-base",
"large",
"large-base",
"xlarge",
"xlarge-base",
]
# Copied from transformers.models.bert.tokenization_bert.load_vocab
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
with open(vocab_file, "r", encoding="utf-8") as reader:
tokens = reader.readlines()
for index, token in enumerate(tokens):
token = token.rstrip("\n")
vocab[token] = index
return vocab
# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a piece of text."""
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
class FunnelTokenizer(PreTrainedTokenizer):
r"""
Construct a Funnel Transformer tokenizer. Based on WordPiece.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
File containing the vocabulary.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
do_basic_tokenize (`bool`, *optional*, defaults to `True`):
Whether or not to do basic tokenization before WordPiece.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"<sep>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"<cls>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sentence token.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sentence token.
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`):
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
extra spaces.
"""
vocab_files_names = VOCAB_FILES_NAMES
cls_token_type_id: int = 2
def __init__(
self,
vocab_file,
do_lower_case=True,
do_basic_tokenize=True,
never_split=None,
unk_token="<unk>",
sep_token="<sep>",
pad_token="<pad>",
cls_token="<cls>",
mask_token="<mask>",
bos_token="<s>",
eos_token="</s>",
tokenize_chinese_chars=True,
strip_accents=None,
clean_up_tokenization_spaces=True,
**kwargs,
):
if not os.path.isfile(vocab_file):
raise ValueError(
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
" model use `tokenizer = FunnelTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
self.vocab = load_vocab(vocab_file)
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
self.do_basic_tokenize = do_basic_tokenize
if do_basic_tokenize:
self.basic_tokenizer = BasicTokenizer(
do_lower_case=do_lower_case,
never_split=never_split,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
)
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
super().__init__(
do_lower_case=do_lower_case,
do_basic_tokenize=do_basic_tokenize,
never_split=never_split,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
bos_token=bos_token,
eos_token=eos_token,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
**kwargs,
)
@property
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.do_lower_case
def do_lower_case(self):
return self.basic_tokenizer.do_lower_case
@property
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.vocab_size
def vocab_size(self):
return len(self.vocab)
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_vocab
def get_vocab(self):
return dict(self.vocab, **self.added_tokens_encoder)
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer._tokenize
def _tokenize(self, text, split_special_tokens=False):
split_tokens = []
if self.do_basic_tokenize:
for token in self.basic_tokenizer.tokenize(
text, never_split=self.all_special_tokens if not split_special_tokens else None
):
# If the token is part of the never_split set
if token in self.basic_tokenizer.never_split:
split_tokens.append(token)
else:
split_tokens += self.wordpiece_tokenizer.tokenize(token)
else:
split_tokens = self.wordpiece_tokenizer.tokenize(text)
return split_tokens
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_token_to_id
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.vocab.get(token, self.vocab.get(self.unk_token))
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_id_to_token
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.ids_to_tokens.get(index, self.unk_token)
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.convert_tokens_to_string
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
out_string = " ".join(tokens).replace(" ##", "").strip()
return out_string
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.build_inputs_with_special_tokens
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_special_tokens_mask
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A Funnel
Transformer sequence pair mask has the following format:
```
2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0]
return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.save_vocabulary
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
index = 0
if os.path.isdir(save_directory):
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
else:
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
with open(vocab_file, "w", encoding="utf-8") as writer:
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!"
)
index = token_index
writer.write(token + "\n")
index += 1
return (vocab_file,)
# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
class BasicTokenizer:
"""
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
Args:
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
do_split_on_punc (`bool`, *optional*, defaults to `True`):
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
the full context of the words, such as contractions.
"""
def __init__(
self,
do_lower_case=True,
never_split=None,
tokenize_chinese_chars=True,
strip_accents=None,
do_split_on_punc=True,
):
if never_split is None:
never_split = []
self.do_lower_case = do_lower_case
self.never_split = set(never_split)
self.tokenize_chinese_chars = tokenize_chinese_chars
self.strip_accents = strip_accents
self.do_split_on_punc = do_split_on_punc
def tokenize(self, text, never_split=None):
"""
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
Args:
never_split (`List[str]`, *optional*)
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
"""
# union() returns a new set by concatenating the two sets.
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
if self.tokenize_chinese_chars:
text = self._tokenize_chinese_chars(text)
# prevents treating the same character with different unicode codepoints as different characters
unicode_normalized_text = unicodedata.normalize("NFC", text)
orig_tokens = whitespace_tokenize(unicode_normalized_text)
split_tokens = []
for token in orig_tokens:
if token not in never_split:
if self.do_lower_case:
token = token.lower()
if self.strip_accents is not False:
token = self._run_strip_accents(token)
elif self.strip_accents:
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token, never_split))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text, never_split=None):
"""Splits punctuation on a piece of text."""
if not self.do_split_on_punc or (never_split is not None and text in never_split):
return [text]
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
for char in text:
cp = ord(char)
if self._is_chinese_char(cp):
output.append(" ")
output.append(char)
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4E00 and cp <= 0x9FFF)
or (cp >= 0x3400 and cp <= 0x4DBF) #
or (cp >= 0x20000 and cp <= 0x2A6DF) #
or (cp >= 0x2A700 and cp <= 0x2B73F) #
or (cp >= 0x2B740 and cp <= 0x2B81F) #
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
or (cp >= 0xF900 and cp <= 0xFAFF)
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xFFFD or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
class WordpieceTokenizer:
"""Runs WordPiece tokenization."""
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, text):
"""
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
tokenization using the given vocabulary.
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through *BasicTokenizer*.
Returns:
A list of wordpiece tokens.
"""
output_tokens = []
for token in whitespace_tokenize(text):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
is_bad = False
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if start > 0:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
is_bad = True
break
sub_tokens.append(cur_substr)
start = end
if is_bad:
output_tokens.append(self.unk_token)
else:
output_tokens.extend(sub_tokens)
return output_tokens
__all__ = ["FunnelTokenizer"]
|
transformers/src/transformers/models/funnel/tokenization_funnel.py/0
|
{
"file_path": "transformers/src/transformers/models/funnel/tokenization_funnel.py",
"repo_id": "transformers",
"token_count": 9986
}
| 129 |
# coding=utf-8
# Copyright 2022 KAIST and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""GLPN model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class GLPNConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`GLPNModel`]. It is used to instantiate an GLPN
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the GLPN
[vinvino02/glpn-kitti](https://huggingface.co/vinvino02/glpn-kitti) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
num_encoder_blocks (`int`, *optional*, defaults to 4):
The number of encoder blocks (i.e. stages in the Mix Transformer encoder).
depths (`List[int]`, *optional*, defaults to `[2, 2, 2, 2]`):
The number of layers in each encoder block.
sr_ratios (`List[int]`, *optional*, defaults to `[8, 4, 2, 1]`):
Sequence reduction ratios in each encoder block.
hidden_sizes (`List[int]`, *optional*, defaults to `[32, 64, 160, 256]`):
Dimension of each of the encoder blocks.
patch_sizes (`List[int]`, *optional*, defaults to `[7, 3, 3, 3]`):
Patch size before each encoder block.
strides (`List[int]`, *optional*, defaults to `[4, 2, 2, 2]`):
Stride before each encoder block.
num_attention_heads (`List[int]`, *optional*, defaults to `[1, 2, 5, 8]`):
Number of attention heads for each attention layer in each block of the Transformer encoder.
mlp_ratios (`List[int]`, *optional*, defaults to `[4, 4, 4, 4]`):
Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the
encoder blocks.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
drop_path_rate (`float`, *optional*, defaults to 0.1):
The dropout probability for stochastic depth, used in the blocks of the Transformer encoder.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
decoder_hidden_size (`int`, *optional*, defaults to 64):
The dimension of the decoder.
max_depth (`int`, *optional*, defaults to 10):
The maximum depth of the decoder.
head_in_index (`int`, *optional*, defaults to -1):
The index of the features to use in the head.
Example:
```python
>>> from transformers import GLPNModel, GLPNConfig
>>> # Initializing a GLPN vinvino02/glpn-kitti style configuration
>>> configuration = GLPNConfig()
>>> # Initializing a model from the vinvino02/glpn-kitti style configuration
>>> model = GLPNModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "glpn"
def __init__(
self,
num_channels=3,
num_encoder_blocks=4,
depths=[2, 2, 2, 2],
sr_ratios=[8, 4, 2, 1],
hidden_sizes=[32, 64, 160, 256],
patch_sizes=[7, 3, 3, 3],
strides=[4, 2, 2, 2],
num_attention_heads=[1, 2, 5, 8],
mlp_ratios=[4, 4, 4, 4],
hidden_act="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
drop_path_rate=0.1,
layer_norm_eps=1e-6,
decoder_hidden_size=64,
max_depth=10,
head_in_index=-1,
**kwargs,
):
super().__init__(**kwargs)
self.num_channels = num_channels
self.num_encoder_blocks = num_encoder_blocks
self.depths = depths
self.sr_ratios = sr_ratios
self.hidden_sizes = hidden_sizes
self.patch_sizes = patch_sizes
self.strides = strides
self.mlp_ratios = mlp_ratios
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.drop_path_rate = drop_path_rate
self.layer_norm_eps = layer_norm_eps
self.decoder_hidden_size = decoder_hidden_size
self.max_depth = max_depth
self.head_in_index = head_in_index
__all__ = ["GLPNConfig"]
|
transformers/src/transformers/models/glpn/configuration_glpn.py/0
|
{
"file_path": "transformers/src/transformers/models/glpn/configuration_glpn.py",
"repo_id": "transformers",
"token_count": 2355
}
| 130 |
# coding=utf-8
# Copyright 2023 The BigCode team and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""GPTBigCode configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class GPTBigCodeConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`GPTBigCodeModel`]. It is used to instantiate a
GPTBigCode model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the GPTBigCode
[gpt_bigcode](https://huggingface.co/gpt_bigcode) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50257):
Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`GPTBigCodeModel`].
n_positions (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
n_embd (`int`, *optional*, defaults to 768):
Dimensionality of the embeddings and hidden states.
n_layer (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
n_head (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
n_inner (`int`, *optional*, defaults to None):
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
activation_function (`str`, *optional*, defaults to `"gelu_pytorch_tanh"`):
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new",
"gelu_pytorch_tanh"]`.
resid_pdrop (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
embd_pdrop (`float`, *optional*, defaults to 0.1):
The dropout ratio for the embeddings.
attn_pdrop (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
The epsilon to use in the layer normalization layers.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
scale_attn_weights (`bool`, *optional*, defaults to `True`):
Scale attention weights by dividing by sqrt(hidden_size)..
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
attention_softmax_in_fp32 (`bool`, *optional*, defaults to `True`):
Whether to call the fused softmax in float32.
scale_attention_softmax_in_fp32 (`bool`, *optional*, defaults to `True`):
Whether to scale the attention softmax in float32.
attention_type (`bool`, *optional*, defaults to `True`):
Whether to use Multi-Query Attion (`True`) or Multi-Head Attention (`False`).
Example:
```python
>>> from transformers import GPTBigCodeConfig, GPTBigCodeModel
>>> # Initializing a GPTBigCode configuration
>>> configuration = GPTBigCodeConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = GPTBigCodeModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "gpt_bigcode"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__(
self,
vocab_size=50257,
n_positions=1024,
n_embd=768,
n_layer=12,
n_head=12,
n_inner=None,
activation_function="gelu_pytorch_tanh",
resid_pdrop=0.1,
embd_pdrop=0.1,
attn_pdrop=0.1,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
scale_attn_weights=True,
use_cache=True,
bos_token_id=50256,
eos_token_id=50256,
attention_softmax_in_fp32=True,
scale_attention_softmax_in_fp32=True,
multi_query=True,
**kwargs,
):
self.vocab_size = vocab_size
self.n_positions = n_positions
self.n_embd = n_embd
self.n_layer = n_layer
self.n_head = n_head
self.n_inner = n_inner
self.activation_function = activation_function
self.resid_pdrop = resid_pdrop
self.embd_pdrop = embd_pdrop
self.attn_pdrop = attn_pdrop
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
self.scale_attn_weights = scale_attn_weights
self.use_cache = use_cache
self.attention_softmax_in_fp32 = attention_softmax_in_fp32
self.scale_attention_softmax_in_fp32 = scale_attention_softmax_in_fp32
self.multi_query = multi_query
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
__all__ = ["GPTBigCodeConfig"]
|
transformers/src/transformers/models/gpt_bigcode/configuration_gpt_bigcode.py/0
|
{
"file_path": "transformers/src/transformers/models/gpt_bigcode/configuration_gpt_bigcode.py",
"repo_id": "transformers",
"token_count": 2468
}
| 131 |
# Copyright 2022 The HuggingFace Inc. team and the AI-Sweden team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert GPT-SW3 megatron checkpoints to pytorch"""
import argparse
import os
from os.path import isfile
import torch
from transformers import GPT2Config
def recursive_print(name, val, spaces=0):
# Format the message.
if name is None:
msg = None
else:
fmt = "." * max(0, spaces - 2) + "# {:" + str(50 - spaces) + "s}"
msg = fmt.format(name)
# Print and recurse (if needed).
if isinstance(val, dict):
if msg is not None:
print(msg)
for k in val.keys():
recursive_print(k, val[k], spaces + 2)
elif isinstance(val, torch.Tensor):
print(msg, ":", val.size())
else:
print(msg, ":", val)
def fix_query_key_value_ordering(param, num_splits, num_heads, hidden_size):
# Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :]
# for compatibility with later versions of NVIDIA Megatron-LM.
# The inverse operation is performed inside Megatron-LM to read checkpoints:
# https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209
# If param is the weight tensor of the self-attention block, the returned tensor
# will have to be transposed one more time to be read by HuggingFace GPT2.
input_shape = param.size()
# other versions store [num_heads * num_splits * hidden_size, :]
saved_shape = (num_heads, num_splits, hidden_size) + input_shape[1:]
param = param.view(*saved_shape)
param = param.transpose(0, 1).contiguous()
param = param.view(*input_shape)
return param
def convert_megatron_checkpoint(sd_megatron, config):
"""
Converts a Megatron checkpoint to a HuggingFace GPT-SW3 checkpoint.
"""
n_positions = config.n_positions
layers = config.n_layer
vocab_size = config.vocab_size
heads = config.n_head
hidden_size_per_head = config.n_embd // config.n_head
word_embeddings = sd_megatron["model.language_model.embedding.word_embeddings.weight"][:vocab_size, :]
sd_hf = {
"transformer.wte.weight": word_embeddings,
"transformer.wpe.weight": sd_megatron["model.language_model.embedding.position_embeddings.weight"],
"transformer.ln_f.weight": sd_megatron["model.language_model.encoder.final_layernorm.weight"],
"transformer.ln_f.bias": sd_megatron["model.language_model.encoder.final_layernorm.bias"],
}
pf = "model.language_model.encoder.layers."
for i in range(layers):
causal_mask = torch.tril(torch.ones((n_positions, n_positions), dtype=torch.bool))
causal_mask = causal_mask.view(1, 1, n_positions, n_positions)
sd_hf[f"transformer.h.{i}.attn.bias"] = causal_mask
sd_hf[f"transformer.h.{i}.attn.masked_bias"] = torch.tensor(-1e4, dtype=torch.bfloat16)
sd_hf[f"transformer.h.{i}.ln_1.weight"] = sd_megatron[f"{pf}{i}.input_layernorm.weight"]
sd_hf[f"transformer.h.{i}.ln_1.bias"] = sd_megatron[f"{pf}{i}.input_layernorm.bias"]
val1 = sd_megatron[f"{pf}{i}.self_attention.query_key_value.weight"]
val1 = fix_query_key_value_ordering(val1, 3, heads, hidden_size_per_head)
sd_hf[f"transformer.h.{i}.attn.c_attn.weight"] = val1.transpose(0, 1).contiguous()
val2 = sd_megatron[f"{pf}{i}.self_attention.query_key_value.bias"]
val2 = fix_query_key_value_ordering(val2, 3, heads, hidden_size_per_head)
sd_hf[f"transformer.h.{i}.attn.c_attn.bias"] = val2
sd_hf[f"transformer.h.{i}.attn.c_proj.weight"] = sd_megatron[f"{pf}{i}.self_attention.dense.weight"].transpose(
0, 1
)
sd_hf[f"transformer.h.{i}.attn.c_proj.bias"] = sd_megatron[f"{pf}{i}.self_attention.dense.bias"]
sd_hf[f"transformer.h.{i}.ln_2.weight"] = sd_megatron[f"{pf}{i}.post_attention_layernorm.weight"]
sd_hf[f"transformer.h.{i}.ln_2.bias"] = sd_megatron[f"{pf}{i}.post_attention_layernorm.bias"]
sd_hf[f"transformer.h.{i}.mlp.c_fc.weight"] = sd_megatron[f"{pf}{i}.mlp.dense_h_to_4h.weight"].transpose(0, 1)
sd_hf[f"transformer.h.{i}.mlp.c_fc.bias"] = sd_megatron[f"{pf}{i}.mlp.dense_h_to_4h.bias"]
sd_hf[f"transformer.h.{i}.mlp.c_proj.weight"] = sd_megatron[f"{pf}{i}.mlp.dense_4h_to_h.weight"].transpose(
0, 1
)
sd_hf[f"transformer.h.{i}.mlp.c_proj.bias"] = sd_megatron[f"{pf}{i}.mlp.dense_4h_to_h.bias"]
# For LM head, transformers' wants the matrix to weight embeddings.
sd_hf["lm_head.weight"] = word_embeddings
return sd_hf
def copy_config(config_hf, config_megatron):
"""Copy the config from Megatron to hf."""
config_hf.vocab_size = 64000
config_hf.n_positions = config_megatron["encoder_seq_length"]
config_hf.n_embd = config_megatron["hidden_size"]
config_hf.n_layer = config_megatron["num_layers"]
config_hf.n_head = config_megatron["num_attention_heads"]
config_hf.n_inner = config_megatron["ffn_hidden_size"]
config_hf.activation_function = "gelu"
config_hf.resid_pdrop = 0.1
config_hf.embd_pdrop = 0.1
config_hf.attn_pdrop = 0.1
config_hf.layer_norm_epsilon = config_megatron["layernorm_epsilon"] # 1e-5
config_hf.initializer_range = config_megatron["init_method_std"] # 0.02
config_hf.apply_query_key_layer_scaling = config_megatron["apply_query_key_layer_scaling"] # True
config_hf.normalize_attention_scores = True
config_hf.use_cache = True
# This identifies the 6.7B (7B) model which uses a different tokenizer
if config_megatron["hidden_size"] == 4096:
config_hf.bos_token_id = 1 # <|endoftext|>
config_hf.eos_token_id = 1 # <|endoftext|>
config_hf.pad_token_id = 0 # <unk>
else:
config_hf.bos_token_id = 2 # <s>
config_hf.eos_token_id = 3 # <|endoftext|>
config_hf.pad_token_id = 0 # <pad>
return config_hf
def main(args):
print(args)
checkpoint_path = args.checkpoint_path
save_path = args.save_path
if isfile(checkpoint_path):
raise FileNotFoundError(f"ERROR! could not find file {checkpoint_path}")
# Load the model.
checkpoint = torch.load(checkpoint_path, map_location="cpu")
# Load the config.
config_megatron = checkpoint["hyper_parameters"]["cfg"]
config_hf = GPT2Config()
config_hf = copy_config(config_hf=config_hf, config_megatron=config_megatron)
config_hf.architectures = ["GPT2LMHeadModel"]
sd_megatron = checkpoint["state_dict"]
# Convert.
print("Converting")
sd_hf = convert_megatron_checkpoint(sd_megatron, config_hf)
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(None, sd_hf)
config_hf.tokenizer_class = "GPTSw3Tokenizer"
# Store the config to file.
print("Saving config")
config_hf.save_pretrained(save_path)
# Store the state_dict to file.
output_checkpoint_file = os.path.join(save_path, "pytorch_model.bin")
print(f'Saving checkpoint to "{output_checkpoint_file}"')
torch.save(sd_hf, output_checkpoint_file)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_path",
type=str,
required=True,
help="e.g. megatron_gpt--val_loss=2.42-step=38000-consumed_samples=54720000",
)
parser.add_argument("--save_path", type=str, required=True, help="e.g. /home/user/gpt-sw3/hf")
parser.add_argument("--print-checkpoint-structure", action="store_true")
_args = parser.parse_args()
main(_args)
|
transformers/src/transformers/models/gpt_sw3/convert_megatron_to_pytorch.py/0
|
{
"file_path": "transformers/src/transformers/models/gpt_sw3/convert_megatron_to_pytorch.py",
"repo_id": "transformers",
"token_count": 3465
}
| 132 |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert Grounding DINO checkpoints from the original repository.
URL: https://github.com/IDEA-Research/GroundingDINO"""
import argparse
import requests
import torch
from PIL import Image
from torchvision import transforms as T
from transformers import (
AutoTokenizer,
GroundingDinoConfig,
GroundingDinoForObjectDetection,
GroundingDinoImageProcessor,
GroundingDinoProcessor,
SwinConfig,
)
IMAGENET_MEAN = [0.485, 0.456, 0.406]
IMAGENET_STD = [0.229, 0.224, 0.225]
def get_grounding_dino_config(model_name):
if "tiny" in model_name:
window_size = 7
embed_dim = 96
depths = (2, 2, 6, 2)
num_heads = (3, 6, 12, 24)
image_size = 224
elif "base" in model_name:
window_size = 12
embed_dim = 128
depths = (2, 2, 18, 2)
num_heads = (4, 8, 16, 32)
image_size = 384
else:
raise ValueError("Model not supported, only supports base and large variants")
backbone_config = SwinConfig(
window_size=window_size,
image_size=image_size,
embed_dim=embed_dim,
depths=depths,
num_heads=num_heads,
out_indices=[2, 3, 4],
)
config = GroundingDinoConfig(backbone_config=backbone_config)
return config
def create_rename_keys(state_dict, config):
rename_keys = []
# fmt: off
########################################## VISION BACKBONE - START
# patch embedding layer
rename_keys.append(("backbone.0.patch_embed.proj.weight",
"model.backbone.conv_encoder.model.embeddings.patch_embeddings.projection.weight"))
rename_keys.append(("backbone.0.patch_embed.proj.bias",
"model.backbone.conv_encoder.model.embeddings.patch_embeddings.projection.bias"))
rename_keys.append(("backbone.0.patch_embed.norm.weight",
"model.backbone.conv_encoder.model.embeddings.norm.weight"))
rename_keys.append(("backbone.0.patch_embed.norm.bias",
"model.backbone.conv_encoder.model.embeddings.norm.bias"))
for layer, depth in enumerate(config.backbone_config.depths):
for block in range(depth):
# layernorms
rename_keys.append((f"backbone.0.layers.{layer}.blocks.{block}.norm1.weight",
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.layernorm_before.weight"))
rename_keys.append((f"backbone.0.layers.{layer}.blocks.{block}.norm1.bias",
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.layernorm_before.bias"))
rename_keys.append((f"backbone.0.layers.{layer}.blocks.{block}.norm2.weight",
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.layernorm_after.weight"))
rename_keys.append((f"backbone.0.layers.{layer}.blocks.{block}.norm2.bias",
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.layernorm_after.bias"))
# attention
rename_keys.append((f"backbone.0.layers.{layer}.blocks.{block}.attn.relative_position_bias_table",
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.attention.self.relative_position_bias_table"))
rename_keys.append((f"backbone.0.layers.{layer}.blocks.{block}.attn.proj.weight",
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.attention.output.dense.weight"))
rename_keys.append((f"backbone.0.layers.{layer}.blocks.{block}.attn.proj.bias",
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.attention.output.dense.bias"))
# intermediate
rename_keys.append((f"backbone.0.layers.{layer}.blocks.{block}.mlp.fc1.weight",
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.intermediate.dense.weight"))
rename_keys.append((f"backbone.0.layers.{layer}.blocks.{block}.mlp.fc1.bias",
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.intermediate.dense.bias"))
# output
rename_keys.append((f"backbone.0.layers.{layer}.blocks.{block}.mlp.fc2.weight",
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.output.dense.weight"))
rename_keys.append((f"backbone.0.layers.{layer}.blocks.{block}.mlp.fc2.bias",
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.output.dense.bias"))
# downsample
if layer!=len(config.backbone_config.depths)-1:
rename_keys.append((f"backbone.0.layers.{layer}.downsample.reduction.weight",
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.downsample.reduction.weight"))
rename_keys.append((f"backbone.0.layers.{layer}.downsample.norm.weight",
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.downsample.norm.weight"))
rename_keys.append((f"backbone.0.layers.{layer}.downsample.norm.bias",
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.downsample.norm.bias"))
for out_indice in config.backbone_config.out_indices:
# Grounding DINO implementation of out_indices isn't aligned with transformers
rename_keys.append((f"backbone.0.norm{out_indice-1}.weight",
f"model.backbone.conv_encoder.model.hidden_states_norms.stage{out_indice}.weight"))
rename_keys.append((f"backbone.0.norm{out_indice-1}.bias",
f"model.backbone.conv_encoder.model.hidden_states_norms.stage{out_indice}.bias"))
########################################## VISION BACKBONE - END
########################################## ENCODER - START
deformable_key_mappings = {
'self_attn.sampling_offsets.weight': 'deformable_layer.self_attn.sampling_offsets.weight',
'self_attn.sampling_offsets.bias': 'deformable_layer.self_attn.sampling_offsets.bias',
'self_attn.attention_weights.weight': 'deformable_layer.self_attn.attention_weights.weight',
'self_attn.attention_weights.bias': 'deformable_layer.self_attn.attention_weights.bias',
'self_attn.value_proj.weight': 'deformable_layer.self_attn.value_proj.weight',
'self_attn.value_proj.bias': 'deformable_layer.self_attn.value_proj.bias',
'self_attn.output_proj.weight': 'deformable_layer.self_attn.output_proj.weight',
'self_attn.output_proj.bias': 'deformable_layer.self_attn.output_proj.bias',
'norm1.weight': 'deformable_layer.self_attn_layer_norm.weight',
'norm1.bias': 'deformable_layer.self_attn_layer_norm.bias',
'linear1.weight': 'deformable_layer.fc1.weight',
'linear1.bias': 'deformable_layer.fc1.bias',
'linear2.weight': 'deformable_layer.fc2.weight',
'linear2.bias': 'deformable_layer.fc2.bias',
'norm2.weight': 'deformable_layer.final_layer_norm.weight',
'norm2.bias': 'deformable_layer.final_layer_norm.bias',
}
text_enhancer_key_mappings = {
'self_attn.in_proj_weight': 'text_enhancer_layer.self_attn.in_proj_weight',
'self_attn.in_proj_bias': 'text_enhancer_layer.self_attn.in_proj_bias',
'self_attn.out_proj.weight': 'text_enhancer_layer.self_attn.out_proj.weight',
'self_attn.out_proj.bias': 'text_enhancer_layer.self_attn.out_proj.bias',
'linear1.weight': 'text_enhancer_layer.fc1.weight',
'linear1.bias': 'text_enhancer_layer.fc1.bias',
'linear2.weight': 'text_enhancer_layer.fc2.weight',
'linear2.bias': 'text_enhancer_layer.fc2.bias',
'norm1.weight': 'text_enhancer_layer.layer_norm_before.weight',
'norm1.bias': 'text_enhancer_layer.layer_norm_before.bias',
'norm2.weight': 'text_enhancer_layer.layer_norm_after.weight',
'norm2.bias': 'text_enhancer_layer.layer_norm_after.bias',
}
fusion_key_mappings = {
'gamma_v': 'fusion_layer.vision_param',
'gamma_l': 'fusion_layer.text_param',
'layer_norm_v.weight': 'fusion_layer.layer_norm_vision.weight',
'layer_norm_v.bias': 'fusion_layer.layer_norm_vision.bias',
'layer_norm_l.weight': 'fusion_layer.layer_norm_text.weight',
'layer_norm_l.bias': 'fusion_layer.layer_norm_text.bias',
'attn.v_proj.weight': 'fusion_layer.attn.vision_proj.weight',
'attn.v_proj.bias': 'fusion_layer.attn.vision_proj.bias',
'attn.l_proj.weight': 'fusion_layer.attn.text_proj.weight',
'attn.l_proj.bias': 'fusion_layer.attn.text_proj.bias',
'attn.values_v_proj.weight': 'fusion_layer.attn.values_vision_proj.weight',
'attn.values_v_proj.bias': 'fusion_layer.attn.values_vision_proj.bias',
'attn.values_l_proj.weight': 'fusion_layer.attn.values_text_proj.weight',
'attn.values_l_proj.bias': 'fusion_layer.attn.values_text_proj.bias',
'attn.out_v_proj.weight': 'fusion_layer.attn.out_vision_proj.weight',
'attn.out_v_proj.bias': 'fusion_layer.attn.out_vision_proj.bias',
'attn.out_l_proj.weight': 'fusion_layer.attn.out_text_proj.weight',
'attn.out_l_proj.bias': 'fusion_layer.attn.out_text_proj.bias',
}
for layer in range(config.encoder_layers):
# deformable
for src, dest in deformable_key_mappings.items():
rename_keys.append((f"transformer.encoder.layers.{layer}.{src}",
f"model.encoder.layers.{layer}.{dest}"))
# text enhance
for src, dest in text_enhancer_key_mappings.items():
rename_keys.append((f"transformer.encoder.text_layers.{layer}.{src}",
f"model.encoder.layers.{layer}.{dest}"))
# fusion layers
for src, dest in fusion_key_mappings.items():
rename_keys.append((f"transformer.encoder.fusion_layers.{layer}.{src}",
f"model.encoder.layers.{layer}.{dest}"))
########################################## ENCODER - END
########################################## DECODER - START
key_mappings_decoder = {
'cross_attn.sampling_offsets.weight': 'encoder_attn.sampling_offsets.weight',
'cross_attn.sampling_offsets.bias': 'encoder_attn.sampling_offsets.bias',
'cross_attn.attention_weights.weight': 'encoder_attn.attention_weights.weight',
'cross_attn.attention_weights.bias': 'encoder_attn.attention_weights.bias',
'cross_attn.value_proj.weight': 'encoder_attn.value_proj.weight',
'cross_attn.value_proj.bias': 'encoder_attn.value_proj.bias',
'cross_attn.output_proj.weight': 'encoder_attn.output_proj.weight',
'cross_attn.output_proj.bias': 'encoder_attn.output_proj.bias',
'norm1.weight': 'encoder_attn_layer_norm.weight',
'norm1.bias': 'encoder_attn_layer_norm.bias',
'ca_text.in_proj_weight': 'encoder_attn_text.in_proj_weight',
'ca_text.in_proj_bias': 'encoder_attn_text.in_proj_bias',
'ca_text.out_proj.weight': 'encoder_attn_text.out_proj.weight',
'ca_text.out_proj.bias': 'encoder_attn_text.out_proj.bias',
'catext_norm.weight': 'encoder_attn_text_layer_norm.weight',
'catext_norm.bias': 'encoder_attn_text_layer_norm.bias',
'self_attn.in_proj_weight': 'self_attn.in_proj_weight',
'self_attn.in_proj_bias': 'self_attn.in_proj_bias',
'self_attn.out_proj.weight': 'self_attn.out_proj.weight',
'self_attn.out_proj.bias': 'self_attn.out_proj.bias',
'norm2.weight': 'self_attn_layer_norm.weight',
'norm2.bias': 'self_attn_layer_norm.bias',
'linear1.weight': 'fc1.weight',
'linear1.bias': 'fc1.bias',
'linear2.weight': 'fc2.weight',
'linear2.bias': 'fc2.bias',
'norm3.weight': 'final_layer_norm.weight',
'norm3.bias': 'final_layer_norm.bias',
}
for layer_num in range(config.decoder_layers):
source_prefix_decoder = f'transformer.decoder.layers.{layer_num}.'
target_prefix_decoder = f'model.decoder.layers.{layer_num}.'
for source_name, target_name in key_mappings_decoder.items():
rename_keys.append((source_prefix_decoder + source_name,
target_prefix_decoder + target_name))
########################################## DECODER - END
########################################## Additional - START
for layer_name, params in state_dict.items():
#### TEXT BACKBONE
if "bert" in layer_name:
rename_keys.append((layer_name, layer_name.replace("bert", "model.text_backbone")))
#### INPUT PROJ - PROJECT OUTPUT FEATURES FROM VISION BACKBONE
if "input_proj" in layer_name:
rename_keys.append((layer_name, layer_name.replace("input_proj", "model.input_proj_vision")))
#### INPUT PROJ - PROJECT OUTPUT FEATURES FROM TEXT BACKBONE
if "feat_map" in layer_name:
rename_keys.append((layer_name, layer_name.replace("feat_map", "model.text_projection")))
#### DECODER REFERENCE POINT HEAD
if "transformer.decoder.ref_point_head" in layer_name:
rename_keys.append((layer_name, layer_name.replace("transformer.decoder.ref_point_head",
"model.decoder.reference_points_head")))
#### DECODER BBOX EMBED
if "transformer.decoder.bbox_embed" in layer_name:
rename_keys.append((layer_name, layer_name.replace("transformer.decoder.bbox_embed",
"model.decoder.bbox_embed")))
if "transformer.enc_output" in layer_name:
rename_keys.append((layer_name, layer_name.replace("transformer", "model")))
if "transformer.enc_out_bbox_embed" in layer_name:
rename_keys.append((layer_name, layer_name.replace("transformer.enc_out_bbox_embed",
"model.encoder_output_bbox_embed")))
rename_keys.append(("transformer.level_embed", "model.level_embed"))
rename_keys.append(("transformer.decoder.norm.weight", "model.decoder.layer_norm.weight"))
rename_keys.append(("transformer.decoder.norm.bias", "model.decoder.layer_norm.bias"))
rename_keys.append(("transformer.tgt_embed.weight", "model.query_position_embeddings.weight"))
########################################## Additional - END
# fmt: on
return rename_keys
def rename_key(dct, old, new):
val = dct.pop(old)
dct[new] = val
# we split up the matrix of each encoder layer into queries, keys and values
def read_in_q_k_v_encoder(state_dict, config):
########################################## VISION BACKBONE - START
embed_dim = config.backbone_config.embed_dim
for layer, depth in enumerate(config.backbone_config.depths):
hidden_size = embed_dim * 2**layer
for block in range(depth):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
in_proj_weight = state_dict.pop(f"backbone.0.layers.{layer}.blocks.{block}.attn.qkv.weight")
in_proj_bias = state_dict.pop(f"backbone.0.layers.{layer}.blocks.{block}.attn.qkv.bias")
# next, add query, keys and values (in that order) to the state dict
state_dict[
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.attention.self.query.weight"
] = in_proj_weight[:hidden_size, :]
state_dict[
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.attention.self.query.bias"
] = in_proj_bias[:hidden_size]
state_dict[
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.attention.self.key.weight"
] = in_proj_weight[hidden_size : hidden_size * 2, :]
state_dict[
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.attention.self.key.bias"
] = in_proj_bias[hidden_size : hidden_size * 2]
state_dict[
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.attention.self.value.weight"
] = in_proj_weight[-hidden_size:, :]
state_dict[
f"model.backbone.conv_encoder.model.encoder.layers.{layer}.blocks.{block}.attention.self.value.bias"
] = in_proj_bias[-hidden_size:]
########################################## VISION BACKBONE - END
def read_in_q_k_v_text_enhancer(state_dict, config):
hidden_size = config.hidden_size
for idx in range(config.encoder_layers):
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
in_proj_weight = state_dict.pop(f"model.encoder.layers.{idx}.text_enhancer_layer.self_attn.in_proj_weight")
in_proj_bias = state_dict.pop(f"model.encoder.layers.{idx}.text_enhancer_layer.self_attn.in_proj_bias")
# next, add query, keys and values (in that order) to the state dict
state_dict[f"model.encoder.layers.{idx}.text_enhancer_layer.self_attn.query.weight"] = in_proj_weight[
:hidden_size, :
]
state_dict[f"model.encoder.layers.{idx}.text_enhancer_layer.self_attn.query.bias"] = in_proj_bias[:hidden_size]
state_dict[f"model.encoder.layers.{idx}.text_enhancer_layer.self_attn.key.weight"] = in_proj_weight[
hidden_size : hidden_size * 2, :
]
state_dict[f"model.encoder.layers.{idx}.text_enhancer_layer.self_attn.key.bias"] = in_proj_bias[
hidden_size : hidden_size * 2
]
state_dict[f"model.encoder.layers.{idx}.text_enhancer_layer.self_attn.value.weight"] = in_proj_weight[
-hidden_size:, :
]
state_dict[f"model.encoder.layers.{idx}.text_enhancer_layer.self_attn.value.bias"] = in_proj_bias[
-hidden_size:
]
def read_in_q_k_v_decoder(state_dict, config):
hidden_size = config.hidden_size
for idx in range(config.decoder_layers):
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
in_proj_weight = state_dict.pop(f"model.decoder.layers.{idx}.self_attn.in_proj_weight")
in_proj_bias = state_dict.pop(f"model.decoder.layers.{idx}.self_attn.in_proj_bias")
# next, add query, keys and values (in that order) to the state dict
state_dict[f"model.decoder.layers.{idx}.self_attn.query.weight"] = in_proj_weight[:hidden_size, :]
state_dict[f"model.decoder.layers.{idx}.self_attn.query.bias"] = in_proj_bias[:hidden_size]
state_dict[f"model.decoder.layers.{idx}.self_attn.key.weight"] = in_proj_weight[
hidden_size : hidden_size * 2, :
]
state_dict[f"model.decoder.layers.{idx}.self_attn.key.bias"] = in_proj_bias[hidden_size : hidden_size * 2]
state_dict[f"model.decoder.layers.{idx}.self_attn.value.weight"] = in_proj_weight[-hidden_size:, :]
state_dict[f"model.decoder.layers.{idx}.self_attn.value.bias"] = in_proj_bias[-hidden_size:]
# read in weights + bias of cross-attention
in_proj_weight = state_dict.pop(f"model.decoder.layers.{idx}.encoder_attn_text.in_proj_weight")
in_proj_bias = state_dict.pop(f"model.decoder.layers.{idx}.encoder_attn_text.in_proj_bias")
# next, add query, keys and values (in that order) to the state dict
state_dict[f"model.decoder.layers.{idx}.encoder_attn_text.query.weight"] = in_proj_weight[:hidden_size, :]
state_dict[f"model.decoder.layers.{idx}.encoder_attn_text.query.bias"] = in_proj_bias[:hidden_size]
state_dict[f"model.decoder.layers.{idx}.encoder_attn_text.key.weight"] = in_proj_weight[
hidden_size : hidden_size * 2, :
]
state_dict[f"model.decoder.layers.{idx}.encoder_attn_text.key.bias"] = in_proj_bias[
hidden_size : hidden_size * 2
]
state_dict[f"model.decoder.layers.{idx}.encoder_attn_text.value.weight"] = in_proj_weight[-hidden_size:, :]
state_dict[f"model.decoder.layers.{idx}.encoder_attn_text.value.bias"] = in_proj_bias[-hidden_size:]
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
return image
def preprocess_caption(caption: str) -> str:
result = caption.lower().strip()
if result.endswith("."):
return result
return result + "."
@torch.no_grad()
def convert_grounding_dino_checkpoint(args):
model_name = args.model_name
pytorch_dump_folder_path = args.pytorch_dump_folder_path
push_to_hub = args.push_to_hub
verify_logits = args.verify_logits
checkpoint_mapping = {
"grounding-dino-tiny": "https://huggingface.co/ShilongLiu/GroundingDino/resolve/main/groundingdino_swint_ogc.pth",
"grounding-dino-base": "https://huggingface.co/ShilongLiu/GroundingDino/resolve/main/groundingdino_swinb_cogcoor.pth",
}
# Define default GroundingDino configuation
config = get_grounding_dino_config(model_name)
# Load original checkpoint
checkpoint_url = checkpoint_mapping[model_name]
original_state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")["model"]
original_state_dict = {k.replace("module.", ""): v for k, v in original_state_dict.items()}
for name, param in original_state_dict.items():
print(name, param.shape)
# Rename keys
new_state_dict = original_state_dict.copy()
rename_keys = create_rename_keys(original_state_dict, config)
for src, dest in rename_keys:
rename_key(new_state_dict, src, dest)
read_in_q_k_v_encoder(new_state_dict, config)
read_in_q_k_v_text_enhancer(new_state_dict, config)
read_in_q_k_v_decoder(new_state_dict, config)
# Load HF model
model = GroundingDinoForObjectDetection(config)
model.eval()
missing_keys, unexpected_keys = model.load_state_dict(new_state_dict, strict=False)
print("Missing keys:", missing_keys)
print("Unexpected keys:", unexpected_keys)
# Load and process test image
image = prepare_img()
transforms = T.Compose([T.Resize(size=800, max_size=1333), T.ToTensor(), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
original_pixel_values = transforms(image).unsqueeze(0)
image_processor = GroundingDinoImageProcessor()
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
processor = GroundingDinoProcessor(image_processor=image_processor, tokenizer=tokenizer)
text = "a cat"
inputs = processor(images=image, text=preprocess_caption(text), return_tensors="pt")
assert torch.allclose(original_pixel_values, inputs.pixel_values, atol=1e-4)
if verify_logits:
# Running forward
with torch.no_grad():
outputs = model(**inputs)
print(outputs.logits[0, :3, :3])
expected_slice = torch.tensor(
[[-4.8913, -0.1900, -0.2161], [-4.9653, -0.3719, -0.3950], [-5.9599, -3.3765, -3.3104]]
)
assert torch.allclose(outputs.logits[0, :3, :3], expected_slice, atol=1e-4)
print("Looks ok!")
if pytorch_dump_folder_path is not None:
model.save_pretrained(pytorch_dump_folder_path)
processor.save_pretrained(pytorch_dump_folder_path)
if push_to_hub:
model.push_to_hub(f"EduardoPacheco/{model_name}")
processor.push_to_hub(f"EduardoPacheco/{model_name}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="grounding-dino-tiny",
type=str,
choices=["grounding-dino-tiny", "grounding-dino-base"],
help="Name of the GroundingDino model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
parser.add_argument(
"--verify_logits", action="store_false", help="Whether or not to verify logits after conversion."
)
args = parser.parse_args()
convert_grounding_dino_checkpoint(args)
|
transformers/src/transformers/models/grounding_dino/convert_grounding_dino_to_hf.py/0
|
{
"file_path": "transformers/src/transformers/models/grounding_dino/convert_grounding_dino_to_hf.py",
"repo_id": "transformers",
"token_count": 11476
}
| 133 |
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Idefics model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class IdeficsVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`IdeficsModel`]. It is used to instantiate an
Idefics model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Idefics-9B.
e.g. [HuggingFaceM4/idefics-9b](https://huggingface.co/HuggingFaceM4/idefics-9b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
embed_dim (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer. (elsewhere referred to as `hidden_size`)
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
intermediate_size (`int`, *optional*, defaults to 5120):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
patch_size (`int`, *optional*, defaults to 14):
The size (resolution) of each patch.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
Number of image channels.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
testing).
"""
model_type = "idefics_vision"
attribute_map = {
"hidden_size": "embed_dim",
}
def __init__(
self,
embed_dim=768,
image_size=224,
intermediate_size=5120,
patch_size=14,
num_hidden_layers=32,
num_attention_heads=16,
num_channels=3,
hidden_act="gelu",
layer_norm_eps=1e-5,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
**kwargs,
):
self.embed_dim = embed_dim
self.image_size = image_size
self.intermediate_size = intermediate_size
self.patch_size = patch_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.layer_norm_eps = layer_norm_eps
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
self.hidden_act = hidden_act
super().__init__(**kwargs)
class IdeficsPerceiverConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`IdeficsModel`]. It is used to instantiate an
Idefics model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Idefics-9B.
e.g. [HuggingFaceM4/idefics-9b](https://huggingface.co/HuggingFaceM4/idefics-9b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
use_resampler (`bool`, *optional*, defaults to `False`):
Whether or not to use the resampler
resampler_n_latents (`int`, *optional*, defaults to 64):
Number of latent embeddings to resample ("compress") the input sequence to (usually < 128).
resampler_depth (`int`, *optional*, defaults to 6):
Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3).
resampler_n_heads (`int`, *optional*, defaults to 16):
Number of heads in each Transformer block (for multi-headed self-attention).
resampler_head_dim (`int`, *optional*, defaults to 96):
Dimensionality of each head projection in the Transformer block.
qk_layer_norms_perceiver (`bool`, *optional*, defaults to `False`):
Whether or not to use qk layer norms in perceiver
"""
model_type = "idefics_perciever"
def __init__(
self,
use_resampler=False,
resampler_n_latents=64,
resampler_depth=6,
resampler_n_heads=16,
resampler_head_dim=96,
qk_layer_norms_perceiver=False,
**kwargs,
):
self.use_resampler = use_resampler
self.resampler_n_latents = resampler_n_latents
self.resampler_depth = resampler_depth
self.resampler_n_heads = resampler_n_heads
self.resampler_head_dim = resampler_head_dim
self.qk_layer_norms_perceiver = qk_layer_norms_perceiver
super().__init__(**kwargs)
class IdeficsConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`IdeficsModel`]. It is used to instantiate an
Idefics model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Idefics-9B.
e.g. [HuggingFaceM4/idefics-9b](https://huggingface.co/HuggingFaceM4/idefics-9b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
additional_vocab_size (`int`, *optional*, defaults to 0):
Additional vocabulary size of the model, typically for the special "<img>" token. Additional vocab tokens
are always trainable whereas regular vocab tokens can be frozen or not.
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the Idefics model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`~IdeficsModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
alpha_initializer (`str`, *optional*, defaults to `"zeros"`):
Initialization type for the alphas.
alphas_initializer_range (`float`, *optional*, defaults to 0.0):
The standard deviation of the truncated_normal_initializer for initializing the alphas in the Gated Cross
Attention.
alpha_type (`str`, *optional*, defaults to `"float"`):
Whether the gating alphas should be vectors or single floats.
rms_norm_eps (`float`, *optional*, defaults to 1e-6):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 0)
Padding token id.
bos_token_id (`int`, *optional*, defaults to 1)
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 2)
End of stream token id.
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
cross_layer_interval (`int`, *optional*, default to 1)
Interval for cross attention (from text to image) layers.
qk_layer_norms (`bool`, *optional*, defaults to `False`): Whether to add layer norm after q and k
freeze_text_layers (`bool`, *optional*, defaults to `True`): Whether to freeze text layers
freeze_text_module_exceptions (`bool`, *optional*, defaults to `[]`):
Exceptions to freezing text layers when `freeze_text_layers` is `True`
freeze_lm_head (`bool`, *optional*, defaults to `False`): Whether to freeze lm head
freeze_vision_layers (`bool`, *optional*, defaults to `True`): Whether to freeze vision layers
freeze_vision_module_exceptions (`bool`, *optional*, defaults to `[]`):
Exceptions to freezing vision layers when `freeze_vision_layers` is `True`
use_resampler (`bool`, *optional*, defaults to `False`): Whether to use the Resampler
vision_config (`IdeficsVisionConfig`, *optional*): Custom vision config or dict
perceiver_config (`IdeficsPerceiverConfig`, *optional*): Custom perceiver config or dict
Example:
```python
>>> from transformers import IdeficsModel, IdeficsConfig
>>> # Initializing a Idefics idefics-9b style configuration
>>> configuration = IdeficsConfig()
>>> # Initializing a model from the idefics-9b style configuration
>>> model = IdeficsModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "idefics"
sub_configs = {"perceiver_config": IdeficsPerceiverConfig, "vision_config": IdeficsVisionConfig}
def __init__(
self,
vocab_size=32000,
additional_vocab_size=0,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
dropout=0.0,
hidden_act="silu",
initializer_range=0.02,
alpha_initializer="zeros",
alphas_initializer_range=0.0,
alpha_type="float",
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
tie_word_embeddings=False,
cross_layer_interval=1,
qk_layer_norms=False,
freeze_text_layers=True,
freeze_text_module_exceptions=[],
freeze_lm_head=False,
freeze_vision_layers=True,
freeze_vision_module_exceptions=[],
use_resampler=False,
vision_config=None,
perceiver_config=None,
**kwargs,
):
self.vocab_size = vocab_size
self.additional_vocab_size = additional_vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.dropout = dropout
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.alpha_initializer = alpha_initializer
self.alphas_initializer_range = alphas_initializer_range
self.alpha_type = alpha_type
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.cross_layer_interval = cross_layer_interval
self.qk_layer_norms = qk_layer_norms
self.freeze_vision_layers = freeze_vision_layers
self.freeze_text_layers = freeze_text_layers
self.freeze_text_module_exceptions = freeze_text_module_exceptions
self.freeze_vision_module_exceptions = freeze_vision_module_exceptions
self.freeze_lm_head = freeze_lm_head
self.use_resampler = use_resampler
if perceiver_config is None:
self.perceiver_config = IdeficsPerceiverConfig()
elif isinstance(perceiver_config, dict):
self.perceiver_config = IdeficsPerceiverConfig(**perceiver_config)
elif isinstance(perceiver_config, IdeficsPerceiverConfig):
self.perceiver_config = perceiver_config
if vision_config is None:
self.vision_config = IdeficsVisionConfig()
elif isinstance(vision_config, dict):
self.vision_config = IdeficsVisionConfig(**vision_config)
elif isinstance(vision_config, IdeficsVisionConfig):
self.vision_config = vision_config
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
# IMPORTANT: Do not do any __init__ args-based checks in the constructor, since
# PretrainedConfig.from_dict first instantiates the class with the config dict and only then
# updates the config object with `kwargs` from from_pretrained, so during the instantiation
# of this object many attributes have default values and haven't yet been overridden.
# Do any required checks inside `from_pretrained` once the superclass' `from_pretrained` was run.
__all__ = ["IdeficsConfig"]
|
transformers/src/transformers/models/idefics/configuration_idefics.py/0
|
{
"file_path": "transformers/src/transformers/models/idefics/configuration_idefics.py",
"repo_id": "transformers",
"token_count": 5870
}
| 134 |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Idefics3 model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING, AutoConfig
logger = logging.get_logger(__name__)
class Idefics3VisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Idefics3VisionModel`]. It is used to instantiate a
Idefics3 vision encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the SigLIP checkpoint
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) used in the Idefics3 model
[HuggingFaceM4/Idefics3-8B-Llama3](https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 1152):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
Number of channels in the input images.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 32):
The size (resolution) of each patch.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
Example:
```python
>>> from transformers.models.idefics3.modeling_idefics3 import Idefics3VisionTransformer
>>> from transformers.models.idefics3.configuration_idefics3 import Idefics3VisionConfig
>>> # Initializing a Idefics3VisionConfig with google/siglip-base-patch16-224 style configuration
>>> configuration = Idefics3VisionConfig()
>>> # Initializing a Idefics3VisionTransformer (with random weights) from the google/siglip-base-patch16-224 style configuration
>>> model = Idefics3VisionTransformer(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "idefics3_vision"
base_config_key = "vision_config"
def __init__(
self,
hidden_size=1152,
intermediate_size=3072,
num_hidden_layers=12,
num_attention_heads=16,
num_channels=3,
image_size=224,
patch_size=32,
hidden_act="gelu_pytorch_tanh",
layer_norm_eps=1e-6,
attention_dropout=0.0,
initializer_range=0.02,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.initializer_range = initializer_range
class Idefics3Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Idefics3Model`]. It is used to instantiate a
Idefics3 model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the model of the Idefics3
[HuggingFaceM4/Idefics3-8B-Llama3](https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should cache the key/value pairs of the attention mechanism. Only
relevant if `config.is_decoder=True`.
image_token_id (`int`, *optional*, defaults to 128257):
The id of the "image" token.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether or not to tie the word embeddings with the token embeddings.
vision_config (`IdeficsVisionConfig` or `dict`, *optional*, defaults to `IdeficsVisionConfig`):
Custom vision config or dict for the vision tower
text_config (`PretrainedConfig` or `dict`, *optional*, defaults to `LlamaConfig`):
Custom text config or dict for the text model
scale_factor (`int`, *optional*, defaults to 2):
The scale factor for the image encoder.
pad_token_id (`int`, *optional*, defaults to 128002):
The id of the padding token.
Example:
```python
>>> from transformers import Idefics3Model, Idefics3Config
>>> # Initializing configuration
>>> configuration = Idefics3Config()
>>> # Initializing a model from the configuration
>>> model = Idefics3Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "idefics3"
sub_configs = {"text_config": AutoConfig, "vision_config": Idefics3VisionConfig}
def __init__(
self,
use_cache=True,
image_token_id=128257,
tie_word_embeddings=False,
vision_config=None,
text_config=None,
scale_factor=2,
pad_token_id=128_002,
**kwargs,
):
self.image_token_id = image_token_id
self.use_cache = use_cache
self.tie_word_embeddings = tie_word_embeddings
if vision_config is None:
self.vision_config = Idefics3VisionConfig()
logger.info("vision_config is None, using default vision config")
elif isinstance(vision_config, dict):
self.vision_config = Idefics3VisionConfig(**vision_config)
elif isinstance(vision_config, Idefics3VisionConfig):
self.vision_config = vision_config
if isinstance(text_config, dict):
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama"
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
elif text_config is None:
logger.info("text_config is None, using default text config")
text_config = CONFIG_MAPPING["llama"](
rms_norm_eps=1e-5,
pad_token_id=pad_token_id,
tie_word_embeddings=False,
)
self.text_config = text_config
self.scale_factor = scale_factor
super().__init__(**kwargs, pad_token_id=pad_token_id, tie_word_embeddings=tie_word_embeddings)
__all__ = ["Idefics3Config", "Idefics3VisionConfig"]
|
transformers/src/transformers/models/idefics3/configuration_idefics3.py/0
|
{
"file_path": "transformers/src/transformers/models/idefics3/configuration_idefics3.py",
"repo_id": "transformers",
"token_count": 3238
}
| 135 |
# coding=utf-8
# Copyright 2024 AI21 Labs Ltd. and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Jamba model configuration"""
import math
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class JambaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`JambaModel`]. It is used to instantiate a
Jamba model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Jamba-v0.1 model.
[ai21labs/Jamba-v0.1](https://huggingface.co/ai21labs/Jamba-v0.1)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 65536):
Vocabulary size of the Jamba model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`JambaModel`]
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the
model has a output word embedding layer.
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 14336):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 8):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
num_logits_to_keep (`int` or `None`, *optional*, defaults to 1):
Number of prompt logits to calculate during generation. If `None`, all logits will be calculated. If an
integer value, only last `num_logits_to_keep` logits will be calculated. Default is 1 because only the
logits of the last prompt token are needed for generation. For long sequences, the logits for the entire
sequence may use a lot of memory so, setting `num_logits_to_keep=1` will reduce memory footprint
significantly.
output_router_logits (`bool`, *optional*, defaults to `False`):
Whether or not the router logits should be returned by the model. Enabling this will also
allow the model to output the auxiliary loss. See [here]() for more details
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
The aux loss factor for the total loss.
pad_token_id (`int`, *optional*, defaults to 0):
The id of the padding token.
bos_token_id (`int`, *optional*, defaults to 1):
The id of the "beginning-of-sequence" token.
eos_token_id (`int`, *optional*, defaults to 2):
The id of the "end-of-sequence" token.
sliding_window (`int`, *optional*):
Sliding window attention window size. If not specified, will default to `None`.
max_position_embeddings (`int`, *optional*, defaults to 262144):
This value doesn't have any real effect. The maximum sequence length that this model is intended to be
used with. It can be used with longer sequences, but performance may degrade.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
num_experts_per_tok (`int`, *optional*, defaults to 2):
The number of experts to root per-token, can be also interpreted as the `top-p` routing
parameter
num_experts (`int`, *optional*, defaults to 16):
Number of experts per Sparse MLP layer.
expert_layer_period (`int`, *optional*, defaults to 2):
Once in this many layers, we will have an expert layer
expert_layer_offset (`int`, *optional*, defaults to 1):
The first layer index that contains an expert mlp layer
attn_layer_period (`int`, *optional*, defaults to 8):
Once in this many layers, we will have a vanilla attention layer
attn_layer_offset (`int`, *optional*, defaults to 4):
The first layer index that contains a vanilla attention mlp layer
use_mamba_kernels (`bool`, *optional*, defaults to `True`):
Flag indicating whether or not to use the fast mamba kernels. These are available only if `mamba-ssm` and
`causal-conv1d` are installed, and the mamba modules are running on a CUDA device. Raises ValueError if
`True` and kernels are not available
mamba_d_state (`int`, *optional*, defaults to 16):
The dimension the mamba state space latents
mamba_d_conv (`int`, *optional*, defaults to 4):
The size of the mamba convolution kernel
mamba_expand (`int`, *optional*, defaults to 2):
Expanding factor (relative to hidden_size) used to determine the mamba intermediate size
mamba_dt_rank (`Union[int,str]`, *optional*, defaults to `"auto"`):
Rank of the mamba discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)`
mamba_conv_bias (`bool`, *optional*, defaults to `True`):
Flag indicating whether or not to use bias in the convolution layer of the mamba mixer block.
mamba_proj_bias (`bool`, *optional*, defaults to `False`):
Flag indicating whether or not to use bias in the input and output projections (["in_proj", "out_proj"]) of the mamba mixer block
"""
model_type = "jamba"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=65536,
tie_word_embeddings=False,
hidden_size=4096,
intermediate_size=14336,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=8,
hidden_act="silu",
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
num_logits_to_keep=1,
output_router_logits=False,
router_aux_loss_coef=0.001,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
sliding_window=None,
max_position_embeddings=262144,
attention_dropout=0.0,
num_experts_per_tok=2,
num_experts=16,
expert_layer_period=2,
expert_layer_offset=1,
attn_layer_period=8,
attn_layer_offset=4,
use_mamba_kernels=True,
mamba_d_state=16,
mamba_d_conv=4,
mamba_expand=2,
mamba_dt_rank="auto",
mamba_conv_bias=True,
mamba_proj_bias=False,
**kwargs,
):
self.vocab_size = vocab_size
self.tie_word_embeddings = tie_word_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.sliding_window = sliding_window
self.max_position_embeddings = max_position_embeddings
self.attention_dropout = attention_dropout
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.num_logits_to_keep = num_logits_to_keep
self.output_router_logits = output_router_logits
self.router_aux_loss_coef = router_aux_loss_coef
self.num_experts_per_tok = num_experts_per_tok
self.num_experts = num_experts
self.expert_layer_period = expert_layer_period
self.expert_layer_offset = expert_layer_offset
self.attn_layer_period = attn_layer_period
self.attn_layer_offset = attn_layer_offset
self._check_supported_offset("attention", self.attn_layer_period, self.attn_layer_offset)
self._check_supported_offset("expert", self.expert_layer_period, self.expert_layer_offset)
self.use_mamba_kernels = use_mamba_kernels
self.mamba_d_state = mamba_d_state
self.mamba_d_conv = mamba_d_conv
self.mamba_expand = mamba_expand
self.mamba_dt_rank = math.ceil(self.hidden_size / 16) if mamba_dt_rank == "auto" else mamba_dt_rank
self.mamba_conv_bias = mamba_conv_bias
self.mamba_proj_bias = mamba_proj_bias
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
@property
def layers_block_type(self):
return [
"attention" if i % self.attn_layer_period == self.attn_layer_offset else "mamba"
for i in range(self.num_hidden_layers)
]
@property
def layers_num_experts(self):
return [
self.num_experts if i % self.expert_layer_period == self.expert_layer_offset else 1
for i in range(self.num_hidden_layers)
]
def _check_supported_offset(self, property_: str, period: int, offset: int):
if offset >= period:
raise ValueError(
f"{property_} layer offset ({offset}) must be smaller than {property_} layer period ({period})"
)
__all__ = ["JambaConfig"]
|
transformers/src/transformers/models/jamba/configuration_jamba.py/0
|
{
"file_path": "transformers/src/transformers/models/jamba/configuration_jamba.py",
"repo_id": "transformers",
"token_count": 4654
}
| 136 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fast tokenization class for LayoutLMv3. It overwrites 2 methods of the slow tokenizer class, namely _batch_encode_plus
and _encode_plus, in which the Rust tokenizer is used.
"""
import json
from typing import Dict, List, Optional, Tuple, Union
from tokenizers import processors
from ...tokenization_utils_base import (
BatchEncoding,
EncodedInput,
PaddingStrategy,
PreTokenizedInput,
TensorType,
TextInput,
TextInputPair,
TruncationStrategy,
)
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import add_end_docstrings, logging
from .tokenization_layoutlmv3 import (
LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING,
LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING,
LayoutLMv3Tokenizer,
)
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
class LayoutLMv3TokenizerFast(PreTrainedTokenizerFast):
r"""
Construct a "fast" LayoutLMv3 tokenizer (backed by HuggingFace's *tokenizers* library). Based on BPE.
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file.
errors (`str`, *optional*, defaults to `"replace"`):
Paradigm to follow when decoding bytes to UTF-8. See
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"<s>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
add_prefix_space (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. (RoBERTa tokenizer detect beginning of words by the preceding space).
trim_offsets (`bool`, *optional*, defaults to `True`):
Whether the post processing step should trim offsets to avoid including whitespaces.
cls_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
The bounding box to use for the special [CLS] token.
sep_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
The bounding box to use for the special [SEP] token.
pad_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
The bounding box to use for the special [PAD] token.
pad_token_label (`int`, *optional*, defaults to -100):
The label to use for padding tokens. Defaults to -100, which is the `ignore_index` of PyTorch's
CrossEntropyLoss.
only_label_first_subword (`bool`, *optional*, defaults to `True`):
Whether or not to only label the first subword, in case word labels are provided.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
slow_tokenizer_class = LayoutLMv3Tokenizer
def __init__(
self,
vocab_file=None,
merges_file=None,
tokenizer_file=None,
errors="replace",
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="<unk>",
pad_token="<pad>",
mask_token="<mask>",
add_prefix_space=True,
trim_offsets=True,
cls_token_box=[0, 0, 0, 0],
sep_token_box=[0, 0, 0, 0],
pad_token_box=[0, 0, 0, 0],
pad_token_label=-100,
only_label_first_subword=True,
**kwargs,
):
super().__init__(
vocab_file,
merges_file,
tokenizer_file=tokenizer_file,
errors=errors,
bos_token=bos_token,
eos_token=eos_token,
sep_token=sep_token,
cls_token=cls_token,
unk_token=unk_token,
pad_token=pad_token,
mask_token=mask_token,
add_prefix_space=add_prefix_space,
trim_offsets=trim_offsets,
cls_token_box=cls_token_box,
sep_token_box=sep_token_box,
pad_token_box=pad_token_box,
pad_token_label=pad_token_label,
only_label_first_subword=only_label_first_subword,
**kwargs,
)
tokenizer_component = "post_processor"
tokenizer_component_instance = getattr(self.backend_tokenizer, tokenizer_component, None)
if tokenizer_component_instance:
state = json.loads(tokenizer_component_instance.__getstate__())
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
state["sep"] = tuple(state["sep"])
if "cls" in state:
state["cls"] = tuple(state["cls"])
changes_to_apply = False
if state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
state["add_prefix_space"] = add_prefix_space
changes_to_apply = True
if state.get("trim_offsets", trim_offsets) != trim_offsets:
state["trim_offsets"] = trim_offsets
changes_to_apply = True
if changes_to_apply:
component_class = getattr(processors, state.pop("type"))
new_value = component_class(**state)
setattr(self.backend_tokenizer, tokenizer_component, new_value)
# additional properties
self.cls_token_box = cls_token_box
self.sep_token_box = sep_token_box
self.pad_token_box = pad_token_box
self.pad_token_label = pad_token_label
self.only_label_first_subword = only_label_first_subword
@add_end_docstrings(LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
# Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast.__call__
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
boxes: Union[List[List[int]], List[List[List[int]]]] = None,
word_labels: Optional[Union[List[int], List[List[int]]]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
"""
Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
sequences with word-level normalized bounding boxes and optional labels.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings
(words of a single example or questions of a batch of examples) or a list of list of strings (batch of
words).
text_pair (`List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence should be a list of strings
(pretokenized string).
boxes (`List[List[int]]`, `List[List[List[int]]]`):
Word-level bounding boxes. Each bounding box should be normalized to be on a 0-1000 scale.
word_labels (`List[int]`, `List[List[int]]`, *optional*):
Word-level integer labels (for token classification tasks such as FUNSD, CORD).
"""
# Input type checking for clearer error
def _is_valid_text_input(t):
if isinstance(t, str):
# Strings are fine
return True
elif isinstance(t, (list, tuple)):
# List are fine as long as they are...
if len(t) == 0:
# ... empty
return True
elif isinstance(t[0], str):
# ... list of strings
return True
elif isinstance(t[0], (list, tuple)):
# ... list with an empty list or with a list of strings
return len(t[0]) == 0 or isinstance(t[0][0], str)
else:
return False
else:
return False
if text_pair is not None:
# in case text + text_pair are provided, text = questions, text_pair = words
if not _is_valid_text_input(text):
raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ")
if not isinstance(text_pair, (list, tuple)):
raise ValueError(
"Words must be of type `List[str]` (single pretokenized example), "
"or `List[List[str]]` (batch of pretokenized examples)."
)
else:
# in case only text is provided => must be words
if not isinstance(text, (list, tuple)):
raise ValueError(
"Words must be of type `List[str]` (single pretokenized example), "
"or `List[List[str]]` (batch of pretokenized examples)."
)
if text_pair is not None:
is_batched = isinstance(text, (list, tuple))
else:
is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple))
words = text if text_pair is None else text_pair
if boxes is None:
raise ValueError("You must provide corresponding bounding boxes")
if is_batched:
if len(words) != len(boxes):
raise ValueError("You must provide words and boxes for an equal amount of examples")
for words_example, boxes_example in zip(words, boxes):
if len(words_example) != len(boxes_example):
raise ValueError("You must provide as many words as there are bounding boxes")
else:
if len(words) != len(boxes):
raise ValueError("You must provide as many words as there are bounding boxes")
if is_batched:
if text_pair is not None and len(text) != len(text_pair):
raise ValueError(
f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:"
f" {len(text_pair)}."
)
batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
is_pair = bool(text_pair is not None)
return self.batch_encode_plus(
batch_text_or_text_pairs=batch_text_or_text_pairs,
is_pair=is_pair,
boxes=boxes,
word_labels=word_labels,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
else:
return self.encode_plus(
text=text,
text_pair=text_pair,
boxes=boxes,
word_labels=word_labels,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
@add_end_docstrings(LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
# Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast.batch_encode_plus
def batch_encode_plus(
self,
batch_text_or_text_pairs: Union[
List[TextInput],
List[TextInputPair],
List[PreTokenizedInput],
],
is_pair: bool = None,
boxes: Optional[List[List[List[int]]]] = None,
word_labels: Optional[Union[List[int], List[List[int]]]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
verbose=verbose,
**kwargs,
)
return self._batch_encode_plus(
batch_text_or_text_pairs=batch_text_or_text_pairs,
is_pair=is_pair,
boxes=boxes,
word_labels=word_labels,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
# Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast.tokenize
def tokenize(self, text: str, pair: Optional[str] = None, add_special_tokens: bool = False, **kwargs) -> List[str]:
batched_input = [(text, pair)] if pair else [text]
encodings = self._tokenizer.encode_batch(
batched_input, add_special_tokens=add_special_tokens, is_pretokenized=False, **kwargs
)
return encodings[0].tokens
@add_end_docstrings(LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
# Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast.encode_plus
def encode_plus(
self,
text: Union[TextInput, PreTokenizedInput],
text_pair: Optional[PreTokenizedInput] = None,
boxes: Optional[List[List[int]]] = None,
word_labels: Optional[List[int]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
"""
Tokenize and prepare for the model a sequence or a pair of sequences. .. warning:: This method is deprecated,
`__call__` should be used instead.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings.
text_pair (`List[str]` or `List[int]`, *optional*):
Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a
list of list of strings (words of a batch of examples).
"""
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
verbose=verbose,
**kwargs,
)
return self._encode_plus(
text=text,
boxes=boxes,
text_pair=text_pair,
word_labels=word_labels,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
def _batch_encode_plus(
self,
batch_text_or_text_pairs: Union[
List[TextInput],
List[TextInputPair],
List[PreTokenizedInput],
],
is_pair: bool = None,
boxes: Optional[List[List[List[int]]]] = None,
word_labels: Optional[List[List[int]]] = None,
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_tensors: Optional[str] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
) -> BatchEncoding:
if not isinstance(batch_text_or_text_pairs, list):
raise TypeError(f"batch_text_or_text_pairs has to be a list (got {type(batch_text_or_text_pairs)})")
# Set the truncation and padding strategy and restore the initial configuration
self.set_truncation_and_padding(
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
)
if is_pair:
batch_text_or_text_pairs = [(text.split(), text_pair) for text, text_pair in batch_text_or_text_pairs]
encodings = self._tokenizer.encode_batch(
batch_text_or_text_pairs,
add_special_tokens=add_special_tokens,
is_pretokenized=True, # we set this to True as LayoutLMv3 always expects pretokenized inputs
)
# Convert encoding to dict
# `Tokens` has type: Tuple[
# List[Dict[str, List[List[int]]]] or List[Dict[str, 2D-Tensor]],
# List[EncodingFast]
# ]
# with nested dimensions corresponding to batch, overflows, sequence length
tokens_and_encodings = [
self._convert_encoding(
encoding=encoding,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=True
if word_labels is not None
else return_offsets_mapping, # we use offsets to create the labels
return_length=return_length,
verbose=verbose,
)
for encoding in encodings
]
# Convert the output to have dict[list] from list[dict] and remove the additional overflows dimension
# From (variable) shape (batch, overflows, sequence length) to ~ (batch * overflows, sequence length)
# (we say ~ because the number of overflow varies with the example in the batch)
#
# To match each overflowing sample with the original sample in the batch
# we add an overflow_to_sample_mapping array (see below)
sanitized_tokens = {}
for key in tokens_and_encodings[0][0].keys():
stack = [e for item, _ in tokens_and_encodings for e in item[key]]
sanitized_tokens[key] = stack
sanitized_encodings = [e for _, item in tokens_and_encodings for e in item]
# If returning overflowing tokens, we need to return a mapping
# from the batch idx to the original sample
if return_overflowing_tokens:
overflow_to_sample_mapping = []
for i, (toks, _) in enumerate(tokens_and_encodings):
overflow_to_sample_mapping += [i] * len(toks["input_ids"])
sanitized_tokens["overflow_to_sample_mapping"] = overflow_to_sample_mapping
for input_ids in sanitized_tokens["input_ids"]:
self._eventual_warn_about_too_long_sequence(input_ids, max_length, verbose)
# create the token boxes
token_boxes = []
for batch_index in range(len(sanitized_tokens["input_ids"])):
if return_overflowing_tokens:
original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index]
else:
original_index = batch_index
token_boxes_example = []
for id, sequence_id, word_id in zip(
sanitized_tokens["input_ids"][batch_index],
sanitized_encodings[batch_index].sequence_ids,
sanitized_encodings[batch_index].word_ids,
):
if word_id is not None:
if is_pair and sequence_id == 0:
token_boxes_example.append(self.pad_token_box)
else:
token_boxes_example.append(boxes[original_index][word_id])
else:
if id == self.cls_token_id:
token_boxes_example.append(self.cls_token_box)
elif id == self.sep_token_id:
token_boxes_example.append(self.sep_token_box)
elif id == self.pad_token_id:
token_boxes_example.append(self.pad_token_box)
else:
raise ValueError("Id not recognized")
token_boxes.append(token_boxes_example)
sanitized_tokens["bbox"] = token_boxes
# optionally, create the labels
if word_labels is not None:
labels = []
for batch_index in range(len(sanitized_tokens["input_ids"])):
if return_overflowing_tokens:
original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index]
else:
original_index = batch_index
labels_example = []
previous_token_empty = False
for id, offset, word_id in zip(
sanitized_tokens["input_ids"][batch_index],
sanitized_tokens["offset_mapping"][batch_index],
sanitized_encodings[batch_index].word_ids,
):
if word_id is not None:
if self.only_label_first_subword:
if offset[0] == 0 and not previous_token_empty:
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
labels_example.append(word_labels[original_index][word_id])
else:
labels_example.append(self.pad_token_label)
if offset == (0, 0):
previous_token_empty = True
else:
previous_token_empty = False
else:
labels_example.append(word_labels[original_index][word_id])
else:
labels_example.append(self.pad_token_label)
labels.append(labels_example)
sanitized_tokens["labels"] = labels
# finally, remove offsets if the user didn't want them
if not return_offsets_mapping:
del sanitized_tokens["offset_mapping"]
return BatchEncoding(sanitized_tokens, sanitized_encodings, tensor_type=return_tensors)
# Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast._encode_plus
def _encode_plus(
self,
text: Union[TextInput, PreTokenizedInput],
text_pair: Optional[PreTokenizedInput] = None,
boxes: Optional[List[List[int]]] = None,
word_labels: Optional[List[int]] = None,
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_tensors: Optional[bool] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
# make it a batched input
# 2 options:
# 1) only text, in case text must be a list of str
# 2) text + text_pair, in which case text = str and text_pair a list of str
batched_input = [(text, text_pair)] if text_pair else [text]
batched_boxes = [boxes]
batched_word_labels = [word_labels] if word_labels is not None else None
batched_output = self._batch_encode_plus(
batched_input,
is_pair=bool(text_pair is not None),
boxes=batched_boxes,
word_labels=batched_word_labels,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
# Return tensor is None, then we can remove the leading batch axis
# Overflowing tokens are returned as a batch of output so we keep them in this case
if return_tensors is None and not return_overflowing_tokens:
batched_output = BatchEncoding(
{
key: value[0] if len(value) > 0 and isinstance(value[0], list) else value
for key, value in batched_output.items()
},
batched_output.encodings,
)
self._eventual_warn_about_too_long_sequence(batched_output["input_ids"], max_length, verbose)
return batched_output
# Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast._pad
def _pad(
self,
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
max_length: Optional[int] = None,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
) -> dict:
"""
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
Args:
encoded_inputs:
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
max_length: maximum length of the returned list and optionally padding length (see below).
Will truncate by taking into account the special tokens.
padding_strategy: PaddingStrategy to use for padding.
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
- PaddingStrategy.DO_NOT_PAD: Do not pad
The tokenizer padding sides are defined in self.padding_side:
- 'left': pads on the left of the sequences
- 'right': pads on the right of the sequences
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
`>= 7.5` (Volta).
padding_side:
The side on which the model should have padding applied. Should be selected between ['right', 'left'].
Default value is picked from the class attribute of the same name.
return_attention_mask:
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
"""
# Load from model defaults
if return_attention_mask is None:
return_attention_mask = "attention_mask" in self.model_input_names
required_input = encoded_inputs[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
max_length = len(required_input)
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
# Initialize attention mask if not present.
if return_attention_mask and "attention_mask" not in encoded_inputs:
encoded_inputs["attention_mask"] = [1] * len(required_input)
if needs_to_be_padded:
difference = max_length - len(required_input)
padding_side = padding_side if padding_side is not None else self.padding_side
if padding_side == "right":
if return_attention_mask:
encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
if "token_type_ids" in encoded_inputs:
encoded_inputs["token_type_ids"] = (
encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
)
if "bbox" in encoded_inputs:
encoded_inputs["bbox"] = encoded_inputs["bbox"] + [self.pad_token_box] * difference
if "labels" in encoded_inputs:
encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference
if "special_tokens_mask" in encoded_inputs:
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
elif padding_side == "left":
if return_attention_mask:
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
if "token_type_ids" in encoded_inputs:
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
"token_type_ids"
]
if "bbox" in encoded_inputs:
encoded_inputs["bbox"] = [self.pad_token_box] * difference + encoded_inputs["bbox"]
if "labels" in encoded_inputs:
encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"]
if "special_tokens_mask" in encoded_inputs:
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
else:
raise ValueError("Invalid padding strategy:" + str(padding_side))
return encoded_inputs
# Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast.save_vocabulary
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
output = [self.bos_token_id] + token_ids_0 + [self.eos_token_id]
if token_ids_1 is None:
return output
return output + [self.eos_token_id] + token_ids_1 + [self.eos_token_id]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Args:
Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not:
make use of token type ids, therefore a list of zeros is returned.
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
__all__ = ["LayoutLMv3TokenizerFast"]
|
transformers/src/transformers/models/layoutlmv3/tokenization_layoutlmv3_fast.py/0
|
{
"file_path": "transformers/src/transformers/models/layoutlmv3/tokenization_layoutlmv3_fast.py",
"repo_id": "transformers",
"token_count": 18510
}
| 137 |
# coding=utf-8
# Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch LeViT model."""
import itertools
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
ModelOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_levit import LevitConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "LevitConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "facebook/levit-128S"
_EXPECTED_OUTPUT_SHAPE = [1, 16, 384]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "facebook/levit-128S"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
@dataclass
class LevitForImageClassificationWithTeacherOutput(ModelOutput):
"""
Output type of [`LevitForImageClassificationWithTeacher`].
Args:
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Prediction scores as the average of the `cls_logits` and `distillation_logits`.
cls_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the
class token).
distillation_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the
distillation token).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
"""
logits: torch.FloatTensor = None
cls_logits: torch.FloatTensor = None
distillation_logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
class LevitConvEmbeddings(nn.Module):
"""
LeViT Conv Embeddings with Batch Norm, used in the initial patch embedding layer.
"""
def __init__(
self, in_channels, out_channels, kernel_size, stride, padding, dilation=1, groups=1, bn_weight_init=1
):
super().__init__()
self.convolution = nn.Conv2d(
in_channels, out_channels, kernel_size, stride, padding, dilation=dilation, groups=groups, bias=False
)
self.batch_norm = nn.BatchNorm2d(out_channels)
def forward(self, embeddings):
embeddings = self.convolution(embeddings)
embeddings = self.batch_norm(embeddings)
return embeddings
class LevitPatchEmbeddings(nn.Module):
"""
LeViT patch embeddings, for final embeddings to be passed to transformer blocks. It consists of multiple
`LevitConvEmbeddings`.
"""
def __init__(self, config):
super().__init__()
self.embedding_layer_1 = LevitConvEmbeddings(
config.num_channels, config.hidden_sizes[0] // 8, config.kernel_size, config.stride, config.padding
)
self.activation_layer_1 = nn.Hardswish()
self.embedding_layer_2 = LevitConvEmbeddings(
config.hidden_sizes[0] // 8, config.hidden_sizes[0] // 4, config.kernel_size, config.stride, config.padding
)
self.activation_layer_2 = nn.Hardswish()
self.embedding_layer_3 = LevitConvEmbeddings(
config.hidden_sizes[0] // 4, config.hidden_sizes[0] // 2, config.kernel_size, config.stride, config.padding
)
self.activation_layer_3 = nn.Hardswish()
self.embedding_layer_4 = LevitConvEmbeddings(
config.hidden_sizes[0] // 2, config.hidden_sizes[0], config.kernel_size, config.stride, config.padding
)
self.num_channels = config.num_channels
def forward(self, pixel_values):
num_channels = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
embeddings = self.embedding_layer_1(pixel_values)
embeddings = self.activation_layer_1(embeddings)
embeddings = self.embedding_layer_2(embeddings)
embeddings = self.activation_layer_2(embeddings)
embeddings = self.embedding_layer_3(embeddings)
embeddings = self.activation_layer_3(embeddings)
embeddings = self.embedding_layer_4(embeddings)
return embeddings.flatten(2).transpose(1, 2)
class MLPLayerWithBN(nn.Module):
def __init__(self, input_dim, output_dim, bn_weight_init=1):
super().__init__()
self.linear = nn.Linear(in_features=input_dim, out_features=output_dim, bias=False)
self.batch_norm = nn.BatchNorm1d(output_dim)
def forward(self, hidden_state):
hidden_state = self.linear(hidden_state)
hidden_state = self.batch_norm(hidden_state.flatten(0, 1)).reshape_as(hidden_state)
return hidden_state
class LevitSubsample(nn.Module):
def __init__(self, stride, resolution):
super().__init__()
self.stride = stride
self.resolution = resolution
def forward(self, hidden_state):
batch_size, _, channels = hidden_state.shape
hidden_state = hidden_state.view(batch_size, self.resolution, self.resolution, channels)[
:, :: self.stride, :: self.stride
].reshape(batch_size, -1, channels)
return hidden_state
class LevitAttention(nn.Module):
def __init__(self, hidden_sizes, key_dim, num_attention_heads, attention_ratio, resolution):
super().__init__()
self.num_attention_heads = num_attention_heads
self.scale = key_dim**-0.5
self.key_dim = key_dim
self.attention_ratio = attention_ratio
self.out_dim_keys_values = attention_ratio * key_dim * num_attention_heads + key_dim * num_attention_heads * 2
self.out_dim_projection = attention_ratio * key_dim * num_attention_heads
self.queries_keys_values = MLPLayerWithBN(hidden_sizes, self.out_dim_keys_values)
self.activation = nn.Hardswish()
self.projection = MLPLayerWithBN(self.out_dim_projection, hidden_sizes, bn_weight_init=0)
points = list(itertools.product(range(resolution), range(resolution)))
len_points = len(points)
attention_offsets, indices = {}, []
for p1 in points:
for p2 in points:
offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
if offset not in attention_offsets:
attention_offsets[offset] = len(attention_offsets)
indices.append(attention_offsets[offset])
self.attention_bias_cache = {}
self.attention_biases = torch.nn.Parameter(torch.zeros(num_attention_heads, len(attention_offsets)))
self.register_buffer(
"attention_bias_idxs", torch.LongTensor(indices).view(len_points, len_points), persistent=False
)
@torch.no_grad()
def train(self, mode=True):
super().train(mode)
if mode and self.attention_bias_cache:
self.attention_bias_cache = {} # clear ab cache
def get_attention_biases(self, device):
if self.training:
return self.attention_biases[:, self.attention_bias_idxs]
else:
device_key = str(device)
if device_key not in self.attention_bias_cache:
self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs]
return self.attention_bias_cache[device_key]
def forward(self, hidden_state):
batch_size, seq_length, _ = hidden_state.shape
queries_keys_values = self.queries_keys_values(hidden_state)
query, key, value = queries_keys_values.view(batch_size, seq_length, self.num_attention_heads, -1).split(
[self.key_dim, self.key_dim, self.attention_ratio * self.key_dim], dim=3
)
query = query.permute(0, 2, 1, 3)
key = key.permute(0, 2, 1, 3)
value = value.permute(0, 2, 1, 3)
attention = query @ key.transpose(-2, -1) * self.scale + self.get_attention_biases(hidden_state.device)
attention = attention.softmax(dim=-1)
hidden_state = (attention @ value).transpose(1, 2).reshape(batch_size, seq_length, self.out_dim_projection)
hidden_state = self.projection(self.activation(hidden_state))
return hidden_state
class LevitAttentionSubsample(nn.Module):
def __init__(
self,
input_dim,
output_dim,
key_dim,
num_attention_heads,
attention_ratio,
stride,
resolution_in,
resolution_out,
):
super().__init__()
self.num_attention_heads = num_attention_heads
self.scale = key_dim**-0.5
self.key_dim = key_dim
self.attention_ratio = attention_ratio
self.out_dim_keys_values = attention_ratio * key_dim * num_attention_heads + key_dim * num_attention_heads
self.out_dim_projection = attention_ratio * key_dim * num_attention_heads
self.resolution_out = resolution_out
# resolution_in is the intial resolution, resoloution_out is final resolution after downsampling
self.keys_values = MLPLayerWithBN(input_dim, self.out_dim_keys_values)
self.queries_subsample = LevitSubsample(stride, resolution_in)
self.queries = MLPLayerWithBN(input_dim, key_dim * num_attention_heads)
self.activation = nn.Hardswish()
self.projection = MLPLayerWithBN(self.out_dim_projection, output_dim)
self.attention_bias_cache = {}
points = list(itertools.product(range(resolution_in), range(resolution_in)))
points_ = list(itertools.product(range(resolution_out), range(resolution_out)))
len_points, len_points_ = len(points), len(points_)
attention_offsets, indices = {}, []
for p1 in points_:
for p2 in points:
size = 1
offset = (abs(p1[0] * stride - p2[0] + (size - 1) / 2), abs(p1[1] * stride - p2[1] + (size - 1) / 2))
if offset not in attention_offsets:
attention_offsets[offset] = len(attention_offsets)
indices.append(attention_offsets[offset])
self.attention_biases = torch.nn.Parameter(torch.zeros(num_attention_heads, len(attention_offsets)))
self.register_buffer(
"attention_bias_idxs", torch.LongTensor(indices).view(len_points_, len_points), persistent=False
)
@torch.no_grad()
def train(self, mode=True):
super().train(mode)
if mode and self.attention_bias_cache:
self.attention_bias_cache = {} # clear ab cache
def get_attention_biases(self, device):
if self.training:
return self.attention_biases[:, self.attention_bias_idxs]
else:
device_key = str(device)
if device_key not in self.attention_bias_cache:
self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs]
return self.attention_bias_cache[device_key]
def forward(self, hidden_state):
batch_size, seq_length, _ = hidden_state.shape
key, value = (
self.keys_values(hidden_state)
.view(batch_size, seq_length, self.num_attention_heads, -1)
.split([self.key_dim, self.attention_ratio * self.key_dim], dim=3)
)
key = key.permute(0, 2, 1, 3)
value = value.permute(0, 2, 1, 3)
query = self.queries(self.queries_subsample(hidden_state))
query = query.view(batch_size, self.resolution_out**2, self.num_attention_heads, self.key_dim).permute(
0, 2, 1, 3
)
attention = query @ key.transpose(-2, -1) * self.scale + self.get_attention_biases(hidden_state.device)
attention = attention.softmax(dim=-1)
hidden_state = (attention @ value).transpose(1, 2).reshape(batch_size, -1, self.out_dim_projection)
hidden_state = self.projection(self.activation(hidden_state))
return hidden_state
class LevitMLPLayer(nn.Module):
"""
MLP Layer with `2X` expansion in contrast to ViT with `4X`.
"""
def __init__(self, input_dim, hidden_dim):
super().__init__()
self.linear_up = MLPLayerWithBN(input_dim, hidden_dim)
self.activation = nn.Hardswish()
self.linear_down = MLPLayerWithBN(hidden_dim, input_dim)
def forward(self, hidden_state):
hidden_state = self.linear_up(hidden_state)
hidden_state = self.activation(hidden_state)
hidden_state = self.linear_down(hidden_state)
return hidden_state
class LevitResidualLayer(nn.Module):
"""
Residual Block for LeViT
"""
def __init__(self, module, drop_rate):
super().__init__()
self.module = module
self.drop_rate = drop_rate
def forward(self, hidden_state):
if self.training and self.drop_rate > 0:
rnd = torch.rand(hidden_state.size(0), 1, 1, device=hidden_state.device)
rnd = rnd.ge_(self.drop_rate).div(1 - self.drop_rate).detach()
hidden_state = hidden_state + self.module(hidden_state) * rnd
return hidden_state
else:
hidden_state = hidden_state + self.module(hidden_state)
return hidden_state
class LevitStage(nn.Module):
"""
LeViT Stage consisting of `LevitMLPLayer` and `LevitAttention` layers.
"""
def __init__(
self,
config,
idx,
hidden_sizes,
key_dim,
depths,
num_attention_heads,
attention_ratio,
mlp_ratio,
down_ops,
resolution_in,
):
super().__init__()
self.layers = []
self.config = config
self.resolution_in = resolution_in
# resolution_in is the intial resolution, resolution_out is final resolution after downsampling
for _ in range(depths):
self.layers.append(
LevitResidualLayer(
LevitAttention(hidden_sizes, key_dim, num_attention_heads, attention_ratio, resolution_in),
self.config.drop_path_rate,
)
)
if mlp_ratio > 0:
hidden_dim = hidden_sizes * mlp_ratio
self.layers.append(
LevitResidualLayer(LevitMLPLayer(hidden_sizes, hidden_dim), self.config.drop_path_rate)
)
if down_ops[0] == "Subsample":
self.resolution_out = (self.resolution_in - 1) // down_ops[5] + 1
self.layers.append(
LevitAttentionSubsample(
*self.config.hidden_sizes[idx : idx + 2],
key_dim=down_ops[1],
num_attention_heads=down_ops[2],
attention_ratio=down_ops[3],
stride=down_ops[5],
resolution_in=resolution_in,
resolution_out=self.resolution_out,
)
)
self.resolution_in = self.resolution_out
if down_ops[4] > 0:
hidden_dim = self.config.hidden_sizes[idx + 1] * down_ops[4]
self.layers.append(
LevitResidualLayer(
LevitMLPLayer(self.config.hidden_sizes[idx + 1], hidden_dim), self.config.drop_path_rate
)
)
self.layers = nn.ModuleList(self.layers)
def get_resolution(self):
return self.resolution_in
def forward(self, hidden_state):
for layer in self.layers:
hidden_state = layer(hidden_state)
return hidden_state
class LevitEncoder(nn.Module):
"""
LeViT Encoder consisting of multiple `LevitStage` stages.
"""
def __init__(self, config):
super().__init__()
self.config = config
resolution = self.config.image_size // self.config.patch_size
self.stages = []
self.config.down_ops.append([""])
for stage_idx in range(len(config.depths)):
stage = LevitStage(
config,
stage_idx,
config.hidden_sizes[stage_idx],
config.key_dim[stage_idx],
config.depths[stage_idx],
config.num_attention_heads[stage_idx],
config.attention_ratio[stage_idx],
config.mlp_ratio[stage_idx],
config.down_ops[stage_idx],
resolution,
)
resolution = stage.get_resolution()
self.stages.append(stage)
self.stages = nn.ModuleList(self.stages)
def forward(self, hidden_state, output_hidden_states=False, return_dict=True):
all_hidden_states = () if output_hidden_states else None
for stage in self.stages:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_state,)
hidden_state = stage(hidden_state)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, all_hidden_states] if v is not None)
return BaseModelOutputWithNoAttention(last_hidden_state=hidden_state, hidden_states=all_hidden_states)
class LevitClassificationLayer(nn.Module):
"""
LeViT Classification Layer
"""
def __init__(self, input_dim, output_dim):
super().__init__()
self.batch_norm = nn.BatchNorm1d(input_dim)
self.linear = nn.Linear(input_dim, output_dim)
def forward(self, hidden_state):
hidden_state = self.batch_norm(hidden_state)
logits = self.linear(hidden_state)
return logits
class LevitPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = LevitConfig
base_model_prefix = "levit"
main_input_name = "pixel_values"
_no_split_modules = ["LevitResidualLayer"]
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, (nn.BatchNorm1d, nn.BatchNorm2d)):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
LEVIT_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`LevitConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
LEVIT_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`LevitImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Levit model outputting raw features without any specific head on top.",
LEVIT_START_DOCSTRING,
)
class LevitModel(LevitPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.patch_embeddings = LevitPatchEmbeddings(config)
self.encoder = LevitEncoder(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(LEVIT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndNoAttention,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: torch.FloatTensor = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
embeddings = self.patch_embeddings(pixel_values)
encoder_outputs = self.encoder(
embeddings,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
# global average pooling, (batch_size, seq_length, hidden_sizes) -> (batch_size, hidden_sizes)
pooled_output = last_hidden_state.mean(dim=1)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
)
@add_start_docstrings(
"""
Levit Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""",
LEVIT_START_DOCSTRING,
)
class LevitForImageClassification(LevitPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.num_labels = config.num_labels
self.levit = LevitModel(config)
# Classifier head
self.classifier = (
LevitClassificationLayer(config.hidden_sizes[-1], config.num_labels)
if config.num_labels > 0
else torch.nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(LEVIT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutputWithNoAttention,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: torch.FloatTensor = None,
labels: Optional[torch.LongTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.levit(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
sequence_output = outputs[0]
sequence_output = sequence_output.mean(1)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
)
@add_start_docstrings(
"""
LeViT Model transformer with image classification heads on top (a linear layer on top of the final hidden state and
a linear layer on top of the final hidden state of the distillation token) e.g. for ImageNet. .. warning::
This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet
supported.
""",
LEVIT_START_DOCSTRING,
)
class LevitForImageClassificationWithTeacher(LevitPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.num_labels = config.num_labels
self.levit = LevitModel(config)
# Classifier head
self.classifier = (
LevitClassificationLayer(config.hidden_sizes[-1], config.num_labels)
if config.num_labels > 0
else torch.nn.Identity()
)
self.classifier_distill = (
LevitClassificationLayer(config.hidden_sizes[-1], config.num_labels)
if config.num_labels > 0
else torch.nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(LEVIT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=LevitForImageClassificationWithTeacherOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: torch.FloatTensor = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, LevitForImageClassificationWithTeacherOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.levit(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
sequence_output = outputs[0]
sequence_output = sequence_output.mean(1)
cls_logits, distill_logits = self.classifier(sequence_output), self.classifier_distill(sequence_output)
logits = (cls_logits + distill_logits) / 2
if not return_dict:
output = (logits, cls_logits, distill_logits) + outputs[2:]
return output
return LevitForImageClassificationWithTeacherOutput(
logits=logits,
cls_logits=cls_logits,
distillation_logits=distill_logits,
hidden_states=outputs.hidden_states,
)
__all__ = [
"LevitForImageClassification",
"LevitForImageClassificationWithTeacher",
"LevitModel",
"LevitPreTrainedModel",
]
|
transformers/src/transformers/models/levit/modeling_levit.py/0
|
{
"file_path": "transformers/src/transformers/models/levit/modeling_levit.py",
"repo_id": "transformers",
"token_count": 12827
}
| 138 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Llava.
"""
from typing import List, Union
from ...feature_extraction_utils import BatchFeature
from ...image_utils import ImageInput, get_image_size, to_numpy_array
from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack, _validate_images_text_input_order
from ...tokenization_utils_base import PreTokenizedInput, TextInput
from ...utils import logging
logger = logging.get_logger(__name__)
class LlavaProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {
"text_kwargs": {
"padding": False,
},
"images_kwargs": {},
}
class LlavaProcessor(ProcessorMixin):
r"""
Constructs a LLaVa processor which wraps a LLaVa image processor and a LLaMa tokenizer into a single processor.
[`LlavaProcessor`] offers all the functionalities of [`LlavaImageProcessor`] and [`LlamaTokenizerFast`]. See the
[`~LlavaProcessor.__call__`] and [`~LlavaProcessor.decode`] for more information.
Args:
image_processor ([`LlavaImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`LlamaTokenizerFast`], *optional*):
The tokenizer is a required input.
patch_size (`int`, *optional*):
Patch size from the vision tower.
vision_feature_select_strategy (`str`, *optional*):
The feature selection strategy used to select the vision feature from the vision backbone.
Shoudl be same as in model's config
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
image_token (`str`, *optional*, defaults to `"<image>"`):
Special token used to denote image location.
num_additional_image_tokens (`int`, *optional*, defaults to 0):
Number of additional tokens added to the image embeddings, such as CLS (+1). If the backbone has no CLS or other
extra tokens appended, no need to set this arg.
"""
attributes = ["image_processor", "tokenizer"]
valid_kwargs = [
"chat_template",
"patch_size",
"vision_feature_select_strategy",
"image_token",
"num_additional_image_tokens",
]
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(
self,
image_processor=None,
tokenizer=None,
patch_size=None,
vision_feature_select_strategy=None,
chat_template=None,
image_token="<image>", # set the default and let users change if they have peculiar special tokens in rare cases
num_additional_image_tokens=0,
**kwargs,
):
self.patch_size = patch_size
self.num_additional_image_tokens = num_additional_image_tokens
self.vision_feature_select_strategy = vision_feature_select_strategy
self.image_token = tokenizer.image_token if hasattr(tokenizer, "image_token") else image_token
super().__init__(image_processor, tokenizer, chat_template=chat_template)
def __call__(
self,
images: ImageInput = None,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
audio=None,
videos=None,
**kwargs: Unpack[LlavaProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
of the above two methods for more information.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
if images is None and text is None:
raise ValueError("You have to specify at least one of `images` or `text`.")
# check if images and text inputs are reversed for BC
images, text = _validate_images_text_input_order(images, text)
output_kwargs = self._merge_kwargs(
LlavaProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if images is not None:
image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"])
else:
image_inputs = {}
if isinstance(text, str):
text = [text]
elif not isinstance(text, list) and not isinstance(text[0], str):
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
# try to expand inputs in processing if we have the necessary parts
prompt_strings = text
if image_inputs.get("pixel_values") is not None:
# Replace the image token with the expanded image token sequence
pixel_values = image_inputs["pixel_values"]
height, width = get_image_size(to_numpy_array(pixel_values[0]))
num_image_tokens = (height // self.patch_size) * (
width // self.patch_size
) + self.num_additional_image_tokens
if self.vision_feature_select_strategy == "default":
num_image_tokens -= 1
prompt_strings = []
for sample in text:
sample = sample.replace(self.image_token, self.image_token * num_image_tokens)
prompt_strings.append(sample)
text_inputs = self.tokenizer(prompt_strings, **output_kwargs["text_kwargs"])
return BatchFeature(data={**text_inputs, **image_inputs})
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
__all__ = ["LlavaProcessor"]
|
transformers/src/transformers/models/llava/processing_llava.py/0
|
{
"file_path": "transformers/src/transformers/models/llava/processing_llava.py",
"repo_id": "transformers",
"token_count": 3649
}
| 139 |
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert LLaVa-Onevision checkpoints from the original repository.
URL: https://github.com/LLaVA-VL/LLaVA-NeXT/tree/main
"""
import argparse
import gc
import glob
import json
from pathlib import Path
import requests
import torch
from accelerate import init_empty_weights
from huggingface_hub import hf_hub_download, snapshot_download
from PIL import Image
from safetensors import safe_open
from transformers import (
AddedToken,
AutoConfig,
AutoTokenizer,
LlavaOnevisionConfig,
LlavaOnevisionForConditionalGeneration,
LlavaOnevisionImageProcessor,
LlavaOnevisionProcessor,
LlavaOnevisionVideoProcessor,
SiglipVisionConfig,
)
KEYS_TO_MODIFY_MAPPING = {
"model.vision_tower.": "",
"model.mm_projector": "multi_modal_projector",
"model": "model.model",
"vision_model.model": "vision_model",
"lm_head": "language_model.lm_head",
"model.model": "language_model.model",
"multi_modal_projector.0": "multi_modal_projector.linear_1",
"multi_modal_projector.2": "multi_modal_projector.linear_2",
"language_model.model.image_newline": "image_newline",
}
chat_template = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n'}}{# Render all images first #}{% for content in message['content'] | selectattr('type', 'equalto', 'image') %}{{ '<image>\n' }}{% endfor %}{# Render all video then #}{% for content in message['content'] | selectattr('type', 'equalto', 'video') %}{{ '<video>\n' }}{% endfor %}{# Render all text next #}{% if message['role'] != 'assistant' %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{{ content['text'] }}{% endfor %}{% else %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{% generation %}{{ content['text'] }}{% endgeneration %}{% endfor %}{% endif %}{{'<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}"
def load_original_state_dict(model_id):
directory_path = snapshot_download(repo_id=model_id, allow_patterns=["*.safetensors"])
original_state_dict = {}
for path in glob.glob(f"{directory_path}/*"):
if path.endswith(".safetensors"):
with safe_open(path, framework="pt", device="cpu") as f:
for key in f.keys():
original_state_dict[key] = f.get_tensor(key)
# tied wieghts so lm.head is not saved. Let's clone to load state dict
if "lm_head.weight" not in original_state_dict:
original_state_dict["lm_head.weight"] = original_state_dict["model.embed_tokens.weight"].clone()
return original_state_dict
def convert_state_dict_to_hf(state_dict):
new_state_dict = {}
for key, value in state_dict.items():
if key.endswith(".inv_freq"):
continue
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
key = key.replace(key_to_modify, new_key)
new_state_dict[key] = value.to(torch.float16)
return new_state_dict
def load_image():
url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"
image = Image.open(requests.get(url, stream=True).raw)
return image
def convert_llava_to_hf(model_id, pytorch_dump_folder_path, push_to_hub=False):
# load original config
filepath = hf_hub_download(repo_id=model_id, filename="config.json", repo_type="model")
# read json
with open(filepath) as f:
data = json.load(f)
print(data)
if model_id in ["lmms-lab/llava-onevision-qwen2-0.5b-ov", "lmms-lab/llava-onevision-qwen2-0.5b-si"]:
text_model_id = "Qwen/Qwen2-0.5B-Instruct"
elif model_id in [
"lmms-lab/llava-onevision-qwen2-7b-ov",
"lmms-lab/llava-onevision-qwen2-7b-si",
"lmms-lab/llava-onevision-qwen2-7b-ov-chat",
]:
text_model_id = "Qwen/Qwen2-7B-Instruct"
elif model_id in [
"lmms-lab/llava-onevision-qwen2-72b-ov",
"lmms-lab/llava-onevision-qwen2-72b-si",
"lmms-lab/llava-onevision-qwen2-72b-ov-chat",
]:
text_model_id = "Qwen/Qwen2-72B-Instruct"
vision_model_id = data["mm_vision_tower"]
torch.set_default_dtype(torch.float16)
text_config = AutoConfig.from_pretrained(text_model_id)
tokenizer = AutoTokenizer.from_pretrained(text_model_id, use_fast=True)
tokenizer.add_tokens(AddedToken("<image>", special=True, normalized=False), special_tokens=True)
tokenizer.add_tokens(AddedToken("<video>", special=True, normalized=False), special_tokens=True)
image_processor = LlavaOnevisionImageProcessor.from_pretrained(vision_model_id)
video_processor = LlavaOnevisionVideoProcessor.from_pretrained(vision_model_id)
processor = LlavaOnevisionProcessor(
tokenizer=tokenizer,
video_processor=video_processor,
image_processor=image_processor,
num_image_tokens=729,
vision_feature_select_strategy="full",
chat_template=chat_template,
)
vision_config = SiglipVisionConfig(
hidden_size=1152,
image_size=384,
intermediate_size=4304,
num_attention_heads=16,
num_hidden_layers=26, # drop the last layer
patch_size=14,
vision_use_head=False, # no head
).to_dict()
config = LlavaOnevisionConfig(
text_config=text_config.to_dict(),
vision_config=vision_config,
use_image_newline_parameter=True,
)
with init_empty_weights():
model = LlavaOnevisionForConditionalGeneration(config)
# load original state dict
state_dict = load_original_state_dict(model_id)
state_dict = convert_state_dict_to_hf(state_dict)
model.load_state_dict(state_dict, assign=True)
model.eval()
pre_expansion_embeddings = model.language_model.model.embed_tokens.weight.data
mu = torch.mean(pre_expansion_embeddings, dim=0).float()
n = pre_expansion_embeddings.size()[0]
sigma = ((pre_expansion_embeddings - mu).T @ (pre_expansion_embeddings - mu)) / n
dist = torch.distributions.multivariate_normal.MultivariateNormal(mu, covariance_matrix=1e-5 * sigma)
# We add an image token so we resize the model
# Pad to 64 for performance reasons
# Qwen-based models have extra unused space in the vocab size already, so no need to resize
pad_shape = 64
vocab_size = config.text_config.vocab_size
num_tokens = vocab_size + 2
model.resize_token_embeddings(num_tokens, pad_to_multiple_of=pad_shape)
model.language_model.model.embed_tokens.weight.data[vocab_size:] = torch.stack(
tuple(
(dist.sample() for _ in range(model.language_model.model.embed_tokens.weight.data[vocab_size:].shape[0]))
),
dim=0,
)
model.language_model.lm_head.weight.data[vocab_size:] = torch.stack(
tuple((dist.sample() for _ in range(model.language_model.lm_head.weight.data[vocab_size:].shape[0]))),
dim=0,
)
print(f"Saving model and processor for {model_id} to {pytorch_dump_folder_path}")
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
model.save_pretrained(pytorch_dump_folder_path)
processor.save_pretrained(pytorch_dump_folder_path)
# Make space so we can load the model properly now.
del state_dict
gc.collect()
# Load everything back for inference tests in float32 because prev script was written as that
# Though it's mostly loaded in fp16 as original weights are in fp16
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
pytorch_dump_folder_path, torch_dtype="float16", device_map="auto"
)
processor = LlavaOnevisionProcessor.from_pretrained(pytorch_dump_folder_path)
device = model.device
# prepare inputs
image = load_image()
prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<image>\nWhat is shown in this image?<|im_end|>\n<|im_start|>assistant\n"
inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch.float16)
# verify inputs
filepath = hf_hub_download(
repo_id="RaushanTurganbay/test-image", filename="llava_onevision_pixel_values.pt", repo_type="dataset"
)
original_pixel_values = torch.load(filepath, map_location="cpu")
assert torch.allclose(original_pixel_values, inputs.pixel_values.half())
image_sizes = torch.tensor([[899, 1024]])
assert image_sizes[0].tolist() == inputs.image_sizes[0].tolist()
# verify single forward pass
print("Single forward pass")
with torch.inference_mode():
inputs = inputs.to(device)
outputs = model(**inputs)
print("Shape of logits:", outputs.logits.shape)
print("First values of logits:", outputs.logits[0, :3, :3])
if model_id == "lmms-lab/llava-onevision-qwen2-0.5b-si":
# Not yet checked against reference
expected_slice = torch.tensor(
[[-12.1953, -14.6797, -12.7891], [0.5840, -0.8467, 1.3799], [3.6055, 4.5430, 9.9062]],
dtype=torch.float32,
device=device,
)
elif model_id == "lmms-lab/llava-onevision-qwen2-0.5b-ov":
# Not yet checked against reference
expected_slice = torch.tensor(
[[-12.0234, -14.3828, -12.7500], [2.3594, 1.0000, 3.9336], [3.6582, 4.7148, 9.1172]],
dtype=torch.float32,
device=device,
)
elif model_id == "lmms-lab/llava-onevision-qwen2-7b-si":
# Not yet checked against reference
expected_slice = torch.tensor(
[[1.7656, 3.3418, 1.4033], [0.0757, 0.7427, 3.5098], [6.7109, 5.6797, 9.3828]],
dtype=torch.float32,
device=device,
)
elif model_id == "lmms-lab/llava-onevision-qwen2-7b-ov":
# Not yet checked against reference
expected_slice = torch.tensor(
[[1.8496, 3.4219, 1.3135], [3.0996, 3.0117, 3.1484], [4.2422, 4.7109, 9.9688]],
dtype=torch.float32,
device=device,
)
elif model_id == "lmms-lab/llava-onevision-qwen2-72b-si":
# Not yet checked against reference
expected_slice = torch.tensor(
[[4.1875, 4.4883, 2.7910], [1.2949, 5.1328, 3.1582], [0.9390, 6.4531, 8.4375]],
dtype=torch.float32,
device=device,
)
elif model_id == "lmms-lab/llava-onevision-qwen2-72b-ov":
# Not yet checked against reference
expected_slice = torch.tensor(
[[4.2930, 4.7305, 2.7363], [1.7529, 5.0742, 3.9590], [1.3936, 6.3438, 9.3984]],
dtype=torch.float32,
device=device,
)
elif model_id == "lmms-lab/llava-onevision-qwen2-7b-ov-chat":
# Not yet checked against reference
expected_slice = torch.tensor(
[[1.8662, 3.4316, 1.3174], [2.7109, 2.5488, 3.0117], [4.4648, 4.9648, 10.3359]],
dtype=torch.float32,
device=device,
)
elif model_id == "lmms-lab/llava-onevision-qwen2-72b-ov-chat":
# Not yet checked against reference
expected_slice = torch.tensor(
[[4.3086, 4.7344, 2.6953], [1.7090, 5.1719, 4.0234], [1.3057, 6.3438, 9.5469]],
dtype=torch.float32,
device=device,
)
else:
raise ValueError(f"Model {model_id} not supported")
assert torch.allclose(outputs.logits[0, :3, :3], expected_slice, atol=1e-4)
print("Logits are ok!")
# verify generation
output_ids = model.generate(
**inputs,
max_new_tokens=100,
use_cache=True,
)
generated_text = processor.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
print("Generated text:", repr(generated_text))
if model_id == "lmms-lab/llava-onevision-qwen2-0.5b-si":
expected_text = "system\nYou are a helpful assistant.\nuser\n\nWhat is shown in this image?\nassistant\nThe image is a radar chart that shows the performance of different algorithms or models in a specific domain, such as image classification or natural language processing. The chart is color-coded to represent different algorithms, with each color corresponding to a specific algorithm. The algorithms are labeled as BLIP-2, InstructBLIP, Owen-VL-Chat, and LLaVA-1.5. The chart also includes a legend at the bottom that explains the color coding and the algorithms represented."
elif model_id == "lmms-lab/llava-onevision-qwen2-0.5b-ov":
expected_text = "system\nYou are a helpful assistant.\nuser\n\nWhat is shown in this image?\nassistant\nThe image is a radar chart that compares the performance of different models in a specific task, likely related to natural language processing or machine learning. The chart is divided into different categories, each represented by a different color and labeled with the name of the model or technique used. The models are evaluated based on their performance metrics, such as BLEU-2, InstructBLIP, Qwen-VL-Chat, and LLaVA-1.5. The radar chart helps to visualize the relative"
elif model_id == "lmms-lab/llava-onevision-qwen2-7b-si":
expected_text = "system\nYou are a helpful assistant.\nuser\n\nWhat is shown in this image?\nassistant\nThis image is a radar chart that compares the performance of different models on various metrics. The models being compared are BLIP-2, InstructBLIP, and Qwen-VL-Chat. The metrics being compared are VQA, QA, GQA, VQA-av2, and VQA-av2. The chart shows that BLIP-2 performs the best on all metrics, followed by InstructBLIP and Qwen-VL-Chat."
elif model_id == "lmms-lab/llava-onevision-qwen2-7b-ov":
expected_text = "system\nYou are a helpful assistant.\nuser\n\nWhat is shown in this image?\nassistant\nThe image shows a radar chart, also known as a spider chart or a star chart, which is used to compare multiple quantitative variables. Each axis represents a different variable, and the chart is filled with data points that represent the performance or values of different entities across these variables.\n\nIn this particular radar chart, the variables are represented on the axes, and the performance of different models or systems is shown by the lines connecting the data points. The models or systems are labeled along the bottom of the chart,"
elif model_id == "lmms-lab/llava-onevision-qwen2-72b-si":
expected_text = "system\nYou are a helpful assistant.\nuser\n\nWhat is shown in this image?\nassistant\nThe image shows a radar chart, which is a graphical method of displaying multivariate data in the form of a two-dimensional chart of three or more quantitative variables represented on axes starting from the same point. The chart is used to compare the performance of different models or systems across various benchmarks or metrics.\n\nIn this specific radar chart, there are multiple axes, each representing a different benchmark or metric, such as VQA2, GQA, TextVQA, and others. The chart includes several colored lines"
elif model_id == "lmms-lab/llava-onevision-qwen2-72b-ov":
expected_text = "system\nYou are a helpful assistant.\nuser\n\nWhat is shown in this image?\nassistant\nThe image is a radar chart comparing the performance of different models on various multimodal benchmarks. The models compared are BLIP-2, InstructBLIP, POPE, QWen-VL-Chat, and LLava-1.5. The benchmarks include VQAv2, GQA, TextVQA, SQA-IMG, VizWiz, MM-IMDb, MM-VQA, MM-IMDb-CN, MM-IMDb-EN, MM-"
elif model_id == "lmms-lab/llava-onevision-qwen2-7b-ov-chat":
expected_text = "system\nYou are a helpful assistant.\nuser\n\nWhat is shown in this image?\nassistant\nThe image shows a radar chart, also known as a spider chart or a star chart, which is used to display multivariate data in the form of a two-dimensional chart of three or more quantitative variables represented on axes starting from the same point. Each axis represents a different variable, and the values are plotted along these axes.\n\nIn this particular radar chart, there are multiple lines representing different models or systems, each distinguished by a different color and labeled with a name such as BLIP-2, In"
elif model_id == "lmms-lab/llava-onevision-qwen2-72b-ov-chat":
expected_text = "system\nYou are a helpful assistant.\nuser\n\nWhat is shown in this image?\nassistant\nThe image is a radar chart comparing the performance of different models on various multimodal benchmarks. The models compared are BLIP-2, InstructBLIP, POPE, QWen-VL-Chat, and LLava-1.5. The benchmarks include VQAv2, GQA, TextVQA, SQA-IMG, VizWiz, MM-IMDb, MM-VQA, MM-IMDb-CN, MM-IMDb-EN, MM-"
else:
raise ValueError(f"Model {model_id} not supported")
assert generated_text == expected_text
print("Generated text is ok!")
# verify batched generation
print("Batched generation...")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
cats_image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(
images=[image, cats_image],
text=[prompt, prompt],
padding=True,
return_tensors="pt",
).to(device, torch.float16)
for k, v in inputs.items():
print(k, v.shape)
print("Image sizes:", inputs.image_sizes)
# make sure image_sizes are the same
# as otherwise batched generation doesn't work
inputs.image_sizes[1] = inputs.image_sizes[0]
print("Batched generation...")
output_ids = model.generate(
**inputs,
max_new_tokens=20,
use_cache=True,
)
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
print(outputs)
if push_to_hub:
checkpoint_name = model_id.split("/")[-1]
print(f"Pushing to repo llava-hf/{checkpoint_name}-hf")
model.push_to_hub(f"llava-hf/{checkpoint_name}-hf")
processor.push_to_hub(f"llava-hf/{checkpoint_name}-hf")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_id",
help="Hub location of the model to convert",
default="lmms-lab/llava-onevision-qwen2-0.5b-ov",
choices=[
"lmms-lab/llava-onevision-qwen2-0.5b-ov",
"lmms-lab/llava-onevision-qwen2-0.5b-si",
"lmms-lab/llava-onevision-qwen2-7b-si",
"lmms-lab/llava-onevision-qwen2-7b-ov",
"lmms-lab/llava-onevision-qwen2-72b-si",
"lmms-lab/llava-onevision-qwen2-72b-ov",
"lmms-lab/llava-onevision-qwen2-7b-ov-chat",
"lmms-lab/llava-onevision-qwen2-72b-ov-chat",
],
required=False,
)
parser.add_argument(
"--pytorch_dump_folder_path", type=str, required=True, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
args = parser.parse_args()
convert_llava_to_hf(args.model_id, args.pytorch_dump_folder_path, args.push_to_hub)
|
transformers/src/transformers/models/llava_onevision/convert_llava_onevision_weights_to_hf.py/0
|
{
"file_path": "transformers/src/transformers/models/llava_onevision/convert_llava_onevision_weights_to_hf.py",
"repo_id": "transformers",
"token_count": 8126
}
| 140 |
# coding=utf-8
# Copyright 2022 Google LLC., LongT5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch LongT5 model."""
import copy
import math
import warnings
from typing import Any, List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import ALL_LAYERNORM_LAYERS, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
DUMMY_INPUTS,
DUMMY_MASK,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_torch_fx_proxy,
is_torchdynamo_compiling,
logging,
replace_return_docstrings,
)
from .configuration_longt5 import LongT5Config
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "LongT5Config"
_CHECKPOINT_FOR_DOC = "google/long-t5-local-base"
# TODO: Update before the merge
def _pad_to_multiple(x: torch.Tensor, block_len: int, dim: int, pad_value: int = 0) -> torch.Tensor:
"""Pad a tensor so that a sequence length will be a multiple of `block_len`"""
pad_len = -x.shape[dim] % block_len
# Handle cases when an empty input sequence is given
if not all(x.shape):
new_shape = list(x.shape)
new_shape[dim] += pad_len
return torch.zeros(new_shape, dtype=x.dtype)
pad = [(0, 0)] * x.ndim
pad[dim] = (0, pad_len)
pad = sum(pad[::-1], ())
x = nn.functional.pad(x, pad=pad, mode="constant", value=pad_value)
return x
def _split_into_blocks(x: torch.Tensor, block_len: int, dim: int) -> torch.Tensor:
"""Split an input tensor into blocks of a given `block_len` along the given `dim`. If the dimension length
is not a multiple of `block_len`, it will be padded first with selected `pad_value`.
"""
# pad tensor to multiple of block_len
if x.shape[dim] % block_len != 0:
x = _pad_to_multiple(x, block_len, dim, pad_value=0)
num_blocks = x.shape[dim] // block_len
output_shape = x.shape[:dim] + (num_blocks, block_len) + x.shape[(dim + 1) :]
# If 0 is in output_shape, we cannot apply reshape because of incompatibility with ONNX conversion
if 0 in output_shape:
return torch.empty(output_shape, dtype=x.dtype, device=x.device)
return x.reshape(output_shape)
def _concatenate_3_blocks(x: torch.Tensor, block_dim: int, sequence_dim: int, pad_value: int = 0) -> torch.Tensor:
"""Concatenate three consecutive blocks for each input block for local attentiont.
For more information, see: https://arxiv.org/pdf/2112.07916.pdf.
"""
num_blocks = x.shape[block_dim]
pad = [(0, 0)] * x.ndim
pad[block_dim] = (1, 1)
pad = sum(pad[::-1], ())
# [batch_size, num_blocks, block_len] -> [batch_size, num_blocks + 2, block_len]
x = nn.functional.pad(x, pad=pad, mode="constant", value=pad_value)
blocks_list: List[torch.Tensor] = []
for i in range(3):
# We use indexing approach here:
# https://numpy.org/doc/stable/user/basics.indexing.html#dealing-with-variable-numbers-of-indices-within-programs
indices = [slice(0, None)] * x.ndim
indices[block_dim] = slice(i, i + num_blocks)
indices = tuple(indices)
blocks_list.append(x[indices])
# [batch_size, num_blocks, 3 * block_len, ...]
return torch.cat(blocks_list, dim=sequence_dim)
def _make_3block_relative_position_ids(block_len: int) -> torch.Tensor:
"""Makes 3-blocked relative position ids for local attention."""
position_ids = torch.arange(3 * block_len, dtype=torch.int32)
center_position_ids = position_ids[block_len:-block_len]
# [block_len, 3 * block_len]
relative_position_ids = position_ids.unsqueeze(0) - center_position_ids.unsqueeze(1)
return relative_position_ids
def _mask_local_attention_mask(local_attention_mask: torch.Tensor, block_len: int) -> torch.Tensor:
"""Mask local attention mask to enforce that tokens are not allowed to attend tokens farther than ``local_radius."""
relative_position_ids = _make_3block_relative_position_ids(block_len)
locality_mask = torch.abs(relative_position_ids) < block_len
locality_mask = locality_mask[None, None, :, :]
locality_mask = locality_mask.to(local_attention_mask.device)
return torch.logical_and(local_attention_mask, locality_mask)
def _get_local_attention_mask(attention_mask: torch.Tensor, block_len: int, device: torch.device) -> torch.Tensor:
"""Prepare attention mask to be applied for a local attention."""
# [batch_size, num_blocks, block_len]
_blocked_attention_mask = _split_into_blocks(attention_mask, block_len, dim=1)
# [batch_size, num_block, 3 * block_len]
_3blocked_attention_mask = _concatenate_3_blocks(_blocked_attention_mask, block_dim=1, sequence_dim=2)
_blocked_attention_mask = _blocked_attention_mask.unsqueeze(-1)
_3blocked_attention_mask = _3blocked_attention_mask.unsqueeze(-2)
# [batch_size, num_block, block_len, 3 * block_len]
local_attention_mask = torch.logical_and(_blocked_attention_mask, _3blocked_attention_mask)
local_attention_mask = _mask_local_attention_mask(local_attention_mask, block_len)
# [batch_size, 1, num_block, block_len, 3 * block_len]
return local_attention_mask.unsqueeze(1).to(device)
def _make_global_fixed_block_ids(
attention_mask: torch.Tensor, global_block_size: int
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Obtain the "fixed block" global id corresponding to each input token.
This implementation is a simlified version of the original Flaxformr implementation adopted from:
https://github.com/google/flaxformer/blob/main/flaxformer/architectures/longt5/long_attention.py.
In our scenario, as we use this strategy only for a decoder, orphan tokens, i.e. those tokens which do not make for
the whole fixed block, are assigned to the preceding block.
Padding tokens from the original sequence are represented by -1.
"""
batch_size, seq_len = attention_mask.shape[:2]
def handle_orphan_tokens(block_ids: torch.Tensor) -> torch.Tensor:
block_ends = (torch.arange(seq_len) % global_block_size) == global_block_size - 1
block_ends = block_ends.to(block_ids.device)
true_block_ends = torch.logical_and(block_ends, block_ids >= 0)
full_blocks = true_block_ends.sum(-1).unsqueeze(-1).type(block_ids.dtype) - 1
block_ids = torch.where(block_ids < full_blocks, block_ids, full_blocks)
return block_ids
fixed_block_mask = torch.ones_like(attention_mask, device=attention_mask.device) / global_block_size
fixed_block_mask = torch.cumsum(fixed_block_mask, axis=1) - fixed_block_mask
mask = torch.where(attention_mask != 0.0, 1.0, -1000.0).type(attention_mask.dtype)
global_block_ids = torch.floor(mask + fixed_block_mask - 1.0).type(attention_mask.dtype)
_global_block_ids_lower_bound = torch.tensor(-1, dtype=global_block_ids.dtype, device=global_block_ids.device)
global_block_ids = torch.where(
global_block_ids > _global_block_ids_lower_bound, global_block_ids, _global_block_ids_lower_bound
)
# set padding tokens to -1
global_block_ids = (global_block_ids * attention_mask) + (attention_mask - 1)
# [batch_size, seq_len]
global_block_ids = handle_orphan_tokens(global_block_ids)
num_globals = seq_len // global_block_size
# [batch_size, seq_len // global_block_size]
if num_globals > 0:
_sequence_block_ids_max = torch.max(global_block_ids, dim=-1).values.repeat(num_globals, 1).transpose(0, 1)
else:
_sequence_block_ids_max = torch.zeros(
batch_size, 0, dtype=global_block_ids.dtype, device=global_block_ids.device
)
global_segment_ids = torch.cumsum(torch.ones(batch_size, num_globals), dim=-1) - 1
global_segment_ids = global_segment_ids.to(attention_mask.device)
global_segment_ids = torch.where(global_segment_ids <= _sequence_block_ids_max, 1, 0)
return global_block_ids.type(torch.int), global_segment_ids.type(torch.int)
def _make_side_relative_position_ids(attention_mask: torch.Tensor, global_block_size: int) -> torch.Tensor:
"""Create the relative position tensor for local -> global attention."""
block_ids, global_segment_ids = _make_global_fixed_block_ids(attention_mask, global_block_size)
global_seq_len = global_segment_ids.shape[-1]
global_positions = torch.arange(global_seq_len, device=block_ids.device)
side_relative_position = global_positions - block_ids[..., None]
return side_relative_position.type(torch.int64)
def _create_global_aggregates(
hidden_states: torch.Tensor, block_ids: torch.Tensor, global_seq_len: int
) -> torch.Tensor:
"""Compute individual block aggregates by summing over individual blocks."""
# (batch..., seq_len, global_seq_len))
block_ids = block_ids.where(
block_ids >= 0, torch.tensor(global_seq_len, dtype=block_ids.dtype, device=block_ids.device)
)
one_hot_block_ids = nn.functional.one_hot(block_ids.type(torch.int64), global_seq_len + 1)[:, :, :-1]
return torch.einsum("...nd,...ng->...gd", hidden_states, one_hot_block_ids.type(hidden_states.dtype))
# Copied from transformers.models.t5.modeling_t5.T5LayerNorm with T5->LongT5
class LongT5LayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Construct a layernorm module in the LongT5 style. No bias and no subtraction of mean.
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
# LongT5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
# half-precision inputs is done in fp32
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
try:
from apex.normalization import FusedRMSNorm
LongT5LayerNorm = FusedRMSNorm # noqa
logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of LongT5LayerNorm")
except ImportError:
# using the normal LongT5LayerNorm
pass
except Exception:
logger.warning("discovered apex but it failed to load, falling back to LongT5LayerNorm")
pass
ALL_LAYERNORM_LAYERS.append(LongT5LayerNorm)
# Copied from transformers.models.t5.modeling_t5.T5DenseActDense with T5->LongT5
class LongT5DenseActDense(nn.Module):
def __init__(self, config: LongT5Config):
super().__init__()
self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = ACT2FN[config.dense_act_fn]
def forward(self, hidden_states):
hidden_states = self.wi(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.dropout(hidden_states)
if (
isinstance(self.wo.weight, torch.Tensor)
and hidden_states.dtype != self.wo.weight.dtype
and self.wo.weight.dtype != torch.int8
):
hidden_states = hidden_states.to(self.wo.weight.dtype)
hidden_states = self.wo(hidden_states)
return hidden_states
class LongT5DenseGatedActDense(nn.Module):
def __init__(self, config: LongT5Config):
super().__init__()
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = ACT2FN[config.dense_act_fn]
def forward(self, hidden_states):
hidden_gelu = self.act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = self.dropout(hidden_states)
hidden_states = self.wo(hidden_states)
return hidden_states
# Copied from transformers.models.t5.modeling_t5.T5LayerFF with T5->LongT5
class LongT5LayerFF(nn.Module):
def __init__(self, config: LongT5Config):
super().__init__()
if config.is_gated_act:
self.DenseReluDense = LongT5DenseGatedActDense(config)
else:
self.DenseReluDense = LongT5DenseActDense(config)
self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, hidden_states):
forwarded_states = self.layer_norm(hidden_states)
forwarded_states = self.DenseReluDense(forwarded_states)
hidden_states = hidden_states + self.dropout(forwarded_states)
return hidden_states
# Copied from transformers.models.t5.modeling_t5.T5Attention with T5->LongT5
class LongT5Attention(nn.Module):
def __init__(
self,
config: LongT5Config,
has_relative_attention_bias=False,
layer_idx: Optional[int] = None,
):
super().__init__()
self.is_decoder = config.is_decoder
self.has_relative_attention_bias = has_relative_attention_bias
self.relative_attention_num_buckets = config.relative_attention_num_buckets
self.relative_attention_max_distance = config.relative_attention_max_distance
self.d_model = config.d_model
self.key_value_proj_dim = config.d_kv
self.n_heads = config.num_heads
self.dropout = config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
self.layer_idx = layer_idx
if layer_idx is None and self.is_decoder:
logger.warning_once(
f"Instantiating a decoder {self.__class__.__name__} without passing `layer_idx` is not recommended and "
"will to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
# Mesh TensorFlow initialization to avoid scaling before softmax
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
self.pruned_heads = set()
self.gradient_checkpointing = False
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
)
# Prune linear layers
self.q = prune_linear_layer(self.q, index)
self.k = prune_linear_layer(self.k, index)
self.v = prune_linear_layer(self.v, index)
self.o = prune_linear_layer(self.o, index, dim=1)
# Update hyper params
self.n_heads = self.n_heads - len(heads)
self.inner_dim = self.key_value_proj_dim * self.n_heads
self.pruned_heads = self.pruned_heads.union(heads)
@staticmethod
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
def compute_bias(self, query_length, key_length, device=None, cache_position=None):
"""Compute binned relative position bias"""
if device is None:
device = self.relative_attention_bias.weight.device
if cache_position is None:
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
else:
context_position = cache_position[:, None].to(device)
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
relative_position = memory_position - context_position # shape (query_length, key_length)
relative_position_bucket = self._relative_position_bucket(
relative_position, # shape (query_length, key_length)
bidirectional=(not self.is_decoder),
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
return values
def forward(
self,
hidden_states,
mask=None,
key_value_states=None,
position_bias=None,
past_key_value=None,
layer_head_mask=None,
query_length=None,
use_cache=False,
output_attentions=False,
cache_position=None,
):
"""
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
"""
# Input is (batch_size, seq_length, dim)
# Mask is (batch_size, 1, 1, key_length) (non-causal encoder) or (batch_size, 1, seq_length, key_length) (causal decoder)
batch_size, seq_length = hidden_states.shape[:2]
# if key_value_states are provided this layer is used as a cross-attention layer for the decoder
is_cross_attention = key_value_states is not None
query_states = self.q(hidden_states)
query_states = query_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
if past_key_value is not None:
is_updated = past_key_value.is_updated.get(self.layer_idx)
if is_cross_attention:
# after the first generated id, we can subsequently re-use all key/value_states from cache
curr_past_key_value = past_key_value.cross_attention_cache
else:
curr_past_key_value = past_key_value.self_attention_cache
current_states = key_value_states if is_cross_attention else hidden_states
if is_cross_attention and past_key_value is not None and is_updated:
# reuse k,v, cross_attentions
key_states = curr_past_key_value.key_cache[self.layer_idx]
value_states = curr_past_key_value.value_cache[self.layer_idx]
else:
key_states = self.k(current_states)
value_states = self.v(current_states)
key_states = key_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
value_states = value_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
if past_key_value is not None:
# save all key/value_states to cache to be re-used for fast auto-regressive generation
cache_position = cache_position if not is_cross_attention else None
key_states, value_states = curr_past_key_value.update(
key_states, value_states, self.layer_idx, {"cache_position": cache_position}
)
# set flag that curr layer for cross-attn is already updated so we can re-use in subsequent calls
if is_cross_attention:
past_key_value.is_updated[self.layer_idx] = True
# compute scores, equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
scores = torch.matmul(query_states, key_states.transpose(3, 2))
if position_bias is None:
key_length = key_states.shape[-2]
# cache position is 0-indexed so we add 1 to get the real length of queries (aka with past)
real_seq_length = query_length if query_length is not None else cache_position[-1] + 1
if not self.has_relative_attention_bias:
position_bias = torch.zeros(
(1, self.n_heads, seq_length, key_length), device=scores.device, dtype=scores.dtype
)
if self.gradient_checkpointing and self.training:
position_bias.requires_grad = True
else:
position_bias = self.compute_bias(
real_seq_length, key_length, device=scores.device, cache_position=cache_position
)
position_bias = position_bias[:, :, -seq_length:, :]
if mask is not None:
causal_mask = mask[:, :, :, : key_states.shape[-2]]
position_bias = position_bias + causal_mask
if self.pruned_heads:
mask = torch.ones(position_bias.shape[1])
mask[list(self.pruned_heads)] = 0
position_bias_masked = position_bias[:, mask.bool()]
else:
position_bias_masked = position_bias
scores += position_bias_masked
# (batch_size, n_heads, seq_length, key_length)
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = attn_weights * layer_head_mask
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(batch_size, -1, self.inner_dim)
attn_output = self.o(attn_output)
outputs = (attn_output, past_key_value, position_bias)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
class LongT5LocalAttention(nn.Module):
def __init__(self, config: LongT5Config, has_relative_attention_bias: bool = False) -> None:
super().__init__()
self.is_decoder = config.is_decoder
self.has_relative_attention_bias = has_relative_attention_bias
self.relative_attention_num_buckets = config.relative_attention_num_buckets
self.relative_attention_max_distance = config.relative_attention_max_distance
self.d_model = config.d_model
self.key_value_proj_dim = config.d_kv
self.n_heads = config.num_heads
self.local_radius = config.local_radius
self.block_len = self.local_radius + 1
self.dropout = config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
# Mesh TensorFlow initialization to avoid scaling before softmax
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
self.pruned_heads = set()
self.gradient_checkpointing = False
# Copied from transformers.models.t5.modeling_t5.T5Attention.prune_heads
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
)
# Prune linear layers
self.q = prune_linear_layer(self.q, index)
self.k = prune_linear_layer(self.k, index)
self.v = prune_linear_layer(self.v, index)
self.o = prune_linear_layer(self.o, index, dim=1)
# Update hyper params
self.n_heads = self.n_heads - len(heads)
self.inner_dim = self.key_value_proj_dim * self.n_heads
self.pruned_heads = self.pruned_heads.union(heads)
@staticmethod
# Copied from transformers.models.t5.modeling_t5.T5Attention._relative_position_bucket
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
def compute_bias(self, block_length: int):
"""Compute binned relative position bias"""
target_device = (
self.relative_attention_bias.weight.device
if self.relative_attention_bias.weight.device.type != "meta"
else None
)
memory_position = torch.arange(3 * block_length, dtype=torch.long, device=target_device)
context_position = memory_position[block_length:-block_length]
# (block_length, 3 * block_length)
relative_position = memory_position[None, :] - context_position[:, None]
relative_position_bucket = self._relative_position_bucket(
relative_position, # (block_length, 3 * block_length)
bidirectional=(not self.is_decoder),
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
# (block_length, 3 * block_length, num_heads)
values = self.relative_attention_bias(relative_position_bucket)
# (1, 1, num_heads, block_length, 3 * block_length)
values = values.permute([2, 0, 1]).unsqueeze(0).unsqueeze(0)
return values
def forward(
self,
hidden_states,
mask=None,
position_bias=None,
layer_head_mask=None,
output_attentions=False,
):
batch_size, seq_length = hidden_states.shape[:2]
def shape(states):
"""projection"""
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim)
def unshape(states):
"""reshape"""
return states.contiguous().view(batch_size, -1, self.inner_dim)
# get query/key/value states -> (batch_size, seq_length, n_heads, dim_per_head)
query_states = shape(self.q(hidden_states))
key_states = shape(self.k(hidden_states))
value_states = shape(self.v(hidden_states))
# Split into blocks -> (batch_size, num_blocks, block_len, n_heads, dim_per_head)
query_states = _split_into_blocks(query_states, self.block_len, dim=1)
key_states = _split_into_blocks(key_states, self.block_len, dim=1)
value_states = _split_into_blocks(value_states, self.block_len, dim=1)
# Concatenate 3 blocks for keys and values -> (batch_size, num_blocks, 3 * block_len, n_heads, dim_per_head)
key_states = _concatenate_3_blocks(key_states, block_dim=1, sequence_dim=2)
value_states = _concatenate_3_blocks(value_states, block_dim=1, sequence_dim=2)
# Compute scores
scores = torch.einsum(
"...qhd,...khd->...hqk", query_states, key_states
) # (batch_size, num_block, n_heads, block_len, 3 * block_len)
if position_bias is None:
# position_bias shape: # (1, 1, n_heads, block_len, 3 * block_len)
if not self.has_relative_attention_bias:
position_bias = torch.zeros(
(1, 1, self.n_heads, self.block_len, 3 * self.block_len), device=scores.device, dtype=scores.dtype
)
if self.gradient_checkpointing and self.training:
position_bias.requires_grad = True
else:
position_bias = self.compute_bias(self.block_len)
if mask is not None:
# Replace masked positions with -1e10 (according to the original implementation)
mask = torch.where(mask > 0, 0.0, -1e10)
# We need to adjust position bias shape to be sum with mask
position_bias = position_bias + mask.transpose(1, 2)
scores += position_bias
# (batch_size, num_blocks, n_heads, block_len, 3 * block_len)
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores)
# (batch_size, num_blocks, n_heads, block_len, 3 * block_len)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = attn_weights * layer_head_mask
attn_weights = attn_weights.type(value_states.dtype)
attn_output = unshape(torch.einsum("...hqk,...khd->...qhd", attn_weights, value_states))
attn_output = attn_output[:, :seq_length, :]
attn_output = self.o(attn_output)
present_key_value_state = None
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
class LongT5TransientGlobalAttention(nn.Module):
def __init__(self, config: LongT5Config, has_relative_attention_bias: bool = False) -> None:
super().__init__()
self.is_decoder = config.is_decoder
self.has_relative_attention_bias = has_relative_attention_bias
self.relative_attention_num_buckets = config.relative_attention_num_buckets
self.relative_attention_max_distance = config.relative_attention_max_distance
self.d_model = config.d_model
self.key_value_proj_dim = config.d_kv
self.n_heads = config.num_heads
self.local_radius = config.local_radius
self.block_len = self.local_radius + 1
self.global_block_size = config.global_block_size
self.dropout = config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
# Mesh TensorFlow initialization to avoid scaling before softmax
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
self.pruned_heads = set()
# Relativen attention bias & Layer norm for global attention
if self.has_relative_attention_bias:
self.global_relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
self.global_input_layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
# Copied from transformers.models.t5.modeling_t5.T5Attention.prune_heads
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
)
# Prune linear layers
self.q = prune_linear_layer(self.q, index)
self.k = prune_linear_layer(self.k, index)
self.v = prune_linear_layer(self.v, index)
self.o = prune_linear_layer(self.o, index, dim=1)
# Update hyper params
self.n_heads = self.n_heads - len(heads)
self.inner_dim = self.key_value_proj_dim * self.n_heads
self.pruned_heads = self.pruned_heads.union(heads)
@staticmethod
# Copied from transformers.models.t5.modeling_t5.T5Attention._relative_position_bucket
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
def compute_bias(self, block_length: int):
"""Compute binned relative position bias"""
target_device = (
self.relative_attention_bias.weight.device
if self.relative_attention_bias.weight.device.type != "meta"
else None
)
memory_position = torch.arange(3 * block_length, dtype=torch.long, device=target_device)
context_position = memory_position[block_length:-block_length]
# (block_length, 3 * block_length)
relative_position = memory_position[None, :] - context_position[:, None]
relative_position_bucket = self._relative_position_bucket(
relative_position, # (block_length, 3 * block_length)
bidirectional=(not self.is_decoder),
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
# (block_length, 3 * block_length, num_heads)
values = self.relative_attention_bias(relative_position_bucket)
# (1, 1, num_heads, block_length, 3 * block_length)
values = values.permute([2, 0, 1]).unsqueeze(0).unsqueeze(0)
return values
def compute_side_bias(self, mask: torch.Tensor, global_segment_ids: torch.Tensor) -> torch.Tensor:
# (batch_size, 1, seq_len, global_seq_len)
side_attention_mask = torch.eq(mask[..., None], global_segment_ids[:, None, :])[:, None, ...]
attention_side_bias = torch.where(side_attention_mask > 0, 0.0, -1e10)
# (batch_size, seq_len, global_seq_len)
side_relative_position = _make_side_relative_position_ids(mask, self.global_block_size)
side_relative_position_bucket = self._relative_position_bucket(
side_relative_position,
bidirectional=(not self.is_decoder),
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
# (batch_size, seq_len, global_seq_len, num_heads)
side_bias = self.global_relative_attention_bias(side_relative_position_bucket)
# (batch_size, num_heads, seq_len, global_seq_len)
side_bias = side_bias.permute([0, 3, 1, 2])
# (batch_size, num_heads, seq_len, global_seq_len)
attention_side_bias = attention_side_bias + side_bias
return attention_side_bias
def forward(
self,
hidden_states,
mask=None,
position_bias=None,
layer_head_mask=None,
output_attentions=False,
):
batch_size, seq_length = hidden_states.shape[:2]
def shape(states):
"""projection"""
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim)
def unshape(states):
"""reshape"""
return states.contiguous().view(batch_size, -1, self.inner_dim)
# Prepare components for transient-global attention
# Obtain block_ids and global_segment_ids
# global_seq_len := seq_len // self.global_block_size
# shapes: (batch_size, seq_len) & (batch_size, global_seq_len)
block_ids, global_segment_ids = _make_global_fixed_block_ids(
mask if mask is not None else torch.ones(hidden_states.shape[:-1]),
self.global_block_size,
)
# Create global inputs
_global_seq_len = global_segment_ids.shape[-1]
global_inputs = _create_global_aggregates(hidden_states, block_ids, _global_seq_len)
global_inputs = self.global_input_layer_norm(global_inputs)
# get query states -> (batch_size, seq_length, n_heads, dim_per_head)
query_states = shape(self.q(hidden_states))
key_states = shape(self.k(hidden_states))
value_states = shape(self.v(hidden_states))
# Get global/side key/value states shape: (batch_size, global_seq_len, n_heads, dim_per_head)
side_key_states = shape(self.k(global_inputs))
side_value_states = shape(self.v(global_inputs))
# Split into blocks -> (batch_size, num_blocks, block_len, n_heads, dim_per_head)
query_states = _split_into_blocks(query_states, self.block_len, dim=1)
key_states = _split_into_blocks(key_states, self.block_len, dim=1)
value_states = _split_into_blocks(value_states, self.block_len, dim=1)
# Concatenate 3 blocks for keys and values -> (batch_size, num_blocks, 3 * block_len, n_heads, dim_per_head)
key_states = _concatenate_3_blocks(key_states, block_dim=1, sequence_dim=2)
value_states = _concatenate_3_blocks(value_states, block_dim=1, sequence_dim=2)
# Tile side inputs across local key/value blocks
# New shape: (batch_size, num_blocks, global_seq_len, n_heads, dim_per_head)
reps = [1] * (side_key_states.ndim + 1)
reps[1] = key_states.shape[1]
side_key_states = side_key_states.unsqueeze(1).repeat(reps)
side_value_states = side_value_states.unsqueeze(1).repeat(reps)
# Concatenate "local" and "side"/"global" key/value states to allow each token to attend global aggregated ones
# New shape: (batch_size, num_blocks, 3 * block_len + global_seq_len, n_heads, dim_per_head)
key_states = torch.cat([key_states, side_key_states], dim=2)
value_states = torch.cat([value_states, side_value_states], dim=2)
# Compute scores -> (batch_size, num_block, n_heads, block_len, 3 * block_len + global_seq_len)
scores = torch.einsum("...qhd,...khd->...hqk", query_states, key_states)
if mask is not None:
# We need to adjust position bias shape to be sum with mask
local_attention_mask = _get_local_attention_mask(mask, self.block_len, hidden_states.device)
# Replace masked positions with -10_000 (according to the original implementation)
local_attention_mask = torch.where(local_attention_mask > 0, 0.0, -1e10)
else:
local_attention_mask = None
if position_bias is None:
# position_bias shape: # (1, 1, n_heads, block_len, 3 * block_len)
if not self.has_relative_attention_bias:
position_bias = torch.zeros(
(1, 1, self.n_heads, self.block_len, 3 * self.block_len),
device=scores.device,
dtype=scores.dtype,
)
if self.gradient_checkpointing and self.training:
position_bias.requires_grad = True
else:
position_bias = self.compute_bias(self.block_len)
if local_attention_mask is not None:
# (batch_size, 1, n_heads, block_len, 3 * block_len)
position_bias = position_bias + local_attention_mask.transpose(1, 2)
position_bias = position_bias.type(scores.dtype)
# Calculate global/side bias - shape: # (batch_size, num_heads, seq_len, global_seq_len)
if mask is None:
mask = torch.ones(batch_size, seq_length)
# (batch_size, num_heads, seq_len, global_seq_len)
side_position_bias = self.compute_side_bias(mask, global_segment_ids)
# (batch_size, num_blocks, num_heads, block_len, global_seq_len)
side_position_bias = _split_into_blocks(side_position_bias, self.block_len, dim=-2).transpose(1, 2)
side_position_bias = side_position_bias.type(scores.dtype).to(scores.device)
# (batch_size, num_blocks, num_heads, block_len, 3 * block_len + global_seq_len)
position_bias = torch.cat([position_bias, side_position_bias], dim=-1)
scores += position_bias
# (batch_size, num_blocks, n_heads, block_len, 3 * block_len + global_seq_len)
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = attn_weights * layer_head_mask
attn_weights = attn_weights.type(value_states.dtype)
attn_output = unshape(torch.einsum("...hqk,...khd->...qhd", attn_weights, value_states))
attn_output = attn_output[:, :seq_length, :]
attn_output = self.o(attn_output)
present_key_value_state = None
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
# Copied from transformers.models.t5.modeling_t5.T5LayerSelfAttention with T5->LongT5
class LongT5LayerSelfAttention(nn.Module):
def __init__(self, config, has_relative_attention_bias=False, layer_idx: Optional[int] = None):
super().__init__()
self.SelfAttention = LongT5Attention(
config, has_relative_attention_bias=has_relative_attention_bias, layer_idx=layer_idx
)
self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
cache_position=None,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.SelfAttention(
normed_hidden_states,
mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
)
hidden_states = hidden_states + self.dropout(attention_output[0])
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
class LongT5LayerLocalSelfAttention(nn.Module):
"""Local self attention used in encoder"""
def __init__(self, config, has_relative_attention_bias=False, layer_idx: Optional[int] = None):
super().__init__()
self.LocalSelfAttention = LongT5LocalAttention(config, has_relative_attention_bias=has_relative_attention_bias)
self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
output_attentions=False,
**kwargs: Any, # to accept past_key_value and use_cache kwargs
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.LocalSelfAttention(
normed_hidden_states,
mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = hidden_states + self.dropout(attention_output[0])
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
class LongT5LayerTransientGlobalSelfAttention(nn.Module):
"""Transient-Global self attention used in encoder"""
def __init__(self, config, has_relative_attention_bias=False, layer_idx: Optional[int] = None):
super().__init__()
self.TransientGlobalSelfAttention = LongT5TransientGlobalAttention(
config, has_relative_attention_bias=has_relative_attention_bias
)
self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
output_attentions=False,
**kwargs: Any, # to accept past_key_value and use_cache kwargs
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.TransientGlobalSelfAttention(
normed_hidden_states,
mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = hidden_states + self.dropout(attention_output[0])
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.t5.modeling_t5.T5LayerCrossAttention with T5->LongT5
class LongT5LayerCrossAttention(nn.Module):
def __init__(self, config, layer_idx: Optional[int] = None):
super().__init__()
self.EncDecAttention = LongT5Attention(config, has_relative_attention_bias=False, layer_idx=layer_idx)
self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
key_value_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
past_key_value=None,
use_cache=False,
query_length=None,
output_attentions=False,
cache_position=None,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.EncDecAttention(
normed_hidden_states,
mask=attention_mask,
key_value_states=key_value_states,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
query_length=query_length,
output_attentions=output_attentions,
cache_position=cache_position,
)
layer_output = hidden_states + self.dropout(attention_output[0])
outputs = (layer_output,) + attention_output[1:] # add attentions if we output them
return outputs
class LongT5Block(nn.Module):
def __init__(self, config, has_relative_attention_bias=False, layer_idx: Optional[int] = None):
super().__init__()
self.is_decoder = config.is_decoder
if config.is_decoder:
attention_layer = LongT5LayerSelfAttention
elif config.encoder_attention_type == "local":
attention_layer = LongT5LayerLocalSelfAttention
elif config.encoder_attention_type == "transient-global":
attention_layer = LongT5LayerTransientGlobalSelfAttention
else:
raise ValueError(
"For encoder attention mechanism, either `local` or `transient-global` attention type is expected, "
f"but got {config.encoder_attention_type}."
)
self.layer = nn.ModuleList()
self.layer.append(
attention_layer(config, has_relative_attention_bias=has_relative_attention_bias, layer_idx=layer_idx)
)
if self.is_decoder:
self.layer.append(LongT5LayerCrossAttention(config, layer_idx=layer_idx))
self.layer.append(LongT5LayerFF(config))
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
encoder_decoder_position_bias=None,
layer_head_mask=None,
cross_attn_layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
return_dict=True,
cache_position=None,
):
self_attention_outputs = self.layer[0](
hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
)
hidden_states, past_key_value = self_attention_outputs[:2]
attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights
# clamp inf values to enable fp16 inference - check https://github.com/huggingface/transformers/pull/19229/
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
do_cross_attention = self.is_decoder and encoder_hidden_states is not None
if do_cross_attention:
cross_attention_outputs = self.layer[1](
hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
position_bias=encoder_decoder_position_bias,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_value,
query_length=cache_position[-1] + 1,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
)
hidden_states, past_key_value = cross_attention_outputs[:2]
# clamp inf values to enable fp16 inference - check https://github.com/huggingface/transformers/pull/19229/
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
# Keep cross-attention outputs and relative position weights
attention_outputs = attention_outputs + cross_attention_outputs[2:]
# Apply Feed Forward layer
hidden_states = self.layer[-1](hidden_states)
# clamp inf values to enable fp16 inference - check https://github.com/huggingface/transformers/pull/19229/
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if use_cache:
outputs = outputs + (past_key_value,) + attention_outputs
else:
outputs = outputs + attention_outputs
return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
class LongT5PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = LongT5Config
base_model_prefix = "transformer"
supports_gradient_checkpointing = True
_no_split_modules = ["LongT5Block"]
_supports_cache_class = True
_supports_static_cache = False # TODO: @raushan more involved due to local/global attn
@property
# Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel.dummy_inputs
def dummy_inputs(self):
input_ids = torch.tensor(DUMMY_INPUTS)
input_mask = torch.tensor(DUMMY_MASK)
dummy_inputs = {
"decoder_input_ids": input_ids,
"input_ids": input_ids,
"decoder_attention_mask": input_mask,
}
return dummy_inputs
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor # Used for testing weights initialization
if isinstance(module, LongT5LayerNorm):
module.weight.data.fill_(factor * 1.0)
elif isinstance(module, (LongT5Model, LongT5ForConditionalGeneration, LongT5EncoderModel)):
# Mesh TensorFlow embeddings initialization
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
if hasattr(module, "lm_head") and not self.config.tie_word_embeddings:
module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0)
elif isinstance(module, LongT5DenseActDense):
# Mesh TensorFlow FF initialization
# See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
# and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi, "bias") and module.wi.bias is not None:
module.wi.bias.data.zero_()
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
if hasattr(module.wo, "bias") and module.wo.bias is not None:
module.wo.bias.data.zero_()
elif isinstance(module, LongT5DenseGatedActDense):
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
module.wi_0.bias.data.zero_()
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
module.wi_1.bias.data.zero_()
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
if hasattr(module.wo, "bias") and module.wo.bias is not None:
module.wo.bias.data.zero_()
elif isinstance(module, (LongT5Attention, LongT5LocalAttention, LongT5TransientGlobalAttention)):
# Mesh TensorFlow attention initialization to avoid scaling before softmax
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
d_model = self.config.d_model
key_value_proj_dim = self.config.d_kv
n_heads = self.config.num_heads
module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
if module.has_relative_attention_bias:
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
if isinstance(module, LongT5TransientGlobalAttention):
module.global_relative_attention_bias.weight.data.normal_(
mean=0.0, std=factor * ((d_model) ** -0.5)
)
# Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel._shift_right with T5->LongT5
def _shift_right(self, input_ids):
decoder_start_token_id = self.config.decoder_start_token_id
pad_token_id = self.config.pad_token_id
if decoder_start_token_id is None:
raise ValueError(
"self.model.config.decoder_start_token_id has to be defined. In LongT5 it is usually set to the pad_token_id. "
"See LongT5 docs for more information."
)
# shift inputs to the right
if is_torch_fx_proxy(input_ids):
# Item assignment is not supported natively for proxies.
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
else:
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
shifted_input_ids[..., 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
class LongT5Stack(LongT5PreTrainedModel):
def __init__(self, config, embed_tokens=None):
super().__init__(config)
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model)
if embed_tokens is not None:
self.embed_tokens.weight = embed_tokens.weight
self.is_decoder = config.is_decoder
self.local_radius = config.local_radius
self.block_len = self.local_radius + 1
self.block = nn.ModuleList(
[
LongT5Block(config, has_relative_attention_bias=bool(i == 0), layer_idx=i)
for i in range(config.num_layers)
]
)
self.final_layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.t5.modeling_t5.T5Stack.get_input_embeddings
def get_input_embeddings(self):
return self.embed_tokens
# Copied from transformers.models.t5.modeling_t5.T5Stack.set_input_embeddings
def set_input_embeddings(self, new_embeddings):
self.embed_tokens = new_embeddings
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
inputs_embeds=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
cache_position=None,
):
use_cache = use_cache if use_cache is not None else self.config.use_cache
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
)
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if inputs_embeds is None:
assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings"
inputs_embeds = self.embed_tokens(input_ids)
batch_size, seq_length = input_shape
# initialize past_key_values
return_legacy_cache = False
return_self_attention_cache = False
if self.is_decoder and (use_cache or past_key_values is not None):
if isinstance(past_key_values, Cache) and not isinstance(past_key_values, EncoderDecoderCache):
return_self_attention_cache = True
past_key_values = EncoderDecoderCache(past_key_values, DynamicCache())
elif not isinstance(past_key_values, EncoderDecoderCache):
return_legacy_cache = True
logger.warning_once(
"Passing a tuple of `past_key_values` is deprecated and will be removed in Transformers v4.48.0. "
"You should pass an instance of `EncoderDecoderCache` instead, e.g. "
"`past_key_values=EncoderDecoderCache.from_legacy_cache(past_key_values)`."
)
past_key_values = EncoderDecoderCache.from_legacy_cache(past_key_values)
elif past_key_values is None:
past_key_values = EncoderDecoderCache(DynamicCache(), DynamicCache())
elif not self.is_decoder:
# do not pass cache object down the line for encoder stack
# it messes indexing later in decoder-stack because cache object is modified in-place
past_key_values = None
past_key_values_length = past_key_values.get_seq_length() if past_key_values is not None else 0
if cache_position is None:
cache_position = torch.arange(
past_key_values_length, past_key_values_length + seq_length, device=inputs_embeds.device
)
if attention_mask is None and not is_torchdynamo_compiling():
# required mask seq length can be calculated via length of past
mask_seq_length = past_key_values_length + seq_length
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
if self.is_decoder:
causal_mask = self._update_causal_mask(
attention_mask,
inputs_embeds,
cache_position,
past_key_values.self_attention_cache if past_key_values is not None else None,
output_attentions,
)
# We use local attention in encoder self-attention, otherwise standard self & cross attentions are used
elif self.config.encoder_attention_type == "local":
causal_mask = _get_local_attention_mask(attention_mask, self.block_len, inputs_embeds.device)
else: # we need to use both local attention mask and standard extended mask for transient-global attention
causal_mask = attention_mask
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
position_bias = None
encoder_decoder_position_bias = None
hidden_states = self.dropout(inputs_embeds)
for i, layer_module in enumerate(self.block):
layer_head_mask = head_mask[i]
cross_attn_layer_head_mask = cross_attn_head_mask[i]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.forward,
hidden_states,
causal_mask,
position_bias,
encoder_hidden_states,
encoder_extended_attention_mask,
encoder_decoder_position_bias,
layer_head_mask,
cross_attn_layer_head_mask,
None, # past_key_value is always None with gradient checkpointing
use_cache,
output_attentions,
return_dict,
cache_position,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask=causal_mask,
position_bias=position_bias,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
encoder_decoder_position_bias=encoder_decoder_position_bias,
layer_head_mask=layer_head_mask,
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
return_dict=return_dict,
cache_position=cache_position,
)
# layer_outputs is a tuple with:
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
if use_cache is False:
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
hidden_states, next_decoder_cache = layer_outputs[:2]
# We share the position biases between the layers - the first layer store them
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
# (cross-attention position bias), (cross-attention weights)
position_bias = layer_outputs[2]
if self.is_decoder and encoder_hidden_states is not None:
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[3],)
if self.is_decoder:
all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if return_self_attention_cache:
next_cache = past_key_values.self_attention_cache
if return_legacy_cache:
next_cache = past_key_values.to_legacy_cache()
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_cache,
all_hidden_states,
all_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel._prepare_4d_causal_attention_mask_with_cache_position
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to plcae the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
LONGT5_START_DOCSTRING = r"""
The LongT5 model was proposed in [LongT5: Efficient Text-To-Text Transformer for Long
Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo
Ni, Yun-Hsuan Sung and Yinfei Yang. It's an encoder-decoder transformer pre-trained in a text-to-text denoising
generative setting. LongT5 model is an extension of T5 model, and it enables using one of the two different
efficient attention mechanisms - (1) Local attention, or (2) Transient-Global attention.
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`LongT5Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
LONGT5_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. LongT5 is a model with relative position embeddings so
you should be able to pad the inputs on both the right and the left.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for detail.
[What are input IDs?](../glossary#input-ids)
To know more on how to prepare `input_ids` for pretraining take a look a [LONGT5
Training](./longt5#training).
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
LONGT5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
To know more on how to prepare `decoder_input_ids` for pretraining take a look at [LONGT5
Training](./longt5#training).
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
`[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at
the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. It is used to update the
cache in the correct position and to infer the complete sequence length.
"""
LONGT5_ENCODER_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. LongT5 is a model with relative position embeddings so
you should be able to pad the inputs on both the right and the left.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for detail.
To know more on how to prepare `input_ids` for pretraining take a look a [LONGT5
Training](./longt5#training).
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
__HEAD_MASK_WARNING_MSG = """
The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently,
`decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions.
If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers,
num_heads)`.
"""
@add_start_docstrings(
"The bare LONGT5 Model transformer outputting raw hidden-states without any specific head on top.",
LONGT5_START_DOCSTRING,
)
class LongT5Model(LongT5PreTrainedModel):
_keys_to_ignore_on_load_unexpected = [
r"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
]
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: LongT5Config):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = LongT5Stack(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
self.decoder = LongT5Stack(decoder_config, self.shared)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
self.decoder.set_input_embeddings(new_embeddings)
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(LONGT5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
decoder_inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, LongT5Model
>>> tokenizer = AutoTokenizer.from_pretrained("google/long-t5-local-base")
>>> model = LongT5Model.from_pretrained("google/long-t5-local-base")
>>> # Let's try a very long encoder input.
>>> input_ids = tokenizer(
... 100 * "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids # Batch size 1
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
>>> # forward pass
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
>>> last_hidden_states = outputs.last_hidden_state
```"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
if head_mask is not None and decoder_head_mask is None:
if self.config.num_layers == self.config.num_decoder_layers:
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
decoder_head_mask = head_mask
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings("""LONGT5 Model with a `language modeling` head on top.""", LONGT5_START_DOCSTRING)
class LongT5ForConditionalGeneration(LongT5PreTrainedModel, GenerationMixin):
_keys_to_ignore_on_load_unexpected = [
r"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
]
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
def __init__(self, config: LongT5Config):
super().__init__(config)
self.model_dim = config.d_model
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = LongT5Stack(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
self.decoder = LongT5Stack(decoder_config, self.shared)
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
self.decoder.set_input_embeddings(new_embeddings)
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def get_output_embeddings(self):
return self.lm_head
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(LONGT5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
labels in `[0, ..., config.vocab_size]`
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, LongT5ForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("Stancld/longt5-tglobal-large-16384-pubmed-3k_steps")
>>> model = LongT5ForConditionalGeneration.from_pretrained(
... "Stancld/longt5-tglobal-large-16384-pubmed-3k_steps"
... )
>>> # Let's try a very long input.
>>> inputs = tokenizer(100 * "studies have shown that owning a dog is good for you ", return_tensors="pt")
>>> input_ids = inputs.input_ids
>>> outputs = model.generate(input_ids)
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
abstractthe aim of this article is to provide an overview of the literature on the role of dog
```"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
if head_mask is not None and decoder_head_mask is None:
if self.config.num_layers == self.config.num_decoder_layers:
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
decoder_head_mask = head_mask
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
# Convert encoder inputs in embeddings if needed
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
# get decoder inputs from shifting lm labels to the right
decoder_input_ids = self._shift_right(labels)
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
sequence_output = decoder_outputs[0]
if self.config.tie_word_embeddings:
# Rescale output before projecting on vocab
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
sequence_output = sequence_output * (self.model_dim**-0.5)
lm_logits = self.lm_head(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=-100)
labels = labels.to(lm_logits.device)
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
# TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666
if not return_dict:
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
return ((loss,) + output) if loss is not None else output
return Seq2SeqLMOutput(
loss=loss,
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return self._shift_right(labels)
def _reorder_cache(self, past_key_values, beam_idx):
# if decoder past is not included in output
# speedy decoding is disabled and no need to reorder
if past_key_values is None:
logger.warning("You might want to consider setting `use_cache=True` to speed up decoding")
return past_key_values
reordered_decoder_past = ()
for layer_past_states in past_key_values:
# get the correct batch idx from layer past batch dim
# batch dim of `past` is at 2nd position
reordered_layer_past_states = ()
for layer_past_state in layer_past_states:
# need to set correct `past` for each of the four key / value states
reordered_layer_past_states = reordered_layer_past_states + (
layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)),
)
assert reordered_layer_past_states[0].shape == layer_past_states[0].shape
assert len(reordered_layer_past_states) == len(layer_past_states)
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
return reordered_decoder_past
@add_start_docstrings(
"The bare LONGT5 Model transformer outputting encoder's raw hidden-states without any specific head on top.",
LONGT5_START_DOCSTRING,
)
class LongT5EncoderModel(LongT5PreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight"]
_keys_to_ignore_on_load_unexpected = [r"decoder"]
def __init__(self, config: LongT5Config):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = LongT5Stack(encoder_config, self.shared)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
def get_encoder(self):
return self.encoder
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(LONGT5_ENCODER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, LongT5ForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("google/long-t5-local-base")
>>> model = LongT5EncoderModel.from_pretrained("google/long-t5-local-base")
>>> input_ids = tokenizer(
... 100 * "Studies have been shown that owning a dog is good for you ", return_tensors="pt"
... ).input_ids # Batch size 1
>>> outputs = model(input_ids=input_ids)
>>> last_hidden_states = outputs.last_hidden_state
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
return encoder_outputs
__all__ = ["LongT5EncoderModel", "LongT5ForConditionalGeneration", "LongT5Model", "LongT5PreTrainedModel"]
|
transformers/src/transformers/models/longt5/modeling_longt5.py/0
|
{
"file_path": "transformers/src/transformers/models/longt5/modeling_longt5.py",
"repo_id": "transformers",
"token_count": 48296
}
| 141 |
# coding=utf-8
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch M2M100 model."""
import math
from typing import List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...generation import GenerationMixin
from ...integrations.deepspeed import is_deepspeed_zero3_enabled
from ...integrations.fsdp import is_fsdp_managed_module
from ...modeling_attn_mask_utils import (
_prepare_4d_attention_mask,
_prepare_4d_attention_mask_for_sdpa,
_prepare_4d_causal_attention_mask,
_prepare_4d_causal_attention_mask_for_sdpa,
)
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_flash_attn_2_available,
is_flash_attn_greater_or_equal_2_10,
logging,
replace_return_docstrings,
)
from .configuration_m2m_100 import M2M100Config
if is_flash_attn_2_available():
from ...modeling_flash_attention_utils import _flash_attention_forward
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "M2M100Config"
_CHECKPOINT_FOR_DOC = "facebook/m2m100_418M"
# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
are ignored. This is modified from fairseq's `utils.make_positions`.
"""
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = input_ids.ne(padding_idx).int()
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
return incremental_indices.long() + padding_idx
# Copied from transformers.models.bart.modeling_bart.BartScaledWordEmbedding with Bart->M2M100
class M2M100ScaledWordEmbedding(nn.Embedding):
"""
This module overrides nn.Embeddings' forward by multiplying with embeddings scale.
"""
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: Optional[float] = 1.0):
super().__init__(num_embeddings, embedding_dim, padding_idx)
self.embed_scale = embed_scale
def forward(self, input_ids: torch.Tensor):
return super().forward(input_ids) * self.embed_scale
class M2M100SinusoidalPositionalEmbedding(nn.Module):
"""This module produces sinusoidal positional embeddings of any length."""
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
super().__init__()
self.offset = 2
self.embedding_dim = embedding_dim
self.padding_idx = padding_idx
self.make_weights(num_positions + self.offset, embedding_dim, padding_idx)
def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx)
if hasattr(self, "weights"):
# in forward put the weights on the correct dtype and device of the param
emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device)
self.register_buffer("weights", emb_weights, persistent=False)
@staticmethod
def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
"""
Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of
"Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb)
emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
if padding_idx is not None:
emb[padding_idx, :] = 0
return emb.to(torch.get_default_dtype())
@torch.no_grad()
def forward(
self, input_ids: torch.Tensor = None, inputs_embeds: torch.Tensor = None, past_key_values_length: int = 0
):
if input_ids is not None:
bsz, seq_len = input_ids.size()
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to(
input_ids.device
)
else:
bsz, seq_len = inputs_embeds.size()[:-1]
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds, past_key_values_length)
# expand embeddings if needed
max_pos = self.padding_idx + 1 + seq_len + past_key_values_length
if max_pos > self.weights.size(0):
self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx)
return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, self.weights.shape[-1]).detach()
def create_position_ids_from_inputs_embeds(self, inputs_embeds, past_key_values_length):
"""
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
Args:
inputs_embeds: torch.Tensor
Returns: torch.Tensor
"""
input_shape = inputs_embeds.size()[:-1]
sequence_length = input_shape[1]
position_ids = torch.arange(
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
)
return position_ids.unsqueeze(0).expand(input_shape).contiguous() + past_key_values_length
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->M2M100
class M2M100Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[M2M100Config] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
# Copied from transformers.models.bart.modeling_bart.BartFlashAttention2 with Bart->M2M100
class M2M100FlashAttention2(M2M100Attention):
"""
M2M100 flash attention module. This module inherits from `M2M100Attention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def _reshape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
# M2M100FlashAttention2 attention does not support output_attentions
if output_attentions:
raise ValueError("M2M100FlashAttention2 attention does not support output_attentions")
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, q_len, _ = hidden_states.size()
# get query proj
query_states = self._reshape(self.q_proj(hidden_states), -1, bsz)
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0].transpose(1, 2)
value_states = past_key_value[1].transpose(1, 2)
elif is_cross_attention:
# cross_attentions
key_states = self._reshape(self.k_proj(key_value_states), -1, bsz)
value_states = self._reshape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0].transpose(1, 2), key_states], dim=1)
value_states = torch.cat([past_key_value[1].transpose(1, 2), value_states], dim=1)
else:
# self_attention
key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2))
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (LlamaRMSNorm handles it correctly)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
attn_output = _flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
dropout=self.dropout if self.training else 0.0,
is_causal=self.is_causal,
use_top_left_mask=self._flash_attn_uses_top_left_mask,
)
attn_output = attn_output.reshape(bsz, q_len, -1)
attn_output = self.out_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# Copied from transformers.models.bart.modeling_bart.BartSdpaAttention with Bart->M2M100
class M2M100SdpaAttention(M2M100Attention):
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
if output_attentions or layer_head_mask is not None:
# TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"M2M100Model is using M2M100SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention"
' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states,
key_value_states=key_value_states,
past_key_value=past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states)
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
query_states = self._shape(query_states, tgt_len, bsz)
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
# The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1.
is_causal = True if self.is_causal and attention_mask is None and tgt_len > 1 else False
# NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask,
# but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=attention_mask,
dropout_p=self.dropout if self.training else 0.0,
is_causal=is_causal,
)
if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, None, past_key_value
# Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->M2M100, MBART->M2M100
class M2M100EncoderLayer(nn.Module):
def __init__(self, config: M2M100Config):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = M2M100_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
config=config,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
layer_head_mask: torch.Tensor,
output_attentions: bool = False,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
if hidden_states.dtype == torch.float16 and (
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
):
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
M2M100_ATTENTION_CLASSES = {
"eager": M2M100Attention,
"flash_attention_2": M2M100FlashAttention2,
"sdpa": M2M100SdpaAttention,
}
# Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer with MBart->M2M100, MBART->M2M100
class M2M100DecoderLayer(nn.Module):
def __init__(self, config: M2M100Config):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = M2M100_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
is_causal=True,
config=config,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.encoder_attn = M2M100_ATTENTION_CLASSES[config._attn_implementation](
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
config=config,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
size `(decoder_attention_heads,)`.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
class M2M100PreTrainedModel(PreTrainedModel):
config_class = M2M100Config
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["M2M100EncoderLayer", "M2M100DecoderLayer"]
_supports_flash_attn_2 = True
_supports_sdpa = True
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
M2M_100_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`M2M100Config`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
M2M_100_GENERATION_EXAMPLE = r"""
Translation example:
```python
>>> from transformers import AutoTokenizer, M2M100ForConditionalGeneration
>>> model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/m2m100_418M")
>>> text_to_translate = "Life is like a box of chocolates"
>>> model_inputs = tokenizer(text_to_translate, return_tensors="pt")
>>> # translate to French
>>> gen_tokens = model.generate(**model_inputs, forced_bos_token_id=tokenizer.get_lang_id("fr"))
>>> print(tokenizer.batch_decode(gen_tokens, skip_special_tokens=True))
```
"""
M2M_100_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
M2M100 uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class M2M100Encoder(M2M100PreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`M2M100EncoderLayer`].
Args:
config: M2M100Config
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: M2M100Config, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
embed_dim = config.d_model
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_position_embeddings
embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
self.embed_tokens = M2M100ScaledWordEmbedding(
config.vocab_size, embed_dim, self.padding_idx, embed_scale=embed_scale
)
if embed_tokens is not None:
self.embed_tokens.weight = embed_tokens.weight
self.embed_positions = M2M100SinusoidalPositionalEmbedding(
config.max_position_embeddings,
embed_dim,
self.padding_idx,
)
self.layers = nn.ModuleList([M2M100EncoderLayer(config) for _ in range(config.encoder_layers)])
self.layer_norm = nn.LayerNorm(config.d_model)
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self._use_sdpa = config._attn_implementation == "sdpa"
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
embed_pos = self.embed_positions(input_ids, inputs_embeds)
embed_pos = embed_pos.to(inputs_embeds.device)
hidden_states = inputs_embeds + embed_pos
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# expand attention_mask
if attention_mask is not None:
if self._use_flash_attention_2:
attention_mask = attention_mask if 0 in attention_mask else None
elif self._use_sdpa and head_mask is None and not output_attentions:
# output_attentions=True & head_mask can not be supported when using SDPA, fall back to
# the manual implementation that requires a 4D causal mask in all cases.
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask_for_sdpa(attention_mask, inputs_embeds.dtype)
else:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.size()[0] != len(self.layers):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
synced_gpus = is_deepspeed_zero3_enabled() or is_fsdp_managed_module(self)
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = torch.rand([])
skip_the_layer = True if self.training and (dropout_probability < self.layerdrop) else False
if not skip_the_layer or synced_gpus:
# under fsdp or deepspeed zero3 all gpus must run in sync
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if skip_the_layer:
layer_outputs = (None, None)
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class M2M100Decoder(M2M100PreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`M2M100DecoderLayer`]
Args:
config: M2M100Config
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: M2M100Config, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.embed_tokens = M2M100ScaledWordEmbedding(
config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale
)
if embed_tokens is not None:
self.embed_tokens.weight = embed_tokens.weight
self.embed_positions = M2M100SinusoidalPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
self.padding_idx,
)
self.layers = nn.ModuleList([M2M100DecoderLayer(config) for _ in range(config.decoder_layers)])
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self._use_sdpa = config._attn_implementation == "sdpa"
self.layer_norm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
cross-attention on hidden heads. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if self._use_flash_attention_2:
# 2d mask is passed through the layers
combined_attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
elif self._use_sdpa and not output_attentions and cross_attn_head_mask is None:
# output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on
# the manual implementation that requires a 4D causal mask in all cases.
combined_attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
attention_mask,
input_shape,
inputs_embeds,
past_key_values_length,
)
else:
# 4d mask is passed through the layers
combined_attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
if self._use_flash_attention_2:
encoder_attention_mask = encoder_attention_mask if 0 in encoder_attention_mask else None
elif self._use_sdpa and cross_attn_head_mask is None and not output_attentions:
# output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on
# the manual implementation that requires a 4D causal mask in all cases.
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa(
encoder_attention_mask,
inputs_embeds.dtype,
tgt_len=input_shape[-1],
)
else:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# embed positions
positions = self.embed_positions(input_ids, inputs_embeds, past_key_values_length)
positions = positions.to(inputs_embeds.device)
hidden_states = inputs_embeds + positions
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting" " `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if output_attentions else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != len(self.layers):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
synced_gpus = is_deepspeed_zero3_enabled() or is_fsdp_managed_module(self)
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = torch.rand([])
skip_the_layer = True if self.training and (dropout_probability < self.layerdrop) else False
if not skip_the_layer or synced_gpus:
# under fsdp or deepspeed zero3 all gpus must run in sync
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
combined_attention_mask,
encoder_hidden_states,
encoder_attention_mask,
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=combined_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if skip_the_layer:
continue
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
all_cross_attentions += (layer_outputs[2],)
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"The bare M2M100 Model outputting raw hidden-states without any specific head on top.",
M2M_100_START_DOCSTRING,
)
class M2M100Model(M2M100PreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: M2M100Config):
super().__init__(config)
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.shared = M2M100ScaledWordEmbedding(vocab_size, config.d_model, padding_idx, embed_scale=embed_scale)
self.encoder = M2M100Encoder(config, self.shared)
self.decoder = M2M100Decoder(config, self.shared)
if config._attn_implementation == "flash_attention_2":
logger.warning_once(
"Attention with Flash Attention 2 does not support `layer_head_mask`. If you need this feature, please use standard attention."
)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, value):
self.shared = value
self.encoder.embed_tokens = self.shared
self.decoder.embed_tokens = self.shared
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(M2M_100_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Seq2SeqModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The M2M100 Model with a language modeling head. Can be used for summarization.", M2M_100_START_DOCSTRING
)
class M2M100ForConditionalGeneration(M2M100PreTrainedModel, GenerationMixin):
base_model_prefix = "model"
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
def __init__(self, config: M2M100Config):
super().__init__(config)
self.model = M2M100Model(config)
self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward(M2M_100_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@add_end_docstrings(M2M_100_GENERATION_EXAMPLE)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if decoder_input_ids is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(outputs[0])
masked_lm_loss = None
if labels is not None:
# move labels to the correct device to enable PP
labels = labels.to(lm_logits.device)
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
__all__ = ["M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel"]
|
transformers/src/transformers/models/m2m_100/modeling_m2m_100.py/0
|
{
"file_path": "transformers/src/transformers/models/m2m_100/modeling_m2m_100.py",
"repo_id": "transformers",
"token_count": 34623
}
| 142 |
# coding=utf-8
# Copyright 2021 The Marian Team Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TF 2.0 Marian model."""
from __future__ import annotations
import random
from typing import Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import (
TFBaseModelOutput,
TFBaseModelOutputWithPastAndCrossAttentions,
TFSeq2SeqLMOutput,
TFSeq2SeqModelOutput,
)
# Public API
from ...modeling_tf_utils import (
TFCausalLanguageModelingLoss,
TFPreTrainedModel,
keras,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_marian import MarianConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "Helsinki-NLP/opus-mt-en-de"
_CONFIG_FOR_DOC = "MarianConfig"
LARGE_NEGATIVE = -1e8
# Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right
def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int):
pad_token_id = tf.cast(pad_token_id, input_ids.dtype)
decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype)
start_tokens = tf.fill(
(shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype)
)
shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1)
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids = tf.where(
shifted_input_ids == -100,
tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)),
shifted_input_ids,
)
# "Verify that `labels` has only positive values and -100"
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype))
# Make sure the assertion op is called by wrapping the result in an identity no-op
with tf.control_dependencies([assert_gte0]):
shifted_input_ids = tf.identity(shifted_input_ids)
return shifted_input_ids
# Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask
def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz = input_ids_shape[0]
tgt_len = input_ids_shape[1]
mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE
mask_cond = tf.range(shape_list(mask)[-1])
mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask)
if past_key_values_length > 0:
mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1)
return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1))
# Copied from transformers.models.bart.modeling_tf_bart._expand_mask
def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
src_len = shape_list(mask)[1]
tgt_len = tgt_len if tgt_len is not None else src_len
one_cst = tf.constant(1.0)
mask = tf.cast(mask, dtype=one_cst.dtype)
expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))
return (one_cst - expanded_mask) * LARGE_NEGATIVE
class TFMarianSinusoidalPositionalEmbedding(keras.layers.Layer):
"""This module produces sinusoidal positional embeddings of any length."""
def __init__(self, num_positions: int, embedding_dim: int, **kwargs):
super().__init__(**kwargs)
if embedding_dim % 2 != 0:
raise NotImplementedError(f"odd embedding_dim {embedding_dim} not supported")
self.embedding_dim = embedding_dim
self.num_positions = num_positions
def build(self, input_shape: tf.TensorShape):
"""
Build shared token embedding layer Shared weights logic adapted from
https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24
"""
weight = self._init_weight(self.num_positions, self.embedding_dim)
self.weight = self.add_weight(
name="embeddings",
shape=[self.num_positions, self.embedding_dim],
)
weight = tf.cast(weight, dtype=self.weight.dtype)
self.weight.assign(weight)
super().build(input_shape)
@staticmethod
def _init_weight(n_pos: int, dim: int):
"""
Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in
the 2nd half of the vector. [dim // 2:]
"""
position_enc = np.array(
[[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]
)
table = np.zeros_like(position_enc)
# index 0 is all zero
table[:, 0 : dim // 2] = np.sin(position_enc[:, 0::2])
table[:, dim // 2 :] = np.cos(position_enc[:, 1::2])
# convert to tensor
table = tf.convert_to_tensor(table)
tf.stop_gradient(table)
return table
def call(
self, input_shape: tf.TensorShape, past_key_values_length: int = 0, position_ids: tf.Tensor | None = None
):
"""Input is expected to be of size [bsz x seqlen]."""
if position_ids is None:
seq_len = input_shape[1]
position_ids = tf.range(past_key_values_length, seq_len + past_key_values_length, delta=1, name="range")
return tf.gather(self.weight, position_ids)
# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->Marian
class TFMarianAttention(keras.layers.Layer):
"""Multi-headed attention from "Attention Is All You Need"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
**kwargs,
):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = keras.layers.Dropout(dropout)
self.head_dim = embed_dim // num_heads
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj")
self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj")
self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj")
self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj")
def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int):
return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3))
def call(
self,
hidden_states: tf.Tensor,
key_value_states: tf.Tensor | None = None,
past_key_value: Tuple[Tuple[tf.Tensor]] | None = None,
attention_mask: tf.Tensor | None = None,
layer_head_mask: tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Tuple[tf.Tensor, tf.Tensor | None]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, embed_dim = shape_list(hidden_states)
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = tf.concat([past_key_value[0], key_states], axis=2)
value_states = tf.concat([past_key_value[1], value_states], axis=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape)
key_states = tf.reshape(key_states, proj_shape)
value_states = tf.reshape(value_states, proj_shape)
src_len = shape_list(key_states)[1]
attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
tf.debugging.assert_equal(
shape_list(attn_weights),
[bsz * self.num_heads, tgt_len, src_len],
message=(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {shape_list(attn_weights)}"
),
)
if attention_mask is not None:
tf.debugging.assert_equal(
shape_list(attention_mask),
[bsz, 1, tgt_len, src_len],
message=(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
f" {shape_list(attention_mask)}"
),
)
attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype)
attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
attn_weights = stable_softmax(attn_weights, axis=-1)
if layer_head_mask is not None:
tf.debugging.assert_equal(
shape_list(layer_head_mask),
[self.num_heads],
message=(
f"Head mask for a single layer should be of size {(self.num_heads)}, but is"
f" {shape_list(layer_head_mask)}"
),
)
attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape(
attn_weights, (bsz, self.num_heads, tgt_len, src_len)
)
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
attn_probs = self.dropout(attn_weights, training=training)
attn_output = tf.matmul(attn_probs, value_states)
tf.debugging.assert_equal(
shape_list(attn_output),
[bsz * self.num_heads, tgt_len, self.head_dim],
message=(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {shape_list(attn_output)}"
),
)
attn_output = tf.transpose(
tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3)
)
attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim))
attn_output = self.out_proj(attn_output)
attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))
return attn_output, attn_weights, past_key_value
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "k_proj", None) is not None:
with tf.name_scope(self.k_proj.name):
self.k_proj.build([None, None, self.embed_dim])
if getattr(self, "q_proj", None) is not None:
with tf.name_scope(self.q_proj.name):
self.q_proj.build([None, None, self.embed_dim])
if getattr(self, "v_proj", None) is not None:
with tf.name_scope(self.v_proj.name):
self.v_proj.build([None, None, self.embed_dim])
if getattr(self, "out_proj", None) is not None:
with tf.name_scope(self.out_proj.name):
self.out_proj.build([None, None, self.embed_dim])
# Copied from transformers.models.bart.modeling_tf_bart.TFBartEncoderLayer with Bart->Marian
class TFMarianEncoderLayer(keras.layers.Layer):
def __init__(self, config: MarianConfig, **kwargs):
super().__init__(**kwargs)
self.embed_dim = config.d_model
self.self_attn = TFMarianAttention(
self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn"
)
self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
self.dropout = keras.layers.Dropout(config.dropout)
self.activation_fn = get_tf_activation(config.activation_function)
self.activation_dropout = keras.layers.Dropout(config.activation_dropout)
self.fc1 = keras.layers.Dense(config.encoder_ffn_dim, name="fc1")
self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2")
self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
self.config = config
def call(
self,
hidden_states: tf.Tensor,
attention_mask: np.ndarray | tf.Tensor | None,
layer_head_mask: tf.Tensor | None,
training: Optional[bool] = False,
) -> tf.Tensor:
"""
Args:
hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`tf.Tensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`
"""
residual = hidden_states
hidden_states, self_attn_weights, _ = self.self_attn(
hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask
)
tf.debugging.assert_equal(
shape_list(hidden_states),
shape_list(residual),
message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}",
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout(hidden_states, training=training)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
return hidden_states, self_attn_weights
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self_attn", None) is not None:
with tf.name_scope(self.self_attn.name):
self.self_attn.build(None)
if getattr(self, "self_attn_layer_norm", None) is not None:
with tf.name_scope(self.self_attn_layer_norm.name):
self.self_attn_layer_norm.build([None, None, self.embed_dim])
if getattr(self, "fc1", None) is not None:
with tf.name_scope(self.fc1.name):
self.fc1.build([None, None, self.embed_dim])
if getattr(self, "fc2", None) is not None:
with tf.name_scope(self.fc2.name):
self.fc2.build([None, None, self.config.encoder_ffn_dim])
if getattr(self, "final_layer_norm", None) is not None:
with tf.name_scope(self.final_layer_norm.name):
self.final_layer_norm.build([None, None, self.embed_dim])
# Copied from transformers.models.bart.modeling_tf_bart.TFBartDecoderLayer with Bart->Marian
class TFMarianDecoderLayer(keras.layers.Layer):
def __init__(self, config: MarianConfig, **kwargs):
super().__init__(**kwargs)
self.embed_dim = config.d_model
self.self_attn = TFMarianAttention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
name="self_attn",
is_decoder=True,
)
self.dropout = keras.layers.Dropout(config.dropout)
self.activation_fn = get_tf_activation(config.activation_function)
self.activation_dropout = keras.layers.Dropout(config.activation_dropout)
self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
self.encoder_attn = TFMarianAttention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
name="encoder_attn",
is_decoder=True,
)
self.encoder_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm")
self.fc1 = keras.layers.Dense(config.decoder_ffn_dim, name="fc1")
self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2")
self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
self.config = config
def call(
self,
hidden_states: tf.Tensor,
attention_mask: np.ndarray | tf.Tensor | None = None,
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
layer_head_mask: tf.Tensor | None = None,
cross_attn_layer_head_mask: tf.Tensor | None = None,
past_key_value: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
training: Optional[bool] = False,
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
"""
Args:
hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`tf.Tensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`tf.Tensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`tf.Tensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
`(decoder_attention_heads,)`
cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module.
`(decoder_attention_heads,)`
past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states
"""
residual = hidden_states
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout(hidden_states, training=training)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
return (
hidden_states,
self_attn_weights,
cross_attn_weights,
present_key_value,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self_attn", None) is not None:
with tf.name_scope(self.self_attn.name):
self.self_attn.build(None)
if getattr(self, "self_attn_layer_norm", None) is not None:
with tf.name_scope(self.self_attn_layer_norm.name):
self.self_attn_layer_norm.build([None, None, self.embed_dim])
if getattr(self, "encoder_attn", None) is not None:
with tf.name_scope(self.encoder_attn.name):
self.encoder_attn.build(None)
if getattr(self, "encoder_attn_layer_norm", None) is not None:
with tf.name_scope(self.encoder_attn_layer_norm.name):
self.encoder_attn_layer_norm.build([None, None, self.embed_dim])
if getattr(self, "fc1", None) is not None:
with tf.name_scope(self.fc1.name):
self.fc1.build([None, None, self.embed_dim])
if getattr(self, "fc2", None) is not None:
with tf.name_scope(self.fc2.name):
self.fc2.build([None, None, self.config.decoder_ffn_dim])
if getattr(self, "final_layer_norm", None) is not None:
with tf.name_scope(self.final_layer_norm.name):
self.final_layer_norm.build([None, None, self.embed_dim])
class TFMarianPreTrainedModel(TFPreTrainedModel):
config_class = MarianConfig
base_model_prefix = "model"
MARIAN_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Args:
config ([`MarianConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
MARIAN_GENERATION_EXAMPLE = r"""
TF version of marian-nmt's transformer.h (c++). Designed for the OPUS-NMT translation checkpoints. Available
models are listed [here](https://huggingface.co/models?search=Helsinki-NLP).
Examples:
```python
>>> from transformers import AutoTokenizer, TFMarianMTModel
>>> from typing import List
>>> src = "fr" # source language
>>> trg = "en" # target language
>>> sample_text = "où est l'arrêt de bus ?"
>>> model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}"
>>> model = TFMarianMTModel.from_pretrained(model_name)
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
>>> batch = tokenizer([sample_text], return_tensors="tf")
>>> gen = model.generate(**batch)
>>> tokenizer.batch_decode(gen, skip_special_tokens=True)
"Where is the bus stop ?"
```
"""
MARIAN_INPUTS_DOCSTRING = r"""
Args:
input_ids (`tf.Tensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`tf.Tensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
Marian uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.
decoder_position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range `[0, config.max_position_embeddings - 1]`.
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tf.FloatTensor`, *optional*):
hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
of shape `(batch_size, sequence_length, hidden_size)` is a sequence of
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
use_cache (`bool`, *optional*, defaults to `True`):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`). Set to `False` during training, `True` during generation
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@keras_serializable
class TFMarianEncoder(keras.layers.Layer):
config_class = MarianConfig
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`TFMarianEncoderLayer`].
Args:
config: MarianConfig
"""
def __init__(self, config: MarianConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs):
super().__init__(**kwargs)
self.config = config
self.dropout = keras.layers.Dropout(config.dropout)
self.layerdrop = config.encoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_position_embeddings
self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0
self.embed_tokens = embed_tokens
self.embed_positions = TFMarianSinusoidalPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
name="embed_positions",
)
self.layers = [TFMarianEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)]
def get_embed_tokens(self):
return self.embed_tokens
def set_embed_tokens(self, embed_tokens):
self.embed_tokens = embed_tokens
@unpack_inputs
def call(
self,
input_ids: tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
attention_mask: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
):
"""
Args:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value
in the config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail. This argument can be used only in eager mode, in graph mode the value in the config
will be used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used
in eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim)
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
embed_pos = self.embed_positions(input_shape)
hidden_states = inputs_embeds + embed_pos
hidden_states = self.dropout(hidden_states, training=training)
# check attention mask and invert
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _expand_mask(attention_mask)
else:
attention_mask = None
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
tf.debugging.assert_equal(
shape_list(head_mask)[0],
len(self.layers),
message=(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
f" {shape_list(head_mask)[0]}."
),
)
# encoder layers
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if training and (dropout_probability < self.layerdrop): # skip the layer
continue
hidden_states, attn = encoder_layer(
hidden_states,
attention_mask,
head_mask[idx] if head_mask is not None else None,
)
if output_attentions:
all_attentions += (attn,)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embed_positions", None) is not None:
with tf.name_scope(self.embed_positions.name):
self.embed_positions.build(None)
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
@keras_serializable
class TFMarianDecoder(keras.layers.Layer):
config_class = MarianConfig
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFMarianDecoderLayer`]
Args:
config: MarianConfig
embed_tokens: output embedding
"""
def __init__(self, config: MarianConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs):
super().__init__(**kwargs)
self.config = config
self.padding_idx = config.pad_token_id
self.embed_tokens = embed_tokens
self.layerdrop = config.decoder_layerdrop
self.embed_positions = TFMarianSinusoidalPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
name="embed_positions",
)
self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0
self.layers = [TFMarianDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)]
self.dropout = keras.layers.Dropout(config.dropout)
def get_embed_tokens(self):
return self.embed_tokens
def set_embed_tokens(self, embed_tokens):
self.embed_tokens = embed_tokens
@unpack_inputs
def call(
self,
input_ids: tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
attention_mask: tf.Tensor | None = None,
position_ids: tf.Tensor | None = None,
encoder_hidden_states: tf.Tensor | None = None,
encoder_attention_mask: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
cross_attn_head_mask: tf.Tensor | None = None,
past_key_values: Tuple[Tuple[tf.Tensor]] | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
):
r"""
Args:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range `[0, config.max_position_embeddings - 1]`.
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value
in the config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail. This argument can be used only in eager mode, in graph mode the value in the config
will be used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used
in eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0
# embed positions
if position_ids is None:
positions = self.embed_positions(input_shape, past_key_values_length)
else:
positions = self.embed_positions(input_shape, position_ids=position_ids)
if inputs_embeds is None:
check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim)
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
hidden_states = inputs_embeds
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length)
else:
combined_attention_mask = _expand_mask(
tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1]
)
if attention_mask is not None:
combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1])
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1])
hidden_states = self.dropout(hidden_states + positions, training=training)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None
present_key_values = () if use_cache else None
# check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
for attn_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]:
if attn_mask is not None:
tf.debugging.assert_equal(
shape_list(attn_mask)[0],
len(self.layers),
message=(
f"The {attn_name} should be specified for {len(self.layers)} layers, but it is for"
f" {shape_list(attn_mask)[0]}."
),
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
if training and (dropout_probability < self.layerdrop):
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer(
hidden_states,
attention_mask=combined_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=head_mask[idx] if head_mask is not None else None,
cross_attn_layer_head_mask=cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
past_key_value=past_key_value,
)
if use_cache:
present_key_values += (present_key_value,)
if output_attentions:
all_self_attns += (layer_self_attn,)
if encoder_hidden_states is not None:
all_cross_attns += (layer_cross_attn,)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if not return_dict:
return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns
else:
return TFBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=present_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attns,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embed_positions", None) is not None:
with tf.name_scope(self.embed_positions.name):
self.embed_positions.build(None)
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
@keras_serializable
class TFMarianMainLayer(keras.layers.Layer):
config_class = MarianConfig
def __init__(self, config: MarianConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.shared = keras.layers.Embedding(
input_dim=config.vocab_size,
output_dim=config.d_model,
embeddings_initializer=keras.initializers.TruncatedNormal(stddev=self.config.init_std),
name="model.shared",
)
# Additional attribute to specify the expected name scope of the layer (for loading/storing weights)
self.shared.load_weight_prefix = "model.shared"
self.encoder = TFMarianEncoder(config, self.shared, name="encoder")
self.decoder = TFMarianDecoder(config, self.shared, name="decoder")
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.embed_tokens = self.shared
self.decoder.embed_tokens = self.shared
@unpack_inputs
def call(
self,
input_ids: tf.Tensor | None = None,
attention_mask: tf.Tensor | None = None,
decoder_input_ids: tf.Tensor | None = None,
decoder_attention_mask: tf.Tensor | None = None,
decoder_position_ids: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
decoder_head_mask: tf.Tensor | None = None,
cross_attn_head_mask: tf.Tensor | None = None,
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
past_key_values: Tuple[Tuple[tf.Tensor]] = None,
inputs_embeds: tf.Tensor | None = None,
decoder_inputs_embeds: tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
):
if decoder_input_ids is None and decoder_inputs_embeds is None:
use_cache = False
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput):
encoder_outputs = TFBaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False
elif not return_dict and not isinstance(encoder_outputs, tuple):
encoder_outputs = encoder_outputs.to_tuple()
decoder_outputs = self.decoder(
decoder_input_ids,
attention_mask=decoder_attention_mask,
position_ids=decoder_position_ids,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return TFSeq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
# The shared/tied weights expect to be in the model base namespace
# Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than
# the current one.
with tf.name_scope(self.shared.load_weight_prefix + "/" + self.shared.name + "/"):
self.shared.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "decoder", None) is not None:
with tf.name_scope(self.decoder.name):
self.decoder.build(None)
@add_start_docstrings(
"The bare MARIAN Model outputting raw hidden-states without any specific head on top.",
MARIAN_START_DOCSTRING,
)
class TFMarianModel(TFMarianPreTrainedModel):
def __init__(self, config: MarianConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.model = TFMarianMainLayer(config, name="model")
def get_encoder(self):
return self.model.encoder
def get_decoder(self):
return self.model.decoder
@unpack_inputs
@add_start_docstrings_to_model_forward(MARIAN_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFSeq2SeqModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: tf.Tensor | None = None,
attention_mask: tf.Tensor | None = None,
decoder_input_ids: tf.Tensor | None = None,
decoder_attention_mask: tf.Tensor | None = None,
decoder_position_ids: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
decoder_head_mask: tf.Tensor | None = None,
cross_attn_head_mask: tf.Tensor | None = None,
encoder_outputs: tf.Tensor | None = None,
past_key_values: Tuple[Tuple[tf.Tensor]] | None = None,
inputs_embeds: tf.Tensor | None = None,
decoder_inputs_embeds: tf.Tensor | None = None,
use_cache: bool | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
training: bool = False,
**kwargs,
) -> Tuple[tf.Tensor] | TFSeq2SeqModelOutput:
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
decoder_position_ids=decoder_position_ids,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
# Copied from transformers.models.bart.modeling_tf_bart.TFBartModel.serving_output
def serving_output(self, output):
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
return TFSeq2SeqModelOutput(
last_hidden_state=output.last_hidden_state,
past_key_values=pkv,
decoder_hidden_states=dec_hs,
decoder_attentions=dec_attns,
cross_attentions=cross_attns,
encoder_last_hidden_state=output.encoder_last_hidden_state,
encoder_hidden_states=enc_hs,
encoder_attentions=enc_attns,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "model", None) is not None:
with tf.name_scope(self.model.name):
self.model.build(None)
# Copied from transformers.models.bart.modeling_tf_bart.BiasLayer
class BiasLayer(keras.layers.Layer):
"""
Bias as a layer. It is used for serialization purposes: `keras.Model.save_weights` stores on a per-layer basis,
so all weights have to be registered in a layer.
"""
def __init__(self, shape, initializer, trainable, name, **kwargs):
super().__init__(name=name, **kwargs)
# Note: the name of this variable will NOT be scoped when serialized, i.e. it will not be in the format of
# "outer_layer/inner_layer/.../name:0". Instead, it will be "name:0". For further details, see:
# https://github.com/huggingface/transformers/pull/18833#issuecomment-1233090214
self.bias = self.add_weight(name=name, shape=shape, initializer=initializer, trainable=trainable)
def call(self, x):
return x + self.bias
@add_start_docstrings(
"The MARIAN Model with a language modeling head. Can be used for summarization.",
MARIAN_START_DOCSTRING,
)
class TFMarianMTModel(TFMarianPreTrainedModel, TFCausalLanguageModelingLoss):
_keys_to_ignore_on_load_unexpected = [
r"model.encoder.embed_tokens.weight",
r"model.decoder.embed_tokens.weight",
]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.model = TFMarianMainLayer(config, name="model")
self.use_cache = config.use_cache
# final_bias_logits is registered as a buffer in pytorch, so not trainable for the sake of consistency.
self.bias_layer = BiasLayer(
name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False
)
def get_decoder(self):
return self.model.decoder
def get_encoder(self):
return self.model.encoder
def get_output_embeddings(self):
return self.get_input_embeddings()
def set_output_embeddings(self, value):
self.set_input_embeddings(value)
def get_bias(self):
return {"final_logits_bias": self.bias_layer.bias}
def set_bias(self, value):
# Replaces the existing layers containing bias for correct (de)serialization.
vocab_size = value["final_logits_bias"].shape[-1]
self.bias_layer = BiasLayer(
name="final_logits_bias", shape=[1, vocab_size], initializer="zeros", trainable=False
)
self.bias_layer.bias.assign(value["final_logits_bias"])
@unpack_inputs
@add_start_docstrings_to_model_forward(MARIAN_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@add_end_docstrings(MARIAN_GENERATION_EXAMPLE)
def call(
self,
input_ids: tf.Tensor | None = None,
attention_mask: tf.Tensor | None = None,
decoder_input_ids: tf.Tensor | None = None,
decoder_attention_mask: tf.Tensor | None = None,
decoder_position_ids: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
decoder_head_mask: tf.Tensor | None = None,
cross_attn_head_mask: tf.Tensor | None = None,
encoder_outputs: TFBaseModelOutput | None = None,
past_key_values: Tuple[Tuple[tf.Tensor]] | None = None,
inputs_embeds: tf.Tensor | None = None,
decoder_inputs_embeds: tf.Tensor | None = None,
use_cache: bool | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
labels: tf.Tensor | None = None,
training: bool = False,
) -> Tuple[tf.Tensor] | TFSeq2SeqLMOutput:
r"""
labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
"""
if labels is not None:
labels = tf.where(
labels == self.config.pad_token_id,
tf.fill(shape_list(labels), tf.cast(-100, labels.dtype)),
labels,
)
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
decoder_position_ids=decoder_position_ids,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
lm_logits = tf.matmul(outputs[0], self.model.shared.weights, transpose_b=True)
lm_logits = self.bias_layer(lm_logits)
masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits)
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return TFSeq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values, # index 1 of d outputs
decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs
decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs
cross_attentions=outputs.cross_attentions, # index 4 of d outputs
encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs
encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out
encoder_attentions=outputs.encoder_attentions, # 2 of e out
)
# Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.serving_output
def serving_output(self, output):
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
return TFSeq2SeqLMOutput(
logits=output.logits,
past_key_values=pkv,
decoder_hidden_states=dec_hs,
decoder_attentions=dec_attns,
cross_attentions=cross_attns,
encoder_last_hidden_state=output.encoder_last_hidden_state,
encoder_hidden_states=enc_hs,
encoder_attentions=enc_attns,
)
# Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.prepare_inputs_for_generation
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past_key_values=None,
attention_mask=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
# cut decoder_input_ids if past_key_values is used
if past_key_values is not None:
decoder_input_ids = decoder_input_ids[:, -1:]
if decoder_attention_mask is not None: # xla
decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:]
elif past_key_values is not None: # no xla + past_key_values
decoder_position_ids = past_key_values[0][0].shape[2]
else: # no xla + no past_key_values
decoder_position_ids = tf.range(decoder_input_ids.shape[1])
return {
"input_ids": None, # encoder_outputs is defined. input_ids not needed
"encoder_outputs": encoder_outputs,
"past_key_values": past_key_values,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"decoder_position_ids": decoder_position_ids,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
}
def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor):
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "model", None) is not None:
with tf.name_scope(self.model.name):
self.model.build(None)
if getattr(self, "bias_layer", None) is not None:
with tf.name_scope(self.bias_layer.name):
self.bias_layer.build(None)
__all__ = ["TFMarianModel", "TFMarianMTModel", "TFMarianPreTrainedModel"]
|
transformers/src/transformers/models/marian/modeling_tf_marian.py/0
|
{
"file_path": "transformers/src/transformers/models/marian/modeling_tf_marian.py",
"repo_id": "transformers",
"token_count": 31884
}
| 143 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MaskFormer Swin Transformer model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
logger = logging.get_logger(__name__)
class MaskFormerSwinConfig(BackboneConfigMixin, PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MaskFormerSwinModel`]. It is used to instantiate
a Donut model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Swin
[microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 4):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
embed_dim (`int`, *optional*, defaults to 96):
Dimensionality of patch embedding.
depths (`List[int]`, *optional*, defaults to `[2, 2, 6, 2]`):
Depth of each layer in the Transformer encoder.
num_heads (`List[int]`, *optional*, defaults to `[3, 6, 12, 24]`):
Number of attention heads in each layer of the Transformer encoder.
window_size (`int`, *optional*, defaults to 7):
Size of windows.
mlp_ratio (`float`, *optional*, defaults to 4.0):
Ratio of MLP hidden dimensionality to embedding dimensionality.
qkv_bias (`bool`, *optional*, defaults to True):
Whether or not a learnable bias should be added to the queries, keys and values.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings and encoder.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
drop_path_rate (`float`, *optional*, defaults to 0.1):
Stochastic depth rate.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`,
`"selu"` and `"gelu_new"` are supported.
use_absolute_embeddings (`bool`, *optional*, defaults to False):
Whether or not to add absolute position embeddings to the patch embeddings.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
out_features (`List[str]`, *optional*):
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
out_indices (`List[int]`, *optional*):
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
If unset and `out_features` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
Example:
```python
>>> from transformers import MaskFormerSwinConfig, MaskFormerSwinModel
>>> # Initializing a microsoft/swin-tiny-patch4-window7-224 style configuration
>>> configuration = MaskFormerSwinConfig()
>>> # Initializing a model (with random weights) from the microsoft/swin-tiny-patch4-window7-224 style configuration
>>> model = MaskFormerSwinModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "maskformer-swin"
attribute_map = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__(
self,
image_size=224,
patch_size=4,
num_channels=3,
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
mlp_ratio=4.0,
qkv_bias=True,
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
drop_path_rate=0.1,
hidden_act="gelu",
use_absolute_embeddings=False,
initializer_range=0.02,
layer_norm_eps=1e-5,
out_features=None,
out_indices=None,
**kwargs,
):
super().__init__(**kwargs)
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.embed_dim = embed_dim
self.depths = depths
self.num_layers = len(depths)
self.num_heads = num_heads
self.window_size = window_size
self.mlp_ratio = mlp_ratio
self.qkv_bias = qkv_bias
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.drop_path_rate = drop_path_rate
self.hidden_act = hidden_act
self.use_absolute_embeddings = use_absolute_embeddings
self.layer_norm_eps = layer_norm_eps
self.initializer_range = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
self.hidden_size = int(embed_dim * 2 ** (len(depths) - 1))
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)]
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
)
__all__ = ["MaskFormerSwinConfig"]
|
transformers/src/transformers/models/maskformer/configuration_maskformer_swin.py/0
|
{
"file_path": "transformers/src/transformers/models/maskformer/configuration_maskformer_swin.py",
"repo_id": "transformers",
"token_count": 2762
}
| 144 |
# coding=utf-8
# Copyright 2024 Meta Platforms, Inc. and affiliates, and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Mimi model configuration"""
import math
import numpy as np
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class MimiConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of an [`MimiModel`]. It is used to instantiate a
Mimi model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the
[kyutai/mimi](https://huggingface.co/kyutai/mimi) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
sampling_rate (`int`, *optional*, defaults to 24000):
The sampling rate at which the audio waveform should be digitalized expressed in hertz (Hz).
frame_rate (`float`, *optional*, defaults to 12.5):
Framerate of the model.
audio_channels (`int`, *optional*, defaults to 1):
Number of channels in the audio data. Either 1 for mono or 2 for stereo.
hidden_size (`int`, *optional*, defaults to 512):
Intermediate representation dimension.
num_filters (`int`, *optional*, defaults to 64):
Number of convolution kernels of first `MimiConv1d` down sampling layer.
num_residual_layers (`int`, *optional*, defaults to 1):
Number of residual layers.
upsampling_ratios (`Sequence[int]`, *optional*):
Kernel size and stride ratios. The encoder uses downsampling ratios instead of upsampling ratios, hence it
will use the ratios in the reverse order to the ones specified here that must match the decoder order.
If not specified, will defaults to `[8, 6, 5, 4]`
kernel_size (`int`, *optional*, defaults to 7):
Kernel size for the initial convolution.
last_kernel_size (`int`, *optional*, defaults to 3):
Kernel size for the last convolution layer.
residual_kernel_size (`int`, *optional*, defaults to 3):
Kernel size for the residual layers.
dilation_growth_rate (`int`, *optional*, defaults to 2):
How much to increase the dilation with each layer.
use_causal_conv (`bool`, *optional*, defaults to `True`):
Whether to use fully causal convolution.
pad_mode (`str`, *optional*, defaults to `"constant"`):
Padding mode for the convolutions.
compress (`int`, *optional*, defaults to 2):
Reduced dimensionality in residual branches.
trim_right_ratio (`float`, *optional*, defaults to 1.0):
Ratio for trimming at the right of the transposed convolution under the `use_causal_conv = True` setup. If
equal to 1.0, it means that all the trimming is done at the right.
codebook_size (`int`, *optional*, defaults to 2048):
Number of discret codes in each codebooks.
codebook_dim (`int`, *optional*, defaults to 256):
Dimension of the unquantized codebook vectors. If not defined, uses `hidden_size`.
num_quantizers (`int`, *optional*, defaults to 32):
Number of quantizer channels, or codebooks, in the quantizer.
use_conv_shortcut (`bool`, *optional*, defaults to `False`):
Whether to use a convolutional layer as the 'skip' connection in the `MimiResnetBlock` block. If False,
an identity function will be used, giving a generic residual connection.
vector_quantization_hidden_dimension (`int`, *optional*, defaults to 256):
Intermediate representation dimension in the residual vector quantization space.
num_semantic_quantizers (`int`, *optional*, defaults to 1):
Number of semantic quantizer channels, or codebooks, in the semantic quantizer. Must be lower than `num_quantizers`.
upsample_groups (`int`, *optional*, defaults to 512):
If `frame_rate!=encodec_frame_rate`, indicates the number of groups used in the upsampling operation to go from one rate to another.
num_hidden_layers (`int`, *optional*, defaults to 8):
Number of hidden layers in the Transformer models.
intermediate_size (`int`, *optional*, defaults to 2048):
Dimension of the MLP representations.
num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 8):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
head_dim (`int`, *optional*, defaults to `hidden_size // num_attention_heads`):
The attention head dimension.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 8000):
The maximum sequence length that this model might ever be used with. Mimi's sliding window attention
allows sequence of up to 8000 tokens.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the LayerNorm normalization layers.
use_cache (`bool`, *optional*, defaults to `False`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
sliding_window (`int`, *optional*, defaults to 250):
Sliding window attention window size. If not specified, will default to `250`.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
layer_scale_initial_scale (`float`, *optional*, defaults to 0.01):
Initiale scale of the residual rescaling operation done in the Transformer models.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
Example:
```python
>>> from transformers import MimiModel, MimiConfig
>>> # Initializing a "kyutai/mimi" style configuration
>>> configuration = MimiConfig()
>>> # Initializing a model (with random weights) from the "kyutai/mimi" style configuration
>>> model = MimiModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "mimi"
def __init__(
self,
sampling_rate=24_000,
frame_rate=12.5,
audio_channels=1,
hidden_size=512,
num_filters=64,
num_residual_layers=1,
upsampling_ratios=None,
kernel_size=7,
last_kernel_size=3,
residual_kernel_size=3,
dilation_growth_rate=2,
use_causal_conv=True,
pad_mode="constant",
compress=2,
trim_right_ratio=1.0,
codebook_size=2048,
codebook_dim=256,
num_quantizers=32,
use_conv_shortcut=False,
vector_quantization_hidden_dimension=256,
num_semantic_quantizers=1,
upsample_groups=512,
num_hidden_layers=8,
intermediate_size=2048,
num_attention_heads=8,
num_key_value_heads=8,
head_dim=None,
hidden_act="gelu",
max_position_embeddings=8000,
initializer_range=0.02,
norm_eps=1e-5,
use_cache=False,
rope_theta=10000.0,
sliding_window=250,
attention_dropout=0.0,
layer_scale_initial_scale=0.01,
attention_bias=False,
**kwargs,
):
self.sampling_rate = sampling_rate
self.frame_rate = frame_rate
self.audio_channels = audio_channels
self.hidden_size = hidden_size
self.num_filters = num_filters
self.num_residual_layers = num_residual_layers
self.upsampling_ratios = upsampling_ratios if upsampling_ratios else [8, 6, 5, 4]
self.kernel_size = kernel_size
self.last_kernel_size = last_kernel_size
self.residual_kernel_size = residual_kernel_size
self.dilation_growth_rate = dilation_growth_rate
self.use_causal_conv = use_causal_conv
self.pad_mode = pad_mode
self.compress = compress
self.trim_right_ratio = trim_right_ratio
self.codebook_size = codebook_size
self.codebook_dim = codebook_dim if codebook_dim is not None else hidden_size
self.num_quantizers = num_quantizers
self.use_conv_shortcut = use_conv_shortcut
self.vector_quantization_hidden_dimension = vector_quantization_hidden_dimension
self.upsample_groups = upsample_groups
self.num_hidden_layers = num_hidden_layers
self.intermediate_size = intermediate_size
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.norm_eps = norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.sliding_window = sliding_window
self.attention_dropout = attention_dropout
self.head_dim = head_dim or hidden_size // num_attention_heads
self.layer_scale_initial_scale = layer_scale_initial_scale
self.attention_bias = attention_bias
if num_semantic_quantizers >= self.num_quantizers:
raise ValueError(
f"The number of semantic quantizers should be lower than the total number of quantizers {self.num_quantizers}, but is currently {num_semantic_quantizers}."
)
self.num_semantic_quantizers = num_semantic_quantizers
super().__init__(**kwargs)
@property
def encodec_frame_rate(self) -> int:
hop_length = np.prod(self.upsampling_ratios)
return math.ceil(self.sampling_rate / hop_length)
@property
def num_codebooks(self) -> int:
# alias to num_quantizers
return self.num_quantizers
__all__ = ["MimiConfig"]
|
transformers/src/transformers/models/mimi/configuration_mimi.py/0
|
{
"file_path": "transformers/src/transformers/models/mimi/configuration_mimi.py",
"repo_id": "transformers",
"token_count": 4505
}
| 145 |
# coding=utf-8
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Mllama model configuration"""
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...modeling_rope_utils import rope_config_validation
from ...utils import logging
logger = logging.get_logger(__name__)
class MllamaVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MllamaVisionModel`]. It is used to instantiate an
Mllama vision model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Mllama-11B.
e.g. [meta-llama/Llama-3.2-11B-Vision](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 1280):
Dimensionality of the encoder layers and the pooler layer.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_global_layers (`int`, *optional*, defaults to 8):
Number of global layers in the Transformer encoder.
Vision model has a second transformer encoder, called global.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
Number of channels in the input image.
intermediate_size (`int`, *optional*, defaults to 5120):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
vision_output_dim (`int`, *optional*, defaults to 7680):
Dimensionality of the vision model output. Includes output of transformer
encoder with intermediate layers and global transformer encoder.
image_size (`int`, *optional*, defaults to 448):
The size (resolution) of each image *tile*.
patch_size (`int`, *optional*, defaults to 14):
The size (resolution) of each patch.
norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
max_num_tiles (`int`, *optional*, defaults to 4):
Maximum number of tiles for image splitting.
intermediate_layers_indices (`List[int]`, *optional*, defaults to [3, 7, 15, 23, 30]):
Indices of intermediate layers of transformer encoder from which to extract and output features.
These output features are concatenated with final hidden state of transformer encoder.
supported_aspect_ratios (`List[List[int]]`, *optional*):
List of supported aspect ratios for image splitting. If not specified, the default supported aspect ratios
are [[1, 1], [1, 2], [1, 3], [1, 4], [2, 1], [2, 2], [3, 1], [4, 1]] for `max_num_tiles=4`.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
Example:
```python
>>> from transformers import MllamaVisionConfig, MllamaVisionModel
>>> # Initializing a Llama config
>>> config = MllamaVisionConfig()
>>> # Initializing a vision model from the mllama-11b style configuration
>>> model = MllamaVisionModel(config)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "mllama_vision_model"
base_config_key = "vision_config"
def __init__(
self,
hidden_size: int = 1280,
hidden_act: str = "gelu",
num_hidden_layers: int = 32,
num_global_layers: int = 8,
num_attention_heads: int = 16,
num_channels: int = 3,
intermediate_size: int = 5120,
vision_output_dim: int = 7680,
image_size: int = 448,
patch_size: int = 14,
norm_eps: float = 1e-5,
max_num_tiles: int = 4,
intermediate_layers_indices: Optional[List[int]] = None,
supported_aspect_ratios: Optional[List[List[int]]] = None,
initializer_range: float = 0.02,
**kwargs,
):
if supported_aspect_ratios is None:
if max_num_tiles != 4:
raise ValueError("max_num_tiles must be 4 for default supported aspect ratios")
supported_aspect_ratios = [[1, 1], [1, 2], [1, 3], [1, 4], [2, 1], [2, 2], [3, 1], [4, 1]]
if intermediate_layers_indices is None:
intermediate_layers_indices = [3, 7, 15, 23, 30]
self.hidden_size = hidden_size
self.hidden_act = hidden_act
self.num_hidden_layers = num_hidden_layers
self.num_channels = num_channels
self.intermediate_size = intermediate_size
self.image_size = image_size
self.vision_output_dim = vision_output_dim
self.patch_size = patch_size
self.intermediate_layers_indices = intermediate_layers_indices
self.num_global_layers = num_global_layers
self.max_num_tiles = max_num_tiles
self.norm_eps = norm_eps
self.attention_heads = num_attention_heads
self.supported_aspect_ratios = supported_aspect_ratios
self.initializer_range = initializer_range
super().__init__(**kwargs)
@property
def max_aspect_ratio_id(self) -> int:
return len(self.supported_aspect_ratios)
class MllamaTextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MllamaTextModel`]. It is used to instantiate an
Mllama text model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Mllama-11B.
e.g. [meta-llama/Llama-3.2-11B-Vision](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 128256):
Vocabulary size of the Mllama text model. Defines the maximum number of different tokens that can be represented
by the `inputs_ids` passed when calling [`MllamaTextModel`].
hidden_size (`int`, *optional*, defaults to 4096):
Dimensionality of the embeddings and hidden states.
hidden_act (`str` or `Callable`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the encoder and pooler.
num_hidden_layers (`int`, *optional*, defaults to 40):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 8):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If not
specified, will default to `num_attention_heads`.
intermediate_size (`int`, *optional*, defaults to 14336):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
rope_theta (`float`, *optional*, defaults to `500000.0`):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
max_position_embeddings (`int`, *optional*, defaults to 131072):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
cross_attention_layers (`List[int]`, *optional*):
Indices of the cross attention layers. If not specified, will default to [3, 8, 13, 18, 23, 28, 33, 38].
dropout (`float`, *optional*, defaults to 0):
The dropout probability for self- and cross-attention layers.
bos_token_id (`int`, *optional*, defaults to 128000):
The id of the beginning of sentence token.
eos_token_id (`int`, *optional*, defaults to 128001):
The id of the end of sentence token.
pad_token_id (`int`, *optional*, defaults to 128004):
The id of the padding token.
Example:
```python
>>> from transformers import MllamaTextModel, MllamaTextConfig
>>> # Initializing a Mllama text config
>>> config = MllamaTextConfig()
>>> # Initializing a model from the Mllama text configuration
>>> model = MllamaTextModel(config)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "mllama_text_model"
base_config_key = "text_config"
def __init__(
self,
vocab_size: int = 128256,
hidden_size: int = 4096,
hidden_act: str = "silu",
num_hidden_layers: int = 40,
num_attention_heads: int = 32,
num_key_value_heads: int = 8,
intermediate_size: int = 14_336,
rope_theta: float = 500_000,
rope_scaling: Optional[Dict] = None,
rms_norm_eps: float = 1e-5,
max_position_embeddings: int = 131_072,
initializer_range: float = 0.02,
use_cache: bool = True,
tie_word_embeddings: bool = False,
cross_attention_layers: Optional[List[int]] = None,
dropout: float = 0,
bos_token_id: int = 128000,
eos_token_id: int = 128001,
pad_token_id: Optional[int] = 128004,
**kwargs,
):
if cross_attention_layers is None:
cross_attention_layers = [3, 8, 13, 18, 23, 28, 33, 38]
self.vocab_size = vocab_size
self.num_hidden_layers = num_hidden_layers
self.cross_attention_layers = cross_attention_layers
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.initializer_range = initializer_range
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rms_norm_eps = rms_norm_eps
self.intermediate_size = intermediate_size
self.dropout = dropout
self.hidden_act = hidden_act
self.rope_scaling = rope_scaling
self.max_position_embeddings = max_position_embeddings
rope_config_validation(self)
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
class MllamaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MllamaForConditionalGeneration`]. It is used to instantiate an
Mllama model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Mllama-9B.
e.g. [meta-llama/Llama-3.2-11B-Vision](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `MllamaVisionConfig`):
The config object or dictionary of the vision backbone.
text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `MllamaTextConfig`):
The config object or dictionary of the text backbone.
image_token_index (`int`, *optional*, defaults to 128256):
The image token index to encode the image prompt.
Example:
```python
>>> from transformers import MllamaForConditionalGeneration, MllamaConfig, MllamaVisionConfig, MllamaTextConfig
>>> # Initializing a CLIP-vision config
>>> vision_config = MllamaVisionConfig()
>>> # Initializing a Llama config
>>> text_config = MllamaTextConfig()
>>> # Initializing a mllama-11b style configuration
>>> configuration = MllamaConfig(vision_config, text_config)
>>> # Initializing a model from the mllama-11b style configuration
>>> model = MllamaForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "mllama"
sub_configs = {"text_config": MllamaTextConfig, "vision_config": MllamaVisionConfig}
def __init__(
self,
vision_config=None,
text_config=None,
image_token_index=128256,
**kwargs,
):
if vision_config is None:
self.vision_config = MllamaVisionConfig()
logger.info("vision_config is None, using default mllama vision config")
elif isinstance(vision_config, dict):
self.vision_config = MllamaVisionConfig(**vision_config)
elif isinstance(vision_config, MllamaVisionConfig):
self.vision_config = vision_config
self.image_token_index = image_token_index
if text_config is None:
self.text_config = MllamaTextConfig()
logger.info("text_config is None, using default mllama text config")
elif isinstance(text_config, dict):
self.text_config = MllamaTextConfig(**text_config)
elif isinstance(text_config, MllamaTextConfig):
self.text_config = text_config
super().__init__(**kwargs)
__all__ = ["MllamaConfig"]
|
transformers/src/transformers/models/mllama/configuration_mllama.py/0
|
{
"file_path": "transformers/src/transformers/models/mllama/configuration_mllama.py",
"repo_id": "transformers",
"token_count": 7056
}
| 146 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MobileNetV1 model configuration"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class MobileNetV1Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MobileNetV1Model`]. It is used to instantiate a
MobileNetV1 model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the MobileNetV1
[google/mobilenet_v1_1.0_224](https://huggingface.co/google/mobilenet_v1_1.0_224) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
depth_multiplier (`float`, *optional*, defaults to 1.0):
Shrinks or expands the number of channels in each layer. Default is 1.0, which starts the network with 32
channels. This is sometimes also called "alpha" or "width multiplier".
min_depth (`int`, *optional*, defaults to 8):
All layers will have at least this many channels.
hidden_act (`str` or `function`, *optional*, defaults to `"relu6"`):
The non-linear activation function (function or string) in the Transformer encoder and convolution layers.
tf_padding (`bool`, *optional*, defaults to `True`):
Whether to use TensorFlow padding rules on the convolution layers.
classifier_dropout_prob (`float`, *optional*, defaults to 0.999):
The dropout ratio for attached classifiers.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 0.001):
The epsilon used by the layer normalization layers.
Example:
```python
>>> from transformers import MobileNetV1Config, MobileNetV1Model
>>> # Initializing a "mobilenet_v1_1.0_224" style configuration
>>> configuration = MobileNetV1Config()
>>> # Initializing a model from the "mobilenet_v1_1.0_224" style configuration
>>> model = MobileNetV1Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "mobilenet_v1"
def __init__(
self,
num_channels=3,
image_size=224,
depth_multiplier=1.0,
min_depth=8,
hidden_act="relu6",
tf_padding=True,
classifier_dropout_prob=0.999,
initializer_range=0.02,
layer_norm_eps=0.001,
**kwargs,
):
super().__init__(**kwargs)
if depth_multiplier <= 0:
raise ValueError("depth_multiplier must be greater than zero.")
self.num_channels = num_channels
self.image_size = image_size
self.depth_multiplier = depth_multiplier
self.min_depth = min_depth
self.hidden_act = hidden_act
self.tf_padding = tf_padding
self.classifier_dropout_prob = classifier_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
class MobileNetV1OnnxConfig(OnnxConfig):
torch_onnx_minimum_version = version.parse("1.11")
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict([("pixel_values", {0: "batch"})])
@property
def outputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "image-classification":
return OrderedDict([("logits", {0: "batch"})])
else:
return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})])
@property
def atol_for_validation(self) -> float:
return 1e-4
__all__ = ["MobileNetV1Config", "MobileNetV1OnnxConfig"]
|
transformers/src/transformers/models/mobilenet_v1/configuration_mobilenet_v1.py/0
|
{
"file_path": "transformers/src/transformers/models/mobilenet_v1/configuration_mobilenet_v1.py",
"repo_id": "transformers",
"token_count": 1793
}
| 147 |
# coding=utf-8
# Copyright 2022 Apple Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Original license: https://github.com/apple/ml-cvnets/blob/main/LICENSE
"""PyTorch MobileViT model."""
import math
from typing import Dict, Optional, Set, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
SemanticSegmenterOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
torch_int,
)
from .configuration_mobilevit import MobileViTConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "MobileViTConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "apple/mobilevit-small"
_EXPECTED_OUTPUT_SHAPE = [1, 640, 8, 8]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "apple/mobilevit-small"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
def make_divisible(value: int, divisor: int = 8, min_value: Optional[int] = None) -> int:
"""
Ensure that all layers have a channel count that is divisible by `divisor`. This function is taken from the
original TensorFlow repo. It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
"""
if min_value is None:
min_value = divisor
new_value = max(min_value, int(value + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_value < 0.9 * value:
new_value += divisor
return int(new_value)
class MobileViTConvLayer(nn.Module):
def __init__(
self,
config: MobileViTConfig,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
groups: int = 1,
bias: bool = False,
dilation: int = 1,
use_normalization: bool = True,
use_activation: Union[bool, str] = True,
) -> None:
super().__init__()
padding = int((kernel_size - 1) / 2) * dilation
if in_channels % groups != 0:
raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups.")
if out_channels % groups != 0:
raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups.")
self.convolution = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias,
padding_mode="zeros",
)
if use_normalization:
self.normalization = nn.BatchNorm2d(
num_features=out_channels,
eps=1e-5,
momentum=0.1,
affine=True,
track_running_stats=True,
)
else:
self.normalization = None
if use_activation:
if isinstance(use_activation, str):
self.activation = ACT2FN[use_activation]
elif isinstance(config.hidden_act, str):
self.activation = ACT2FN[config.hidden_act]
else:
self.activation = config.hidden_act
else:
self.activation = None
def forward(self, features: torch.Tensor) -> torch.Tensor:
features = self.convolution(features)
if self.normalization is not None:
features = self.normalization(features)
if self.activation is not None:
features = self.activation(features)
return features
class MobileViTInvertedResidual(nn.Module):
"""
Inverted residual block (MobileNetv2): https://arxiv.org/abs/1801.04381
"""
def __init__(
self, config: MobileViTConfig, in_channels: int, out_channels: int, stride: int, dilation: int = 1
) -> None:
super().__init__()
expanded_channels = make_divisible(int(round(in_channels * config.expand_ratio)), 8)
if stride not in [1, 2]:
raise ValueError(f"Invalid stride {stride}.")
self.use_residual = (stride == 1) and (in_channels == out_channels)
self.expand_1x1 = MobileViTConvLayer(
config, in_channels=in_channels, out_channels=expanded_channels, kernel_size=1
)
self.conv_3x3 = MobileViTConvLayer(
config,
in_channels=expanded_channels,
out_channels=expanded_channels,
kernel_size=3,
stride=stride,
groups=expanded_channels,
dilation=dilation,
)
self.reduce_1x1 = MobileViTConvLayer(
config,
in_channels=expanded_channels,
out_channels=out_channels,
kernel_size=1,
use_activation=False,
)
def forward(self, features: torch.Tensor) -> torch.Tensor:
residual = features
features = self.expand_1x1(features)
features = self.conv_3x3(features)
features = self.reduce_1x1(features)
return residual + features if self.use_residual else features
class MobileViTMobileNetLayer(nn.Module):
def __init__(
self, config: MobileViTConfig, in_channels: int, out_channels: int, stride: int = 1, num_stages: int = 1
) -> None:
super().__init__()
self.layer = nn.ModuleList()
for i in range(num_stages):
layer = MobileViTInvertedResidual(
config,
in_channels=in_channels,
out_channels=out_channels,
stride=stride if i == 0 else 1,
)
self.layer.append(layer)
in_channels = out_channels
def forward(self, features: torch.Tensor) -> torch.Tensor:
for layer_module in self.layer:
features = layer_module(features)
return features
class MobileViTSelfAttention(nn.Module):
def __init__(self, config: MobileViTConfig, hidden_size: int) -> None:
super().__init__()
if hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size {hidden_size,} is not a multiple of the number of attention "
f"heads {config.num_attention_heads}."
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(hidden_size, self.all_head_size, bias=config.qkv_bias)
self.key = nn.Linear(hidden_size, self.all_head_size, bias=config.qkv_bias)
self.value = nn.Linear(hidden_size, self.all_head_size, bias=config.qkv_bias)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer
class MobileViTSelfOutput(nn.Module):
def __init__(self, config: MobileViTConfig, hidden_size: int) -> None:
super().__init__()
self.dense = nn.Linear(hidden_size, hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class MobileViTAttention(nn.Module):
def __init__(self, config: MobileViTConfig, hidden_size: int) -> None:
super().__init__()
self.attention = MobileViTSelfAttention(config, hidden_size)
self.output = MobileViTSelfOutput(config, hidden_size)
self.pruned_heads = set()
def prune_heads(self, heads: Set[int]) -> None:
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.attention.query = prune_linear_layer(self.attention.query, index)
self.attention.key = prune_linear_layer(self.attention.key, index)
self.attention.value = prune_linear_layer(self.attention.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
self_outputs = self.attention(hidden_states)
attention_output = self.output(self_outputs)
return attention_output
class MobileViTIntermediate(nn.Module):
def __init__(self, config: MobileViTConfig, hidden_size: int, intermediate_size: int) -> None:
super().__init__()
self.dense = nn.Linear(hidden_size, intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class MobileViTOutput(nn.Module):
def __init__(self, config: MobileViTConfig, hidden_size: int, intermediate_size: int) -> None:
super().__init__()
self.dense = nn.Linear(intermediate_size, hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states + input_tensor
return hidden_states
class MobileViTTransformerLayer(nn.Module):
def __init__(self, config: MobileViTConfig, hidden_size: int, intermediate_size: int) -> None:
super().__init__()
self.attention = MobileViTAttention(config, hidden_size)
self.intermediate = MobileViTIntermediate(config, hidden_size, intermediate_size)
self.output = MobileViTOutput(config, hidden_size, intermediate_size)
self.layernorm_before = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
self.layernorm_after = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
attention_output = self.attention(self.layernorm_before(hidden_states))
hidden_states = attention_output + hidden_states
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
layer_output = self.output(layer_output, hidden_states)
return layer_output
class MobileViTTransformer(nn.Module):
def __init__(self, config: MobileViTConfig, hidden_size: int, num_stages: int) -> None:
super().__init__()
self.layer = nn.ModuleList()
for _ in range(num_stages):
transformer_layer = MobileViTTransformerLayer(
config,
hidden_size=hidden_size,
intermediate_size=int(hidden_size * config.mlp_ratio),
)
self.layer.append(transformer_layer)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
for layer_module in self.layer:
hidden_states = layer_module(hidden_states)
return hidden_states
class MobileViTLayer(nn.Module):
"""
MobileViT block: https://arxiv.org/abs/2110.02178
"""
def __init__(
self,
config: MobileViTConfig,
in_channels: int,
out_channels: int,
stride: int,
hidden_size: int,
num_stages: int,
dilation: int = 1,
) -> None:
super().__init__()
self.patch_width = config.patch_size
self.patch_height = config.patch_size
if stride == 2:
self.downsampling_layer = MobileViTInvertedResidual(
config,
in_channels=in_channels,
out_channels=out_channels,
stride=stride if dilation == 1 else 1,
dilation=dilation // 2 if dilation > 1 else 1,
)
in_channels = out_channels
else:
self.downsampling_layer = None
self.conv_kxk = MobileViTConvLayer(
config,
in_channels=in_channels,
out_channels=in_channels,
kernel_size=config.conv_kernel_size,
)
self.conv_1x1 = MobileViTConvLayer(
config,
in_channels=in_channels,
out_channels=hidden_size,
kernel_size=1,
use_normalization=False,
use_activation=False,
)
self.transformer = MobileViTTransformer(
config,
hidden_size=hidden_size,
num_stages=num_stages,
)
self.layernorm = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
self.conv_projection = MobileViTConvLayer(
config, in_channels=hidden_size, out_channels=in_channels, kernel_size=1
)
self.fusion = MobileViTConvLayer(
config, in_channels=2 * in_channels, out_channels=in_channels, kernel_size=config.conv_kernel_size
)
def unfolding(self, features: torch.Tensor) -> Tuple[torch.Tensor, Dict]:
patch_width, patch_height = self.patch_width, self.patch_height
patch_area = int(patch_width * patch_height)
batch_size, channels, orig_height, orig_width = features.shape
new_height = (
torch_int(torch.ceil(orig_height / patch_height) * patch_height)
if torch.jit.is_tracing()
else int(math.ceil(orig_height / patch_height) * patch_height)
)
new_width = (
torch_int(torch.ceil(orig_width / patch_width) * patch_width)
if torch.jit.is_tracing()
else int(math.ceil(orig_width / patch_width) * patch_width)
)
interpolate = False
if new_width != orig_width or new_height != orig_height:
# Note: Padding can be done, but then it needs to be handled in attention function.
features = nn.functional.interpolate(
features, size=(new_height, new_width), mode="bilinear", align_corners=False
)
interpolate = True
# number of patches along width and height
num_patch_width = new_width // patch_width
num_patch_height = new_height // patch_height
num_patches = num_patch_height * num_patch_width
# convert from shape (batch_size, channels, orig_height, orig_width)
# to the shape (batch_size * patch_area, num_patches, channels)
patches = features.reshape(
batch_size * channels * num_patch_height, patch_height, num_patch_width, patch_width
)
patches = patches.transpose(1, 2)
patches = patches.reshape(batch_size, channels, num_patches, patch_area)
patches = patches.transpose(1, 3)
patches = patches.reshape(batch_size * patch_area, num_patches, -1)
info_dict = {
"orig_size": (orig_height, orig_width),
"batch_size": batch_size,
"channels": channels,
"interpolate": interpolate,
"num_patches": num_patches,
"num_patches_width": num_patch_width,
"num_patches_height": num_patch_height,
}
return patches, info_dict
def folding(self, patches: torch.Tensor, info_dict: Dict) -> torch.Tensor:
patch_width, patch_height = self.patch_width, self.patch_height
patch_area = int(patch_width * patch_height)
batch_size = info_dict["batch_size"]
channels = info_dict["channels"]
num_patches = info_dict["num_patches"]
num_patch_height = info_dict["num_patches_height"]
num_patch_width = info_dict["num_patches_width"]
# convert from shape (batch_size * patch_area, num_patches, channels)
# back to shape (batch_size, channels, orig_height, orig_width)
features = patches.contiguous().view(batch_size, patch_area, num_patches, -1)
features = features.transpose(1, 3)
features = features.reshape(
batch_size * channels * num_patch_height, num_patch_width, patch_height, patch_width
)
features = features.transpose(1, 2)
features = features.reshape(
batch_size, channels, num_patch_height * patch_height, num_patch_width * patch_width
)
if info_dict["interpolate"]:
features = nn.functional.interpolate(
features, size=info_dict["orig_size"], mode="bilinear", align_corners=False
)
return features
def forward(self, features: torch.Tensor) -> torch.Tensor:
# reduce spatial dimensions if needed
if self.downsampling_layer:
features = self.downsampling_layer(features)
residual = features
# local representation
features = self.conv_kxk(features)
features = self.conv_1x1(features)
# convert feature map to patches
patches, info_dict = self.unfolding(features)
# learn global representations
patches = self.transformer(patches)
patches = self.layernorm(patches)
# convert patches back to feature maps
features = self.folding(patches, info_dict)
features = self.conv_projection(features)
features = self.fusion(torch.cat((residual, features), dim=1))
return features
class MobileViTEncoder(nn.Module):
def __init__(self, config: MobileViTConfig) -> None:
super().__init__()
self.config = config
self.layer = nn.ModuleList()
self.gradient_checkpointing = False
# segmentation architectures like DeepLab and PSPNet modify the strides
# of the classification backbones
dilate_layer_4 = dilate_layer_5 = False
if config.output_stride == 8:
dilate_layer_4 = True
dilate_layer_5 = True
elif config.output_stride == 16:
dilate_layer_5 = True
dilation = 1
layer_1 = MobileViTMobileNetLayer(
config,
in_channels=config.neck_hidden_sizes[0],
out_channels=config.neck_hidden_sizes[1],
stride=1,
num_stages=1,
)
self.layer.append(layer_1)
layer_2 = MobileViTMobileNetLayer(
config,
in_channels=config.neck_hidden_sizes[1],
out_channels=config.neck_hidden_sizes[2],
stride=2,
num_stages=3,
)
self.layer.append(layer_2)
layer_3 = MobileViTLayer(
config,
in_channels=config.neck_hidden_sizes[2],
out_channels=config.neck_hidden_sizes[3],
stride=2,
hidden_size=config.hidden_sizes[0],
num_stages=2,
)
self.layer.append(layer_3)
if dilate_layer_4:
dilation *= 2
layer_4 = MobileViTLayer(
config,
in_channels=config.neck_hidden_sizes[3],
out_channels=config.neck_hidden_sizes[4],
stride=2,
hidden_size=config.hidden_sizes[1],
num_stages=4,
dilation=dilation,
)
self.layer.append(layer_4)
if dilate_layer_5:
dilation *= 2
layer_5 = MobileViTLayer(
config,
in_channels=config.neck_hidden_sizes[4],
out_channels=config.neck_hidden_sizes[5],
stride=2,
hidden_size=config.hidden_sizes[2],
num_stages=3,
dilation=dilation,
)
self.layer.append(layer_5)
def forward(
self,
hidden_states: torch.Tensor,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[tuple, BaseModelOutputWithNoAttention]:
all_hidden_states = () if output_hidden_states else None
for i, layer_module in enumerate(self.layer):
if self.gradient_checkpointing and self.training:
hidden_states = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
)
else:
hidden_states = layer_module(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
return BaseModelOutputWithNoAttention(last_hidden_state=hidden_states, hidden_states=all_hidden_states)
class MobileViTPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = MobileViTConfig
base_model_prefix = "mobilevit"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
_no_split_modules = ["MobileViTLayer"]
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
MOBILEVIT_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`MobileViTConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MOBILEVIT_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`MobileViTImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare MobileViT model outputting raw hidden-states without any specific head on top.",
MOBILEVIT_START_DOCSTRING,
)
class MobileViTModel(MobileViTPreTrainedModel):
def __init__(self, config: MobileViTConfig, expand_output: bool = True):
super().__init__(config)
self.config = config
self.expand_output = expand_output
self.conv_stem = MobileViTConvLayer(
config,
in_channels=config.num_channels,
out_channels=config.neck_hidden_sizes[0],
kernel_size=3,
stride=2,
)
self.encoder = MobileViTEncoder(config)
if self.expand_output:
self.conv_1x1_exp = MobileViTConvLayer(
config,
in_channels=config.neck_hidden_sizes[5],
out_channels=config.neck_hidden_sizes[6],
kernel_size=1,
)
# Initialize weights and apply final processing
self.post_init()
def _prune_heads(self, heads_to_prune):
"""Prunes heads of the model.
heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel
"""
for layer_index, heads in heads_to_prune.items():
mobilevit_layer = self.encoder.layer[layer_index]
if isinstance(mobilevit_layer, MobileViTLayer):
for transformer_layer in mobilevit_layer.transformer.layer:
transformer_layer.attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(MOBILEVIT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndNoAttention,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
embedding_output = self.conv_stem(pixel_values)
encoder_outputs = self.encoder(
embedding_output,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if self.expand_output:
last_hidden_state = self.conv_1x1_exp(encoder_outputs[0])
# global average pooling: (batch_size, channels, height, width) -> (batch_size, channels)
pooled_output = torch.mean(last_hidden_state, dim=[-2, -1], keepdim=False)
else:
last_hidden_state = encoder_outputs[0]
pooled_output = None
if not return_dict:
output = (last_hidden_state, pooled_output) if pooled_output is not None else (last_hidden_state,)
return output + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
)
@add_start_docstrings(
"""
MobileViT model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""",
MOBILEVIT_START_DOCSTRING,
)
class MobileViTForImageClassification(MobileViTPreTrainedModel):
def __init__(self, config: MobileViTConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.mobilevit = MobileViTModel(config)
# Classifier head
self.dropout = nn.Dropout(config.classifier_dropout_prob, inplace=True)
self.classifier = (
nn.Linear(config.neck_hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MOBILEVIT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutputWithNoAttention,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, ImageClassifierOutputWithNoAttention]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss). If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mobilevit(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
pooled_output = outputs.pooler_output if return_dict else outputs[1]
logits = self.classifier(self.dropout(pooled_output))
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
)
class MobileViTASPPPooling(nn.Module):
def __init__(self, config: MobileViTConfig, in_channels: int, out_channels: int) -> None:
super().__init__()
self.global_pool = nn.AdaptiveAvgPool2d(output_size=1)
self.conv_1x1 = MobileViTConvLayer(
config,
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
stride=1,
use_normalization=True,
use_activation="relu",
)
def forward(self, features: torch.Tensor) -> torch.Tensor:
spatial_size = features.shape[-2:]
features = self.global_pool(features)
features = self.conv_1x1(features)
features = nn.functional.interpolate(features, size=spatial_size, mode="bilinear", align_corners=False)
return features
class MobileViTASPP(nn.Module):
"""
ASPP module defined in DeepLab papers: https://arxiv.org/abs/1606.00915, https://arxiv.org/abs/1706.05587
"""
def __init__(self, config: MobileViTConfig) -> None:
super().__init__()
in_channels = config.neck_hidden_sizes[-2]
out_channels = config.aspp_out_channels
if len(config.atrous_rates) != 3:
raise ValueError("Expected 3 values for atrous_rates")
self.convs = nn.ModuleList()
in_projection = MobileViTConvLayer(
config,
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
use_activation="relu",
)
self.convs.append(in_projection)
self.convs.extend(
[
MobileViTConvLayer(
config,
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
dilation=rate,
use_activation="relu",
)
for rate in config.atrous_rates
]
)
pool_layer = MobileViTASPPPooling(config, in_channels, out_channels)
self.convs.append(pool_layer)
self.project = MobileViTConvLayer(
config, in_channels=5 * out_channels, out_channels=out_channels, kernel_size=1, use_activation="relu"
)
self.dropout = nn.Dropout(p=config.aspp_dropout_prob)
def forward(self, features: torch.Tensor) -> torch.Tensor:
pyramid = []
for conv in self.convs:
pyramid.append(conv(features))
pyramid = torch.cat(pyramid, dim=1)
pooled_features = self.project(pyramid)
pooled_features = self.dropout(pooled_features)
return pooled_features
class MobileViTDeepLabV3(nn.Module):
"""
DeepLabv3 architecture: https://arxiv.org/abs/1706.05587
"""
def __init__(self, config: MobileViTConfig) -> None:
super().__init__()
self.aspp = MobileViTASPP(config)
self.dropout = nn.Dropout2d(config.classifier_dropout_prob)
self.classifier = MobileViTConvLayer(
config,
in_channels=config.aspp_out_channels,
out_channels=config.num_labels,
kernel_size=1,
use_normalization=False,
use_activation=False,
bias=True,
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
features = self.aspp(hidden_states[-1])
features = self.dropout(features)
features = self.classifier(features)
return features
@add_start_docstrings(
"""
MobileViT model with a semantic segmentation head on top, e.g. for Pascal VOC.
""",
MOBILEVIT_START_DOCSTRING,
)
class MobileViTForSemanticSegmentation(MobileViTPreTrainedModel):
def __init__(self, config: MobileViTConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.mobilevit = MobileViTModel(config, expand_output=False)
self.segmentation_head = MobileViTDeepLabV3(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MOBILEVIT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, SemanticSegmenterOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> import requests
>>> import torch
>>> from PIL import Image
>>> from transformers import AutoImageProcessor, MobileViTForSemanticSegmentation
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-small")
>>> model = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-small")
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> # logits are of shape (batch_size, num_labels, height, width)
>>> logits = outputs.logits
```"""
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None and self.config.num_labels == 1:
raise ValueError("The number of labels should be greater than one")
outputs = self.mobilevit(
pixel_values,
output_hidden_states=True, # we need the intermediate hidden states
return_dict=return_dict,
)
encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1]
logits = self.segmentation_head(encoder_hidden_states)
loss = None
if labels is not None:
# upsample logits to the images' original size
upsampled_logits = nn.functional.interpolate(
logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
)
loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index)
loss = loss_fct(upsampled_logits, labels)
if not return_dict:
if output_hidden_states:
output = (logits,) + outputs[1:]
else:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SemanticSegmenterOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=None,
)
__all__ = [
"MobileViTForImageClassification",
"MobileViTForSemanticSegmentation",
"MobileViTModel",
"MobileViTPreTrainedModel",
]
|
transformers/src/transformers/models/mobilevit/modeling_mobilevit.py/0
|
{
"file_path": "transformers/src/transformers/models/mobilevit/modeling_mobilevit.py",
"repo_id": "transformers",
"token_count": 17809
}
| 148 |
# coding=utf-8
# Copyright 2024 Meta AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Moshi model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto.configuration_auto import AutoConfig
logger = logging.get_logger(__name__)
class MoshiDepthConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MoshiDepthDecoder`]. It is used to instantiate a
Moshi depth decoder model according to the specified arguments, defining the Moshi depth decoder config.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the MoshiDepthDecoder model. Defines the number of different tokens that can be
represented by the `inputs_ids` passed when calling [`MoshiDepthDecoder`].
hidden_size (`int`, *optional*, defaults to 1024):
Dimensionality of the layers and the pooler layer of the depth decoder.
input_size (`int`, *optional*, defaults to 4096):
Dimensionality of the input hidden states. Used to connect the main decoder to the depth decoder.
num_hidden_layers (`int`, *optional*, defaults to 6):
Number of depth decoder layers.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the depth decoder block.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`.
audio_vocab_size (`int`, *optional*, defaults to 2048):
Vocabulary size of the audio part of model. Defines the number of different tokens that can be
represented by the `audio_codes` passed when calling the Moshi models.
max_position_embeddings (`int`, *optional*, defaults to 9):
The maximum sequence length that this model might ever be used with. Typically, set this to something large
just in case (e.g., 512 or 1024 or 2048).
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the depth decoder.
head_dim (`int`, *optional*, defaults to `hidden_size // num_attention_heads`):
The attention head dimension.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
sliding_window (`int`, *optional*, defaults to 8):
Sliding window attention window size. If not specified, will default to `8`.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
ffn_dim (`int`, *optional*, defaults to 5632):
Dimensionality of the "intermediate" (often named feed-forward) layer in the depth decoder block. Must be even.
rms_norm_eps (`float`, *optional*, defaults to 1e-08):
The epsilon used by the rms normalization layers.
num_codebooks (`int`, *optional*, defaults to 8):
The number of audio codebooks for each audio channels.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
kwargs (*optional*):
Dictionary of keyword arguments. Notably:
- **audio_encoder_config** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
defines the audio encoder config.
Example:
```python
>>> from transformers import (
... MoshiDepthConfig,
... MoshiDepthDecoder,
... )
>>> configuration = MoshiDepthConfig()
>>> # Initializing a MoshiDepthDecoder (with random weights) from the kmhf/hf-moshiko style configuration
>>> model = MoshiDepthDecoder(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "moshi_depth"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=32000,
hidden_size=1024,
input_size=4096,
num_hidden_layers=6,
num_attention_heads=16,
num_key_value_heads=None,
audio_vocab_size=2048,
max_position_embeddings=9,
hidden_act="silu",
head_dim=None,
initializer_range=0.02,
use_cache=True,
sliding_window=8,
attention_dropout=0.0,
ffn_dim=5632,
rms_norm_eps=1e-8,
num_codebooks=8,
tie_word_embeddings=False,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.input_size = input_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads if num_key_value_heads is not None else num_attention_heads
self.max_position_embeddings = max_position_embeddings
self.hidden_act = hidden_act
self.head_dim = head_dim or hidden_size // num_attention_heads
self.initializer_range = initializer_range
self.use_cache = use_cache
self.sliding_window = sliding_window
self.attention_dropout = attention_dropout
if ffn_dim % 2 == 1:
raise ValueError(f"`ffn_dim={ffn_dim}` must be even.")
self.ffn_dim = ffn_dim
self.rms_norm_eps = rms_norm_eps
self.num_codebooks = num_codebooks
self.audio_vocab_size = audio_vocab_size
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
class MoshiConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MoshiModel`]. It is used to instantiate a
Moshi model according to the specified arguments, defining the audio encoder, Moshi depth decoder and Moshi decoder
configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the Moshiko model,
e.g. [kmhf/hf-moshiko](https://huggingface.co/kmhf/hf-moshiko)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the MoshiDecoder model. Defines the number of different tokens that can be
represented by the `inputs_ids` passed when calling [`MoshiDecoder`].
hidden_size (`int`, *optional*, defaults to 4096):
Dimensionality of the layers and the pooler layer of the main decoder.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of decoder layers.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the main decoder block.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`.
audio_vocab_size (`int`, *optional*):
Vocabulary size of the audio part of model. Defines the number of different tokens that can be
represented by the `audio_codes` passed when calling the Moshi models.
max_position_embeddings (`int`, *optional*, defaults to 3000):
The maximum sequence length that this model might ever be used with. Typically, set this to something large
just in case (e.g., 512 or 1024 or 2048).
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
head_dim (`int`, *optional*, defaults to `hidden_size // num_attention_heads`):
The attention head dimension.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
sliding_window (`int`, *optional*, defaults to 3000):
Sliding window attention window size. If not specified, will default to `3000`.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
ffn_dim (`int`, *optional*, defaults to 22528):
Dimensionality of the "intermediate" (often named feed-forward) layer in the main decoder block. Must be even.
rms_norm_eps (`float`, *optional*, defaults to 1e-08):
The epsilon used by the rms normalization layers.
num_codebooks (`int`, *optional*, defaults to 8):
The number of audio codebooks for each audio channels.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
kwargs (*optional*):
Dictionary of keyword arguments. Notably:
- **audio_encoder_config** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
defines the audio encoder config.
- **depth__config** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
defines the depth decoder config.
Example:
```python
>>> from transformers import (
... MoshiConfig,
... MoshiForConditionalGeneration,
... )
>>> configuration = MoshiConfig()
>>> # Initializing a MoshiForConditionalGeneration (with random weights) from the kmhf/hf-moshiko style configuration
>>> model = MoshiForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> # Saving the model, including its configuration
>>> model.save_pretrained("kmhf/hf-moshiko")
>>> # loading model and config from pretrained folder
>>> moshi_config = MoshiConfig.from_pretrained("kmhf/hf-moshiko")
>>> model = MoshiForConditionalGeneration.from_pretrained("kmhf/hf-moshiko", config=moshi_config)
```"""
model_type = "moshi"
keys_to_ignore_at_inference = ["past_key_values"]
sub_configs = {"audio_encoder_config": AutoConfig}
def __init__(
self,
vocab_size=32000,
hidden_size=4096,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
audio_vocab_size=None,
max_position_embeddings=3000,
rope_theta=10000.0,
hidden_act="silu",
head_dim=None,
initializer_range=0.02,
use_cache=True,
sliding_window=3000,
attention_dropout=0.0,
ffn_dim=22528,
rms_norm_eps=1e-8,
num_codebooks=8,
tie_word_embeddings=False,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads if num_key_value_heads is not None else num_attention_heads
self.max_position_embeddings = max_position_embeddings
self.rope_theta = rope_theta
self.hidden_act = hidden_act
self.head_dim = head_dim or hidden_size // num_attention_heads
self.initializer_range = initializer_range
self.use_cache = use_cache
self.sliding_window = sliding_window
self.attention_dropout = attention_dropout
if ffn_dim % 2 == 1:
raise ValueError(f"`ffn_dim={ffn_dim}` must be even.")
self.ffn_dim = ffn_dim
self.rms_norm_eps = rms_norm_eps
self.num_codebooks = num_codebooks
audio_encoder_config = kwargs.pop("audio_encoder_config", {})
audio_encoder_model_type = audio_encoder_config.pop("model_type", "mimi")
self.audio_encoder_config = AutoConfig.for_model(audio_encoder_model_type, **audio_encoder_config)
if self.num_codebooks > self.audio_encoder_config.num_codebooks:
raise ValueError(
f"`num_codebooks={num_codebooks}` is greater than the maximum number of codebooks that the audio encoder can deal with ({self.audio_encoder_config.num_codebooks}). Please lower it."
)
self.audio_vocab_size = (
self.audio_encoder_config.codebook_size if audio_vocab_size is None else audio_vocab_size
)
depth_decoder_config = kwargs.pop("depth_decoder_config", {})
depth_decoder_config.update(
{
"audio_vocab_size": self.audio_vocab_size,
"input_size": hidden_size,
"vocab_size": vocab_size,
"num_codebooks": num_codebooks,
}
)
self.depth_decoder_config = MoshiDepthConfig(**depth_decoder_config)
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
@property
def sampling_rate(self):
return self.audio_encoder_config.sampling_rate
@classmethod
def from_audio_encoder_config(
cls,
audio_encoder_config: PretrainedConfig,
**kwargs,
):
r"""
Instantiate a [`MoshiConfig`] (or a derived class) from an audio encoder configuration.
Returns:
[`MoshiConfig`]: An instance of a configuration object
"""
return cls(
audio_encoder_config=audio_encoder_config.to_dict(),
**kwargs,
)
__all__ = ["MoshiConfig", "MoshiDepthConfig"]
|
transformers/src/transformers/models/moshi/configuration_moshi.py/0
|
{
"file_path": "transformers/src/transformers/models/moshi/configuration_moshi.py",
"repo_id": "transformers",
"token_count": 6197
}
| 149 |
# coding=utf-8
# Copyright 2024 Meta AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Musicgen Melody model."""
import copy
import inspect
import math
import random
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...generation import (
ClassifierFreeGuidanceLogitsProcessor,
GenerationConfig,
GenerationMixin,
GenerationMode,
LogitsProcessorList,
StoppingCriteriaList,
)
from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa
from ...modeling_outputs import (
BaseModelOutputWithPast,
ModelOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_flash_attn_2_available,
is_flash_attn_greater_or_equal_2_10,
logging,
replace_return_docstrings,
)
from ..auto.configuration_auto import AutoConfig
from ..auto.modeling_auto import AutoModel, AutoModelForTextEncoding
from .configuration_musicgen_melody import MusicgenMelodyConfig, MusicgenMelodyDecoderConfig
if is_flash_attn_2_available():
from ...modeling_flash_attention_utils import _flash_attention_forward
if TYPE_CHECKING:
from ...generation.streamers import BaseStreamer
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "MusicgenMelodyConfig"
_CHECKPOINT_FOR_DOC = "facebook/musicgen-melody"
@dataclass
class MusicgenMelodyOutputWithPast(ModelOutput):
"""
Base class for Musicgen Melody autoregressive outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of conditional hidden-states representing the concatenation of the projeted text encoder output and the projeted audio encoder output.
Used as a conditional signal.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_hidden_states: Optional[torch.FloatTensor] = None
# Copied from transformers.models.musicgen.modeling_musicgen.shift_tokens_right
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
# transpose to get (bsz, num_codebooks, seq_len)
input_ids = input_ids.transpose(1, 2)
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
if decoder_start_token_id is None:
raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.")
shifted_input_ids[..., 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
# Copied from transformers.models.musicgen.modeling_musicgen.MusicgenSinusoidalPositionalEmbedding with Musicgen->MusicgenMelody
class MusicgenMelodySinusoidalPositionalEmbedding(nn.Module):
"""This module produces sinusoidal positional embeddings of any length."""
def __init__(self, num_positions: int, embedding_dim: int):
super().__init__()
self.embedding_dim = embedding_dim
self.make_weights(num_positions, embedding_dim)
def make_weights(self, num_embeddings: int, embedding_dim: int):
emb_weights = self.get_embedding(num_embeddings, embedding_dim)
if hasattr(self, "weights"):
# in forward put the weights on the correct dtype and device of the param
emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device)
self.weights = nn.Parameter(emb_weights)
self.weights.requires_grad = False
self.weights.detach_()
@staticmethod
def get_embedding(num_embeddings: int, embedding_dim: int):
"""
Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the
description in Section 3.5 of "Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb)
emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.cos(emb), torch.sin(emb)], dim=1).view(num_embeddings, -1)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
return emb.to(torch.get_default_dtype())
@torch.no_grad()
# Ignore copy
def forward(self, inputs_embeds: torch.Tensor, past_key_values_length: int = 0):
bsz, seq_len, _ = inputs_embeds.size()
# Create the position ids from the input token ids.
position_ids = (torch.arange(seq_len) + past_key_values_length).to(inputs_embeds.device)
# expand embeddings if needed
if seq_len > self.weights.size(0):
self.make_weights(seq_len + self.offset, self.embedding_dim)
return self.weights.index_select(0, position_ids.view(-1)).detach()
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->MusicgenMelody
class MusicgenMelodyAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[MusicgenMelodyConfig] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
# Copied from transformers.models.bart.modeling_bart.BartFlashAttention2 with Bart->MusicgenMelody
class MusicgenMelodyFlashAttention2(MusicgenMelodyAttention):
"""
MusicgenMelody flash attention module. This module inherits from `MusicgenMelodyAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def _reshape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
# MusicgenMelodyFlashAttention2 attention does not support output_attentions
if output_attentions:
raise ValueError("MusicgenMelodyFlashAttention2 attention does not support output_attentions")
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, q_len, _ = hidden_states.size()
# get query proj
query_states = self._reshape(self.q_proj(hidden_states), -1, bsz)
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0].transpose(1, 2)
value_states = past_key_value[1].transpose(1, 2)
elif is_cross_attention:
# cross_attentions
key_states = self._reshape(self.k_proj(key_value_states), -1, bsz)
value_states = self._reshape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0].transpose(1, 2), key_states], dim=1)
value_states = torch.cat([past_key_value[1].transpose(1, 2), value_states], dim=1)
else:
# self_attention
key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2))
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (LlamaRMSNorm handles it correctly)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
attn_output = _flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
dropout=self.dropout if self.training else 0.0,
is_causal=self.is_causal,
use_top_left_mask=self._flash_attn_uses_top_left_mask,
)
attn_output = attn_output.reshape(bsz, q_len, -1)
attn_output = self.out_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# Copied from transformers.models.bart.modeling_bart.BartSdpaAttention with Bart->MusicgenMelody
class MusicgenMelodySdpaAttention(MusicgenMelodyAttention):
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
if output_attentions or layer_head_mask is not None:
# TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"MusicgenMelodyModel is using MusicgenMelodySdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention"
' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states,
key_value_states=key_value_states,
past_key_value=past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states)
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
query_states = self._shape(query_states, tgt_len, bsz)
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
# The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1.
is_causal = True if self.is_causal and attention_mask is None and tgt_len > 1 else False
# NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask,
# but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=attention_mask,
dropout_p=self.dropout if self.training else 0.0,
is_causal=is_causal,
)
if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, None, past_key_value
MUSICGEN_MELODY_ATTENTION_CLASSES = {
"eager": MusicgenMelodyAttention,
"sdpa": MusicgenMelodySdpaAttention,
"flash_attention_2": MusicgenMelodyFlashAttention2,
}
class MusicgenMelodyDecoderLayer(nn.Module):
def __init__(self, config: MusicgenMelodyDecoderConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = MUSICGEN_MELODY_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=self.embed_dim,
num_heads=config.num_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
bias=False,
is_causal=True,
config=config,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.ffn_dim, bias=False)
self.fc2 = nn.Linear(config.ffn_dim, self.embed_dim, bias=False)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(attention_heads,)`.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
# Copied from transformers.models.musicgen.modeling_musicgen.MusicgenPreTrainedModel with Musicgen->MusicgenMelody
class MusicgenMelodyPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = MusicgenMelodyDecoderConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["MusicgenMelodyDecoderLayer", "MusicgenMelodyAttention"]
_supports_flash_attn_2 = True
_supports_sdpa = True
def _init_weights(self, module):
std = self.config.initializer_factor
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
MUSICGEN_MELODY_START_DOCSTRING = r"""
The Musicgen Melody model was proposed in [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by
Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, Alexandre Défossez. It is a
decoder-only transformer trained on the task of conditional music generation.
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`MusicgenMelodyConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MUSICGEN_MELODY_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
input_features (`torch.FloatTensor` of shape `(batch_size, audio_sequence_length, num_chroma)`):
Input audio features.
This should be returned by the [`MusicgenMelodyFeatureExtractor`] class that you can also
retrieve from [`AutoFeatureExtractor`]. See [`MusicgenMelodyFeatureExtractor.__call__`] for details.
decoder_input_ids (`torch.LongTensor` of shape `(batch_size * num_codebooks, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary, corresponding to the sequence of audio codes.
Indices can be obtained by encoding an audio prompt with an audio encoder model to predict audio codes,
such as with the [`EncodecModel`]. See [`EncodecModel.encode`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
<Tip warning={true}>
The `decoder_input_ids` will automatically be converted from shape `(batch_size * num_codebooks,
target_sequence_length)` to `(batch_size, num_codebooks, target_sequence_length)` in the forward pass. If
you obtain audio codes from an audio encoding model, such as [`EncodecModel`], ensure that the number of
frames is equal to 1, and that you reshape the audio codes from `(frames, batch_size, num_codebooks,
target_sequence_length)` to `(batch_size * num_codebooks, target_sequence_length)` prior to passing them as
`decoder_input_ids`.
</Tip>
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, encoder_sequence_length + sequence_length, embed_size_per_head)`).
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of conditional hidden-states representing the concatenation of the projeted text encoder output and the projeted audio encoder output.
Used as a conditional signal and will thus be concatenated to the projeted `decoder_input_ids`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length, num_codebooks)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
MUSICGEN_MELODY_DECODER_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size * num_codebooks, sequence_length)`):
Indices of input sequence tokens in the vocabulary, corresponding to the sequence of audio codes.
Indices can be obtained by encoding an audio prompt with an audio encoder model to predict audio codes,
such as with the [`EncodecModel`]. See [`EncodecModel.encode`] for details.
[What are input IDs?](../glossary#input-ids)
<Tip warning={true}>
The `input_ids` will automatically be converted from shape `(batch_size * num_codebooks,
target_sequence_length)` to `(batch_size, num_codebooks, target_sequence_length)` in the forward pass. If
you obtain audio codes from an audio encoding model, such as [`EncodecModel`], ensure that the number of
frames is equal to 1, and that you reshape the audio codes from `(frames, batch_size, num_codebooks,
target_sequence_length)` to `(batch_size * num_codebooks, target_sequence_length)` prior to passing them as
`input_ids`.
</Tip>
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states representing the concatenation of the text encoder output and the processed audio encoder output.
Used as a conditional signal and will thus be concatenated to the projeted `decoder_input_ids`.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing attention on conditional hidden states. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Copied from transformers.models.musicgen.modeling_musicgen.MusicgenDecoder with MUSICGEN->MUSICGEN_MELODY,Musicgen->MusicgenMelody
class MusicgenMelodyDecoder(MusicgenMelodyPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MusicgenMelodyDecoderLayer`]
"""
def __init__(self, config: MusicgenMelodyDecoderConfig):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.layerdrop
self.max_target_positions = config.max_position_embeddings
self.d_model = config.hidden_size
self.num_codebooks = config.num_codebooks
self.embed_scale = math.sqrt(config.hidden_size) if config.scale_embedding else 1.0
embed_dim = config.vocab_size + 1
self.embed_tokens = nn.ModuleList(
[nn.Embedding(embed_dim, config.hidden_size) for _ in range(config.num_codebooks)]
)
self.embed_positions = MusicgenMelodySinusoidalPositionalEmbedding(
config.max_position_embeddings,
config.hidden_size,
)
self.layers = nn.ModuleList([MusicgenMelodyDecoderLayer(config) for _ in range(config.num_hidden_layers)])
self.layer_norm = nn.LayerNorm(config.hidden_size)
self.attn_implementation = config._attn_implementation
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(MUSICGEN_MELODY_DECODER_INPUTS_DOCSTRING)
# Ignore copy
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
# (bsz * codebooks, seq_len) -> (bsz, codebooks, seq_len)
input = input_ids.reshape(-1, self.num_codebooks, input_ids.shape[-1])
bsz, num_codebooks, seq_len = input.shape
input_shape = (bsz, seq_len)
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
input = inputs_embeds[:, :, -1:]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = sum([self.embed_tokens[codebook](input[:, codebook]) for codebook in range(num_codebooks)])
if encoder_hidden_states is not None:
# take care of attention masks
if encoder_attention_mask is not None and attention_mask is None:
attention_mask = torch.ones(inputs_embeds.shape[:2], device=inputs_embeds.device)
if attention_mask is not None:
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_states.shape[:2], device=attention_mask.device)
attention_mask = torch.cat([encoder_attention_mask, attention_mask], dim=1)
# fuse encoder_hidden_states and inputs_embeds
inputs_embeds = torch.cat([encoder_hidden_states, inputs_embeds], dim=1)
input_shape = inputs_embeds.size()[:-1]
if self.attn_implementation == "flash_attention_2":
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
elif self.attn_implementation == "sdpa" and not output_attentions:
# output_attentions=True can not be supported when using SDPA, and we fall back on
# the manual implementation that requires a 4D causal mask in all cases.
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
attention_mask,
input_shape,
inputs_embeds,
past_key_values_length,
)
else:
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# embed positions
positions = self.embed_positions(inputs_embeds, past_key_values_length)
hidden_states = inputs_embeds + positions.to(inputs_embeds.device)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing`. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
next_decoder_cache = () if use_cache else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.size()[0] != len(self.layers):
raise ValueError(
f"The `head_mask` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
if self.training and (dropout_probability < self.layerdrop):
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.forward,
hidden_states,
attention_mask,
head_mask[idx] if head_mask is not None else None,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
if output_attentions:
all_attentions += (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_attentions] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_attentions,
)
@add_start_docstrings(
"The bare MusicgenMelody decoder model outputting raw hidden-states without any specific head on top.",
MUSICGEN_MELODY_START_DOCSTRING,
)
# Copied from transformers.models.musicgen.modeling_musicgen.MusicgenModel with MUSICGEN->MUSICGEN_MELODY,Musicgen->MusicgenMelody
class MusicgenMelodyModel(MusicgenMelodyPreTrainedModel):
def __init__(self, config: MusicgenMelodyDecoderConfig):
super().__init__(config)
self.decoder = MusicgenMelodyDecoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.decoder.embed_tokens
def set_input_embeddings(self, value):
self.decoder.embed_tokens = value
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(MUSICGEN_MELODY_DECODER_INPUTS_DOCSTRING)
# Ignore copy
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs
return BaseModelOutputWithPast(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
hidden_states=decoder_outputs.hidden_states,
attentions=decoder_outputs.attentions,
)
@add_start_docstrings(
"The Musicgen Melody decoder model with a language modelling head on top.",
MUSICGEN_MELODY_START_DOCSTRING,
)
# Copied from transformers.models.musicgen.modeling_musicgen.MusicgenForCausalLM with MUSICGEN->MUSICGEN_MELODY,Musicgen->MusicgenMelody,MusicGen->Musicgen Melody
class MusicgenMelodyForCausalLM(MusicgenMelodyPreTrainedModel, GenerationMixin):
def __init__(self, config: MusicgenMelodyDecoderConfig):
super().__init__(config)
self.model = MusicgenMelodyModel(config)
self.num_codebooks = config.num_codebooks
self.lm_heads = nn.ModuleList(
[nn.Linear(config.hidden_size, config.vocab_size, bias=False) for _ in range(config.num_codebooks)]
)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.decoder.embed_tokens
def set_input_embeddings(self, value):
self.model.decoder.embed_tokens = value
def get_output_embeddings(self):
return self.lm_heads
def set_output_embeddings(self, new_embeddings):
self.lm_heads = new_embeddings
def set_decoder(self, decoder):
self.model.decoder = decoder
def get_decoder(self):
return self.model.decoder
@add_start_docstrings_to_model_forward(MUSICGEN_MELODY_DECODER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=MusicgenMelodyOutputWithPast, config_class=_CONFIG_FOR_DOC)
# Ignore copy
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.LongTensor] = None,
) -> Union[Tuple, MusicgenMelodyOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length, num_codebooks)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (labels is not None) and (input_ids is None and inputs_embeds is None):
input_ids = shift_tokens_right(labels, self.config.pad_token_id, self.config.bos_token_id)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
lm_logits = torch.stack([head(hidden_states) for head in self.lm_heads], dim=1)
loss = None
if labels is not None:
# since encoder hidden states have been concatenated to the decoder hidden states,
# we take the last timestamps corresponding to labels
logits = lm_logits[:, :, -labels.shape[1] :]
loss_fct = CrossEntropyLoss()
loss = torch.zeros([], device=self.device)
# per codebook cross-entropy
# ref: https://github.com/facebookresearch/audiocraft/blob/69fea8b290ad1b4b40d28f92d1dfc0ab01dbab85/audiocraft/solvers/musicgen.py#L242-L243
# -100 labels are ignored
labels = labels.masked_fill(labels == self.config.pad_token_id, -100)
# per codebook cross-entropy
for codebook in range(self.config.num_codebooks):
codebook_logits = logits[:, codebook].contiguous().view(-1, logits.shape[-1])
codebook_labels = labels[..., codebook].contiguous().view(-1)
loss += loss_fct(codebook_logits, codebook_labels)
loss = loss / self.config.num_codebooks
# (bsz, num_codebooks, seq_len, vocab_size) -> (bsz * num_codebooks, seq_len, vocab_size)
lm_logits = lm_logits.reshape(-1, *lm_logits.shape[2:])
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return MusicgenMelodyOutputWithPast(
loss=loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# Ignore copy
def prepare_inputs_for_generation(
self,
input_ids,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
past_key_values=None,
use_cache=True,
delay_pattern_mask=None,
guidance_scale=None,
**kwargs,
):
# Overwritten -- MusicGen has custom processing
if delay_pattern_mask is None:
input_ids, delay_pattern_mask = self.build_delay_pattern_mask(
input_ids,
pad_token_id=self.generation_config.pad_token_id,
max_length=self.generation_config.max_length,
)
# apply the delay pattern mask
input_ids = self.apply_delay_pattern_mask(input_ids, delay_pattern_mask)
if guidance_scale is not None and guidance_scale > 1:
# for classifier free guidance we need to replicate the decoder args across the batch dim (we'll split these
# before sampling)
input_ids = input_ids.repeat((2, 1))
if attention_mask is not None:
attention_mask = attention_mask.repeat((2, 1))
if encoder_hidden_states is not None:
encoder_hidden_states = torch.concatenate(
[encoder_hidden_states, torch.zeros_like(encoder_hidden_states)], dim=0
)
if encoder_attention_mask is not None:
encoder_attention_mask = torch.concatenate(
encoder_attention_mask, torch.zeros_like(encoder_attention_mask), dim=0
)
if past_key_values is not None:
input_ids = input_ids[:, -1:]
# we only want to use conditional signal in the 1st generation step but keeping the attention mask
encoder_hidden_states = None
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"encoder_hidden_states": encoder_hidden_states,
"encoder_attention_mask": encoder_attention_mask,
"head_mask": head_mask,
"past_key_values": past_key_values,
"use_cache": use_cache,
}
def build_delay_pattern_mask(self, input_ids: torch.LongTensor, pad_token_id: int, max_length: int = None):
"""Build a delayed pattern mask to the input_ids. Each codebook is offset by the previous codebook by
one, giving a delayed pattern mask at the start of sequence and end of sequence. Take the example where there
are 4 codebooks and a max sequence length of 8, we have the delayed pattern mask of shape `(codebooks,
seq_len)`:
- [P, -1, -1, -1, -1, P, P, P]
- [P, P, -1, -1, -1, -1, P, P]
- [P, P, P, -1, -1, -1, -1, P]
- [P, P, P, P, -1, -1, -1, -1]
where P is the special padding token id and -1 indicates that the token is valid for prediction. If we include
a prompt (decoder input ids), the -1 positions indicate where new tokens should be predicted. Otherwise, the
mask is set to the value in the prompt:
- [P, a, b, -1, -1, P, P, P]
- [P, P, c, d, -1, -1, P, P]
- [P, P, P, e, f, -1, -1, P]
- [P, P, P, P, g, h, -1, -1]
where a-h indicate the input prompt (decoder input ids) that are offset by 1. Now, we only override the -1
tokens in our prediction.
"""
# (bsz * num_codebooks, seq_len) -> (bsz, num_codebooks, seq_len)
input_ids = input_ids.reshape(-1, self.num_codebooks, input_ids.shape[-1])
bsz, num_codebooks, seq_len = input_ids.shape
max_length = max_length if max_length is not None else self.generation_config.max_length
input_ids_shifted = (
torch.ones((bsz, num_codebooks, max_length), dtype=torch.long, device=input_ids.device) * -1
)
channel_codebooks = num_codebooks // 2 if self.config.audio_channels == 2 else num_codebooks
# we only apply the mask if we have a large enough seq len - otherwise we return as is
if max_length < 2 * channel_codebooks - 1:
return input_ids.reshape(bsz * num_codebooks, -1), input_ids_shifted.reshape(bsz * num_codebooks, -1)
# fill the shifted ids with the prompt entries, offset by the codebook idx
for codebook in range(channel_codebooks):
if self.config.audio_channels == 1:
# mono channel - loop over the codebooks one-by-one
input_ids_shifted[:, codebook, codebook : seq_len + codebook] = input_ids[:, codebook]
else:
# left/right channels are interleaved in the generated codebooks, so handle one then the other
input_ids_shifted[:, 2 * codebook, codebook : seq_len + codebook] = input_ids[:, 2 * codebook]
input_ids_shifted[:, 2 * codebook + 1, codebook : seq_len + codebook] = input_ids[:, 2 * codebook + 1]
# construct a pattern mask that indicates the positions of padding tokens for each codebook
# first fill the upper triangular part (the EOS padding)
delay_pattern = torch.triu(
torch.ones((channel_codebooks, max_length), dtype=torch.bool), diagonal=max_length - channel_codebooks + 1
)
# then fill the lower triangular part (the BOS padding)
delay_pattern = delay_pattern + torch.tril(torch.ones((channel_codebooks, max_length), dtype=torch.bool))
if self.config.audio_channels == 2:
# for left/right channel we need to duplicate every row of the pattern mask in an interleaved fashion
delay_pattern = delay_pattern.repeat_interleave(2, dim=0)
mask = ~delay_pattern.to(input_ids.device)
input_ids = mask * input_ids_shifted + ~mask * pad_token_id
# find the first position to start generating - this is the first place we have the -1 token
# and will always be in the first codebook (since it has no codebook offset)
first_codebook_ids = input_ids[:, 0, :]
start_ids = (first_codebook_ids == -1).nonzero()[:, 1]
if len(start_ids) > 0:
first_start_id = min(start_ids)
else:
# we have no tokens that need to be filled - return entire matrix of input ids
first_start_id = seq_len
# (bsz * num_codebooks, seq_len) -> (bsz, num_codebooks, seq_len)
pattern_mask = input_ids.reshape(bsz * num_codebooks, -1)
input_ids = input_ids[..., :first_start_id].reshape(bsz * num_codebooks, -1)
return input_ids, pattern_mask
@staticmethod
def apply_delay_pattern_mask(input_ids, decoder_pad_token_mask):
"""Apply a delay pattern mask to the decoder input ids, only preserving predictions where
the mask is set to -1, and otherwise setting to the value detailed in the mask."""
seq_len = input_ids.shape[-1]
decoder_pad_token_mask = decoder_pad_token_mask[..., :seq_len]
input_ids = torch.where(decoder_pad_token_mask == -1, input_ids, decoder_pad_token_mask)
return input_ids
@torch.no_grad()
# Ignore copy
def generate(
self,
inputs: Optional[torch.Tensor] = None,
generation_config: Optional[GenerationConfig] = None,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
synced_gpus: Optional[bool] = None,
streamer: Optional["BaseStreamer"] = None,
**kwargs,
):
"""
Generates sequences of token ids for models with a language modeling head.
<Tip warning={true}>
Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
model's default generation configuration. You can override any `generation_config` by passing the corresponding
parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.
For an overview of generation strategies and code examples, check out the [following
guide](./generation_strategies).
</Tip>
Parameters:
inputs (`torch.Tensor` of varying shape depending on the modality, *optional*):
The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the
method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs`
should be in the format `input_ids`. For encoder-decoder models *inputs* can represent any of
`input_ids`, `input_values`, `input_features`, or `pixel_values`.
generation_config (`~generation.GenerationConfig`, *optional*):
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
passed to generate matching the attributes of `generation_config` will override them. If
`generation_config` is not provided, the default will be used, which had the following loading
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
default values, whose documentation should be checked to parameterize generation.
logits_processor (`LogitsProcessorList`, *optional*):
Custom logits processors that complement the default logits processors built from arguments and
generation config. If a logit processor is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
stopping_criteria (`StoppingCriteriaList`, *optional*):
Custom stopping criteria that complement the default stopping criteria built from arguments and a
generation config. If a stopping criteria is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
synced_gpus (`bool`, *optional*, defaults to `False`):
Whether to continue running the while loop until max_length (needed to avoid deadlocking with
`FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3).
streamer (`BaseStreamer`, *optional*):
Streamer object that will be used to stream the generated sequences. Generated tokens are passed
through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
kwargs (`Dict[str, Any]`, *optional*):
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
Return:
[`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`.
If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible
[`~utils.ModelOutput`] types are:
- [`~generation.GenerateDecoderOnlyOutput`],
- [`~generation.GenerateBeamDecoderOnlyOutput`]
If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible
[`~utils.ModelOutput`] types are:
- [`~generation.GenerateEncoderDecoderOutput`],
- [`~generation.GenerateBeamEncoderDecoderOutput`]
"""
# 1. Handle `generation_config` and kwargs that might update it, and validate the resulting objects
if generation_config is None:
generation_config = self.generation_config
generation_config = copy.deepcopy(generation_config)
model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs
generation_config.validate()
self._validate_model_kwargs(model_kwargs.copy())
# 2. Set generation parameters if not already defined
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
requires_attention_mask = "encoder_outputs" not in model_kwargs
kwargs_has_attention_mask = model_kwargs.get("attention_mask", None) is not None
# 3. Define model inputs`
input_ids, model_input_name, model_kwargs = self._prepare_model_inputs(
inputs, generation_config.bos_token_id, model_kwargs
)
batch_size = input_ids.shape[0] // self.num_codebooks
self._prepare_special_tokens(generation_config, kwargs_has_attention_mask, device=input_ids.device)
# 4. Define other model kwargs
model_kwargs["use_cache"] = generation_config.use_cache
model_kwargs["guidance_scale"] = generation_config.guidance_scale
if model_kwargs.get("attention_mask", None) is None and requires_attention_mask:
model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
input_ids, generation_config, model_kwargs
)
# 5. Prepare `max_length` depending on other stopping criteria.
input_ids_length = input_ids.shape[-1]
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
has_default_min_length = kwargs.get("min_length") is None and generation_config.min_length is not None
generation_config = self._prepare_generated_length(
generation_config=generation_config,
has_default_max_length=has_default_max_length,
has_default_min_length=has_default_min_length,
model_input_name=model_input_name,
inputs_tensor=input_ids,
input_ids_length=input_ids_length,
)
# 6. Prepare `input_ids` which will be used for auto-regressive generation
# Build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to Musicgen)
input_ids, delay_pattern_mask = self.build_delay_pattern_mask(
input_ids,
pad_token_id=generation_config._decoder_start_token_tensor,
max_length=generation_config.max_length,
)
if streamer is not None:
streamer.put(input_ids.cpu())
# stash the delay mask so that we don't have to recompute it in each forward pass
model_kwargs["delay_pattern_mask"] = delay_pattern_mask
# 7. determine generation mode
generation_mode = generation_config.get_generation_mode()
# 8. prepare batched CFG externally (to enable coexistance with the unbatched CFG)
if generation_config.guidance_scale is not None and generation_config.guidance_scale > 1:
logits_processor.append(ClassifierFreeGuidanceLogitsProcessor(generation_config.guidance_scale))
generation_config.guidance_scale = None
# 9. prepare distribution pre_processing samplers
logits_processor = self._get_logits_processor(
generation_config=generation_config,
input_ids_seq_length=input_ids_length,
encoder_input_ids=input_ids,
prefix_allowed_tokens_fn=None,
logits_processor=logits_processor,
device=input_ids.device,
)
# 10. prepare stopping criteria
stopping_criteria = self._get_stopping_criteria(
generation_config=generation_config, stopping_criteria=stopping_criteria
)
if generation_mode in (GenerationMode.SAMPLE, GenerationMode.GREEDY_SEARCH):
# expand input_ids with `num_return_sequences` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_return_sequences,
**model_kwargs,
)
# 11. run sample
outputs = self._sample(
input_ids,
logits_processor=logits_processor,
stopping_criteria=stopping_criteria,
generation_config=generation_config,
synced_gpus=synced_gpus,
streamer=streamer,
**model_kwargs,
)
else:
raise ValueError(
"Got incompatible mode for generation, should be one of greedy or sampling. "
"Ensure that beam search is de-activated by setting `num_beams=1` and `num_beam_groups=1`."
)
if generation_config.return_dict_in_generate:
output_ids = outputs.sequences
else:
output_ids = outputs
# apply the pattern mask to the final ids
output_ids = self.apply_delay_pattern_mask(output_ids, model_kwargs["delay_pattern_mask"])
# revert the pattern delay mask by filtering the pad token id
output_ids = output_ids[output_ids != generation_config._pad_token_tensor].reshape(
batch_size, self.num_codebooks, -1
)
if generation_config.return_dict_in_generate:
outputs.sequences = output_ids
return outputs
else:
return output_ids
@add_start_docstrings(
"The composite Musicgen Melody model with a text and audio conditional models, a MusicgenMelody decoder and an audio encoder, "
"for music generation tasks with one or both of text and audio prompts.",
MUSICGEN_MELODY_START_DOCSTRING,
"""
text_encoder (`Optional[PreTrainedModel]`, *optional*): Text encoder.
audio_encoder (`Optional[PreTrainedModel]`, *optional*): Audio code decoder.
decoder (`Optional[MusicgenMelodyForCausalLM]`, *optional*): MusicGen Melody decoder used to generate audio codes.
""",
)
class MusicgenMelodyForConditionalGeneration(PreTrainedModel, GenerationMixin):
config_class = MusicgenMelodyConfig
main_input_name = "input_ids"
supports_gradient_checkpointing = True
_supports_flash_attn_2 = True
_supports_sdpa = True
def __init__(
self,
config: MusicgenMelodyConfig = None,
text_encoder: Optional[PreTrainedModel] = None,
audio_encoder: Optional[PreTrainedModel] = None,
decoder: Optional[MusicgenMelodyForCausalLM] = None,
):
if config is None and None in (text_encoder, audio_encoder, decoder):
raise ValueError(
"Either a configuration has to be provided, or all three of text encoder, audio encoder and Musicgen Melody decoder."
)
if config is None:
config = MusicgenMelodyConfig.from_sub_models_config(
text_encoder.config, audio_encoder.config, decoder.config
)
else:
if not isinstance(config, self.config_class):
raise ValueError(f"Config: {config} has to be of type {self.config_class}")
# initialize with config
super().__init__(config)
if text_encoder is None:
text_encoder = AutoModelForTextEncoding.from_config(config.text_encoder)
if audio_encoder is None:
audio_encoder = AutoModel.from_config(config.audio_encoder)
if decoder is None:
decoder = MusicgenMelodyForCausalLM._from_config(config.decoder)
self.text_encoder = text_encoder
self.audio_encoder = audio_encoder
self.decoder = decoder
# make sure that the individual model's config refers to the shared config
# so that the updates to the config will be synced
self.config.text_encoder._attn_implementation = self.text_encoder.config._attn_implementation
self.config.audio_encoder._attn_implementation = self.audio_encoder.config._attn_implementation
self.config.decoder._attn_implementation = self.decoder.config._attn_implementation
self.text_encoder.config = self.config.text_encoder
self.audio_encoder.config = self.config.audio_encoder
self.decoder.config = self.config.decoder
# text encoder outputs might need to be projected to different dimension for decoder
if self.text_encoder.config.hidden_size != self.decoder.config.hidden_size:
self.enc_to_dec_proj = nn.Linear(self.text_encoder.config.hidden_size, self.decoder.config.hidden_size)
# audio encoder outputs after chroma extraction might need to be projected to different dimension for decoder
if self.config.num_chroma != self.decoder.config.hidden_size:
self.audio_enc_to_dec_proj = nn.Linear(self.config.num_chroma, self.decoder.config.hidden_size)
if self.text_encoder.get_output_embeddings() is not None:
raise ValueError(
f"The encoder {self.text_encoder} should not have a LM Head. Please use a model without and LM Head"
)
# Initialize projection layers weights and tie text encoder and decoder weights if set accordingly
self.post_init()
def _init_weights(self, module):
# MusicgenMelodyForConditionalGeneration is made of PreTrainedModels that have already been initialized
# Projection layers still need to be initialized.
std = self.decoder.config.initializer_factor
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
def tie_weights(self):
# tie text encoder & decoder if needed
if self.config.tie_encoder_decoder:
# tie text encoder and decoder base model
decoder_base_model_prefix = self.decoder.base_model_prefix
tied_weights = self._tie_encoder_decoder_weights(
self.text_encoder,
self.decoder._modules[decoder_base_model_prefix],
self.decoder.base_model_prefix,
"text_encoder",
)
# Setting a dynamic variable instead of `_tied_weights_keys` because it's a class
# attributed not an instance member, therefore modifying it will modify the entire class
# Leading to issues on subsequent calls by different tests or subsequent calls.
self._dynamic_tied_weights_keys = tied_weights
def get_text_encoder(self):
return self.text_encoder
def get_encoder(self):
# get the text encoder to compute the conditionning hidden-states for generation
return self.get_text_encoder()
def get_decoder(self):
return self.decoder
def get_input_embeddings(self):
return self.text_encoder.get_input_embeddings()
def get_output_embeddings(self):
return self.decoder.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
return self.decoder.set_output_embeddings(new_embeddings)
@classmethod
# Copied from transformers.models.musicgen.modeling_musicgen.MusicgenForConditionalGeneration.from_sub_models_pretrained with Musicgen->MusicgenMelody, musicgen-small->musicgen-melody
def from_sub_models_pretrained(
cls,
text_encoder_pretrained_model_name_or_path: str = None,
audio_encoder_pretrained_model_name_or_path: str = None,
decoder_pretrained_model_name_or_path: str = None,
*model_args,
**kwargs,
) -> PreTrainedModel:
r"""
Instantiate a text encoder, an audio encoder, and a MusicGen decoder from one, two or three base classes of the
library from pretrained model checkpoints.
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
the model, you need to first set it back in training mode with `model.train()`.
Params:
text_encoder_pretrained_model_name_or_path (`str`, *optional*):
Information necessary to initiate the text encoder. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a *directory* containing model weights saved using
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
audio_encoder_pretrained_model_name_or_path (`str`, *optional*):
Information necessary to initiate the audio encoder. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a *directory* containing model weights saved using
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`):
Information necessary to initiate the decoder. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a *directory* containing model weights saved using
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
model_args (remaining positional arguments, *optional*):
All remaining positional arguments will be passed to the underlying model's `__init__` method.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
`output_attentions=True`).
- To update the text encoder configuration, use the prefix *text_encoder_* for each configuration
parameter.
- To update the audio encoder configuration, use the prefix *audio_encoder_* for each configuration
parameter.
- To update the decoder configuration, use the prefix *decoder_* for each configuration parameter.
- To update the parent model configuration, do not use a prefix for each configuration parameter.
Behaves differently depending on whether a `config` is provided or automatically loaded.
Example:
```python
>>> from transformers import MusicgenMelodyForConditionalGeneration
>>> # initialize a musicgen model from a t5 text encoder, encodec audio encoder, and musicgen decoder
>>> model = MusicgenMelodyForConditionalGeneration.from_sub_models_pretrained(
... text_encoder_pretrained_model_name_or_path="google-t5/t5-base",
... audio_encoder_pretrained_model_name_or_path="facebook/encodec_24khz",
... decoder_pretrained_model_name_or_path="facebook/musicgen-melody",
... )
>>> # saving model after fine-tuning
>>> model.save_pretrained("./musicgen-ft")
>>> # load fine-tuned model
>>> model = MusicgenMelodyForConditionalGeneration.from_pretrained("./musicgen-ft")
```"""
kwargs_text_encoder = {
argument[len("text_encoder_") :]: value
for argument, value in kwargs.items()
if argument.startswith("text_encoder_")
}
kwargs_audio_encoder = {
argument[len("audio_encoder_") :]: value
for argument, value in kwargs.items()
if argument.startswith("audio_encoder_")
}
kwargs_decoder = {
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
}
# remove text encoder, audio encoder and decoder kwargs from kwargs
for key in kwargs_text_encoder.keys():
del kwargs["text_encoder_" + key]
for key in kwargs_audio_encoder.keys():
del kwargs["audio_encoder_" + key]
for key in kwargs_decoder.keys():
del kwargs["decoder_" + key]
# Load and initialize the encoder and decoder
# The distinction between encoder and decoder at the model level is made
# by the value of the flag `is_decoder` that we need to set correctly.
text_encoder = kwargs_text_encoder.pop("model", None)
if text_encoder is None:
if text_encoder_pretrained_model_name_or_path is None:
raise ValueError(
"If `text_encoder_model` is not defined as an argument, a `text_encoder_pretrained_model_name_or_path` has "
"to be defined."
)
if "config" not in kwargs_text_encoder:
encoder_config, kwargs_text_encoder = AutoConfig.from_pretrained(
text_encoder_pretrained_model_name_or_path, **kwargs_text_encoder, return_unused_kwargs=True
)
if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
logger.info(
f"Initializing {text_encoder_pretrained_model_name_or_path} as a text_encoder model "
"from a decoder model. Cross-attention and casual mask are disabled."
)
encoder_config.is_decoder = False
encoder_config.add_cross_attention = False
kwargs_text_encoder["config"] = encoder_config
text_encoder = AutoModel.from_pretrained(
text_encoder_pretrained_model_name_or_path, *model_args, **kwargs_text_encoder
)
audio_encoder = kwargs_audio_encoder.pop("model", None)
if audio_encoder is None:
if audio_encoder_pretrained_model_name_or_path is None:
raise ValueError(
"If `audio_encoder_model` is not defined as an argument, an `audio_encoder_pretrained_model_name_or_path` has "
"to be defined."
)
if "config" not in kwargs_audio_encoder:
encoder_config, kwargs_audio_encoder = AutoConfig.from_pretrained(
audio_encoder_pretrained_model_name_or_path, **kwargs_audio_encoder, return_unused_kwargs=True
)
if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
logger.info(
f"Initializing {audio_encoder_pretrained_model_name_or_path} as an audio_encoder model "
"from a decoder model. Cross-attention and casual mask are disabled."
)
encoder_config.is_decoder = False
encoder_config.add_cross_attention = False
kwargs_audio_encoder["config"] = encoder_config
audio_encoder = AutoModel.from_pretrained(
audio_encoder_pretrained_model_name_or_path, *model_args, **kwargs_audio_encoder
)
decoder = kwargs_decoder.pop("model", None)
if decoder is None:
if decoder_pretrained_model_name_or_path is None:
raise ValueError(
"If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has "
"to be defined."
)
if "config" not in kwargs_decoder:
decoder_config, kwargs_decoder = AutoConfig.from_pretrained(
decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True
)
if isinstance(decoder_config, MusicgenMelodyConfig):
decoder_config = decoder_config.decoder
if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False:
logger.info(
f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention"
f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if"
f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers."
)
decoder_config.is_decoder = True
decoder_config.add_cross_attention = True
kwargs_decoder["config"] = decoder_config
if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False:
logger.warning(
f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. "
f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, "
"make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` "
"passed to `.from_sub_models_pretrained(...)` are set to `True` or do not pass a "
"`decoder_config` to `.from_sub_models_pretrained(...)`"
)
decoder = MusicgenMelodyForCausalLM.from_pretrained(
decoder_pretrained_model_name_or_path, **kwargs_decoder
)
# instantiate config with corresponding kwargs
config = MusicgenMelodyConfig.from_sub_models_config(
text_encoder.config, audio_encoder.config, decoder.config, **kwargs
)
return cls(text_encoder=text_encoder, audio_encoder=audio_encoder, decoder=decoder, config=config)
@add_start_docstrings_to_model_forward(MUSICGEN_MELODY_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=MusicgenMelodyOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.BoolTensor] = None,
input_features: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
past_key_values: Tuple[Tuple[torch.FloatTensor]] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple, MusicgenMelodyOutputWithPast]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoProcessor, MusicgenMelodyForConditionalGeneration
>>> import torch
>>> processor = AutoProcessor.from_pretrained("facebook/musicgen-melody")
>>> model = MusicgenMelodyForConditionalGeneration.from_pretrained("facebook/musicgen-melody")
>>> inputs = processor(
... text=["80s pop track with bassy drums and synth", "90s rock song with loud guitars and heavy drums"],
... padding=True,
... return_tensors="pt",
... )
>>> pad_token_id = model.generation_config.pad_token_id
>>> decoder_input_ids = (
... torch.ones((inputs.input_ids.shape[0] * model.decoder.num_codebooks, 1), dtype=torch.long)
... * pad_token_id
... )
>>> logits = model(**inputs, decoder_input_ids=decoder_input_ids).logits
>>> logits.shape # (bsz * num_codebooks, encoder_len + tgt_len, vocab_size)
torch.Size([8, 249, 2048])
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
kwargs_text_encoder = {
argument[len("text_encoder_")]: value
for argument, value in kwargs.items()
if argument.startswith("text_encoder_")
}
kwargs_decoder = {
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
}
if encoder_hidden_states is None:
if inputs_embeds is not None or input_ids is not None:
encoder_outputs = self.text_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs_text_encoder,
)
encoder_hidden_states = encoder_outputs[0]
# optionally project encoder_hidden_states
if self.text_encoder.config.hidden_size != self.decoder.config.hidden_size:
encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)
if attention_mask is not None and encoder_hidden_states is not None:
encoder_hidden_states = encoder_hidden_states * attention_mask[..., None]
# set a default audio conditional hidden states if text is not None
if encoder_hidden_states is not None and input_features is None:
input_features = torch.zeros(
(encoder_hidden_states.shape[0], 1, self.config.num_chroma),
device=self.device,
dtype=self.dtype,
)
input_features[:, :, 0] = 1
if input_features is not None:
audio_hidden_states = input_features
# optionally project audio_hidden_states ->
# (batch_size, seq_len, num_chroma) -> (batch_size, seq_len, hidden_size)
if self.config.num_chroma != self.decoder.config.hidden_size:
audio_hidden_states = self.audio_enc_to_dec_proj(audio_hidden_states)
# pad or truncate to config.chroma_length
if audio_hidden_states.shape[1] < self.config.chroma_length:
n_repeat = int(math.ceil(self.config.chroma_length / audio_hidden_states.shape[1]))
audio_hidden_states = audio_hidden_states.repeat(1, n_repeat, 1)
else:
logger.warning(
f"The conditional audio signal is of length {audio_hidden_states.shape[1]}, which exceeds"
f"the maximum chroma duration of {self.config.chroma_length}."
f"The audio will be truncated to {self.config.chroma_length} frames."
)
audio_hidden_states = audio_hidden_states[:, : self.config.chroma_length]
if encoder_hidden_states is not None:
encoder_hidden_states = torch.cat([audio_hidden_states, encoder_hidden_states], dim=1)
else:
encoder_hidden_states = audio_hidden_states
if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None):
decoder_input_ids = shift_tokens_right(
labels, self.config.decoder.pad_token_id, self.config.decoder.bos_token_id
)
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_hidden_states,
inputs_embeds=decoder_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
use_cache=use_cache,
past_key_values=past_key_values,
return_dict=return_dict,
labels=labels,
**kwargs_decoder,
)
if not return_dict:
return decoder_outputs + (encoder_hidden_states,)
return MusicgenMelodyOutputWithPast(
loss=decoder_outputs.loss,
logits=decoder_outputs.logits,
past_key_values=decoder_outputs.past_key_values,
hidden_states=decoder_outputs.hidden_states,
attentions=decoder_outputs.attentions,
encoder_hidden_states=encoder_hidden_states,
)
def prepare_inputs_for_generation(
self,
decoder_input_ids,
encoder_hidden_states=None,
past_key_values=None,
attention_mask=None,
decoder_attention_mask=None,
decoder_head_mask=None,
use_cache=None,
decoder_delay_pattern_mask=None,
guidance_scale=None,
**kwargs,
):
# Overwritten -- MusicGen has custom processing
if decoder_delay_pattern_mask is None:
decoder_input_ids, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask(
decoder_input_ids,
self.generation_config.pad_token_id,
max_length=self.generation_config.max_length,
)
# apply the delay pattern mask
decoder_input_ids = self.decoder.apply_delay_pattern_mask(decoder_input_ids, decoder_delay_pattern_mask)
if guidance_scale is not None and guidance_scale > 1:
# for classifier free guidance we need to replicate the decoder args across the batch dim (we'll split these
# before sampling)
decoder_input_ids = decoder_input_ids.repeat((2, 1))
if decoder_attention_mask is not None:
decoder_attention_mask = decoder_attention_mask.repeat((2, 1))
if past_key_values is not None:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if decoder_input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = decoder_input_ids.shape[1] - 1
decoder_input_ids = decoder_input_ids[:, remove_prefix_length:]
# we only want to use conditional signal in the 1st generation step but keeping the attention mask
encoder_hidden_states = None
# we also have to update the attention mask
return {
"input_ids": None, # encoder_hidden_states is defined. input_ids not needed
"encoder_hidden_states": encoder_hidden_states,
"past_key_values": past_key_values,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"decoder_head_mask": decoder_head_mask,
"use_cache": use_cache,
}
# Copied from transformers.models.musicgen.modeling_musicgen.MusicgenForConditionalGeneration._prepare_decoder_input_ids_for_generation
def _prepare_decoder_input_ids_for_generation(
self,
batch_size: int,
model_input_name: str,
model_kwargs: Dict[str, torch.Tensor],
decoder_start_token_id: int = None,
bos_token_id: int = None,
device: torch.device = None,
) -> Tuple[torch.LongTensor, Dict[str, torch.Tensor]]:
"""Prepares `decoder_input_ids` for generation with encoder-decoder models"""
# 1. Check whether the user has defined `decoder_input_ids` manually. To facilitate in terms of input naming,
# we also allow the user to pass it under `input_ids`, if the encoder does not use it as the main input.
if model_kwargs is not None and "decoder_input_ids" in model_kwargs:
decoder_input_ids = model_kwargs.pop("decoder_input_ids")
elif "input_ids" in model_kwargs and model_input_name != "input_ids":
decoder_input_ids = model_kwargs.pop("input_ids")
else:
decoder_input_ids = None
# 2. Encoder-decoder models expect the `decoder_input_ids` to start with a special token. Let's ensure that.
decoder_start_token_id = self._get_decoder_start_token_id(decoder_start_token_id, bos_token_id)
if device is None:
device = self.device
decoder_input_ids_start = (
torch.ones((batch_size * self.decoder.num_codebooks, 1), dtype=torch.long, device=device)
* decoder_start_token_id
)
# no user input -> use decoder_start_token_id as decoder_input_ids
if decoder_input_ids is None:
decoder_input_ids = decoder_input_ids_start
# user input but doesn't start with decoder_start_token_id -> prepend decoder_start_token_id (and adjust
# decoder_attention_mask if provided)
elif (decoder_input_ids[..., 0] != decoder_start_token_id).all().item():
decoder_input_ids = torch.cat([decoder_input_ids_start, decoder_input_ids], dim=-1)
if "decoder_attention_mask" in model_kwargs:
decoder_attention_mask = model_kwargs["decoder_attention_mask"]
decoder_attention_mask = torch.cat(
(torch.ones_like(decoder_attention_mask)[:, :1], decoder_attention_mask),
dim=-1,
)
model_kwargs["decoder_attention_mask"] = decoder_attention_mask
return decoder_input_ids, model_kwargs
def _prepare_encoder_hidden_states_kwargs_for_generation(
self,
inputs_tensor: torch.Tensor,
model_kwargs,
model_input_name: Optional[str],
generation_config: GenerationConfig,
) -> Dict[str, Any]:
encoder_hidden_states = None
# attention mask is consumed once to produce text conditional hidden states through the text encoder
encoder_attention_mask = model_kwargs.pop("attention_mask")
guidance_scale = generation_config.guidance_scale
# 1. condition on text
if inputs_tensor is not None:
encoder = self.get_text_encoder()
# Compatibility with Accelerate big model inference: we need the encoder to outputs stuff on the same device
# as the inputs.
if hasattr(encoder, "_hf_hook"):
encoder._hf_hook.io_same_device = True
# Prepare args and kwargs from model kwargs.
irrelevant_prefix = ["decoder_", "use_cache"]
encoder_kwargs = {
argument: value
for argument, value in model_kwargs.items()
if not any(argument.startswith(p) for p in irrelevant_prefix)
}
encoder_signature = set(inspect.signature(encoder.forward).parameters)
encoder_accepts_wildcard = "kwargs" in encoder_signature or "model_kwargs" in encoder_signature
if not encoder_accepts_wildcard:
encoder_kwargs = {
argument: value for argument, value in encoder_kwargs.items() if argument in encoder_signature
}
encoder_kwargs["output_attentions"] = generation_config.output_attentions
encoder_kwargs["output_hidden_states"] = generation_config.output_hidden_states
# make sure that encoder returns `ModelOutput`
model_input_name = model_input_name if model_input_name is not None else self.text_encoder.main_input_name
encoder_kwargs["return_dict"] = True
encoder_kwargs[model_input_name] = inputs_tensor
if encoder_attention_mask is not None:
encoder_kwargs["attention_mask"] = encoder_attention_mask
encoder_hidden_states = encoder(**encoder_kwargs).last_hidden_state
# optionally project encoder_hidden_states
if self.text_encoder.config.hidden_size != self.decoder.config.hidden_size:
encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)
# for classifier free guidance we need to add a 'null' input to our encoder hidden states
if guidance_scale is not None and guidance_scale > 1:
encoder_hidden_states = torch.concatenate(
[encoder_hidden_states, torch.zeros_like(encoder_hidden_states)], dim=0
)
if encoder_attention_mask is not None:
encoder_attention_mask = torch.concatenate(
[encoder_attention_mask, torch.zeros_like(encoder_attention_mask)], dim=0
)
if encoder_attention_mask is not None:
encoder_hidden_states = encoder_hidden_states * encoder_attention_mask[..., None]
# 2. condition on audio
audio_hidden_states = model_kwargs.get("input_features", None)
if inputs_tensor is not None:
if audio_hidden_states is not None:
null_audio_hidden_states = torch.zeros_like(audio_hidden_states)
else:
null_audio_hidden_states = torch.zeros(
(inputs_tensor.shape[0], 1, self.config.num_chroma), device=self.device, dtype=self.dtype
)
null_audio_hidden_states[:, :, 0] = 1
if audio_hidden_states is None:
audio_hidden_states = null_audio_hidden_states
if audio_hidden_states is not None:
# for classifier free guidance we need to add a 'null' input to our audio hidden states
if guidance_scale is not None and guidance_scale > 1:
audio_hidden_states = torch.concatenate([audio_hidden_states, null_audio_hidden_states], dim=0)
# optionally project audio_hidden_states ->
# (batch_size, seq_len, num_chroma) -> (batch_size, seq_len, hidden_size)
if self.config.num_chroma != self.decoder.config.hidden_size:
audio_hidden_states = self.audio_enc_to_dec_proj(audio_hidden_states)
# pad or truncate to config.chroma_length
if audio_hidden_states.shape[1] < self.config.chroma_length:
n_repeat = int(math.ceil(self.config.chroma_length / audio_hidden_states.shape[1]))
audio_hidden_states = audio_hidden_states.repeat(1, n_repeat, 1)
audio_hidden_states = audio_hidden_states[:, : self.config.chroma_length]
if encoder_hidden_states is not None:
encoder_hidden_states = torch.cat([audio_hidden_states, encoder_hidden_states], dim=1)
else:
encoder_hidden_states = audio_hidden_states
model_kwargs["encoder_hidden_states"] = encoder_hidden_states
return model_kwargs
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return shift_tokens_right(labels, self.config.decoder.pad_token_id, self.config.decoder.bos_token_id)
def resize_token_embeddings(self, *args, **kwargs):
raise NotImplementedError(
"Resizing the embedding layers via the EncoderDecoderModel directly is not supported. Please use the"
" respective methods of the wrapped objects (model.encoder.resize_token_embeddings(...) or"
" model.decoder.resize_token_embeddings(...))"
)
def _maybe_initialize_input_ids_for_generation(
self,
inputs: Optional[torch.Tensor] = None,
bos_token_id: Optional[int] = None,
model_kwargs: Optional[Dict[str, torch.Tensor]] = None,
) -> torch.LongTensor:
"""Initializes input ids for generation, if necessary."""
if inputs is not None:
return inputs
if bos_token_id is None:
raise ValueError("`bos_token_id` has to be defined when no `input_ids` are provided.")
# If there is some tensor in `model_kwargs`, we can infer the batch size from it. This is helpful with
# soft-prompting or in multimodal implementations built on top of decoder-only language models.
batch_size = 1
for value in model_kwargs.values():
if isinstance(value, torch.Tensor):
batch_size = value.shape[0]
break
return torch.ones((batch_size, 1), dtype=torch.long, device=self.device) * bos_token_id
def freeze_audio_encoder(self):
"""
Freeze the audio encoder weights.
"""
for param in self.audio_encoder.parameters():
param.requires_grad = False
self.audio_encoder._requires_grad = False
def freeze_text_encoder(self):
"""
Freeze the text encoder weights.
"""
for param in self.text_encoder.parameters():
param.requires_grad = False
self.text_encoder._requires_grad = False
# Copied from transformers.models.musicgen.modeling_musicgen.MusicgenForConditionalGeneration._get_decoder_start_token_id
def _get_decoder_start_token_id(
self, decoder_start_token_id: Union[int, List[int]] = None, bos_token_id: int = None
) -> int:
decoder_start_token_id = (
decoder_start_token_id
if decoder_start_token_id is not None
else self.generation_config.decoder_start_token_id
)
bos_token_id = bos_token_id if bos_token_id is not None else self.generation_config.bos_token_id
if decoder_start_token_id is not None:
return decoder_start_token_id
elif bos_token_id is not None:
return bos_token_id
raise ValueError(
"`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation."
)
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.Tensor] = None,
generation_config: Optional[GenerationConfig] = None,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
synced_gpus: Optional[bool] = None,
streamer: Optional["BaseStreamer"] = None,
**kwargs,
):
"""
Generates sequences of token ids for models with a language modeling head.
<Tip warning={true}>
Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
model's default generation configuration. You can override any `generation_config` by passing the corresponding
parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.
For an overview of generation strategies and code examples, check out the [following
guide](./generation_strategies).
</Tip>
Parameters:
inputs (`torch.Tensor` of varying shape depending on the modality, *optional*):
The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the
method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs`
should be in the format `input_ids`. For encoder-decoder models *inputs* can represent any of
`input_ids`, `input_values`, `input_features`, or `pixel_values`.
generation_config (`~generation.GenerationConfig`, *optional*):
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
passed to generate matching the attributes of `generation_config` will override them. If
`generation_config` is not provided, the default will be used, which had the following loading
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
default values, whose documentation should be checked to parameterize generation.
logits_processor (`LogitsProcessorList`, *optional*):
Custom logits processors that complement the default logits processors built from arguments and
generation config. If a logit processor is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
stopping_criteria (`StoppingCriteriaList`, *optional*):
Custom stopping criteria that complement the default stopping criteria built from arguments and a
generation config. If a stopping criteria is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
synced_gpus (`bool`, *optional*, defaults to `False`):
Whether to continue running the while loop until max_length (needed to avoid deadlocking with
`FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3).
streamer (`BaseStreamer`, *optional*):
Streamer object that will be used to stream the generated sequences. Generated tokens are passed
through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
kwargs (`Dict[str, Any]`, *optional*):
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
Return:
[`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`.
If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible
[`~utils.ModelOutput`] types are:
- [`~generation.GenerateDecoderOnlyOutput`],
- [`~generation.GenerateBeamDecoderOnlyOutput`]
If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible
[`~utils.ModelOutput`] types are:
- [`~generation.GenerateEncoderDecoderOutput`],
- [`~generation.GenerateBeamEncoderDecoderOutput`]
"""
# 1. Handle `generation_config` and kwargs that might update it, and validate the resulting objects
if generation_config is None:
generation_config = self.generation_config
generation_config = copy.deepcopy(generation_config)
model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs
generation_config.validate()
self._validate_model_kwargs(model_kwargs.copy())
# 2. Set generation parameters if not already defined
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
requires_attention_mask = "encoder_outputs" not in model_kwargs
kwargs_has_attention_mask = model_kwargs.get("attention_mask", None) is not None
# 3. Define model inputs
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
inputs, generation_config.bos_token_id, model_kwargs
)
batch_size = inputs_tensor.shape[0]
self._prepare_special_tokens(generation_config, kwargs_has_attention_mask, device=inputs_tensor.device)
# 4. Define other model kwargs
model_kwargs["use_cache"] = generation_config.use_cache
model_kwargs["guidance_scale"] = generation_config.guidance_scale
if model_kwargs.get("attention_mask", None) is None and requires_attention_mask:
model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
inputs_tensor, generation_config, model_kwargs
)
if "encoder_hidden_states" not in model_kwargs:
# encoder_hidden_states are created and added to `model_kwargs`
model_kwargs = self._prepare_encoder_hidden_states_kwargs_for_generation(
inputs_tensor, model_kwargs, model_input_name, generation_config
)
# 5. Prepare `input_ids` which will be used for auto-regressive generation
input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation(
batch_size=batch_size,
model_input_name=model_input_name,
model_kwargs=model_kwargs,
decoder_start_token_id=generation_config._decoder_start_token_tensor,
bos_token_id=generation_config._bos_token_tensor,
device=inputs_tensor.device,
)
# 6. Prepare `max_length` depending on other stopping criteria.
input_ids_length = input_ids.shape[-1]
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
has_default_min_length = kwargs.get("min_length") is None and generation_config.min_length is not None
generation_config = self._prepare_generated_length(
generation_config=generation_config,
has_default_max_length=has_default_max_length,
has_default_min_length=has_default_min_length,
model_input_name=model_input_name,
inputs_tensor=inputs_tensor,
input_ids_length=input_ids_length,
)
# build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to MusicGen)
input_ids, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask(
input_ids,
pad_token_id=generation_config._decoder_start_token_tensor,
max_length=generation_config.max_length,
)
# stash the delay mask so that we don't have to recompute in each forward pass
model_kwargs["decoder_delay_pattern_mask"] = decoder_delay_pattern_mask
# input_ids are ready to be placed on the streamer (if used)
if streamer is not None:
streamer.put(input_ids.cpu())
# 7. determine generation mode
generation_mode = generation_config.get_generation_mode()
# 8. prepare batched CFG externally (to enable coexistance with the unbatched CFG)
if generation_config.guidance_scale is not None and generation_config.guidance_scale > 1:
logits_processor.append(ClassifierFreeGuidanceLogitsProcessor(generation_config.guidance_scale))
generation_config.guidance_scale = None
# 9. prepare distribution pre_processing samplers
logits_processor = self._get_logits_processor(
generation_config=generation_config,
input_ids_seq_length=input_ids_length,
encoder_input_ids=inputs_tensor,
prefix_allowed_tokens_fn=None,
logits_processor=logits_processor,
device=input_ids.device,
)
# 10. prepare stopping criteria
stopping_criteria = self._get_stopping_criteria(
generation_config=generation_config, stopping_criteria=stopping_criteria
)
if generation_mode in (GenerationMode.SAMPLE, GenerationMode.GREEDY_SEARCH):
# expand input_ids with `num_return_sequences` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_return_sequences,
is_encoder_decoder=self.config.is_encoder_decoder,
**model_kwargs,
)
# 11. run sample
outputs = self._sample(
input_ids,
logits_processor=logits_processor,
stopping_criteria=stopping_criteria,
generation_config=generation_config,
synced_gpus=synced_gpus,
streamer=streamer,
**model_kwargs,
)
else:
raise ValueError(
"Got incompatible mode for generation, should be one of greedy or sampling. "
"Ensure that beam search is de-activated by setting `num_beams=1` and `num_beam_groups=1`."
)
if generation_config.return_dict_in_generate:
output_ids = outputs.sequences
else:
output_ids = outputs
# apply the pattern mask to the final ids
output_ids = self.decoder.apply_delay_pattern_mask(output_ids, model_kwargs["decoder_delay_pattern_mask"])
# revert the pattern delay mask by filtering the pad token id
output_ids = output_ids[output_ids != generation_config._pad_token_tensor].reshape(
batch_size, self.decoder.num_codebooks, -1
)
# append the frame dimension back to the audio codes
output_ids = output_ids[None, ...]
audio_scales = model_kwargs.get("audio_scales")
if audio_scales is None:
audio_scales = [None] * batch_size
if self.decoder.config.audio_channels == 1:
output_values = self.audio_encoder.decode(
output_ids,
audio_scales=audio_scales,
).audio_values
else:
codec_outputs_left = self.audio_encoder.decode(output_ids[:, :, ::2, :], audio_scales=audio_scales)
output_values_left = codec_outputs_left.audio_values
codec_outputs_right = self.audio_encoder.decode(output_ids[:, :, 1::2, :], audio_scales=audio_scales)
output_values_right = codec_outputs_right.audio_values
output_values = torch.cat([output_values_left, output_values_right], dim=1)
if generation_config.return_dict_in_generate:
outputs.sequences = output_values
return outputs
else:
return output_values
def _update_model_kwargs_for_generation(
self,
outputs: ModelOutput,
model_kwargs: Dict[str, Any],
is_encoder_decoder: bool = False,
model_inputs: Optional[Dict[str, Any]] = None,
) -> Dict[str, Any]:
# update past_key_values
cache_name, cache = self._extract_past_from_model_output(outputs)
model_kwargs[cache_name] = cache
if getattr(outputs, "state", None) is not None:
model_kwargs["state"] = outputs.state
# update token_type_ids with last value
if "token_type_ids" in model_kwargs:
token_type_ids = model_kwargs["token_type_ids"]
model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)
# update decoder attention mask
if "decoder_attention_mask" in model_kwargs:
decoder_attention_mask = model_kwargs["decoder_attention_mask"]
model_kwargs["decoder_attention_mask"] = torch.cat(
[decoder_attention_mask, decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], 1))],
dim=-1,
)
return model_kwargs
|
transformers/src/transformers/models/musicgen_melody/modeling_musicgen_melody.py/0
|
{
"file_path": "transformers/src/transformers/models/musicgen_melody/modeling_musicgen_melody.py",
"repo_id": "transformers",
"token_count": 54742
}
| 150 |
# Copyright 2024 EleutherAI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import gc
import json
import os
import shutil
from pathlib import Path
import torch
import yaml
from tokenizers import Tokenizer
from transformers import OlmoConfig, OlmoForCausalLM
from transformers.models.gpt_neox.tokenization_gpt_neox_fast import GPTNeoXTokenizerFast
"""
Sample usage:
```
python src/transformers/models/olmo/convert_olmo_weights_to_hf.py \
--input_dir /path/to/downloaded/olmo/weights --model_size 7B --output_dir /output/path
```
Thereafter, models can be loaded via:
```py
from transformers import OlmoForCausalLM, AutoTokenizer
model = OlmoForCausalLM.from_pretrained("/output/path")
tokenizer = AutoTokenizer.from_pretrained("/output/path")
```
Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM).
"""
def compute_intermediate_size(n, ffn_dim_multiplier=1, multiple_of=256):
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3)) + multiple_of - 1) // multiple_of)
def read_json(path):
with open(path, "r") as f:
return json.load(f)
def write_json(text, path):
with open(path, "w") as f:
json.dump(text, f)
def write_model(model_path, input_base_path, tokenizer_path=None, safe_serialization=True, fix_eos_token_id=True):
os.makedirs(model_path, exist_ok=True)
tmp_model_path = os.path.join(model_path, "tmp")
os.makedirs(tmp_model_path, exist_ok=True)
config_path = Path(input_base_path) / "config.yaml"
olmo_config = yaml.safe_load(config_path.read_text())["model"]
n_layers = olmo_config["n_layers"]
n_heads = olmo_config["n_heads"]
dim = olmo_config["d_model"]
dims_per_head = dim // n_heads
base = 10000.0
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
max_position_embeddings = olmo_config["max_sequence_length"]
vocab_size = olmo_config.get("embedding_size", olmo_config["vocab_size"])
if olmo_config.get("n_kv_heads", None) is not None:
num_key_value_heads = olmo_config["n_kv_heads"] # for GQA / MQA
elif olmo_config["multi_query_attention"]: # compatibility with other checkpoints
num_key_value_heads = 1
else:
num_key_value_heads = n_heads
print(f"Fetching all parameters from the checkpoint at {input_base_path}.")
# Not sharded
# (The sharded implementation would also work, but this is simpler.)
loaded = torch.load(os.path.join(input_base_path, "model.pt"), map_location="cpu")
param_count = 0
index_dict = {"weight_map": {}}
for layer_i in range(n_layers):
filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"
# Unsharded
# TODO: Layernorm stuff
# TODO: multi query attention
fused_dims = [dim, dims_per_head * num_key_value_heads, dims_per_head * num_key_value_heads]
q_proj_weight, k_proj_weight, v_proj_weight = torch.split(
loaded[f"transformer.blocks.{layer_i}.att_proj.weight"], fused_dims, dim=0
)
up_proj_weight, gate_proj_weight = torch.chunk(
loaded[f"transformer.blocks.{layer_i}.ff_proj.weight"], 2, dim=0
)
state_dict = {
f"model.layers.{layer_i}.self_attn.q_proj.weight": q_proj_weight,
f"model.layers.{layer_i}.self_attn.k_proj.weight": k_proj_weight,
f"model.layers.{layer_i}.self_attn.v_proj.weight": v_proj_weight,
f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"transformer.blocks.{layer_i}.attn_out.weight"],
f"model.layers.{layer_i}.mlp.gate_proj.weight": gate_proj_weight,
f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"transformer.blocks.{layer_i}.ff_out.weight"],
f"model.layers.{layer_i}.mlp.up_proj.weight": up_proj_weight,
}
state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq
for k, v in state_dict.items():
index_dict["weight_map"][k] = filename
param_count += v.numel()
torch.save(state_dict, os.path.join(tmp_model_path, filename))
filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"
# Unsharded
# TODO: Deal with weight-tying
state_dict = {
"model.embed_tokens.weight": loaded["transformer.wte.weight"],
"lm_head.weight": loaded["transformer.ff_out.weight"]
if "transformer.ff_out.weight" in loaded
else loaded["transformer.wte.weight"],
}
for k, v in state_dict.items():
index_dict["weight_map"][k] = filename
param_count += v.numel()
torch.save(state_dict, os.path.join(tmp_model_path, filename))
# Write configs
index_dict["metadata"] = {"total_size": param_count * 2}
write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json"))
if olmo_config.get("mlp_hidden_size", None) is not None:
intermediate_size = olmo_config["mlp_hidden_size"] // 2
else:
intermediate_size = (dim * olmo_config["mlp_ratio"]) // 2
config = OlmoConfig(
vocab_size=vocab_size,
hidden_size=dim,
intermediate_size=intermediate_size,
num_hidden_layers=n_layers,
num_attention_heads=n_heads,
num_key_value_heads=num_key_value_heads,
max_position_embeddings=max_position_embeddings,
pad_token_id=olmo_config["pad_token_id"],
bos_token_id=None,
eos_token_id=olmo_config["eos_token_id"],
tie_word_embeddings=olmo_config["weight_tying"],
rope_theta=base,
clip_qkv=olmo_config.get("clip_qkv"),
)
config.save_pretrained(tmp_model_path)
# Make space so we can load the model properly now.
del state_dict
del loaded
gc.collect()
if tokenizer_path is not None:
_write_tokenizer(model_path, config, tokenizer_path, fix_eos_token_id)
print("Loading the checkpoint in a OLMo model.")
model = OlmoForCausalLM.from_pretrained(tmp_model_path, torch_dtype=torch.float32, low_cpu_mem_usage=True)
# Avoid saving this as part of the config.
del model.config._name_or_path
print("Saving in the Transformers format.")
model.save_pretrained(model_path, safe_serialization=safe_serialization)
shutil.rmtree(tmp_model_path)
def _write_tokenizer(
output_path: Path, config: OlmoConfig, input_tokenizer_path: Path, fix_eos_token_id: bool = True
) -> None:
print(f"Saving a {GPTNeoXTokenizerFast.__name__} to {output_path}.")
base_tokenizer = Tokenizer.from_file(str(input_tokenizer_path))
eos_token_id = config.eos_token_id if config.eos_token_id is not None else base_tokenizer.get_vocab_size() - 1
pad_token_id = config.pad_token_id if config.pad_token_id is not None else eos_token_id
if fix_eos_token_id and eos_token_id == 0:
# Fixing a bug in OLMo where eos token id was incorrectly set
print("Changing eos_token_id from 0 to 50279.")
eos_token_id = 50279
tokenizer = GPTNeoXTokenizerFast(
tokenizer_object=base_tokenizer,
eos_token=base_tokenizer.decode([eos_token_id], skip_special_tokens=False),
pad_token=base_tokenizer.decode([pad_token_id], skip_special_tokens=False),
unk_token=None,
bos_token=None,
)
tokenizer.save_pretrained(output_path)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--input_dir",
required=True,
help="Location of OLMo weights, which contains config.yaml and model.pt.",
)
parser.add_argument(
"--tokenizer_json_path",
default=None,
help="Location of OLMo tokenizer json file.",
)
parser.add_argument(
"--output_dir",
required=True,
help="Location to write HF model and tokenizer",
)
parser.add_argument(
"--no_fix_eos_token_id",
action="store_false",
dest="fix_eos_token_id",
help="If set, does not change eos token id from 0 to 50279 if it is 0. Changing 0 to 50279 is a bug fix, so use this option with care.",
)
parser.add_argument("--safe_serialization", type=bool, help="Whether or not to save using `safetensors`.")
# Different OLMo versions used different default values for max_position_embeddings, hence the need to be able to specify which version is being used.
args = parser.parse_args()
write_model(
model_path=args.output_dir,
input_base_path=args.input_dir,
safe_serialization=args.safe_serialization,
tokenizer_path=args.tokenizer_json_path,
fix_eos_token_id=args.fix_eos_token_id,
)
if __name__ == "__main__":
main()
|
transformers/src/transformers/models/olmo/convert_olmo_weights_to_hf.py/0
|
{
"file_path": "transformers/src/transformers/models/olmo/convert_olmo_weights_to_hf.py",
"repo_id": "transformers",
"token_count": 3869
}
| 151 |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for OmDet-Turbo.
"""
import warnings
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
from ...feature_extraction_utils import BatchFeature
from ...image_transforms import center_to_corners_format
from ...image_utils import ImageInput
from ...processing_utils import ProcessingKwargs, ProcessorMixin, TextKwargs, Unpack
from ...tokenization_utils_base import PreTokenizedInput, TextInput
from ...utils import (
TensorType,
is_torch_available,
is_torchvision_available,
)
from ...utils.deprecation import deprecate_kwarg
if TYPE_CHECKING:
from .modeling_omdet_turbo import OmDetTurboObjectDetectionOutput
class OmDetTurboTextKwargs(TextKwargs, total=False):
task: Optional[Union[str, List[str], TextInput, PreTokenizedInput]]
if is_torch_available():
import torch
if is_torchvision_available():
from torchvision.ops.boxes import batched_nms
class OmDetTurboProcessorKwargs(ProcessingKwargs, total=False):
text_kwargs: OmDetTurboTextKwargs
_defaults = {
"text_kwargs": {
"add_special_tokens": True,
"padding": "max_length",
"truncation": True,
"max_length": 77,
"stride": 0,
"return_overflowing_tokens": False,
"return_special_tokens_mask": False,
"return_offsets_mapping": False,
"return_token_type_ids": False,
"return_length": False,
"verbose": True,
"task": None,
},
"images_kwargs": {},
}
class DictWithDeprecationWarning(dict):
message = (
"The `classes` key is deprecated for `OmDetTurboProcessor.post_process_grounded_object_detection` "
"output dict and will be removed in a 4.51.0 version. Please use `text_labels` instead."
)
def __getitem__(self, key):
if key == "classes":
warnings.warn(self.message, FutureWarning)
return super().__getitem__("text_labels")
return super().__getitem__(key)
def get(self, key, *args, **kwargs):
if key == "classes":
warnings.warn(self.message, FutureWarning)
return super().get("text_labels", *args, **kwargs)
return super().get(key, *args, **kwargs)
def clip_boxes(box, box_size: Tuple[int, int]):
"""
Clip the boxes by limiting x coordinates to the range [0, width]
and y coordinates to the range [0, height].
Args:
box (Tensor): The box to be clipped.
box_size (height, width): The clipping box's size.
"""
assert torch.isfinite(box).all(), "Box tensor contains infinite or NaN!"
height, width = box_size
x1 = box[:, 0].clamp(min=0, max=width)
y1 = box[:, 1].clamp(min=0, max=height)
x2 = box[:, 2].clamp(min=0, max=width)
y2 = box[:, 3].clamp(min=0, max=height)
box = torch.stack((x1, y1, x2, y2), dim=-1)
return box
def compute_score(boxes):
"""
Compute logit scores per class for each box (proposal) and an array of class indices
corresponding to each proposal, flattened across the proposal_num.
The indices in `classes` will later be used to filter and match the predicted classes
with the input class names.
"""
num_classes = boxes.shape[2]
proposal_num = boxes.shape[1]
scores = torch.sigmoid(boxes)
classes = torch.arange(num_classes, device=boxes.device).unsqueeze(0).repeat(proposal_num, 1).flatten(0, 1)
return scores, classes
def _post_process_boxes_for_image(
boxes: "torch.Tensor",
scores: "torch.Tensor",
labels: "torch.Tensor",
image_num_classes: int,
image_size: Tuple[int, int],
threshold: float,
nms_threshold: float,
max_num_det: Optional[int] = None,
) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor"]:
"""
Filter predicted results using given thresholds and NMS.
Args:
boxes (`torch.Tensor`):
A Tensor of predicted class-specific or class-agnostic boxes for the image.
Shape (num_queries, max_num_classes_in_batch * 4) if doing class-specific regression,
or (num_queries, 4) if doing class-agnostic regression.
scores (`torch.Tensor` of shape (num_queries, max_num_classes_in_batch + 1)):
A Tensor of predicted class scores for the image.
labels (`torch.Tensor` of shape (num_queries * (max_num_classes_in_batch + 1),)):
A Tensor of predicted labels for the image.
image_num_classes (`int`):
The number of classes queried for detection on the image.
image_size (`Tuple[int, int]`):
A tuple of (height, width) for the image.
threshold (`float`):
Only return detections with a confidence score exceeding this threshold.
nms_threshold (`float`):
The threshold to use for box non-maximum suppression. Value in [0, 1].
max_num_det (`int`, *optional*):
The maximum number of detections to return. Default is None.
Returns:
Tuple: A tuple with the following:
"boxes" (Tensor): A tensor of shape (num_filtered_objects, 4), containing the predicted boxes in (x1, y1, x2, y2) format.
"scores" (Tensor): A tensor of shape (num_filtered_objects,), containing the predicted confidence scores for each detection.
"labels" (Tensor): A tensor of ids, where each id is the predicted class id for the corresponding detection
"""
# Filter by max number of detections
proposal_num = len(boxes) if max_num_det is None else max_num_det
scores_per_image, topk_indices = scores.flatten(0, 1).topk(proposal_num, sorted=False)
labels_per_image = labels[topk_indices]
boxes_per_image = boxes.view(-1, 1, 4).repeat(1, scores.shape[1], 1).view(-1, 4)
boxes_per_image = boxes_per_image[topk_indices]
# Convert and scale boxes to original image size
boxes_per_image = center_to_corners_format(boxes_per_image)
boxes_per_image = boxes_per_image * torch.tensor(image_size[::-1]).repeat(2).to(boxes_per_image.device)
# Filtering by confidence score
filter_mask = scores_per_image > threshold # R x K
score_keep = filter_mask.nonzero(as_tuple=False).view(-1)
boxes_per_image = boxes_per_image[score_keep]
scores_per_image = scores_per_image[score_keep]
labels_per_image = labels_per_image[score_keep]
# Ensure we did not overflow to non existing classes
filter_classes_mask = labels_per_image < image_num_classes
classes_keep = filter_classes_mask.nonzero(as_tuple=False).view(-1)
boxes_per_image = boxes_per_image[classes_keep]
scores_per_image = scores_per_image[classes_keep]
labels_per_image = labels_per_image[classes_keep]
# NMS
keep = batched_nms(boxes_per_image, scores_per_image, labels_per_image, nms_threshold)
boxes_per_image = boxes_per_image[keep]
scores_per_image = scores_per_image[keep]
labels_per_image = labels_per_image[keep]
# Clip to image size
boxes_per_image = clip_boxes(boxes_per_image, image_size)
return boxes_per_image, scores_per_image, labels_per_image
class OmDetTurboProcessor(ProcessorMixin):
r"""
Constructs a OmDet-Turbo processor which wraps a Deformable DETR image processor and an AutoTokenizer into a
single processor.
[`OmDetTurboProcessor`] offers all the functionalities of [`DetrImageProcessor`] and
[`AutoTokenizer`]. See the docstring of [`~OmDetTurboProcessor.__call__`] and [`~OmDetTurboProcessor.decode`]
for more information.
Args:
image_processor (`DetrImageProcessor`):
An instance of [`DetrImageProcessor`]. The image processor is a required input.
tokenizer (`AutoTokenizer`):
An instance of ['PreTrainedTokenizer`]. The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "DetrImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(self, image_processor, tokenizer):
super().__init__(image_processor, tokenizer)
def __call__(
self,
images: ImageInput = None,
text: Union[List[str], List[List[str]]] = None,
audio=None,
videos=None,
**kwargs: Unpack[OmDetTurboProcessorKwargs],
) -> BatchFeature:
"""
This method uses [*DetrImageProcessor.__call__] method to prepare image(s) for the model, and
[CLIPTokenizerFast.__call__] to prepare text for the model.
Please refer to the docstring of the above two methods for more information.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255.
text (`Union[str, List[str], List[List[str]]]`):
The classes used to limit the scope of the open vocabulary detection. Expects a list of strings or a list
of list of strings. Batched classes can be of different lengths.
Examples: ["cat", "dog", "bird"], [["cat", "dog", "bird"], ["hat", "person"], ["car"]]
Kwargs:
task (`Union[str, List[str], TextInput, PreTokenizedInput]`):
The grounded text used to guide open vocabulary detection. Expects a single string or a list of strings.
Examples: "Detect a cat, a dog, and a bird.",[ "Detect everything.", "Detect trees and flowers."]
When not provided, the default task is "Detect [class1], [class2], [class3]" etc.
...
"""
if images is None or text is None:
raise ValueError("You have to specify both `images` and `text`")
output_kwargs = self._merge_kwargs(
OmDetTurboProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if isinstance(text, str):
text = text.strip(" ").split(",")
if not (len(text) and isinstance(text[0], (list, tuple))):
text = [text]
task = output_kwargs["text_kwargs"].pop("task", None)
if task is None:
task = ["Detect {}.".format(", ".join(text_single)) for text_single in text]
elif not isinstance(task, (list, tuple)):
task = [task]
encoding_image_processor = self.image_processor(images, **output_kwargs["images_kwargs"])
tasks_encoding = self.tokenizer(text=task, **output_kwargs["text_kwargs"])
classes = text
classes_structure = torch.tensor([len(class_single) for class_single in classes], dtype=torch.long)
classes_flattened = [class_single for class_batch in classes for class_single in class_batch]
classes_encoding = self.tokenizer(text=classes_flattened, **output_kwargs["text_kwargs"])
encoding = BatchFeature()
encoding.update({f"tasks_{key}": value for key, value in tasks_encoding.items()})
encoding.update({f"classes_{key}": value for key, value in classes_encoding.items()})
encoding.update({"classes_structure": classes_structure})
encoding.update(encoding_image_processor)
return encoding
# Copied from transformers.models.blip.processing_blip.BlipProcessor.batch_decode with BertTokenizerFast->PreTrainedTokenizer
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.blip.processing_blip.BlipProcessor.decode with BertTokenizerFast->PreTrainedTokenizer
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
def _get_default_image_size(self) -> Tuple[int, int]:
height = (
self.image_processor.size["height"]
if "height" in self.image_processor.size
else self.image_processor.size["shortest_edge"]
)
width = (
self.image_processor.size["width"]
if "width" in self.image_processor.size
else self.image_processor.size["longest_edge"]
)
return height, width
@deprecate_kwarg("score_threshold", new_name="threshold", version="4.51.0")
@deprecate_kwarg("classes", new_name="text_labels", version="4.51.0")
def post_process_grounded_object_detection(
self,
outputs: "OmDetTurboObjectDetectionOutput",
text_labels: Optional[Union[List[str], List[List[str]]]] = None,
threshold: float = 0.3,
nms_threshold: float = 0.5,
target_sizes: Optional[Union[TensorType, List[Tuple]]] = None,
max_num_det: Optional[int] = None,
):
"""
Converts the raw output of [`OmDetTurboForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y,
bottom_right_x, bottom_right_y) format and get the associated text class.
Args:
outputs ([`OmDetTurboObjectDetectionOutput`]):
Raw outputs of the model.
text_labels (Union[List[str], List[List[str]]], *optional*):
The input classes names. If not provided, `text_labels` will be set to `None` in `outputs`.
threshold (float, defaults to 0.3):
Only return detections with a confidence score exceeding this threshold.
nms_threshold (float, defaults to 0.5):
The threshold to use for box non-maximum suppression. Value in [0, 1].
target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*):
Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
`(height, width)` of each image in the batch. If unset, predictions will not be resized.
max_num_det (`int`, *optional*):
The maximum number of detections to return.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, classes and boxes for an image
in the batch as predicted by the model.
"""
batch_size = len(outputs.decoder_coord_logits)
# Inputs consistency check for target sizes
if target_sizes is None:
height, width = self._get_default_image_size()
target_sizes = [(height, width)] * batch_size
if any(len(image_size) != 2 for image_size in target_sizes):
raise ValueError(
"Each element of target_sizes must contain the size (height, width) of each image of the batch"
)
if len(target_sizes) != batch_size:
raise ValueError("Make sure that you pass in as many target sizes as output sequences")
# Inputs consistency check for text labels
if text_labels is not None and isinstance(text_labels[0], str):
text_labels = [text_labels]
if text_labels is not None and len(text_labels) != batch_size:
raise ValueError("Make sure that you pass in as many classes group as output sequences")
# Convert target_sizes to list for easier handling
if isinstance(target_sizes, torch.Tensor):
target_sizes = target_sizes.tolist()
batch_boxes = outputs.decoder_coord_logits
batch_logits = outputs.decoder_class_logits
batch_num_classes = outputs.classes_structure
batch_scores, batch_labels = compute_score(batch_logits)
results = []
for boxes, scores, image_size, image_num_classes in zip(
batch_boxes, batch_scores, target_sizes, batch_num_classes
):
boxes, scores, labels = _post_process_boxes_for_image(
boxes=boxes,
scores=scores,
labels=batch_labels,
image_num_classes=image_num_classes,
image_size=image_size,
threshold=threshold,
nms_threshold=nms_threshold,
max_num_det=max_num_det,
)
result = DictWithDeprecationWarning(
{"boxes": boxes, "scores": scores, "labels": labels, "text_labels": None}
)
results.append(result)
# Add text labels
if text_labels is not None:
for result, image_text_labels in zip(results, text_labels):
result["text_labels"] = [image_text_labels[idx] for idx in result["labels"]]
return results
__all__ = ["OmDetTurboProcessor"]
|
transformers/src/transformers/models/omdet_turbo/processing_omdet_turbo.py/0
|
{
"file_path": "transformers/src/transformers/models/omdet_turbo/processing_omdet_turbo.py",
"repo_id": "transformers",
"token_count": 7014
}
| 152 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert OPT checkpoint."""
import argparse
from pathlib import Path
import torch
from transformers import OPTConfig, OPTModel
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
def load_checkpoint(checkpoint_path):
"""Checkpoint path should end in model.pt"""
sd = torch.load(checkpoint_path, map_location="cpu")
if "model" in sd.keys():
sd = torch.load(checkpoint_path, map_location="cpu")["model"]
# pop unnecessary weights
keys_to_delete = [
"decoder.version",
"decoder.output_projection.weight",
]
for key in keys_to_delete:
if key in sd:
sd.pop(key)
keys_to_rename = {
"decoder.project_in_dim.weight": "decoder.project_in.weight",
"decoder.project_out_dim.weight": "decoder.project_out.weight",
"decoder.layer_norm.weight": "decoder.final_layer_norm.weight",
"decoder.layer_norm.bias": "decoder.final_layer_norm.bias",
}
for old_key, new_key in keys_to_rename.items():
if old_key in sd:
sd[new_key] = sd.pop(old_key)
keys = list(sd.keys())
for key in keys:
if ".qkv_proj." in key:
value = sd[key]
# We split QKV in separate Q,K,V
q_name = key.replace(".qkv_proj.", ".q_proj.")
k_name = key.replace(".qkv_proj.", ".k_proj.")
v_name = key.replace(".qkv_proj.", ".v_proj.")
depth = value.shape[0]
assert depth % 3 == 0
# `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming:
# https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97
k, v, q = torch.split(value, depth // 3, dim=0)
sd[q_name] = q
sd[k_name] = k
sd[v_name] = v
del sd[key]
return sd
@torch.no_grad()
def convert_opt_checkpoint(checkpoint_path, pytorch_dump_folder_path, config=None):
"""
Copy/paste/tweak model's weights to our BERT structure.
"""
state_dict = load_checkpoint(checkpoint_path)
if config is not None:
config = OPTConfig.from_pretrained(config)
else:
config = OPTConfig()
model = OPTModel(config).half().eval()
model.load_state_dict(state_dict)
# Check results
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
model.save_pretrained(pytorch_dump_folder_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--fairseq_path",
type=str,
help=(
"path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:"
" https://huggingface.co/models?other=opt_metasq"
),
)
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.")
args = parser.parse_args()
convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
|
transformers/src/transformers/models/opt/convert_opt_original_pytorch_checkpoint_to_pytorch.py/0
|
{
"file_path": "transformers/src/transformers/models/opt/convert_opt_original_pytorch_checkpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 1577
}
| 153 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Image/Text processor class for OWL-ViT
"""
import warnings
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available
if TYPE_CHECKING:
from .modeling_owlvit import OwlViTImageGuidedObjectDetectionOutput, OwlViTObjectDetectionOutput
class OwlViTProcessor(ProcessorMixin):
r"""
Constructs an OWL-ViT processor which wraps [`OwlViTImageProcessor`] and [`CLIPTokenizer`]/[`CLIPTokenizerFast`]
into a single processor that interits both the image processor and tokenizer functionalities. See the
[`~OwlViTProcessor.__call__`] and [`~OwlViTProcessor.decode`] for more information.
Args:
image_processor ([`OwlViTImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`CLIPTokenizer`, `CLIPTokenizerFast`], *optional*):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "OwlViTImageProcessor"
tokenizer_class = ("CLIPTokenizer", "CLIPTokenizerFast")
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
feature_extractor = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead.",
FutureWarning,
)
feature_extractor = kwargs.pop("feature_extractor")
image_processor = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
super().__init__(image_processor, tokenizer)
def __call__(self, text=None, images=None, query_images=None, padding="max_length", return_tensors="np", **kwargs):
"""
Main method to prepare for the model one or several text(s) and image(s). This method forwards the `text` and
`kwargs` arguments to CLIPTokenizerFast's [`~CLIPTokenizerFast.__call__`] if `text` is not `None` to encode:
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
of the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`,
`List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
query_images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The query image to be prepared, one query image is expected per target image to be queried. Each image
can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image
should be of shape (C, H, W), where C is a number of channels, H and W are image height and width.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
if text is None and query_images is None and images is None:
raise ValueError(
"You have to specify at least one text or query image or image. All three cannot be none."
)
if text is not None:
if isinstance(text, str) or (isinstance(text, List) and not isinstance(text[0], List)):
encodings = [self.tokenizer(text, padding=padding, return_tensors=return_tensors, **kwargs)]
elif isinstance(text, List) and isinstance(text[0], List):
encodings = []
# Maximum number of queries across batch
max_num_queries = max([len(t) for t in text])
# Pad all batch samples to max number of text queries
for t in text:
if len(t) != max_num_queries:
t = t + [" "] * (max_num_queries - len(t))
encoding = self.tokenizer(t, padding=padding, return_tensors=return_tensors, **kwargs)
encodings.append(encoding)
else:
raise TypeError("Input text should be a string, a list of strings or a nested list of strings")
if return_tensors == "np":
input_ids = np.concatenate([encoding["input_ids"] for encoding in encodings], axis=0)
attention_mask = np.concatenate([encoding["attention_mask"] for encoding in encodings], axis=0)
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
input_ids = jnp.concatenate([encoding["input_ids"] for encoding in encodings], axis=0)
attention_mask = jnp.concatenate([encoding["attention_mask"] for encoding in encodings], axis=0)
elif return_tensors == "pt" and is_torch_available():
import torch
input_ids = torch.cat([encoding["input_ids"] for encoding in encodings], dim=0)
attention_mask = torch.cat([encoding["attention_mask"] for encoding in encodings], dim=0)
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
input_ids = tf.stack([encoding["input_ids"] for encoding in encodings], axis=0)
attention_mask = tf.stack([encoding["attention_mask"] for encoding in encodings], axis=0)
else:
raise ValueError("Target return tensor type could not be returned")
encoding = BatchEncoding()
encoding["input_ids"] = input_ids
encoding["attention_mask"] = attention_mask
if query_images is not None:
encoding = BatchEncoding()
query_pixel_values = self.image_processor(
query_images, return_tensors=return_tensors, **kwargs
).pixel_values
encoding["query_pixel_values"] = query_pixel_values
if images is not None:
image_features = self.image_processor(images, return_tensors=return_tensors, **kwargs)
if text is not None and images is not None:
encoding["pixel_values"] = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
encoding["pixel_values"] = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
def post_process(self, *args, **kwargs):
"""
This method forwards all its arguments to [`OwlViTImageProcessor.post_process`]. Please refer to the docstring
of this method for more information.
"""
return self.image_processor.post_process(*args, **kwargs)
def post_process_object_detection(self, *args, **kwargs):
"""
This method forwards all its arguments to [`OwlViTImageProcessor.post_process_object_detection`]. Please refer
to the docstring of this method for more information.
"""
warnings.warn(
"`post_process_object_detection` method is deprecated for OwlVitProcessor and will be removed in v5. "
"Use `post_process_grounded_object_detection` instead.",
FutureWarning,
)
return self.image_processor.post_process_object_detection(*args, **kwargs)
def post_process_grounded_object_detection(
self,
outputs: "OwlViTObjectDetectionOutput",
threshold: float = 0.1,
target_sizes: Optional[Union[TensorType, List[Tuple]]] = None,
text_labels: Optional[List[List[str]]] = None,
):
"""
Converts the raw output of [`OwlViTForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y,
bottom_right_x, bottom_right_y) format.
Args:
outputs ([`OwlViTObjectDetectionOutput`]):
Raw outputs of the model.
threshold (`float`, *optional*, defaults to 0.1):
Score threshold to keep object detection predictions.
target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*):
Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
`(height, width)` of each image in the batch. If unset, predictions will not be resized.
text_labels (`List[List[str]]`, *optional*):
List of lists of text labels for each image in the batch. If unset, "text_labels" in output will be
set to `None`.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the following keys:
- "scores": The confidence scores for each predicted box on the image.
- "labels": Indexes of the classes predicted by the model on the image.
- "boxes": Image bounding boxes in (top_left_x, top_left_y, bottom_right_x, bottom_right_y) format.
- "text_labels": The text labels for each predicted bounding box on the image.
"""
output = self.image_processor.post_process_object_detection(
outputs=outputs, threshold=threshold, target_sizes=target_sizes
)
if text_labels is not None and len(text_labels) != len(output):
raise ValueError("Make sure that you pass in as many lists of text labels as images")
# adding text labels to the output
if text_labels is not None:
for image_output, image_text_labels in zip(output, text_labels):
object_text_labels = [image_text_labels[i] for i in image_output["labels"]]
image_output["text_labels"] = object_text_labels
else:
for image_output in output:
image_output["text_labels"] = None
return output
def post_process_image_guided_detection(
self,
outputs: "OwlViTImageGuidedObjectDetectionOutput",
threshold: float = 0.0,
nms_threshold: float = 0.3,
target_sizes: Optional[Union[TensorType, List[Tuple]]] = None,
):
"""
Converts the output of [`OwlViTForObjectDetection.image_guided_detection`] into the format expected by the COCO
api.
Args:
outputs ([`OwlViTImageGuidedObjectDetectionOutput`]):
Raw outputs of the model.
threshold (`float`, *optional*, defaults to 0.0):
Minimum confidence threshold to use to filter out predicted boxes.
nms_threshold (`float`, *optional*, defaults to 0.3):
IoU threshold for non-maximum suppression of overlapping boxes.
target_sizes (`torch.Tensor`, *optional*):
Tensor of shape (batch_size, 2) where each entry is the (height, width) of the corresponding image in
the batch. If set, predicted normalized bounding boxes are rescaled to the target sizes. If left to
None, predictions will not be unnormalized.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the following keys:
- "scores": The confidence scores for each predicted box on the image.
- "boxes": Image bounding boxes in (top_left_x, top_left_y, bottom_right_x, bottom_right_y) format.
- "labels": Set to `None`.
"""
return self.image_processor.post_process_image_guided_detection(
outputs=outputs, threshold=threshold, nms_threshold=nms_threshold, target_sizes=target_sizes
)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def feature_extractor_class(self):
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
FutureWarning,
)
return self.image_processor_class
@property
def feature_extractor(self):
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",
FutureWarning,
)
return self.image_processor
__all__ = ["OwlViTProcessor"]
|
transformers/src/transformers/models/owlvit/processing_owlvit.py/0
|
{
"file_path": "transformers/src/transformers/models/owlvit/processing_owlvit.py",
"repo_id": "transformers",
"token_count": 6265
}
| 154 |
# coding=utf-8
# Copyright (c) 2020, VinAI Research and the HuggingFace Inc. team.
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for PhoBERT"""
import os
import re
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {
"vocab_file": "vocab.txt",
"merges_file": "bpe.codes",
}
def get_pairs(word):
"""
Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
pairs = set(pairs)
return pairs
class PhobertTokenizer(PreTrainedTokenizer):
"""
Construct a PhoBERT tokenizer. Based on Byte-Pair-Encoding.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file.
bos_token (`st`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"<s>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
"""
vocab_files_names = VOCAB_FILES_NAMES
def __init__(
self,
vocab_file,
merges_file,
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="<unk>",
pad_token="<pad>",
mask_token="<mask>",
**kwargs,
):
self.vocab_file = vocab_file
self.merges_file = merges_file
self.encoder = {}
self.encoder[str(bos_token)] = 0
self.encoder[str(pad_token)] = 1
self.encoder[str(eos_token)] = 2
self.encoder[str(unk_token)] = 3
self.add_from_file(vocab_file)
self.decoder = {v: k for k, v in self.encoder.items()}
with open(merges_file, encoding="utf-8") as merges_handle:
merges = merges_handle.read().split("\n")[:-1]
merges = [tuple(merge.split()[:-1]) for merge in merges]
self.bpe_ranks = dict(zip(merges, range(len(merges))))
self.cache = {}
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
**kwargs,
)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A PhoBERT sequence has the following format:
- single sequence: `<s> X </s>`
- pair of sequences: `<s> A </s></s> B </s>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. PhoBERT does not
make use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
@property
def vocab_size(self):
return len(self.encoder)
def get_vocab(self):
return dict(self.encoder, **self.added_tokens_encoder)
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token)
word = tuple(list(word[:-1]) + [word[-1] + "</w>"])
pairs = get_pairs(word)
if not pairs:
return token
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
i = j
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = "@@ ".join(word)
word = word[:-4]
self.cache[token] = word
return word
def _tokenize(self, text):
"""Tokenize a string."""
split_tokens = []
words = re.findall(r"\S+\n?", text)
for token in words:
split_tokens.extend(list(self.bpe(token).split(" ")))
return split_tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
out_string = " ".join(tokens).replace("@@ ", "").strip()
return out_string
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
out_merge_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
if os.path.abspath(self.merges_file) != os.path.abspath(out_merge_file):
copyfile(self.merges_file, out_merge_file)
return out_vocab_file, out_merge_file
# def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
# filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens))
# tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens)
# tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far)
# return ''.join(tokens_generated_so_far)
def add_from_file(self, f):
"""
Loads a pre-existing dictionary from a text file and adds its symbols to this instance.
"""
if isinstance(f, str):
try:
with open(f, "r", encoding="utf-8") as fd:
self.add_from_file(fd)
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset")
return
lines = f.readlines()
for lineTmp in lines:
line = lineTmp.strip()
idx = line.rfind(" ")
if idx == -1:
raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'")
word = line[:idx]
self.encoder[word] = len(self.encoder)
__all__ = ["PhobertTokenizer"]
|
transformers/src/transformers/models/phobert/tokenization_phobert.py/0
|
{
"file_path": "transformers/src/transformers/models/phobert/tokenization_phobert.py",
"repo_id": "transformers",
"token_count": 5919
}
| 155 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import torch
from torch import nn
from transformers import PLBartConfig, PLBartForConditionalGeneration, PLBartForSequenceClassification
def remove_ignore_keys_(state_dict):
ignore_keys = [
"encoder.version",
"decoder.version",
"model.encoder.version",
"model.decoder.version",
"_float_tensor",
"decoder.output_projection.weight",
]
for k in ignore_keys:
state_dict.pop(k, None)
def make_linear_from_emb(emb):
vocab_size, emb_size = emb.weight.shape
lin_layer = nn.Linear(vocab_size, emb_size, bias=False)
lin_layer.weight.data = emb.weight.data
return lin_layer
def convert_fairseq_plbart_checkpoint_from_disk(
checkpoint_path, hf_config_path="uclanlp/plbart-base", finetuned=False, classification=False
):
state_dict = torch.load(checkpoint_path, map_location="cpu")["model"]
remove_ignore_keys_(state_dict)
vocab_size = state_dict["encoder.embed_tokens.weight"].shape[0]
plbart_config = PLBartConfig.from_pretrained(hf_config_path, vocab_size=vocab_size)
state_dict["shared.weight"] = state_dict["decoder.embed_tokens.weight"]
if not classification:
model = PLBartForConditionalGeneration(plbart_config)
model.model.load_state_dict(state_dict)
if finetuned:
model.lm_head = make_linear_from_emb(model.model.shared)
else:
classification_head = {}
for key, value in state_dict.copy().items():
if key.startswith("classification_heads.sentence_classification_head"):
classification_head[key.replace("classification_heads.sentence_classification_head.", "")] = value
state_dict.pop(key)
model = PLBartForSequenceClassification(plbart_config)
model.model.load_state_dict(state_dict)
model.classification_head.load_state_dict(classification_head)
return model
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument("fairseq_path", type=str, help="model.pt on local filesystem.")
parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument(
"--hf_config",
default="uclanlp/plbart-base",
type=str,
help="Which huggingface architecture to use: plbart-base",
)
parser.add_argument("--finetuned", action="store_true", help="whether the model is a fine-tuned checkpoint")
parser.add_argument(
"--classification", action="store_true", help="whether the model is a classification checkpoint"
)
args = parser.parse_args()
model = convert_fairseq_plbart_checkpoint_from_disk(
args.fairseq_path,
hf_config_path=args.hf_config,
finetuned=args.finetuned,
classification=args.classification,
)
model.save_pretrained(args.pytorch_dump_folder_path)
|
transformers/src/transformers/models/plbart/convert_plbart_original_checkpoint_to_torch.py/0
|
{
"file_path": "transformers/src/transformers/models/plbart/convert_plbart_original_checkpoint_to_torch.py",
"repo_id": "transformers",
"token_count": 1325
}
| 156 |
# coding=utf-8
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Qwen2MoE model."""
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_outputs import (
MoeCausalLMOutputWithPast,
MoeModelOutputWithPast,
QuestionAnsweringModelOutput,
SequenceClassifierOutputWithPast,
TokenClassifierOutput,
)
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_flash_attn_2_available,
is_flash_attn_greater_or_equal_2_10,
logging,
replace_return_docstrings,
)
from ...utils.deprecation import deprecate_kwarg
from .configuration_qwen2_moe import Qwen2MoeConfig
if is_flash_attn_2_available():
from ...modeling_flash_attention_utils import _flash_attention_forward
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "Qwen/Qwen2-57B-A14B"
_CONFIG_FOR_DOC = "Qwen2MoeConfig"
# Copied from transformers.models.mixtral.modeling_mixtral.load_balancing_loss_func
def load_balancing_loss_func(
gate_logits: Union[torch.Tensor, Tuple[torch.Tensor], None],
num_experts: Optional[int] = None,
top_k=2,
attention_mask: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, int]:
r"""
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
experts is too unbalanced.
Args:
gate_logits:
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
shape [batch_size X sequence_length, num_experts].
num_experts:
Number of experts
top_k:
The number of experts to route per-token, can be also interpreted as the `top-k` routing
parameter.
attention_mask (`torch.Tensor`, *optional*):
The attention_mask used in forward function
shape [batch_size X sequence_length] if not None.
Returns:
The auxiliary loss.
"""
if gate_logits is None or not isinstance(gate_logits, tuple):
return 0
if isinstance(gate_logits, tuple):
compute_device = gate_logits[0].device
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
if attention_mask is None:
# Compute the percentage of tokens routed to each experts
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
# Compute the average probability of routing to these experts
router_prob_per_expert = torch.mean(routing_weights, dim=0)
else:
batch_size, sequence_length = attention_mask.shape
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
expert_attention_mask = (
attention_mask[None, :, :, None, None]
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
.reshape(-1, top_k, num_experts)
.to(compute_device)
)
# Compute the percentage of tokens routed to each experts
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
expert_attention_mask, dim=0
)
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
router_per_expert_attention_mask = (
attention_mask[None, :, :, None]
.expand((num_hidden_layers, batch_size, sequence_length, num_experts))
.reshape(-1, num_experts)
.to(compute_device)
)
# Compute the average probability of routing to these experts
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
router_per_expert_attention_mask, dim=0
)
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
return overall_loss * num_experts
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Qwen2Moe
class Qwen2MoeRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Qwen2MoeRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Qwen2Moe
class Qwen2MoeRotaryEmbedding(nn.Module):
def __init__(self, config: Qwen2MoeConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
def _dynamic_frequency_update(self, position_ids, device):
"""
dynamic RoPE layers should recompute `inv_freq` in the following situations:
1 - growing beyond the cached sequence length (allow scaling)
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
"""
seq_len = torch.max(position_ids) + 1
if seq_len > self.max_seq_len_cached: # growth
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
self.max_seq_len_cached = seq_len
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
# This .to() is needed if the model has been moved to a device after being initialized (because
# the buffer is automatically moved, but not the original copy)
self.original_inv_freq = self.original_inv_freq.to(device)
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
self.max_seq_len_cached = self.original_max_seq_len
@torch.no_grad()
def forward(self, x, position_ids):
if "dynamic" in self.rope_type:
self._dynamic_frequency_update(position_ids, device=x.device)
# Core RoPE block
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
device_type = x.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
cos = cos * self.attention_scaling
sin = sin * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
# Modified from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Qwen2Moe
class Qwen2MoeMLP(nn.Module):
def __init__(self, config, intermediate_size=None):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
# copied from transformers.models.qwen2.modeling_qwen2.Qwen2Attention with Qwen2->Qwen2Moe
# no longer copied after attention refactors
class Qwen2MoeAttention(nn.Module):
"""
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
and "Generating Long Sequences with Sparse Transformers".
"""
def __init__(self, config: Qwen2MoeConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.is_causal = True
self.attention_dropout = config.attention_dropout
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
self.rotary_emb = Qwen2MoeRotaryEmbedding(config=self.config)
# Ignore copy
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# NO LONGER EXIST Copied from transformers.models.qwen2.modeling_qwen2.Qwen2FlashAttention2 with Qwen2->Qwen2Moe
# TODO cyril: modular
class Qwen2MoeFlashAttention2(Qwen2MoeAttention):
"""
Qwen2Moe flash attention module, following Qwen2Moe attention module. This module inherits from `Qwen2MoeAttention`
as the weights of the module stays untouched. The only required change would be on the forward pass
where it needs to correctly call the public API of flash attention and deal with padding tokens
in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom
config.max_window_layers layers.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
):
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
dropout_rate = 0.0 if not self.training else self.attention_dropout
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in float16 just to be sure everything works as expected.
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
# Reashape to the expected shape for Flash Attention
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
if (
self.config.use_sliding_window
and getattr(self.config, "sliding_window", None) is not None
and self.layer_idx >= self.config.max_window_layers
):
sliding_window = self.config.sliding_window
else:
sliding_window = None
attn_output = _flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
position_ids=position_ids,
dropout=dropout_rate,
sliding_window=sliding_window,
is_causal=self.is_causal,
use_top_left_mask=self._flash_attn_uses_top_left_mask,
)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# NO LONGER EXIST Copied from transformers.models.qwen2.modeling_qwen2.Qwen2SdpaAttention with Qwen2->Qwen2Moe
# TODO cyril: modular
class Qwen2MoeSdpaAttention(Qwen2MoeAttention):
"""
Qwen2Moe attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
`Qwen2MoeAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
SDPA API.
"""
# Adapted from Qwen2MoeAttention.forward
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if output_attentions:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"Qwen2MoeModel is using Qwen2MoeSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
causal_mask = attention_mask
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and attention_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
is_causal = True if causal_mask is None and q_len > 1 else False
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=causal_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
is_causal=is_causal,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, None, past_key_value
QWEN2MOE_ATTENTION_CLASSES = {
"eager": Qwen2MoeAttention,
"flash_attention_2": Qwen2MoeFlashAttention2,
"sdpa": Qwen2MoeSdpaAttention,
}
class Qwen2MoeSparseMoeBlock(nn.Module):
def __init__(self, config):
super().__init__()
self.num_experts = config.num_experts
self.top_k = config.num_experts_per_tok
self.norm_topk_prob = config.norm_topk_prob
# gating
self.gate = nn.Linear(config.hidden_size, config.num_experts, bias=False)
self.experts = nn.ModuleList(
[Qwen2MoeMLP(config, intermediate_size=config.moe_intermediate_size) for _ in range(self.num_experts)]
)
self.shared_expert = Qwen2MoeMLP(config, intermediate_size=config.shared_expert_intermediate_size)
self.shared_expert_gate = torch.nn.Linear(config.hidden_size, 1, bias=False)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
""" """
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_dim)
# router_logits: (batch * sequence_length, n_experts)
router_logits = self.gate(hidden_states)
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
if self.norm_topk_prob:
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
# we cast back to the input dtype
routing_weights = routing_weights.to(hidden_states.dtype)
final_hidden_states = torch.zeros(
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
)
# One hot encode the selected experts to create an expert mask
# this will be used to easily index which expert is going to be sollicitated
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
# Loop over all available experts in the model and perform the computation on each expert
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
idx, top_x = torch.where(expert_mask[expert_idx])
# Index the correct hidden states and compute the expert hidden state for
# the current expert. We need to make sure to multiply the output hidden
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
# However `index_add_` only support torch tensors for indexing so we'll use
# the `top_x` tensor here.
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
shared_expert_output = self.shared_expert(hidden_states)
shared_expert_output = F.sigmoid(self.shared_expert_gate(hidden_states)) * shared_expert_output
final_hidden_states = final_hidden_states + shared_expert_output
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
return final_hidden_states, router_logits
class Qwen2MoeDecoderLayer(nn.Module):
def __init__(self, config: Qwen2MoeConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = QWEN2MOE_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
if (layer_idx not in config.mlp_only_layers) and (
config.num_experts > 0 and (layer_idx + 1) % config.decoder_sparse_step == 0
):
self.mlp = Qwen2MoeSparseMoeBlock(config)
else:
self.mlp = Qwen2MoeMLP(config, intermediate_size=config.intermediate_size)
self.input_layernorm = Qwen2MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = Qwen2MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
output_router_logits: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_router_logits (`bool`, *optional*):
Whether or not to return the logits of all the routers. They are useful for computing the router loss,
and should not be returned during inference.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence.
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
with `head_dim` being the embedding dimension of each attention head.
kwargs (`dict`, *optional*):
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
into the model
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
if isinstance(hidden_states, tuple):
hidden_states, router_logits = hidden_states
else:
router_logits = None
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
if output_router_logits:
outputs += (router_logits,)
return outputs
QWEN2MOE_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`Qwen2MoeConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Qwen2MoE Model outputting raw hidden-states without any specific head on top.",
QWEN2MOE_START_DOCSTRING,
)
class Qwen2MoePreTrainedModel(PreTrainedModel):
config_class = Qwen2MoeConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["Qwen2MoeDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
QWEN2MOE_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
Two formats are allowed:
- a [`~cache_utils.Cache`] instance, see our
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
cache format.
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
legacy cache format will be returned.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
output_router_logits (`bool`, *optional*):
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
should not be returned during inference.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare Qwen2MoE Model outputting raw hidden-states without any specific head on top.",
QWEN2MOE_START_DOCSTRING,
)
class Qwen2MoeModel(Qwen2MoePreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2MoeDecoderLayer`]
Args:
config: Qwen2MoeConfig
"""
def __init__(self, config: Qwen2MoeConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[Qwen2MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self._attn_implementation = config._attn_implementation
self.norm = Qwen2MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = Qwen2MoeRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(QWEN2MOE_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, MoeModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.output_router_logits
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# kept for BC (non `Cache` `past_key_values` inputs)
return_legacy_cache = False
if use_cache and not isinstance(past_key_values, Cache):
return_legacy_cache = True
if past_key_values is None:
past_key_values = DynamicCache()
else:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
logger.warning_once(
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
)
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_router_logits = () if output_router_logits else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
output_router_logits,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
output_router_logits=output_router_logits,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if output_router_logits and layer_outputs[-1] is not None:
all_router_logits += (layer_outputs[-1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if return_legacy_cache:
next_cache = next_cache.to_legacy_cache()
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
if v is not None
)
return MoeModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
router_logits=all_router_logits,
)
# Copied from transformers.models.phi3.modeling_phi3.Phi3Model._update_causal_mask with Phi3->Qwen2Moe
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and past_key_values is not None:
is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0]
if is_padding_right:
raise ValueError(
"You are attempting to perform batched generation with padding_side='right'"
" this may lead to unexpected behaviour for Flash Attention version of Qwen2Moe. Make sure to "
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
)
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if (
self.config._attn_implementation == "sdpa"
and not (using_static_cache or using_sliding_window_cache)
and not output_attentions
):
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
sliding_window=self.config.sliding_window,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
# SlidingWindowCache or StaticCache
if using_sliding_window_cache or using_static_cache:
target_length = past_key_values.get_max_cache_shape()
# DynamicCache or no cache
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
config=self.config,
past_key_values=past_key_values,
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
# Copied from transformers.models.mistral.modeling_mistral.MistralModel._prepare_4d_causal_attention_mask_with_cache_position with Mistral->Qwen2Moe
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
config: Qwen2MoeConfig,
past_key_values: Cache,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to plcae the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
config (`Qwen2MoeConfig`):
The model's configuration class
past_key_values (`Cache`):
The cache class that is being used currently to generate
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
if config.sliding_window is not None:
# if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also
# the check is needed to verify is current checkpoint was trained with sliding window or not
if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length:
sliding_attend_mask = torch.arange(target_length, device=device) <= (
cache_position.reshape(-1, 1) - config.sliding_window
)
diagonal_attend_mask.bitwise_or_(sliding_attend_mask)
causal_mask *= diagonal_attend_mask
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
if attention_mask.shape[-1] > target_length:
attention_mask = attention_mask[:, :target_length]
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
class Qwen2MoeForCausalLM(Qwen2MoePreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
def __init__(self, config):
super().__init__(config)
self.model = Qwen2MoeModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.router_aux_loss_coef = config.router_aux_loss_coef
self.num_experts = config.num_experts
self.num_experts_per_tok = config.num_experts_per_tok
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(QWEN2MOE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**loss_kwargs,
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, Qwen2MoeForCausalLM
>>> model = Qwen2MoeForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.output_router_logits
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_router_logits=output_router_logits,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
aux_loss = None
if output_router_logits:
aux_loss = load_balancing_loss_func(
outputs.router_logits if return_dict else outputs[-1],
self.num_experts,
self.num_experts_per_tok,
attention_mask,
)
if labels is not None:
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
if not return_dict:
output = (logits,) + outputs[1:]
if output_router_logits:
output = (aux_loss,) + output
return (loss,) + output if loss is not None else output
return MoeCausalLMOutputWithPast(
loss=loss,
aux_loss=aux_loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
router_logits=outputs.router_logits,
)
@add_start_docstrings(
"""
The Qwen2MoE Model transformer with a sequence classification head on top (linear layer).
[`Qwen2MoeForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
QWEN2MOE_START_DOCSTRING,
)
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Qwen2Moe, LLAMA->QWEN2MOE
class Qwen2MoeForSequenceClassification(Qwen2MoePreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = Qwen2MoeModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(QWEN2MOE_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
sequence_lengths = sequence_lengths % input_ids.shape[-1]
sequence_lengths = sequence_lengths.to(logits.device)
else:
sequence_lengths = -1
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
The Qwen2MoE Model transformer with a token classification head on top (a linear layer on top of the hidden-states
output) e.g. for Named-Entity-Recognition (NER) tasks.
""",
QWEN2MOE_START_DOCSTRING,
)
# Copied from transformers.models.llama.modeling_llama.LlamaForTokenClassification with Llama->Qwen2Moe, LLAMA->QWEN2MOE
class Qwen2MoeForTokenClassification(Qwen2MoePreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = Qwen2MoeModel(config)
if getattr(config, "classifier_dropout", None) is not None:
classifier_dropout = config.classifier_dropout
elif getattr(config, "hidden_dropout", None) is not None:
classifier_dropout = config.hidden_dropout
else:
classifier_dropout = 0.1
self.dropout = nn.Dropout(classifier_dropout)
self.score = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(QWEN2MOE_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.score(sequence_output)
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.config)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
The Qwen2MoE Model transformer with a span classification head on top for extractive question-answering tasks like
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
QWEN2MOE_START_DOCSTRING,
)
# Copied from transformers.models.mistral.modeling_mistral.MistralForQuestionAnswering with Mistral->Qwen2Moe, MISTRAL->QWEN2MOE
class Qwen2MoeForQuestionAnswering(Qwen2MoePreTrainedModel):
base_model_prefix = "model"
def __init__(self, config):
super().__init__(config)
self.qa_outputs = nn.Linear(config.hidden_size, 2)
self.model = Qwen2MoeModel(config) # diff with Llama: transformer->model
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(QWEN2MOE_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
loss = None
if start_positions is not None and end_positions is not None:
loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs)
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return QuestionAnsweringModelOutput(
loss=loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"Qwen2MoeForCausalLM",
"Qwen2MoeForQuestionAnswering",
"Qwen2MoeModel",
"Qwen2MoePreTrainedModel",
"Qwen2MoeForSequenceClassification",
"Qwen2MoeForTokenClassification",
]
|
transformers/src/transformers/models/qwen2_moe/modeling_qwen2_moe.py/0
|
{
"file_path": "transformers/src/transformers/models/qwen2_moe/modeling_qwen2_moe.py",
"repo_id": "transformers",
"token_count": 32649
}
| 157 |
# coding=utf-8
# Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch RecurrentGemma model."""
import math
from typing import Dict, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_outputs import BaseModelOutputWithNoAttention, CausalLMOutput
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import ALL_LAYERNORM_LAYERS
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.import_utils import is_torchdynamo_compiling
from .configuration_recurrent_gemma import RecurrentGemmaConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "RecurrentGemmaConfig"
_MAX_SQRT_GRADIENT = 1000.0
# Copied from transformers.models.gemma.modeling_gemma.GemmaRMSNorm with Gemma->RecurrentGemma
class RecurrentGemmaRMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.zeros(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float())
# Llama does x.to(float16) * w whilst RecurrentGemma is (x * w).to(float16)
# See https://github.com/huggingface/transformers/pull/29402
output = output * (1.0 + self.weight.float())
return output.type_as(x)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.eps}"
ALL_LAYERNORM_LAYERS.append(RecurrentGemmaRMSNorm)
class RecurrentGemmaRotaryEmbedding(nn.Module):
def __init__(self, dim, base=10000, device=None):
super().__init__()
self.dim = dim
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float() / self.dim))
self.register_buffer("inv_freq", tensor=inv_freq, persistent=False)
@torch.no_grad()
def forward(self, x, position_ids, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
self.inv_freq.to(x.device)
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
# Force float32 since bfloat16 loses precision on long contexts
# See https://github.com/huggingface/transformers/pull/29285
device_type = x.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class RecurrentGemmaSdpaAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: RecurrentGemmaConfig):
super().__init__()
self.config = config
self.attention_dropout = config.attention_dropout
self.hidden_size = config.hidden_size
self.num_attention_heads = config.num_attention_heads
self.head_dim = config.head_dim
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_attention_heads // self.num_key_value_heads
self.partial_rotary_factor = config.partial_rotary_factor
self.q_proj = nn.Linear(self.hidden_size, self.num_attention_heads * self.head_dim, bias=config.attention_bias)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.o_proj = nn.Linear(self.num_attention_heads * self.head_dim, self.hidden_size, bias=True)
self.rotary_emb = RecurrentGemmaRotaryEmbedding(
int(self.partial_rotary_factor * self.head_dim),
base=config.rope_theta,
)
def forward(
self,
hidden_states: torch.Tensor,
position_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
cache_position: Optional[torch.LongTensor] = None,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_attention_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = self.rotary_emb(value_states, position_ids)
# Partial rotary embedding
query_rot, query_pass = torch.chunk(query_states, int(1 / self.partial_rotary_factor), dim=-1)
key_rot, key_pass = torch.chunk(key_states, int(1 / self.partial_rotary_factor), dim=-1)
query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
query_states = torch.cat((query_rot, query_pass), dim=-1)
key_states = torch.cat((key_rot, key_pass), dim=-1)
if use_cache and hasattr(self, "key_states"):
cache_kwargs = {"cache_position": cache_position}
key_states, value_states = self._update_cache(key_states, value_states, **cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
causal_mask = attention_mask
if attention_mask is not None:
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states.contiguous(),
key_states.contiguous(),
value_states.contiguous(),
attn_mask=causal_mask, # pretty much a must for sliding window backend!
dropout_p=self.attention_dropout if self.training else 0.0,
scale=self.head_dim**-0.5,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output
def _setup_cache(self, batch_size, device, dtype=None):
if dtype is None and self.config.torch_dtype is not None:
dtype = self.config.torch_dtype
dtype = dtype if dtype is not None else torch.float32
cache_shape = (batch_size, self.num_key_value_heads, self.config.attention_window_size, self.head_dim)
self.value_states = torch.zeros(cache_shape, dtype=dtype, device=device)
self.key_states = torch.zeros(cache_shape, dtype=dtype, device=device)
@torch.no_grad()
def _update_cache(self, key_states, value_states, **cache_kwargs):
"""
torch.compile compatible sliding window.
Computes the `indices` based on `cache_position >= self.config.attention_window_size - 1`.
The `to_shift` is only true once we are above attention_window_size. Thus with `attention_window_size==64`:
indices = (slicing + to_shift[-1].int()-1) % self.config.attention_window_size
tensor([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 0])
We overwrite the cache using these, then we always write at cache_position (clamped to `attention_window_size`)
"""
cache_position = cache_kwargs.get("cache_position")
if cache_position.shape[0] > self.config.attention_window_size:
# int indexing -> device sync? in compile, use tensor
k_out = key_states[:, :, -self.config.attention_window_size :, :]
v_out = value_states[:, :, -self.config.attention_window_size :, :]
else:
slicing = torch.ones(
self.config.attention_window_size, dtype=torch.long, device=value_states.device
).cumsum(0)
cache_position = cache_position.clamp(0, self.config.attention_window_size - 1)
to_shift = cache_position >= self.config.attention_window_size - 1
indices = (slicing + to_shift[-1].int() - 1) % self.config.attention_window_size
k_out, v_out = self.key_states.to(key_states.device), self.value_states.to(value_states.device)
k_out = k_out[:, :, indices]
v_out = v_out[:, :, indices]
k_out[:, :, cache_position] = key_states.to(k_out.dtype)
v_out[:, :, cache_position] = value_states.to(v_out.dtype)
self.key_states, self.value_states = k_out, v_out
return k_out, v_out
class SqrtBoundDerivative(torch.autograd.Function):
"""Computes a square root with a gradient clipped at `_MAX_SQRT_GRADIENT`."""
@staticmethod
def forward(ctx, x: torch.Tensor) -> torch.Tensor:
"""The forward pass, which is a normal `sqrt`."""
ctx.save_for_backward(x)
return torch.sqrt(x)
@staticmethod
def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor:
"""The backward pass, which clips the `sqrt` gradient."""
(x,) = ctx.saved_tensors
clipped_x_times_4 = torch.clip(4.0 * x, min=1 / (_MAX_SQRT_GRADIENT**2))
return grad_output / torch.sqrt(clipped_x_times_4)
class RecurrentGemmaRglru(nn.Module):
"""A Real-Gated Linear Recurrent Unit (RG-LRU) layer."""
def __init__(self, config):
super().__init__()
self.num_attention_heads = config.num_attention_heads
self.block_width = config.lru_width // self.num_attention_heads
self.recurrent_param = nn.Parameter(torch.empty([config.lru_width]))
self.input_gate_weight = nn.Parameter(
torch.empty([self.num_attention_heads, self.block_width, self.block_width])
)
self.input_gate_bias = nn.Parameter(torch.empty([self.num_attention_heads, self.block_width]))
self.recurrent_gate_weight = nn.Parameter(
torch.empty([self.num_attention_heads, self.block_width, self.block_width])
)
self.recurrent_gate_bias = nn.Parameter(torch.empty([self.num_attention_heads, self.block_width]))
self.recurrent_states = None
def forward(
self,
activations: torch.Tensor,
position_ids: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size, seq_len, lru_width = activations.shape
reset = position_ids[:, :, None] == 0
reshape_act = activations.reshape(batch_size * seq_len, self.num_attention_heads, self.block_width)
reshape_act = reshape_act.permute(1, 0, 2)
res = torch.baddbmm(self.input_gate_bias[:, None, :], reshape_act, self.input_gate_weight)
input_gate = torch.sigmoid(res.transpose(0, 1).reshape(batch_size, seq_len, lru_width))
res = torch.baddbmm(self.recurrent_gate_bias[:, None, :], reshape_act, self.recurrent_gate_weight)
recurrent_gate = torch.sigmoid(res.transpose(0, 1).reshape(batch_size, seq_len, lru_width))
# Compute the parameter `A` of the recurrence.
log_recurrent_gate = -8.0 * recurrent_gate * nn.functional.softplus(self.recurrent_param)
recurrent_gate = torch.exp(log_recurrent_gate)
a_square = torch.exp(2 * log_recurrent_gate)
# Gate the input.
gated_inputs = activations * input_gate
# Apply gamma normalization to the input. We need to clip the derivatives of
# `sqrt` in order to prevent NaNs during training in bfloat16. TODO a bit annoying
multiplier = 1
tracing = isinstance(activations, torch.fx.Proxy) or is_torchdynamo_compiling()
if not torch.jit.is_tracing() and not tracing:
multiplier = SqrtBoundDerivative.apply(1 - a_square)
multiplier = reset + ~reset * multiplier
normalized_x = gated_inputs * multiplier.type(activations.dtype)
hidden_states, recurrent_states = self._rnn_scan(
hidden_states=normalized_x,
recurrent_gate=recurrent_gate,
reset=reset,
recurrent_states=self.recurrent_states,
)
self.recurrent_states = recurrent_states
return hidden_states
# TODO refactor
def _rnn_scan(
self,
hidden_states: torch.Tensor,
recurrent_gate: torch.Tensor,
reset: torch.Tensor,
recurrent_states: Union[torch.Tensor, None],
acc_dtype: torch.dtype = torch.float32,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Runs the recurrence of a linear RNN.
Args:
hidden_states: The input sequence.
recurrent_gate: The diagonal of the recurrence matrix `A`.
reset: Indicator of document boundaries, e.g. when to reset the hidden state
of the RNN.
recurrent_states: The initial hidden state.
acc_dtype: The data type for the accumulation.
Returns:
The output of the linear recurrence.
"""
# Multiply `a` by the reset.
recurrent_gate = recurrent_gate * ~reset
if hidden_states.shape[1] == 1:
# Using scan in sampling mode.
if recurrent_states is None: # same here, when decoding you always have cache
return hidden_states, hidden_states[:, 0].type(acc_dtype)
else:
contextualized_states = recurrent_gate.type(acc_dtype) * recurrent_states[:, None].to(
recurrent_gate.device
)
contextualized_states += hidden_states.type(acc_dtype)
return contextualized_states.type(hidden_states.dtype), contextualized_states[:, -1]
else:
# Using scan in linear mode.
if recurrent_states is None:
recurrent_states = torch.zeros(hidden_states[:, 0].shape, dtype=acc_dtype, device=hidden_states.device)
contextualized_states = torch.zeros_like(hidden_states)
for t in range(hidden_states.shape[1]):
recurrent_states = recurrent_gate[:, t].type(acc_dtype) * recurrent_states.to(recurrent_gate.device)
recurrent_states = recurrent_states + hidden_states[:, t].type(acc_dtype)
contextualized_states[:, t] = recurrent_states.type(hidden_states.dtype)
return contextualized_states, recurrent_states
class RecurrentGemmaRecurrentBlock(nn.Module):
"""Griffin and Hawk's recurrent block."""
def __init__(self, config):
super().__init__()
self.lru_width = config.lru_width
self.hidden_size = config.hidden_size
self.linear_y = nn.Linear(in_features=config.hidden_size, out_features=config.lru_width)
self.linear_x = nn.Linear(in_features=config.hidden_size, out_features=config.lru_width)
self.linear_out = nn.Linear(in_features=config.lru_width, out_features=config.hidden_size)
self.conv1d_width = config.conv1d_width
self.conv_1d = nn.Conv1d(
config.lru_width,
config.lru_width,
kernel_size=config.conv1d_width,
groups=config.lru_width,
padding=config.conv1d_width - 1,
)
self.rg_lru = RecurrentGemmaRglru(config)
self.act_fn = ACT2FN[config.hidden_activation]
self.conv1d_state = None
def forward(
self,
input_states: torch.Tensor,
position_ids: torch.Tensor,
attention_mask: torch.Tensor,
cache_position: torch.Tensor,
use_cache: bool = True,
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
_, seq_len, _ = input_states.shape
y_branch = self.linear_y(input_states)
y_branch = self.act_fn(y_branch)
x_branch = self.linear_x(input_states)
x_branch = x_branch.transpose(1, 2)
if use_cache:
if cache_position.shape[0] != 1: # prefill
self.conv1d_state = nn.functional.pad(x_branch, (self.conv1d_width - x_branch.shape[-1] - 1, 0))
x_branch = self.conv_1d(x_branch)[..., :seq_len]
else: # decoding
conv_state = torch.cat((self.conv1d_state, x_branch), -1)
x_branch = torch.sum(conv_state * self.conv_1d.weight[:, 0, :], dim=-1) + self.conv_1d.bias
x_branch = x_branch.unsqueeze(-1)
self.conv1d_state = conv_state[:, :, 1:]
else:
x_branch = self.conv_1d(x_branch)[..., :seq_len]
x_branch = self.rg_lru(x_branch.transpose(1, 2), position_ids)
hidden_states = x_branch * y_branch
hidden_states = self.linear_out(hidden_states)
return hidden_states
def _setup_cache(self, batch, device, dtype):
# recurrent_states always computed in full precision
self.rg_lru.recurrent_states = torch.zeros((batch, self.lru_width), device=device, dtype=torch.float32)
self.conv1d_state = torch.zeros((batch, self.hidden_size, self.conv1d_width - 1), device=device, dtype=dtype)
TEMPORAL_BLOCK_CLASSES = {"recurrent": RecurrentGemmaRecurrentBlock, "attention": RecurrentGemmaSdpaAttention}
class RecurrentGemmaMlp(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size // 2
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=True)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=True)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=True)
self.act_fn = ACT2FN[config.hidden_activation]
def forward(self, hidden_states):
gate = self.act_fn(self.gate_proj(hidden_states))
return self.down_proj(gate * self.up_proj(hidden_states))
class RecurrentGemmaDecoderLayer(nn.Module):
"""Griffin and Hawk's residual block."""
def __init__(self, config, layer_idx):
super().__init__()
self.temporal_pre_norm = RecurrentGemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.temporal_block = TEMPORAL_BLOCK_CLASSES[config.layers_block_type[layer_idx]](config)
self.channel_pre_norm = RecurrentGemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.mlp_block = RecurrentGemmaMlp(config)
def forward(
self,
activations: torch.Tensor,
position_ids: torch.Tensor,
attention_mask: torch.Tensor,
cache_position: torch.Tensor = None,
use_cache: bool = None,
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
raw_activations = activations
inputs_normalized = self.temporal_pre_norm(raw_activations) # RMSNorm introduces slight slight differences
hidden_states = self.temporal_block(
inputs_normalized, position_ids, attention_mask, cache_position=cache_position, use_cache=use_cache
)
residual = hidden_states + raw_activations
hidden_states = self.channel_pre_norm(residual)
hidden_states = self.mlp_block(hidden_states)
hidden_states = hidden_states + residual
return hidden_states
RECURRENTGEMMA_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`RecurrentGemmaConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare RecurrentGemma Model outputting raw hidden-states without any specific head on top.",
RECURRENTGEMMA_START_DOCSTRING,
)
class RecurrentGemmaPreTrainedModel(PreTrainedModel):
config_class = RecurrentGemmaConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["RecurrentGemmaDecoderLayer"]
_skip_keys_device_placement = ["cache"]
_supports_flash_attn_2 = False
_supports_sdpa = False # we can't compare with eager for now
_supports_cache_class = True
_supports_quantized_cache = True
def _init_weights(self, module):
std = math.sqrt(self.config.w_init_variance_scale / self.config.conv1d_width)
if isinstance(module, nn.Conv1d):
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
torch.nn.init.zeros_(module.bias)
elif isinstance(module, RecurrentGemmaSdpaAttention):
torch.nn.init.normal_(module.q_proj.weight, mean=0.0, std=math.sqrt(1.0 / self.config.hidden_size))
torch.nn.init.normal_(module.k_proj.weight, mean=0.0, std=math.sqrt(1.0 / self.config.hidden_size))
torch.nn.init.normal_(module.v_proj.weight, mean=0.0, std=math.sqrt(1.0 / self.config.hidden_size))
std = math.sqrt(self.config.final_w_init_variance_scale / self.config.hidden_size)
torch.nn.init.normal_(module.o_proj.weight, mean=0.0, std=std)
elif isinstance(module, RecurrentGemmaRecurrentBlock):
torch.nn.init.zeros_(module.linear_x.bias)
torch.nn.init.normal_(module.linear_x.weight, mean=0.0, std=math.sqrt(1.0 / self.config.hidden_size))
torch.nn.init.zeros_(module.linear_y.bias)
torch.nn.init.normal_(module.linear_y.weight, mean=0.0, std=math.sqrt(1.0 / self.config.hidden_size))
std = math.sqrt(self.config.final_w_init_variance_scale / self.config.lru_width)
torch.nn.init.normal_(module.linear_out.weight, mean=0.0, std=std)
torch.nn.init.zeros_(module.linear_out.bias)
elif isinstance(module, RecurrentGemmaRglru):
std = math.sqrt(
self.config.w_init_variance_scale / (self.config.lru_width // self.config.num_attention_heads)
)
torch.nn.init.normal_(module.input_gate_weight, mean=0.0, std=std)
torch.nn.init.normal_(module.recurrent_gate_weight, mean=0.0, std=std)
torch.nn.init.zeros_(module.input_gate_bias)
torch.nn.init.zeros_(module.recurrent_gate_bias)
module.recurrent_param.data.uniform_(0.9**2 + 1e-8, 0.999**2 + 1e-8)
module.recurrent_param.data.log_().mul_(0.5)
module.recurrent_param.data.neg_().exp_().sub_(1.0).log_()
elif isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
if getattr(module, "bias", None) is not None:
torch.nn.init.zeros_(module.bias)
def _setup_cache(self, config, batch, device, dtype):
layers = getattr(self, "model", self).layers
for layer in layers:
layer.temporal_block._setup_cache(batch, device, dtype)
def reset_cache(self, batch, device, dtype):
pass
RECURRENTGEMMA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare RecurrentGemma Model outputting raw hidden-states without any specific head on top.",
RECURRENTGEMMA_START_DOCSTRING,
)
class RecurrentGemmaModel(RecurrentGemmaPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`RecurrentGemmaDecoderLayer`]
Args:
config: RecurrentGemmaConfig
"""
def __init__(self, config: RecurrentGemmaConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[RecurrentGemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.final_norm = RecurrentGemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
self.register_buffer(
"normalizer", torch.tensor(self.config.hidden_size**0.5, dtype=torch.bfloat16), persistent=False
)
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.llama.modeling_llama.LlamaModel.get_input_embeddings
def get_input_embeddings(self):
return self.embed_tokens
# Copied from transformers.models.llama.modeling_llama.LlamaModel.set_input_embeddings
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(RECURRENTGEMMA_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
position_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
cache_position: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithNoAttention]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
hidden_states = inputs_embeds
if use_cache and inputs_embeds.shape[1] != 1: # TODO let's maybe only call in the `generate`?
self._setup_cache(self.config, hidden_states.shape[0], hidden_states.device, hidden_states.dtype)
if cache_position is None:
cache_position = torch.arange(hidden_states.shape[1], device=hidden_states.device)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
hidden_states = hidden_states * self.normalizer.type(hidden_states.dtype)
all_hidden_states = () if output_hidden_states else None
for i, residual_block in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
hidden_states = self._gradient_checkpointing_func(
residual_block.__call__, hidden_states, position_ids, causal_mask, cache_position, use_cache
)
else:
hidden_states = residual_block(hidden_states, position_ids, causal_mask, cache_position, use_cache)
hidden_states = self.final_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
return BaseModelOutputWithNoAttention(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
)
# Ignore copy
def _update_causal_mask(self, attention_mask, input_tensor, cache_position):
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
target_length = max(self.config.attention_window_size, sequence_length)
diagonal = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
causal_mask = diagonal
if sequence_length != 1:
causal_mask = torch.triu(diagonal, diagonal=-1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
if attention_mask.dim() == 2:
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
if attention_mask is not None and attention_mask.device.type == "cuda":
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
# TODO: re-enable check: Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM with LLAMA->RECURRENTGEMMA,Llama->RecurrentGemma,llama->gemma
class RecurrentGemmaForCausalLM(RecurrentGemmaPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = RecurrentGemmaModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
# Ignore copy
@add_start_docstrings_to_model_forward(RECURRENTGEMMA_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
use_cache: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutput]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, RecurrentGemmaForCausalLM
>>> model = RecurrentGemmaForCausalLM.from_pretrained("google/recurrentgemma-2b")
>>> tokenizer = AutoTokenizer.from_pretrained("google/recurrentgemma-2b")
>>> prompt = "What is your favorite condiment?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"What is your favorite condiment?"
```"""
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = True
outputs = self.model(
input_ids=input_ids,
position_ids=position_ids,
cache_position=cache_position,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
# Soft-cap the logits TODO remove if always done.
# if self.config.logits_soft_cap is not None:
cap = self.config.logits_soft_cap
logits = nn.functional.tanh(logits / cap) * cap
loss = None
if labels is not None:
# Upcast to float if we need to compute the loss to avoid potential precision issues
logits = logits.float()
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
)
# Ignore copy
def _reorder_cache(self, past_key_values, beam_idx):
for layer in self.layers:
if hasattr(layer.temporal_block, "key_states"):
k_state = layer.temporal_block.key_states
v_state = layer.temporal_block.value_states
k_state = k_state.index_select(0, beam_idx.to(k_state.device))
v_state = v_state.index_select(0, beam_idx.to(v_state.device))
return None
__all__ = ["RecurrentGemmaForCausalLM", "RecurrentGemmaModel", "RecurrentGemmaPreTrainedModel"]
|
transformers/src/transformers/models/recurrent_gemma/modeling_recurrent_gemma.py/0
|
{
"file_path": "transformers/src/transformers/models/recurrent_gemma/modeling_recurrent_gemma.py",
"repo_id": "transformers",
"token_count": 17744
}
| 158 |
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert RemBERT checkpoint."""
import argparse
import torch
from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert
from transformers.utils import logging
logging.set_verbosity_info()
def convert_rembert_tf_checkpoint_to_pytorch(tf_checkpoint_path, bert_config_file, pytorch_dump_path):
# Initialise PyTorch model
config = RemBertConfig.from_json_file(bert_config_file)
print("Building PyTorch model from configuration: {}".format(str(config)))
model = RemBertModel(config)
# Load weights from tf checkpoint
load_tf_weights_in_rembert(model, config, tf_checkpoint_path)
# Save pytorch-model
print("Save PyTorch model to {}".format(pytorch_dump_path))
torch.save(model.state_dict(), pytorch_dump_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--rembert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained RemBERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
args = parser.parse_args()
convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
|
transformers/src/transformers/models/rembert/convert_rembert_tf_checkpoint_to_pytorch.py/0
|
{
"file_path": "transformers/src/transformers/models/rembert/convert_rembert_tf_checkpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 775
}
| 159 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TF 2.0 RoBERTa model."""
from __future__ import annotations
import math
import warnings
from typing import Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import (
TFBaseModelOutputWithPastAndCrossAttentions,
TFBaseModelOutputWithPoolingAndCrossAttentions,
TFCausalLMOutputWithCrossAttentions,
TFMaskedLMOutput,
TFMultipleChoiceModelOutput,
TFQuestionAnsweringModelOutput,
TFSequenceClassifierOutput,
TFTokenClassifierOutput,
)
from ...modeling_tf_utils import (
TFCausalLanguageModelingLoss,
TFMaskedLanguageModelingLoss,
TFModelInputType,
TFMultipleChoiceLoss,
TFPreTrainedModel,
TFQuestionAnsweringLoss,
TFSequenceClassificationLoss,
TFTokenClassificationLoss,
get_initializer,
keras,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
)
from .configuration_roberta import RobertaConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "FacebookAI/roberta-base"
_CONFIG_FOR_DOC = "RobertaConfig"
class TFRobertaEmbeddings(keras.layers.Layer):
"""
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
"""
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.padding_idx = 1
self.config = config
self.hidden_size = config.hidden_size
self.max_position_embeddings = config.max_position_embeddings
self.initializer_range = config.initializer_range
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
def build(self, input_shape=None):
with tf.name_scope("word_embeddings"):
self.weight = self.add_weight(
name="weight",
shape=[self.config.vocab_size, self.hidden_size],
initializer=get_initializer(self.initializer_range),
)
with tf.name_scope("token_type_embeddings"):
self.token_type_embeddings = self.add_weight(
name="embeddings",
shape=[self.config.type_vocab_size, self.hidden_size],
initializer=get_initializer(self.initializer_range),
)
with tf.name_scope("position_embeddings"):
self.position_embeddings = self.add_weight(
name="embeddings",
shape=[self.max_position_embeddings, self.hidden_size],
initializer=get_initializer(self.initializer_range),
)
if self.built:
return
self.built = True
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
def create_position_ids_from_input_ids(self, input_ids, past_key_values_length=0):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding
symbols are ignored. This is modified from fairseq's `utils.make_positions`.
Args:
input_ids: tf.Tensor
Returns: tf.Tensor
"""
mask = tf.cast(tf.math.not_equal(input_ids, self.padding_idx), dtype=input_ids.dtype)
incremental_indices = (tf.math.cumsum(mask, axis=1) + past_key_values_length) * mask
return incremental_indices + self.padding_idx
def call(
self,
input_ids=None,
position_ids=None,
token_type_ids=None,
inputs_embeds=None,
past_key_values_length=0,
training=False,
):
"""
Applies embedding based on inputs tensor.
Returns:
final_embeddings (`tf.Tensor`): output embedding tensor.
"""
assert not (input_ids is None and inputs_embeds is None)
if input_ids is not None:
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
input_shape = shape_list(inputs_embeds)[:-1]
if token_type_ids is None:
token_type_ids = tf.fill(dims=input_shape, value=0)
if position_ids is None:
if input_ids is not None:
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = self.create_position_ids_from_input_ids(
input_ids=input_ids, past_key_values_length=past_key_values_length
)
else:
position_ids = tf.expand_dims(
tf.range(start=self.padding_idx + 1, limit=input_shape[-1] + self.padding_idx + 1), axis=0
)
position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids)
final_embeddings = inputs_embeds + position_embeds + token_type_embeds
final_embeddings = self.LayerNorm(inputs=final_embeddings)
final_embeddings = self.dropout(inputs=final_embeddings, training=training)
return final_embeddings
# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->Roberta
class TFRobertaPooler(keras.layers.Layer):
def __init__(self, config: RobertaConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
activation="tanh",
name="dense",
)
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(inputs=first_token_tensor)
return pooled_output
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention with Bert->Roberta
class TFRobertaSelfAttention(keras.layers.Layer):
def __init__(self, config: RobertaConfig, **kwargs):
super().__init__(**kwargs)
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number "
f"of attention heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
self.query = keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
)
self.key = keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
)
self.value = keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
)
self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob)
self.is_decoder = config.is_decoder
self.config = config
def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
# Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
# Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
return tf.transpose(tensor, perm=[0, 2, 1, 3])
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
head_mask: tf.Tensor,
encoder_hidden_states: tf.Tensor,
encoder_attention_mask: tf.Tensor,
past_key_value: Tuple[tf.Tensor],
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
batch_size = shape_list(hidden_states)[0]
mixed_query_layer = self.query(inputs=hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size)
value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size)
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size)
value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size)
key_layer = tf.concat([past_key_value[0], key_layer], axis=2)
value_layer = tf.concat([past_key_value[1], value_layer], axis=2)
else:
key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size)
value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size)
query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
if self.is_decoder:
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
# (batch size, num_heads, seq_len_q, seq_len_k)
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
attention_scores = tf.divide(attention_scores, dk)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in TFRobertaModel call() function)
attention_scores = tf.add(attention_scores, attention_mask)
# Normalize the attention scores to probabilities.
attention_probs = stable_softmax(logits=attention_scores, axis=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(inputs=attention_probs, training=training)
# Mask heads if we want to
if head_mask is not None:
attention_probs = tf.multiply(attention_probs, head_mask)
attention_output = tf.matmul(attention_probs, value_layer)
attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])
# (batch_size, seq_len_q, all_head_size)
attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size))
outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "query", None) is not None:
with tf.name_scope(self.query.name):
self.query.build([None, None, self.config.hidden_size])
if getattr(self, "key", None) is not None:
with tf.name_scope(self.key.name):
self.key.build([None, None, self.config.hidden_size])
if getattr(self, "value", None) is not None:
with tf.name_scope(self.value.name):
self.value.build([None, None, self.config.hidden_size])
# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->Roberta
class TFRobertaSelfOutput(keras.layers.Layer):
def __init__(self, config: RobertaConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.config = config
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
# Copied from transformers.models.bert.modeling_tf_bert.TFBertAttention with Bert->Roberta
class TFRobertaAttention(keras.layers.Layer):
def __init__(self, config: RobertaConfig, **kwargs):
super().__init__(**kwargs)
self.self_attention = TFRobertaSelfAttention(config, name="self")
self.dense_output = TFRobertaSelfOutput(config, name="output")
def prune_heads(self, heads):
raise NotImplementedError
def call(
self,
input_tensor: tf.Tensor,
attention_mask: tf.Tensor,
head_mask: tf.Tensor,
encoder_hidden_states: tf.Tensor,
encoder_attention_mask: tf.Tensor,
past_key_value: Tuple[tf.Tensor],
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
self_outputs = self.self_attention(
hidden_states=input_tensor,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
training=training,
)
attention_output = self.dense_output(
hidden_states=self_outputs[0], input_tensor=input_tensor, training=training
)
# add attentions (possibly with past_key_value) if we output them
outputs = (attention_output,) + self_outputs[1:]
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self_attention", None) is not None:
with tf.name_scope(self.self_attention.name):
self.self_attention.build(None)
if getattr(self, "dense_output", None) is not None:
with tf.name_scope(self.dense_output.name):
self.dense_output.build(None)
# Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->Roberta
class TFRobertaIntermediate(keras.layers.Layer):
def __init__(self, config: RobertaConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = get_tf_activation(config.hidden_act)
else:
self.intermediate_act_fn = config.hidden_act
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
# Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->Roberta
class TFRobertaOutput(keras.layers.Layer):
def __init__(self, config: RobertaConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.config = config
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.intermediate_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
# Copied from transformers.models.bert.modeling_tf_bert.TFBertLayer with Bert->Roberta
class TFRobertaLayer(keras.layers.Layer):
def __init__(self, config: RobertaConfig, **kwargs):
super().__init__(**kwargs)
self.attention = TFRobertaAttention(config, name="attention")
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = TFRobertaAttention(config, name="crossattention")
self.intermediate = TFRobertaIntermediate(config, name="intermediate")
self.bert_output = TFRobertaOutput(config, name="output")
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
head_mask: tf.Tensor,
encoder_hidden_states: tf.Tensor | None,
encoder_attention_mask: tf.Tensor | None,
past_key_value: Tuple[tf.Tensor] | None,
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
input_tensor=hidden_states,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=self_attn_past_key_value,
output_attentions=output_attentions,
training=training,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
" by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
input_tensor=attention_output,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
training=training,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
intermediate_output = self.intermediate(hidden_states=attention_output)
layer_output = self.bert_output(
hidden_states=intermediate_output, input_tensor=attention_output, training=training
)
outputs = (layer_output,) + outputs # add attentions if we output them
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention.name):
self.attention.build(None)
if getattr(self, "intermediate", None) is not None:
with tf.name_scope(self.intermediate.name):
self.intermediate.build(None)
if getattr(self, "bert_output", None) is not None:
with tf.name_scope(self.bert_output.name):
self.bert_output.build(None)
if getattr(self, "crossattention", None) is not None:
with tf.name_scope(self.crossattention.name):
self.crossattention.build(None)
# Copied from transformers.models.bert.modeling_tf_bert.TFBertEncoder with Bert->Roberta
class TFRobertaEncoder(keras.layers.Layer):
def __init__(self, config: RobertaConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.layer = [TFRobertaLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
head_mask: tf.Tensor,
encoder_hidden_states: tf.Tensor | None,
encoder_attention_mask: tf.Tensor | None,
past_key_values: Tuple[Tuple[tf.Tensor]] | None,
use_cache: Optional[bool],
output_attentions: bool,
output_hidden_states: bool,
return_dict: bool,
training: bool = False,
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
past_key_value = past_key_values[i] if past_key_values is not None else None
layer_outputs = layer_module(
hidden_states=hidden_states,
attention_mask=attention_mask,
head_mask=head_mask[i],
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
training=training,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if self.config.add_cross_attention and encoder_hidden_states is not None:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None
)
return TFBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layer", None) is not None:
for layer in self.layer:
with tf.name_scope(layer.name):
layer.build(None)
@keras_serializable
class TFRobertaMainLayer(keras.layers.Layer):
config_class = RobertaConfig
def __init__(self, config, add_pooling_layer=True, **kwargs):
super().__init__(**kwargs)
self.config = config
self.is_decoder = config.is_decoder
self.num_hidden_layers = config.num_hidden_layers
self.initializer_range = config.initializer_range
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.return_dict = config.use_return_dict
self.encoder = TFRobertaEncoder(config, name="encoder")
self.pooler = TFRobertaPooler(config, name="pooler") if add_pooling_layer else None
# The embeddings must be the last declaration in order to follow the weights order
self.embeddings = TFRobertaEmbeddings(config, name="embeddings")
# Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.get_input_embeddings
def get_input_embeddings(self) -> keras.layers.Layer:
return self.embeddings
# Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.set_input_embeddings
def set_input_embeddings(self, value: tf.Variable):
self.embeddings.weight = value
self.embeddings.vocab_size = shape_list(value)[0]
# Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer._prune_heads
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
raise NotImplementedError
@unpack_inputs
# Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.call
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
if not self.config.is_decoder:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
if past_key_values is None:
past_key_values_length = 0
past_key_values = [None] * len(self.encoder.layer)
else:
past_key_values_length = shape_list(past_key_values[0][0])[-2]
if attention_mask is None:
attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1)
if token_type_ids is None:
token_type_ids = tf.fill(dims=input_shape, value=0)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
training=training,
)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask_shape = shape_list(attention_mask)
mask_seq_length = seq_length + past_key_values_length
# Copied from `modeling_tf_t5.py`
# Provided a padding mask of dimensions [batch_size, mask_seq_length]
# - if the model is a decoder, apply a causal mask in addition to the padding mask
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
if self.is_decoder:
seq_ids = tf.range(mask_seq_length)
causal_mask = tf.less_equal(
tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)),
seq_ids[None, :, None],
)
causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype)
extended_attention_mask = causal_mask * attention_mask[:, None, :]
attention_mask_shape = shape_list(extended_attention_mask)
extended_attention_mask = tf.reshape(
extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2])
)
if past_key_values[0] is not None:
# attention_mask needs to be sliced to the shape `[batch_size, 1, from_seq_length - cached_seq_length, to_seq_length]
extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :]
else:
extended_attention_mask = tf.reshape(
attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1])
)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype)
one_cst = tf.constant(1.0, dtype=embedding_output.dtype)
ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype)
extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
# Copied from `modeling_tf_t5.py` with -1e9 -> -10000
if self.is_decoder and encoder_attention_mask is not None:
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype)
num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask))
if num_dims_encoder_attention_mask == 3:
encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
if num_dims_encoder_attention_mask == 2:
encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask,
# tf.transpose(encoder_extended_attention_mask, perm=(-1, -2)))
encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if head_mask is not None:
raise NotImplementedError
else:
head_mask = [None] * self.config.num_hidden_layers
encoder_outputs = self.encoder(
hidden_states=embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None
if not return_dict:
return (
sequence_output,
pooled_output,
) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "pooler", None) is not None:
with tf.name_scope(self.pooler.name):
self.pooler.build(None)
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
class TFRobertaPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = RobertaConfig
base_model_prefix = "roberta"
ROBERTA_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Parameters:
config ([`RobertaConfig`]): Model configuration class with all the parameters of the
model. Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
ROBERTA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@add_start_docstrings(
"The bare RoBERTa Model transformer outputting raw hidden-states without any specific head on top.",
ROBERTA_START_DOCSTRING,
)
class TFRobertaModel(TFRobertaPreTrainedModel):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.roberta = TFRobertaMainLayer(config, name="roberta")
@unpack_inputs
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutputWithPoolingAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[Tuple, TFBaseModelOutputWithPoolingAndCrossAttentions]:
r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*, defaults to `True`):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`). Set to `False` during training, `True` during generation
"""
outputs = self.roberta(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "roberta", None) is not None:
with tf.name_scope(self.roberta.name):
self.roberta.build(None)
class TFRobertaLMHead(keras.layers.Layer):
"""Roberta Head for masked language modeling."""
def __init__(self, config, input_embeddings, **kwargs):
super().__init__(**kwargs)
self.config = config
self.hidden_size = config.hidden_size
self.dense = keras.layers.Dense(
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
self.act = get_tf_activation("gelu")
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = input_embeddings
def build(self, input_shape=None):
self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, self.config.hidden_size])
def get_output_embeddings(self):
return self.decoder
def set_output_embeddings(self, value):
self.decoder.weight = value
self.decoder.vocab_size = shape_list(value)[0]
def get_bias(self):
return {"bias": self.bias}
def set_bias(self, value):
self.bias = value["bias"]
self.config.vocab_size = shape_list(value["bias"])[0]
def call(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.layer_norm(hidden_states)
# project back to size of vocabulary with bias
seq_length = shape_list(tensor=hidden_states)[1]
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size])
hidden_states = tf.matmul(a=hidden_states, b=self.decoder.weight, transpose_b=True)
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
return hidden_states
@add_start_docstrings("""RoBERTa Model with a `language modeling` head on top.""", ROBERTA_START_DOCSTRING)
class TFRobertaForMaskedLM(TFRobertaPreTrainedModel, TFMaskedLanguageModelingLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head.decoder.weight"]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.roberta = TFRobertaMainLayer(config, add_pooling_layer=False, name="roberta")
self.lm_head = TFRobertaLMHead(config, self.roberta.embeddings, name="lm_head")
def get_lm_head(self):
return self.lm_head
def get_prefix_bias_name(self):
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
return self.name + "/" + self.lm_head.name
@unpack_inputs
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFMaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
mask="<mask>",
expected_output="' Paris'",
expected_loss=0.1,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
outputs = self.roberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores)
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFMaskedLMOutput(
loss=loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "roberta", None) is not None:
with tf.name_scope(self.roberta.name):
self.roberta.build(None)
if getattr(self, "lm_head", None) is not None:
with tf.name_scope(self.lm_head.name):
self.lm_head.build(None)
class TFRobertaForCausalLM(TFRobertaPreTrainedModel, TFCausalLanguageModelingLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head.decoder.weight"]
def __init__(self, config: RobertaConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
if not config.is_decoder:
logger.warning("If you want to use `TFRobertaLMHeadModel` as a standalone, add `is_decoder=True.`")
self.roberta = TFRobertaMainLayer(config, add_pooling_layer=False, name="roberta")
self.lm_head = TFRobertaLMHead(config, input_embeddings=self.roberta.embeddings, name="lm_head")
def get_lm_head(self):
return self.lm_head
def get_prefix_bias_name(self):
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
return self.name + "/" + self.lm_head.name
# Copied from transformers.models.bert.modeling_tf_bert.TFBertLMHeadModel.prepare_inputs_for_generation
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
input_shape = input_ids.shape
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = tf.ones(input_shape)
# cut decoder_input_ids if past is used
if past_key_values is not None:
input_ids = input_ids[:, -1:]
return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
@unpack_inputs
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFCausalLMOutputWithCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]:
r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*, defaults to `True`):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`). Set to `False` during training, `True` during generation
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the cross entropy classification loss. Indices should be in `[0, ...,
config.vocab_size - 1]`.
"""
outputs = self.roberta(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
logits = self.lm_head(hidden_states=sequence_output, training=training)
loss = None
if labels is not None:
# shift labels to the left and cut last logit token
shifted_logits = logits[:, :-1]
labels = labels[:, 1:]
loss = self.hf_compute_loss(labels=labels, logits=shifted_logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFCausalLMOutputWithCrossAttentions(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "roberta", None) is not None:
with tf.name_scope(self.roberta.name):
self.roberta.build(None)
if getattr(self, "lm_head", None) is not None:
with tf.name_scope(self.lm_head.name):
self.lm_head.build(None)
class TFRobertaClassificationHead(keras.layers.Layer):
"""Head for sentence-level classification tasks."""
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
activation="tanh",
name="dense",
)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = keras.layers.Dropout(classifier_dropout)
self.out_proj = keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj"
)
self.config = config
def call(self, features, training=False):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x, training=training)
x = self.dense(x)
x = self.dropout(x, training=training)
x = self.out_proj(x)
return x
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "out_proj", None) is not None:
with tf.name_scope(self.out_proj.name):
self.out_proj.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the
pooled output) e.g. for GLUE tasks.
""",
ROBERTA_START_DOCSTRING,
)
class TFRobertaForSequenceClassification(TFRobertaPreTrainedModel, TFSequenceClassificationLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.roberta = TFRobertaMainLayer(config, add_pooling_layer=False, name="roberta")
self.classifier = TFRobertaClassificationHead(config, name="classifier")
@unpack_inputs
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="cardiffnlp/twitter-roberta-base-emotion",
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output="'optimism'",
expected_loss=0.08,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
outputs = self.roberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output, training=training)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "roberta", None) is not None:
with tf.name_scope(self.roberta.name):
self.roberta.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build(None)
@add_start_docstrings(
"""
Roberta Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
ROBERTA_START_DOCSTRING,
)
class TFRobertaForMultipleChoice(TFRobertaPreTrainedModel, TFMultipleChoiceLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [r"lm_head"]
_keys_to_ignore_on_load_missing = [r"dropout"]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.roberta = TFRobertaMainLayer(config, name="roberta")
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
self.classifier = keras.layers.Dense(
1, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFMultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
"""
if input_ids is not None:
num_choices = shape_list(input_ids)[1]
seq_length = shape_list(input_ids)[2]
else:
num_choices = shape_list(inputs_embeds)[1]
seq_length = shape_list(inputs_embeds)[2]
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
outputs = self.roberta(
flat_input_ids,
flat_attention_mask,
flat_token_type_ids,
flat_position_ids,
head_mask,
inputs_embeds,
output_attentions,
output_hidden_states,
return_dict=return_dict,
training=training,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output, training=training)
logits = self.classifier(pooled_output)
reshaped_logits = tf.reshape(logits, (-1, num_choices))
loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFMultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "roberta", None) is not None:
with tf.name_scope(self.roberta.name):
self.roberta.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
RoBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
ROBERTA_START_DOCSTRING,
)
class TFRobertaForTokenClassification(TFRobertaPreTrainedModel, TFTokenClassificationLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"]
_keys_to_ignore_on_load_missing = [r"dropout"]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.roberta = TFRobertaMainLayer(config, add_pooling_layer=False, name="roberta")
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = keras.layers.Dropout(classifier_dropout)
self.classifier = keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="ydshieh/roberta-large-ner-english",
output_type=TFTokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output="['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']",
expected_loss=0.01,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
outputs = self.roberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output, training=training)
logits = self.classifier(sequence_output)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFTokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "roberta", None) is not None:
with tf.name_scope(self.roberta.name):
self.roberta.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
RoBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
ROBERTA_START_DOCSTRING,
)
class TFRobertaForQuestionAnswering(TFRobertaPreTrainedModel, TFQuestionAnsweringLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.roberta = TFRobertaMainLayer(config, add_pooling_layer=False, name="roberta")
self.qa_outputs = keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="ydshieh/roberta-base-squad2",
output_type=TFQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
expected_output="' puppet'",
expected_loss=0.86,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
start_positions: np.ndarray | tf.Tensor | None = None,
end_positions: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
outputs = self.roberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = tf.split(logits, 2, axis=-1)
start_logits = tf.squeeze(start_logits, axis=-1)
end_logits = tf.squeeze(end_logits, axis=-1)
loss = None
if start_positions is not None and end_positions is not None:
labels = {"start_position": start_positions}
labels["end_position"] = end_positions
loss = self.hf_compute_loss(labels, (start_logits, end_logits))
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFQuestionAnsweringModelOutput(
loss=loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "roberta", None) is not None:
with tf.name_scope(self.roberta.name):
self.roberta.build(None)
if getattr(self, "qa_outputs", None) is not None:
with tf.name_scope(self.qa_outputs.name):
self.qa_outputs.build([None, None, self.config.hidden_size])
__all__ = [
"TFRobertaForCausalLM",
"TFRobertaForMaskedLM",
"TFRobertaForMultipleChoice",
"TFRobertaForQuestionAnswering",
"TFRobertaForSequenceClassification",
"TFRobertaForTokenClassification",
"TFRobertaMainLayer",
"TFRobertaModel",
"TFRobertaPreTrainedModel",
]
|
transformers/src/transformers/models/roberta/modeling_tf_roberta.py/0
|
{
"file_path": "transformers/src/transformers/models/roberta/modeling_tf_roberta.py",
"repo_id": "transformers",
"token_count": 34395
}
| 160 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Flax RoFormer model."""
from typing import Callable, Optional, Tuple
import flax.linen as nn
import jax
import jax.numpy as jnp
import numpy as np
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from ...modeling_flax_outputs import (
FlaxBaseModelOutput,
FlaxMaskedLMOutput,
FlaxMultipleChoiceModelOutput,
FlaxQuestionAnsweringModelOutput,
FlaxSequenceClassifierOutput,
FlaxTokenClassifierOutput,
)
from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, overwrite_call_docstring
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_roformer import RoFormerConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "junnyu/roformer_chinese_base"
_CONFIG_FOR_DOC = "RoFormerConfig"
ROFORMER_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a
[flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as
a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and
behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`RoFormerConfig`]): Model configuration class with all the parameters of the
model. Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
`jax.numpy.bfloat16` (on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
"""
ROFORMER_INPUTS_DOCSTRING = r"""
Args:
input_ids (`numpy.ndarray` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`numpy.ndarray` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`numpy.ndarray` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`numpy.ndarray` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
head_mask (`numpy.ndarray` of shape `({0})`, `optional):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Copied from transformers.models.marian.modeling_flax_marian.create_sinusoidal_positions
def create_sinusoidal_positions(n_pos, dim):
position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)])
sentinel = dim // 2 + dim % 2
out = np.zeros_like(position_enc)
out[:, 0:sentinel] = np.sin(position_enc[:, 0::2])
out[:, sentinel:] = np.cos(position_enc[:, 1::2])
return jnp.array(out)
class FlaxRoFormerEmbeddings(nn.Module):
"""Construct the embeddings from word and token_type embeddings."""
config: RoFormerConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.word_embeddings = nn.Embed(
self.config.vocab_size,
self.config.hidden_size,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
self.token_type_embeddings = nn.Embed(
self.config.type_vocab_size,
self.config.hidden_size,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
def __call__(self, input_ids, token_type_ids, attention_mask, deterministic: bool = True):
# Embed
inputs_embeds = self.word_embeddings(input_ids.astype("i4"))
token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4"))
# Sum all embeddings
hidden_states = inputs_embeds + token_type_embeddings
# Layer Norm
hidden_states = self.LayerNorm(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
return hidden_states
class FlaxRoFormerSelfAttention(nn.Module):
config: RoFormerConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self) -> None:
if self.config.hidden_size % self.config.num_attention_heads != 0:
raise ValueError(
"`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` "
" : {self.config.num_attention_heads}"
)
self.query = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.key = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.value = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.rotary_value = self.config.rotary_value
def __call__(
self,
hidden_states,
attention_mask,
sinusoidal_pos,
layer_head_mask,
deterministic=True,
output_attentions: bool = False,
):
head_dim = self.config.hidden_size // self.config.num_attention_heads
query_states = self.query(hidden_states).reshape(
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
)
value_states = self.value(hidden_states).reshape(
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
)
key_states = self.key(hidden_states).reshape(
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
)
if sinusoidal_pos is not None:
if self.rotary_value:
query_states, key_states, value_states = self.apply_rotary_position_embeddings(
sinusoidal_pos, query_states, key_states, value_states
)
else:
query_states, key_states = self.apply_rotary_position_embeddings(
sinusoidal_pos, query_states, key_states
)
# Convert the boolean attention mask to an attention bias.
if attention_mask is not None:
# attention mask in the form of attention bias
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
)
else:
attention_bias = None
dropout_rng = None
if not deterministic and self.config.attention_probs_dropout_prob > 0.0:
dropout_rng = self.make_rng("dropout")
attn_weights = dot_product_attention_weights(
query_states,
key_states,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.config.attention_probs_dropout_prob,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
precision=None,
)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = jnp.einsum("...hqk,h->...hqk", attn_weights, layer_head_mask)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,))
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
return outputs
@staticmethod
def apply_rotary_position_embeddings(sinusoidal_pos, query_layer, key_layer, value_layer=None):
sin, cos = sinusoidal_pos.split(2, axis=-1)
sin_pos = jnp.stack([sin, sin], axis=-1).reshape(sinusoidal_pos.shape)
cos_pos = jnp.stack([cos, cos], axis=-1).reshape(sinusoidal_pos.shape)
def rotate_layer(layer, sin_pos, cos_pos):
rotate_half_layer = jnp.stack([-layer[..., 1::2], layer[..., ::2]], axis=-1).reshape(layer.shape)
rotary_matrix_cos = jnp.einsum("bslh,...sh->bslh", layer, cos_pos)
rotary_matrix_sin = jnp.einsum("bslh,...sh->bslh", rotate_half_layer, sin_pos)
return rotary_matrix_cos + rotary_matrix_sin
query_layer = rotate_layer(query_layer, sin_pos, cos_pos)
key_layer = rotate_layer(key_layer, sin_pos, cos_pos)
if value_layer is not None:
value_layer = rotate_layer(value_layer, sin_pos, cos_pos)
return query_layer, key_layer, value_layer
return query_layer, key_layer
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfOutput with Bert->RoFormer
class FlaxRoFormerSelfOutput(nn.Module):
config: RoFormerConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
def __call__(self, hidden_states, input_tensor, deterministic: bool = True):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class FlaxRoFormerAttention(nn.Module):
config: RoFormerConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.self = FlaxRoFormerSelfAttention(self.config, dtype=self.dtype)
self.output = FlaxRoFormerSelfOutput(self.config, dtype=self.dtype)
def __call__(
self,
hidden_states,
attention_mask,
sinusoidal_pos,
layer_head_mask,
deterministic=True,
output_attentions: bool = False,
):
# Attention mask comes in as attention_mask.shape == (*batch_sizes, kv_length)
# FLAX expects: attention_mask.shape == (*batch_sizes, 1, 1, kv_length) such that it is broadcastable
# with attn_weights.shape == (*batch_sizes, num_heads, q_length, kv_length)
attn_outputs = self.self(
hidden_states,
attention_mask,
sinusoidal_pos,
layer_head_mask=layer_head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
)
attn_output = attn_outputs[0]
hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_outputs[1],)
return outputs
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertIntermediate with Bert->RoFormer
class FlaxRoFormerIntermediate(nn.Module):
config: RoFormerConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.intermediate_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.activation = ACT2FN[self.config.hidden_act]
def __call__(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertOutput with Bert->RoFormer
class FlaxRoFormerOutput(nn.Module):
config: RoFormerConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
def __call__(self, hidden_states, attention_output, deterministic: bool = True):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.LayerNorm(hidden_states + attention_output)
return hidden_states
class FlaxRoFormerLayer(nn.Module):
config: RoFormerConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.attention = FlaxRoFormerAttention(self.config, dtype=self.dtype)
self.intermediate = FlaxRoFormerIntermediate(self.config, dtype=self.dtype)
self.output = FlaxRoFormerOutput(self.config, dtype=self.dtype)
def __call__(
self,
hidden_states,
attention_mask,
sinusiodal_pos,
layer_head_mask,
deterministic: bool = True,
output_attentions: bool = False,
):
attention_outputs = self.attention(
hidden_states,
attention_mask,
sinusiodal_pos,
layer_head_mask=layer_head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
)
attention_output = attention_outputs[0]
hidden_states = self.intermediate(attention_output)
hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic)
outputs = (hidden_states,)
if output_attentions:
outputs += (attention_outputs[1],)
return outputs
class FlaxRoFormerLayerCollection(nn.Module):
config: RoFormerConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layers = [
FlaxRoFormerLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers)
]
def __call__(
self,
hidden_states,
attention_mask,
sinusoidal_pos,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
# Check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.shape[0] != (len(self.layers)):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for "
f" {head_mask.shape[0]}."
)
for i, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = layer(
hidden_states,
attention_mask,
sinusoidal_pos,
layer_head_mask=head_mask[i] if head_mask is not None else None,
deterministic=deterministic,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions += (layer_outputs[1],)
if output_hidden_states:
all_hidden_states += (hidden_states,)
outputs = (hidden_states,)
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
class FlaxRoFormerEncoder(nn.Module):
config: RoFormerConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.embed_positions = create_sinusoidal_positions(
self.config.max_position_embeddings, self.config.hidden_size // self.config.num_attention_heads
)
self.layer = FlaxRoFormerLayerCollection(self.config, dtype=self.dtype)
def __call__(
self,
hidden_states,
attention_mask,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
sinusoidal_pos = self.embed_positions[: hidden_states.shape[1], :]
return self.layer(
hidden_states,
attention_mask,
sinusoidal_pos,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPredictionHeadTransform with Bert->RoFormer
class FlaxRoFormerPredictionHeadTransform(nn.Module):
config: RoFormerConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.dense = nn.Dense(self.config.hidden_size, dtype=self.dtype)
self.activation = ACT2FN[self.config.hidden_act]
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
def __call__(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.activation(hidden_states)
return self.LayerNorm(hidden_states)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLMPredictionHead with Bert->RoFormer
class FlaxRoFormerLMPredictionHead(nn.Module):
config: RoFormerConfig
dtype: jnp.dtype = jnp.float32
bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros
def setup(self):
self.transform = FlaxRoFormerPredictionHeadTransform(self.config, dtype=self.dtype)
self.decoder = nn.Dense(self.config.vocab_size, dtype=self.dtype, use_bias=False)
self.bias = self.param("bias", self.bias_init, (self.config.vocab_size,))
def __call__(self, hidden_states, shared_embedding=None):
hidden_states = self.transform(hidden_states)
if shared_embedding is not None:
hidden_states = self.decoder.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
else:
hidden_states = self.decoder(hidden_states)
bias = jnp.asarray(self.bias, self.dtype)
hidden_states += bias
return hidden_states
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertOnlyMLMHead with Bert->RoFormer
class FlaxRoFormerOnlyMLMHead(nn.Module):
config: RoFormerConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.predictions = FlaxRoFormerLMPredictionHead(self.config, dtype=self.dtype)
def __call__(self, hidden_states, shared_embedding=None):
hidden_states = self.predictions(hidden_states, shared_embedding=shared_embedding)
return hidden_states
class FlaxRoFormerClassificationHead(nn.Module):
config: RoFormerConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
self.out_proj = nn.Dense(
self.config.num_labels,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.activation = ACT2FN[self.config.hidden_act]
def __call__(self, hidden_states, deterministic=True):
hidden_states = hidden_states[:, 0, :] # take <s> token (equiv. to [CLS])
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.dense(hidden_states)
hidden_states = self.activation(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.out_proj(hidden_states)
return hidden_states
class FlaxRoFormerPreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = RoFormerConfig
base_model_prefix = "roformer"
module_class: nn.Module = None
def __init__(
self,
config: RoFormerConfig,
input_shape: Tuple = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
token_type_ids = jnp.zeros_like(input_ids)
attention_mask = jnp.ones_like(input_ids)
head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
random_params = self.module.init(
rngs, input_ids, attention_mask, token_type_ids, head_mask, return_dict=False
)["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
@add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def __call__(
self,
input_ids,
attention_mask=None,
token_type_ids=None,
head_mask=None,
params: dict = None,
dropout_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
# init input tensors if not passed
if token_type_ids is None:
token_type_ids = jnp.zeros_like(input_ids)
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
if head_mask is None:
head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
return self.module.apply(
{"params": params or self.params},
jnp.array(input_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
jnp.array(token_type_ids, dtype="i4"),
jnp.array(head_mask, dtype="i4"),
not train,
output_attentions,
output_hidden_states,
return_dict,
rngs=rngs,
)
class FlaxRoFormerModule(nn.Module):
config: RoFormerConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.embeddings = FlaxRoFormerEmbeddings(self.config, dtype=self.dtype)
self.encoder = FlaxRoFormerEncoder(self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
hidden_states = self.embeddings(input_ids, token_type_ids, attention_mask, deterministic=deterministic)
outputs = self.encoder(
hidden_states,
attention_mask,
head_mask=head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
if not return_dict:
return (hidden_states,) + outputs[1:]
return FlaxBaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"The bare RoFormer Model transformer outputting raw hidden-states without any specific head on top.",
ROFORMER_START_DOCSTRING,
)
class FlaxRoFormerModel(FlaxRoFormerPreTrainedModel):
module_class = FlaxRoFormerModule
append_call_sample_docstring(FlaxRoFormerModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutput, _CONFIG_FOR_DOC)
class FlaxRoFormerForMaskedLMModule(nn.Module):
config: RoFormerConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.roformer = FlaxRoFormerModule(config=self.config, dtype=self.dtype)
self.cls = FlaxRoFormerOnlyMLMHead(config=self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.roformer(
input_ids,
attention_mask,
token_type_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = self.roformer.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
else:
shared_embedding = None
# Compute the prediction scores
logits = self.cls(hidden_states, shared_embedding=shared_embedding)
if not return_dict:
return (logits,) + outputs[1:]
return FlaxMaskedLMOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings("""RoFormer Model with a `language modeling` head on top.""", ROFORMER_START_DOCSTRING)
class FlaxRoFormerForMaskedLM(FlaxRoFormerPreTrainedModel):
module_class = FlaxRoFormerForMaskedLMModule
append_call_sample_docstring(
FlaxRoFormerForMaskedLM,
_CHECKPOINT_FOR_DOC,
FlaxMaskedLMOutput,
_CONFIG_FOR_DOC,
mask="<mask>",
)
class FlaxRoFormerForSequenceClassificationModule(nn.Module):
config: RoFormerConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.roformer = FlaxRoFormerModule(config=self.config, dtype=self.dtype)
self.classifier = FlaxRoFormerClassificationHead(config=self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.roformer(
input_ids,
attention_mask,
token_type_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output, deterministic=deterministic)
if not return_dict:
return (logits,) + outputs[1:]
return FlaxSequenceClassifierOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
RoFormer Model transformer with a sequence classification/regression head on top (a linear layer on top of the
pooled output) e.g. for GLUE tasks.
""",
ROFORMER_START_DOCSTRING,
)
class FlaxRoFormerForSequenceClassification(FlaxRoFormerPreTrainedModel):
module_class = FlaxRoFormerForSequenceClassificationModule
append_call_sample_docstring(
FlaxRoFormerForSequenceClassification,
_CHECKPOINT_FOR_DOC,
FlaxSequenceClassifierOutput,
_CONFIG_FOR_DOC,
)
class FlaxRoFormerForMultipleChoiceModule(nn.Module):
config: RoFormerConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.roformer = FlaxRoFormerModule(config=self.config, dtype=self.dtype)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
self.classifier = nn.Dense(1, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
num_choices = input_ids.shape[1]
input_ids = input_ids.reshape(-1, input_ids.shape[-1])
attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1])
token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1])
# Model
outputs = self.roformer(
input_ids,
attention_mask,
token_type_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# Equivalent to sequence_summary call in the PyTorch implementation
hidden_states = outputs[0]
pooled_output = hidden_states[:, -1]
pooled_output = self.dropout(pooled_output, deterministic=deterministic)
logits = self.classifier(pooled_output)
reshaped_logits = logits.reshape(-1, num_choices)
if not return_dict:
return (reshaped_logits,) + outputs[2:]
return FlaxMultipleChoiceModelOutput(
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
RoFormer Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
ROFORMER_START_DOCSTRING,
)
class FlaxRoFormerForMultipleChoice(FlaxRoFormerPreTrainedModel):
module_class = FlaxRoFormerForMultipleChoiceModule
overwrite_call_docstring(
FlaxRoFormerForMultipleChoice, ROFORMER_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
)
append_call_sample_docstring(
FlaxRoFormerForMultipleChoice,
_CHECKPOINT_FOR_DOC,
FlaxMultipleChoiceModelOutput,
_CONFIG_FOR_DOC,
)
class FlaxRoFormerForTokenClassificationModule(nn.Module):
config: RoFormerConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.roformer = FlaxRoFormerModule(config=self.config, dtype=self.dtype)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.roformer(
input_ids,
attention_mask,
token_type_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
logits = self.classifier(hidden_states)
if not return_dict:
return (logits,) + outputs[1:]
return FlaxTokenClassifierOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
RoFormer Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
ROFORMER_START_DOCSTRING,
)
class FlaxRoFormerForTokenClassification(FlaxRoFormerPreTrainedModel):
module_class = FlaxRoFormerForTokenClassificationModule
append_call_sample_docstring(
FlaxRoFormerForTokenClassification,
_CHECKPOINT_FOR_DOC,
FlaxTokenClassifierOutput,
_CONFIG_FOR_DOC,
)
class FlaxRoFormerForQuestionAnsweringModule(nn.Module):
config: RoFormerConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.roformer = FlaxRoFormerModule(config=self.config, dtype=self.dtype)
self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.roformer(
input_ids,
attention_mask,
token_type_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.qa_outputs(hidden_states)
start_logits, end_logits = logits.split(self.config.num_labels, axis=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
if not return_dict:
return (start_logits, end_logits) + outputs[1:]
return FlaxQuestionAnsweringModelOutput(
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
RoFormer Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
ROFORMER_START_DOCSTRING,
)
class FlaxRoFormerForQuestionAnswering(FlaxRoFormerPreTrainedModel):
module_class = FlaxRoFormerForQuestionAnsweringModule
append_call_sample_docstring(
FlaxRoFormerForQuestionAnswering,
_CHECKPOINT_FOR_DOC,
FlaxQuestionAnsweringModelOutput,
_CONFIG_FOR_DOC,
)
__all__ = [
"FlaxRoFormerForMaskedLM",
"FlaxRoFormerForMultipleChoice",
"FlaxRoFormerForQuestionAnswering",
"FlaxRoFormerForSequenceClassification",
"FlaxRoFormerForTokenClassification",
"FlaxRoFormerModel",
"FlaxRoFormerPreTrainedModel",
]
|
transformers/src/transformers/models/roformer/modeling_flax_roformer.py/0
|
{
"file_path": "transformers/src/transformers/models/roformer/modeling_flax_roformer.py",
"repo_id": "transformers",
"token_count": 17173
}
| 161 |
# coding=utf-8
# Copyright 2023 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""RWKV configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class RwkvConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`RwkvModel`]. It is used to instantiate a RWKV
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the RWVK-4
[RWKV/rwkv-4-169m-pile](https://huggingface.co/RWKV/rwkv-4-169m-pile) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50277):
Vocabulary size of the RWKV model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`RwkvModel`].
context_length (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model can be used with in a single forward (using it in RNN mode
lets use any sequence length).
hidden_size (`int`, *optional*, defaults to 4096):
Dimensionality of the embeddings and hidden states.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the model.
attention_hidden_size (`int`, *optional*):
Dimensionality of the attention hidden states. Will default to `hidden_size` if unset.
intermediate_size (`int`, *optional*):
Dimensionality of the inner feed-forward layers. Will default to 4 times `hidden_size` if unset.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
The epsilon to use in the layer normalization layers.
bos_token_id (`int`, *optional*, defaults to 0):
The id of the beginning of sentence token in the vocabulary. Defaults to 0 as RWKV uses the same tokenizer
as GPTNeoX.
eos_token_id (`int`, *optional*, defaults to 0):
The id of the end of sentence token in the vocabulary. Defaults to 0 as RWKV uses the same tokenizer as
GPTNeoX.
rescale_every (`int`, *optional*, defaults to 6):
At inference, the hidden states (and weights of the correponding output layers) are divided by 2 every
`rescale_every` layer. If set to 0 or a negative number, no rescale is done.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether or not to tie the word embeddings with the input token embeddings.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last state.
Example:
```python
>>> from transformers import RwkvConfig, RwkvModel
>>> # Initializing a Rwkv configuration
>>> configuration = RwkvConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = RwkvModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "rwkv"
attribute_map = {"max_position_embeddings": "context_length"}
def __init__(
self,
vocab_size=50277,
context_length=1024,
hidden_size=4096,
num_hidden_layers=32,
attention_hidden_size=None,
intermediate_size=None,
layer_norm_epsilon=1e-5,
bos_token_id=0,
eos_token_id=0,
rescale_every=6,
tie_word_embeddings=False,
use_cache=True,
**kwargs,
):
self.vocab_size = vocab_size
self.context_length = context_length
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.attention_hidden_size = attention_hidden_size if attention_hidden_size is not None else hidden_size
self.intermediate_size = intermediate_size if intermediate_size is not None else 4 * hidden_size
self.layer_norm_epsilon = layer_norm_epsilon
self.rescale_every = rescale_every
self.use_cache = use_cache
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
super().__init__(
tie_word_embeddings=tie_word_embeddings, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs
)
__all__ = ["RwkvConfig"]
|
transformers/src/transformers/models/rwkv/configuration_rwkv.py/0
|
{
"file_path": "transformers/src/transformers/models/rwkv/configuration_rwkv.py",
"repo_id": "transformers",
"token_count": 1913
}
| 162 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for SeamlessM4T."""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece as spm
from ...convert_slow_tokenizer import import_protobuf
from ...tokenization_utils import (
BatchEncoding,
PreTokenizedInput,
PreTrainedTokenizer,
TextInput,
)
from ...tokenization_utils_base import AddedToken
from ...utils import PaddingStrategy, logging
logger = logging.get_logger(__name__)
SPIECE_UNDERLINE = "▁"
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"}
class SeamlessM4TTokenizer(PreTrainedTokenizer):
"""
Construct a SeamlessM4T tokenizer.
Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on
[SentencePiece](https://github.com/google/sentencepiece).
The tokenization method is `<language code> <tokens> <eos>` for source language documents, and `<eos> <language
code> <tokens> <eos>` for target language documents.
Examples:
```python
>>> from transformers import SeamlessM4TTokenizer
>>> tokenizer = SeamlessM4TTokenizer.from_pretrained(
... "facebook/hf-seamless-m4t-medium", src_lang="eng", tgt_lang="fra"
... )
>>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria"
>>> expected_translation_french = "Le chef de l'ONU affirme qu'il n'y a pas de solution militaire en Syrie."
>>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_french, return_tensors="pt")
```
Args:
vocab_file (`str`):
Path to the vocabulary file.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"<s>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
tokenizer_file (`str`, *optional*):
The path to a tokenizer file to use instead of the vocab file.
src_lang (`str`, *optional*, defaults to `"eng"`):
The language to use as source language for translation.
tgt_lang (`str`, *optional*, defaults to `"fra"`):
The language to use as target language for translation.
sp_model_kwargs (`Dict[str, Any]`, *optional*):
Additional keyword arguments to pass to the model initialization.
additional_special_tokens (tuple or list of `str` or `tokenizers.AddedToken`, *optional*):
A tuple or a list of additional special tokens. Can be used to specify the list of languages that will be
supported by the tokenizer.
add_prefix_space (`bool`, *optional*, defaults to `True`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
prefix_tokens: List[int] = []
suffix_tokens: List[int] = []
def __init__(
self,
vocab_file,
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="<unk>",
pad_token="<pad>",
tokenizer_file=None,
src_lang="eng",
tgt_lang="fra",
sp_model_kwargs: Optional[Dict[str, Any]] = None,
additional_special_tokens=None,
add_prefix_space=True,
**kwargs,
):
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
# Add this unused argument to keep some important Copied from statements
self.legacy = False
self.vocab_file = vocab_file
self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False))
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ----
# spm | '<unk>' | '<s>' | '</s>' | 'an' | 'en' | '_d' | 'er' | 'in' | '_s' | '_a'
# fairseq | '<pad>' | '<unk>' | '<s>' | '</s>' | 'an' | 'en' | '▁d' | 'er' | 'in' | '▁s'
# Mimic fairseq token-to-id alignment for the first 4 token
self._added_tokens_decoder = {
0: AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token,
1: AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token,
2: AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token,
3: AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token,
}
# The first "real" token "an" has position 4 in the original fairseq vocab and position 3 in the spm vocab
self.fairseq_offset = 1
self.sp_model_size = len(self.sp_model)
self._src_lang = f"__{src_lang}__" if "__" not in src_lang else src_lang
self._tgt_lang = f"__{tgt_lang}__" if "__" not in tgt_lang else tgt_lang
self.add_prefix_space = add_prefix_space
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
tokenizer_file=tokenizer_file,
src_lang=src_lang,
tgt_lang=tgt_lang,
additional_special_tokens=additional_special_tokens,
sp_model_kwargs=self.sp_model_kwargs,
add_prefix_space=add_prefix_space,
**kwargs,
)
self.set_src_lang_special_tokens(self._src_lang)
self.set_tgt_lang_special_tokens(self._tgt_lang)
# Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.__getstate__
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
return state
# Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.__setstate__
def __setstate__(self, d):
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
@property
def vocab_size(self):
return len(self.sp_model)
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
text_pair: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
text_target: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
text_pair_target: Optional[
Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]
] = None,
padding: Union[bool, str, PaddingStrategy] = True,
pad_to_multiple_of: Optional[int] = 2,
src_lang: Optional[str] = None,
tgt_lang: Optional[str] = None,
**kwargs,
):
"""
Args:
text (`str`, `List[str]`, `List[List[str]]`, *optional*):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
text_pair (`str`, `List[str]`, `List[List[str]]`, *optional*):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
text_target (`str`, `List[str]`, `List[List[str]]`, *optional*):
The sequence or batch of sequences to be encoded as target texts. Each sequence can be a string or a
list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized),
you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
text_pair_target (`str`, `List[str]`, `List[List[str]]`, *optional*):
The sequence or batch of sequences to be encoded as target texts. Each sequence can be a string or a
list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized),
you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
`>= 7.5` (Volta).
src_lang (`str`, *optional*):
A string representing the source language. If not specified, the last `src_lang` specified (either
during initialization or when calling this tokenizer) will be used.
tgt_lang (`str`, *optional*):
A string representing the target language. If not specified, the last `tgt_lang` specified (either
during initialization or when calling this tokenizer) will be used.
kwargs (*optional*):
Remaining dictionary of keyword arguments that will be passed to [`PreTrainedTokenizer.__call__`].
"""
if src_lang is not None:
self.src_lang = src_lang
if tgt_lang is not None:
self.tgt_lang = tgt_lang
output = super().__call__(
text=text,
text_pair=text_pair,
text_target=text_target,
text_pair_target=text_pair_target,
padding=padding,
pad_to_multiple_of=pad_to_multiple_of,
**kwargs,
)
return BatchEncoding(output, tensor_type=kwargs.get("return_tensors"))
@property
# Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.src_lang
def src_lang(self) -> str:
return self._src_lang
@src_lang.setter
def src_lang(self, new_src_lang: str) -> None:
if "__" not in new_src_lang:
self._src_lang = f"__{new_src_lang}__"
else:
self._src_lang = new_src_lang
self.set_src_lang_special_tokens(self._src_lang)
@property
def tgt_lang(self) -> str:
return self._tgt_lang
@tgt_lang.setter
def tgt_lang(self, new_tgt_lang: str) -> None:
if "__" not in new_tgt_lang:
self._tgt_lang = f"__{new_tgt_lang}__"
else:
self._tgt_lang = new_tgt_lang
self.set_tgt_lang_special_tokens(self._tgt_lang)
# Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.get_special_tokens_mask
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
prefix_ones = [1] * len(self.prefix_tokens)
suffix_ones = [1] * len(self.suffix_tokens)
if token_ids_1 is None:
return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones
return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones
# Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.build_inputs_with_special_tokens
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An NLLB sequence has the following format, where `X` represents the sequence:
- `input_ids` (for encoder) `X [eos, src_lang_code]`
- `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]`
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
separator.
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return self.prefix_tokens + token_ids_0 + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens
# Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.create_token_type_ids_from_sequences
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. nllb does not
make use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
def _build_translation_inputs(
self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs
):
"""Used by translation pipeline, to prepare inputs for the generate function"""
if src_lang is None or tgt_lang is None:
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model.")
self.src_lang = src_lang
inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs)
if "__" not in tgt_lang:
tgt_lang = f"__{tgt_lang}__"
tgt_lang_id = self.convert_tokens_to_ids(tgt_lang)
inputs["forced_bos_token_id"] = tgt_lang_id
return inputs
def get_vocab(self):
vocab = {
self.convert_ids_to_tokens(i): i for i in range(self.fairseq_offset, self.vocab_size + self.fairseq_offset)
}
vocab.update(self.added_tokens_encoder)
return vocab
@property
def unk_token_length(self):
return len(self.sp_model.encode(str(self.unk_token)))
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_spm_processor
def get_spm_processor(self, from_slow=False):
tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs)
if self.legacy or from_slow: # no dependency on protobuf
tokenizer.Load(self.vocab_file)
return tokenizer
with open(self.vocab_file, "rb") as f:
sp_model = f.read()
model_pb2 = import_protobuf(f"The new behaviour of {self.__class__.__name__} (with `self.legacy = False`)")
model = model_pb2.ModelProto.FromString(sp_model)
normalizer_spec = model_pb2.NormalizerSpec()
normalizer_spec.add_dummy_prefix = False
model.normalizer_spec.MergeFrom(normalizer_spec)
sp_model = model.SerializeToString()
tokenizer.LoadFromSerializedProto(sp_model)
return tokenizer
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.tokenize
def tokenize(self, text: "TextInput", **kwargs) -> List[str]:
"""
Converts a string to a list of tokens. If `self.legacy` is set to `False`, a prefix token is added unless the
first token is special.
"""
if self.legacy or len(text) == 0:
return super().tokenize(text, **kwargs)
text = text.replace(SPIECE_UNDERLINE, " ")
if self.add_prefix_space:
text = SPIECE_UNDERLINE + text
tokens = super().tokenize(text, **kwargs)
if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens:
tokens = tokens[1:]
return tokens
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._tokenize
def _tokenize(self, text, **kwargs):
"""
Returns a tokenized string.
We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any
SPIECE_UNDERLINE. For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give
`['H', 'e', 'y']` instead of `['▁He', 'y']`. Thus we always encode `f"{unk_token}text"` and strip the
`unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`.
`self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`.
"""
if self.legacy or not text.startswith((SPIECE_UNDERLINE, " ")):
return self.sp_model.encode(text, out_type=str)
# 1. Encode string + prefix ex: "<unk> Hey"
tokens = self.sp_model.encode(self.unk_token + text, out_type=str)
# 2. Remove self.unk_token from ['<','unk','>', '▁Hey']
return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
spm_id = self.sp_model.PieceToId(token)
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.sp_model.IdToPiece(index - self.fairseq_offset)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (strings for sub-words) in a single string."""
# since we manually add the prefix space, we have to remove it when decoding
if tokens[0].startswith(SPIECE_UNDERLINE) and self.add_prefix_space:
tokens[0] = tokens[0][1:]
out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
return out_string
# Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.save_vocabulary
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)
# Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.prepare_seq2seq_batch with eng_Latn->eng, fra_Latn->fra
def prepare_seq2seq_batch(
self,
src_texts: List[str],
src_lang: str = "eng",
tgt_texts: Optional[List[str]] = None,
tgt_lang: str = "fra",
**kwargs,
) -> BatchEncoding:
self.src_lang = src_lang
self.tgt_lang = tgt_lang
return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs)
# Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer._switch_to_input_mode
def _switch_to_input_mode(self):
return self.set_src_lang_special_tokens(self.src_lang)
# Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer._switch_to_target_mode
def _switch_to_target_mode(self):
return self.set_tgt_lang_special_tokens(self.tgt_lang)
def set_src_lang_special_tokens(self, src_lang) -> None:
"""Reset the special tokens to the source lang setting.
Prefix=[src_lang_code], suffix = [eos]
"""
self.cur_lang_code = self.convert_tokens_to_ids(src_lang)
self.init_kwargs["src_lang"] = src_lang
if self.cur_lang_code == self.unk_token_id:
logger.warning_once(
f"`src_lang={src_lang}` has not be found in the vocabulary. Behaviour will probably be unexpected because the language token id will be replaced by the unknown token id."
)
self.prefix_tokens = [self.cur_lang_code]
self.suffix_tokens = [self.eos_token_id]
# https://github.com/facebookresearch/fairseq2/blob/c53f18e6be6b8b46b722f2249b8397b7eccd7ad3/src/fairseq2/models/nllb/tokenizer.py#L112-L116
def set_tgt_lang_special_tokens(self, lang: str) -> None:
"""Reset the special tokens to the target lang setting.
Prefix=[eos, tgt_lang_code] and suffix=[eos].
"""
self.cur_lang_code = self.convert_tokens_to_ids(lang)
self.init_kwargs["tgt_lang"] = lang
if self.cur_lang_code == self.unk_token_id:
logger.warning_once(
f"`tgt_lang={lang}` has not be found in the vocabulary. Behaviour will probably be unexpected because the language token id will be replaced by the unknown token id."
)
self.prefix_tokens = [self.eos_token_id, self.cur_lang_code]
self.suffix_tokens = [self.eos_token_id]
__all__ = ["SeamlessM4TTokenizer"]
|
transformers/src/transformers/models/seamless_m4t/tokenization_seamless_m4t.py/0
|
{
"file_path": "transformers/src/transformers/models/seamless_m4t/tokenization_seamless_m4t.py",
"repo_id": "transformers",
"token_count": 11089
}
| 163 |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for SegGPT."""
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_vision_available, logging, requires_backends
if is_torch_available():
import torch
if is_vision_available():
pass
logger = logging.get_logger(__name__)
# See https://arxiv.org/pdf/2212.02499.pdf at 3.1 Redefining Output Spaces as "Images" - Semantic Segmentation from PAINTER paper
# Taken from https://github.com/Abdullah-Meda/Painter/blob/main/Painter/data/coco_semseg/gen_color_coco_panoptic_segm.py#L31
def build_palette(num_labels: int) -> List[Tuple[int, int]]:
base = int(num_labels ** (1 / 3)) + 1
margin = 256 // base
# we assume that class_idx 0 is the background which is mapped to black
color_list = [(0, 0, 0)]
for location in range(num_labels):
num_seq_r = location // base**2
num_seq_g = (location % base**2) // base
num_seq_b = location % base
R = 255 - num_seq_r * margin
G = 255 - num_seq_g * margin
B = 255 - num_seq_b * margin
color_list.append((R, G, B))
return color_list
def mask_to_rgb(
mask: np.ndarray, palette: Optional[List[Tuple[int, int]]] = None, data_format: Optional[ChannelDimension] = None
) -> np.ndarray:
data_format = data_format if data_format is not None else ChannelDimension.FIRST
if palette is not None:
height, width = mask.shape
rgb_mask = np.zeros((3, height, width), dtype=np.uint8)
classes_in_mask = np.unique(mask)
for class_idx in classes_in_mask:
rgb_value = palette[class_idx]
class_mask = (mask == class_idx).astype(np.uint8)
class_mask = np.expand_dims(class_mask, axis=-1)
class_rgb_mask = class_mask * np.array(rgb_value)
class_rgb_mask = np.moveaxis(class_rgb_mask, -1, 0)
rgb_mask += class_rgb_mask.astype(np.uint8)
rgb_mask = np.clip(rgb_mask, 0, 255).astype(np.uint8)
else:
rgb_mask = np.repeat(mask[None, ...], 3, axis=0)
return to_channel_dimension_format(rgb_mask, data_format)
class SegGptImageProcessor(BaseImageProcessor):
r"""
Constructs a SegGpt image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `(size["height"],
size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method.
size (`dict`, *optional*, defaults to `{"height": 448, "width": 448}`):
Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
method.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
`preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
do_convert_rgb (`bool`, *optional*, defaults to `True`):
Whether to convert the prompt mask to RGB format. Can be overridden by the `do_convert_rgb` parameter in the
`preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = True,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 448, "width": 448}
size = get_size_dict(size)
self.do_resize = do_resize
self.do_rescale = do_rescale
self.do_normalize = do_normalize
self.size = size
self.resample = resample
self.rescale_factor = rescale_factor
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
self.do_convert_rgb = do_convert_rgb
def get_palette(self, num_labels: int) -> List[Tuple[int, int]]:
"""Build a palette to map the prompt mask from a single channel to a 3 channel RGB.
Args:
num_labels (`int`):
Number of classes in the segmentation task (excluding the background).
Returns:
`List[Tuple[int, int]]`: Palette to map the prompt mask from a single channel to a 3 channel RGB.
"""
return build_palette(num_labels)
def mask_to_rgb(
self,
image: np.ndarray,
palette: Optional[List[Tuple[int, int]]] = None,
data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""Converts a segmentation map to RGB format.
Args:
image (`np.ndarray`):
Segmentation map with dimensions (height, width) where pixel values represent the class index.
palette (`List[Tuple[int, int]]`, *optional*, defaults to `None`):
Palette to use to convert the mask to RGB format. If unset, the mask is duplicated across the channel
dimension.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
Returns:
`np.ndarray`: The mask in RGB format.
"""
return mask_to_rgb(image, palette=palette, data_format=data_format)
# Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize with PILImageResampling.BILINEAR->PILImageResampling.BICUBIC
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image to `(size["height"], size["width"])`.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
Returns:
`np.ndarray`: The resized image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
output_size = (size["height"], size["width"])
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def _preprocess_step(
self,
images: ImageInput,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
do_convert_rgb: Optional[bool] = None,
num_labels: Optional[int] = None,
**kwargs,
):
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to _preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Dictionary in the format `{"height": h, "width": w}` specifying the size of the output image after
resizing.
resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`):
`PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BICUBIC`. Only has
an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use if `do_normalize` is set to `True`.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the prompt mask to RGB format. If `num_labels` is specified, a palette will be built
to map the prompt mask from a single channel to a 3 channel RGB. If unset, the prompt mask is duplicated
across the channel dimension. Must be set to `False` if the prompt mask is already in RGB format.
num_labels: (`int`, *optional*):
Number of classes in the segmentation task (excluding the background). If specified, a palette will be
built, assuming that class_idx 0 is the background, to map the prompt mask from a single class_idx
channel to a 3 channel RGB. Not specifying this will result in the prompt mask either being passed
through as is if it is already in RGB format or being duplicated across the channel dimension.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
resample = resample if resample is not None else self.resample
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
size = size if size is not None else self.size
size_dict = get_size_dict(size)
# If segmentation map is passed we expect 2D images
images = make_list_of_images(images, expected_ndims=2 if do_convert_rgb else 3)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_rescale and is_scaled_image(images[0]):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None and not do_convert_rgb:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_convert_rgb:
palette = self.get_palette(num_labels) if num_labels is not None else None
# Since this is the input for the next transformations its format should be the same as the input_data_format
images = [
self.mask_to_rgb(image=image, palette=palette, data_format=ChannelDimension.FIRST) for image in images
]
input_data_format = ChannelDimension.FIRST
if do_resize:
images = [
self.resize(image=image, size=size_dict, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_rescale:
images = [
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
return images
def preprocess(
self,
images: Optional[ImageInput] = None,
prompt_images: Optional[ImageInput] = None,
prompt_masks: Optional[ImageInput] = None,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: Optional[bool] = None,
num_labels: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
):
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to _preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
prompt_images (`ImageInput`):
Prompt image to _preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
prompt_masks (`ImageInput`):
Prompt mask from prompt image to _preprocess that specify prompt_masks value in the preprocessed output.
Can either be in the format of segmentation maps (no channels) or RGB images. If in the format of
RGB images, `do_convert_rgb` should be set to `False`. If in the format of segmentation maps, `num_labels`
specifying `num_labels` is recommended to build a palette to map the prompt mask from a single channel to
a 3 channel RGB. If `num_labels` is not specified, the prompt mask will be duplicated across the channel
dimension.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Dictionary in the format `{"height": h, "width": w}` specifying the size of the output image after
resizing.
resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`):
`PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BICUBIC`. Only has
an effect if `do_resize` is set to `True`. Doesn't apply to prompt mask as it is resized using nearest.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use if `do_normalize` is set to `True`.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the prompt mask to RGB format. If `num_labels` is specified, a palette will be built
to map the prompt mask from a single channel to a 3 channel RGB. If unset, the prompt mask is duplicated
across the channel dimension. Must be set to `False` if the prompt mask is already in RGB format.
num_labels: (`int`, *optional*):
Number of classes in the segmentation task (excluding the background). If specified, a palette will be
built, assuming that class_idx 0 is the background, to map the prompt mask from a plain segmentation map
with no channels to a 3 channel RGB. Not specifying this will result in the prompt mask either being passed
through as is if it is already in RGB format (if `do_convert_rgb` is false) or being duplicated
across the channel dimension.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
if all(v is None for v in [images, prompt_images, prompt_masks]):
raise ValueError("At least one of images, prompt_images, prompt_masks must be specified.")
data = {}
if images is not None:
images = self._preprocess_step(
images,
is_mask=False,
do_resize=do_resize,
size=size,
resample=resample,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_convert_rgb=False,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
data["pixel_values"] = images
if prompt_images is not None:
prompt_images = self._preprocess_step(
prompt_images,
is_mask=False,
do_resize=do_resize,
size=size,
resample=resample,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_convert_rgb=False,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
data["prompt_pixel_values"] = prompt_images
if prompt_masks is not None:
prompt_masks = self._preprocess_step(
prompt_masks,
do_resize=do_resize,
size=size,
resample=PILImageResampling.NEAREST,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_convert_rgb=do_convert_rgb,
num_labels=num_labels,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
data["prompt_masks"] = prompt_masks
return BatchFeature(data=data, tensor_type=return_tensors)
def post_process_semantic_segmentation(
self, outputs, target_sizes: Optional[List[Tuple[int, int]]] = None, num_labels: Optional[int] = None
):
"""
Converts the output of [`SegGptImageSegmentationOutput`] into segmentation maps. Only supports
PyTorch.
Args:
outputs ([`SegGptImageSegmentationOutput`]):
Raw outputs of the model.
target_sizes (`List[Tuple[int, int]]`, *optional*):
List of length (batch_size), where each list item (`Tuple[int, int]`) corresponds to the requested
final size (height, width) of each prediction. If left to None, predictions will not be resized.
num_labels (`int`, *optional*):
Number of classes in the segmentation task (excluding the background). If specified, a palette will be
built, assuming that class_idx 0 is the background, to map prediction masks from RGB values to class
indices. This value should be the same used when preprocessing inputs.
Returns:
semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic
segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is
specified). Each entry of each `torch.Tensor` correspond to a semantic class id.
"""
requires_backends(self, ["torch"])
# batch_size x num_channels x 2*height x width
masks = outputs.pred_masks
# Predicted mask and prompt are concatenated in the height dimension
# batch_size x num_channels x height x width
masks = masks[:, :, masks.shape[2] // 2 :, :]
# To unnormalize we need to permute to channel last
# batch_size x height x width x num_channels
std = torch.tensor(self.image_std).to(masks.device)
mean = torch.tensor(self.image_mean).to(masks.device)
masks = masks.permute(0, 2, 3, 1) * std + mean
# batch_size x num_channels x height x width
masks = masks.permute(0, 3, 1, 2)
# Clip to match with palette if specified
masks = torch.clip(masks * 255, 0, 255)
semantic_segmentation = []
palette_tensor = None
palette = self.get_palette(num_labels) if num_labels is not None else None
if palette is not None:
palette_tensor = torch.tensor(palette).float().to(masks.device)
_, num_channels, _, _ = masks.shape
palette_tensor = palette_tensor.view(1, 1, num_labels + 1, num_channels)
for idx, mask in enumerate(masks):
if target_sizes is not None:
mask = torch.nn.functional.interpolate(
mask.unsqueeze(0),
size=target_sizes[idx],
mode="nearest",
)[0]
if num_labels is not None:
channels, height, width = mask.shape
dist = mask.permute(1, 2, 0).view(height, width, 1, channels)
dist = dist - palette_tensor
dist = torch.pow(dist, 2)
dist = torch.sum(dist, dim=-1)
pred = dist.argmin(dim=-1)
else:
# If no palette is specified SegGpt will try to paint using the mask class idx as RGB
pred = mask.mean(dim=0).int()
semantic_segmentation.append(pred)
return semantic_segmentation
__all__ = ["SegGptImageProcessor"]
|
transformers/src/transformers/models/seggpt/image_processing_seggpt.py/0
|
{
"file_path": "transformers/src/transformers/models/seggpt/image_processing_seggpt.py",
"repo_id": "transformers",
"token_count": 13575
}
| 164 |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization class for SigLIP model."""
import os
import re
import string
import warnings
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...convert_slow_tokenizer import import_protobuf
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
if TYPE_CHECKING:
from ...tokenization_utils_base import TextInput
from ...utils import logging, requires_backends
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
SPIECE_UNDERLINE = "▁"
class SiglipTokenizer(PreTrainedTokenizer):
"""
Construct a Siglip tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
contains the vocabulary necessary to instantiate a tokenizer.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"</s>"`):
The token used for padding, for example when batching sequences of different lengths.
additional_special_tokens (`List[str]`, *optional*):
Additional special tokens used by the tokenizer.
sp_model_kwargs (`dict`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
model_max_length (`int`, *optional*, defaults to 64):
The maximum length (in number of tokens) for model inputs.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
eos_token="</s>",
unk_token="<unk>",
pad_token="</s>",
additional_special_tokens=None,
sp_model_kwargs: Optional[Dict[str, Any]] = None,
model_max_length=64,
do_lower_case=True,
**kwargs,
) -> None:
requires_backends(self, "protobuf")
pad_token = (
AddedToken(pad_token, rstrip=True, lstrip=True, normalized=False, special=True)
if isinstance(pad_token, str)
else pad_token
)
unk_token = (
AddedToken(unk_token, rstrip=True, lstrip=True, normalized=False, special=True)
if isinstance(unk_token, str)
else unk_token
)
eos_token = (
AddedToken(eos_token, rstrip=True, lstrip=True, normalized=False, special=True)
if isinstance(eos_token, str)
else eos_token
)
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
self.do_lower_case = do_lower_case
self.vocab_file = vocab_file
self.sp_model = self.get_spm_processor()
self.vocab_file = vocab_file
super().__init__(
eos_token=eos_token,
unk_token=unk_token,
pad_token=pad_token,
additional_special_tokens=additional_special_tokens,
sp_model_kwargs=self.sp_model_kwargs,
model_max_length=model_max_length,
do_lower_case=do_lower_case,
**kwargs,
)
def get_spm_processor(self):
tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs)
with open(self.vocab_file, "rb") as f:
sp_model = f.read()
model_pb2 = import_protobuf()
model = model_pb2.ModelProto.FromString(sp_model)
normalizer_spec = model_pb2.NormalizerSpec()
normalizer_spec.add_dummy_prefix = False
model.normalizer_spec.MergeFrom(normalizer_spec)
sp_model = model.SerializeToString()
tokenizer.LoadFromSerializedProto(sp_model)
return tokenizer
@property
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.vocab_size
def vocab_size(self):
return self.sp_model.get_piece_size()
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_vocab
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_special_tokens_mask
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
# normal case: some special tokens
if token_ids_1 is None:
return ([0] * len(token_ids_0)) + [1]
return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._add_eos_if_not_present
def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]:
"""Do not add eos again if user already added it."""
if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated"
" eos tokens being added."
)
return token_ids
else:
return token_ids + [self.eos_token_id]
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.create_token_type_ids_from_sequences
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
eos = [self.eos_token_id]
if token_ids_1 is None:
return len(token_ids_0 + eos) * [0]
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.build_inputs_with_special_tokens
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A sequence has the following format:
- single sequence: `X </s>`
- pair of sequences: `A </s> B </s>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
token_ids_0 = self._add_eos_if_not_present(token_ids_0)
if token_ids_1 is None:
return token_ids_0
else:
token_ids_1 = self._add_eos_if_not_present(token_ids_1)
return token_ids_0 + token_ids_1
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.__getstate__
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
return state
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.__setstate__
def __setstate__(self, d):
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def remove_punctuation(self, text: str) -> str:
return text.translate(str.maketrans("", "", string.punctuation))
# source: https://github.com/google-research/big_vision/blob/3b8e5ab6ad4f96e32b32826f9e1b8fd277914f9c/big_vision/evaluators/proj/image_text/prompt_engineering.py#L94
def canonicalize_text(self, text, *, keep_punctuation_exact_string=None):
"""Returns canonicalized `text` (puncuation removed).
Args:
text (`str`):
String to be canonicalized.
keep_punctuation_exact_string (`str`, *optional*):
If provided, then this exact string is kept. For example providing '{}' will keep any occurrences of '{}'
(but will still remove '{' and '}' that appear separately).
"""
if keep_punctuation_exact_string:
text = keep_punctuation_exact_string.join(
self.remove_punctuation(part) for part in text.split(keep_punctuation_exact_string)
)
else:
text = self.remove_punctuation(text)
text = re.sub(r"\s+", " ", text)
text = text.strip()
return text
def tokenize(self, text: "TextInput", add_special_tokens=False, **kwargs) -> List[str]:
"""
Converts a string to a list of tokens.
"""
tokens = super().tokenize(SPIECE_UNDERLINE + text.replace(SPIECE_UNDERLINE, " "), **kwargs)
if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens:
tokens = tokens[1:]
return tokens
@property
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.unk_token_length
def unk_token_length(self):
return len(self.sp_model.encode(str(self.unk_token)))
def _tokenize(self, text, **kwargs):
"""
Returns a tokenized string.
We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any
SPIECE_UNDERLINE.
For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give `['H', 'e', 'y']` instead of `['▁He', 'y']`.
Thus we always encode `f"{unk_token}text"` and strip the `unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`.
`self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`.
"""
text = self.canonicalize_text(text, keep_punctuation_exact_string=None)
tokens = self.sp_model.encode(text, out_type=str)
# 1. Encode string + prefix ex: "<unk> Hey"
tokens = self.sp_model.encode(self.unk_token + text, out_type=str)
# 2. Remove self.unk_token from ['<','unk','>', '▁Hey']
return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._convert_token_to_id
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.sp_model.piece_to_id(token)
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._convert_id_to_token
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
token = self.sp_model.IdToPiece(index)
return token
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
current_sub_tokens = []
out_string = ""
prev_is_special = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(current_sub_tokens) + token
prev_is_special = True
current_sub_tokens = []
else:
current_sub_tokens.append(token)
prev_is_special = False
out_string += self.sp_model.decode(current_sub_tokens)
return out_string.strip()
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.save_vocabulary
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)
__all__ = ["SiglipTokenizer"]
|
transformers/src/transformers/models/siglip/tokenization_siglip.py/0
|
{
"file_path": "transformers/src/transformers/models/siglip/tokenization_siglip.py",
"repo_id": "transformers",
"token_count": 6944
}
| 165 |
# coding=utf-8
# Copyright 2023 The Fairseq Authors, Microsoft Research, and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""SpeechT5 model configuration"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class SpeechT5Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`SpeechT5Model`]. It is used to instantiate a
SpeechT5 model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the SpeechT5
[microsoft/speecht5_asr](https://huggingface.co/microsoft/speecht5_asr) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 81):
Vocabulary size of the SpeechT5 model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed to the forward method of [`SpeechT5Model`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
encoder_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
encoder_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
encoder_ffn_dim (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
encoder_layerdrop (`float`, *optional*, defaults to 0.1):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
decoder_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer decoder.
decoder_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer decoder.
decoder_layerdrop (`float`, *optional*, defaults to 0.1):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
positional_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for the text position encoding layers.
hidden_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for activations inside the fully connected layer.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
The epsilon used by the layer normalization layers.
scale_embedding (`bool`, *optional*, defaults to `False`):
Scale embeddings by diving by sqrt(d_model).
feat_extract_norm (`str`, *optional*, defaults to `"group"`):
The norm to be applied to 1D convolutional layers in the speech encoder pre-net. One of `"group"` for group
normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D
convolutional layers.
feat_proj_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for output of the speech encoder pre-net.
feat_extract_activation (`str, `optional`, defaults to `"gelu"`):
The non-linear activation function (function or string) in the 1D convolutional layers of the feature
extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`):
A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the
speech encoder pre-net. The length of *conv_dim* defines the number of 1D convolutional layers.
conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`):
A tuple of integers defining the stride of each 1D convolutional layer in the speech encoder pre-net. The
length of *conv_stride* defines the number of convolutional layers and has to match the length of
*conv_dim*.
conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`):
A tuple of integers defining the kernel size of each 1D convolutional layer in the speech encoder pre-net.
The length of *conv_kernel* defines the number of convolutional layers and has to match the length of
*conv_dim*.
conv_bias (`bool`, *optional*, defaults to `False`):
Whether the 1D convolutional layers have a bias.
num_conv_pos_embeddings (`int`, *optional*, defaults to 128):
Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional
embeddings layer.
num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16):
Number of groups of 1D convolutional positional embeddings layer.
apply_spec_augment (`bool`, *optional*, defaults to `True`):
Whether to apply *SpecAugment* data augmentation to the outputs of the speech encoder pre-net. For
reference see [SpecAugment: A Simple Data Augmentation Method for Automatic Speech
Recognition](https://arxiv.org/abs/1904.08779).
mask_time_prob (`float`, *optional*, defaults to 0.05):
Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking
procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If
reasoning from the propability of each feature vector to be chosen as the start of the vector span to be
masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the
actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`.
mask_time_length (`int`, *optional*, defaults to 10):
Length of vector span along the time axis.
mask_time_min_masks (`int`, *optional*, defaults to 2),:
The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length <
mask_time_min_masks''
mask_feature_prob (`float`, *optional*, defaults to 0.0):
Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The
masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over
the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector
span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap
may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is
True`.
mask_feature_length (`int`, *optional*, defaults to 10):
Length of vector span along the feature axis.
mask_feature_min_masks (`int`, *optional*, defaults to 0),:
The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time
step, irrespectively of `mask_feature_prob`. Only relevant if
''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks''
num_mel_bins (`int`, *optional*, defaults to 80):
Number of mel features used per input features. Used by the speech decoder pre-net. Should correspond to
the value used in the [`SpeechT5Processor`] class.
speech_decoder_prenet_layers (`int`, *optional*, defaults to 2):
Number of layers in the speech decoder pre-net.
speech_decoder_prenet_units (`int`, *optional*, defaults to 256):
Dimensionality of the layers in the speech decoder pre-net.
speech_decoder_prenet_dropout (`float`, *optional*, defaults to 0.5):
The dropout probability for the speech decoder pre-net layers.
speaker_embedding_dim (`int`, *optional*, defaults to 512):
Dimensionality of the *XVector* embedding vectors.
speech_decoder_postnet_layers (`int`, *optional*, defaults to 5):
Number of layers in the speech decoder post-net.
speech_decoder_postnet_units (`int`, *optional*, defaults to 256):
Dimensionality of the layers in the speech decoder post-net.
speech_decoder_postnet_kernel (`int`, *optional*, defaults to 5):
Number of convolutional filter channels in the speech decoder post-net.
speech_decoder_postnet_dropout (`float`, *optional*, defaults to 0.5):
The dropout probability for the speech decoder post-net layers.
reduction_factor (`int`, *optional*, defaults to 2):
Spectrogram length reduction factor for the speech decoder inputs.
max_speech_positions (`int`, *optional*, defaults to 4000):
The maximum sequence length of speech features that this model might ever be used with.
max_text_positions (`int`, *optional*, defaults to 450):
The maximum sequence length of text features that this model might ever be used with.
encoder_max_relative_position (`int`, *optional*, defaults to 160):
Maximum distance for relative position embedding in the encoder.
use_guided_attention_loss (`bool`, *optional*, defaults to `True`):
Whether to apply guided attention loss while training the TTS model.
guided_attention_loss_num_heads (`int`, *optional*, defaults to 2):
Number of attention heads the guided attention loss will be applied to. Use -1 to apply this loss to all
attention heads.
guided_attention_loss_sigma (`float`, *optional*, defaults to 0.4):
Standard deviation for guided attention loss.
guided_attention_loss_scale (`float`, *optional*, defaults to 10.0):
Scaling coefficient for guided attention loss (also known as lambda).
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
Example:
```python
>>> from transformers import SpeechT5Model, SpeechT5Config
>>> # Initializing a "microsoft/speecht5_asr" style configuration
>>> configuration = SpeechT5Config()
>>> # Initializing a model (with random weights) from the "microsoft/speecht5_asr" style configuration
>>> model = SpeechT5Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "speecht5"
attribute_map = {"num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers"}
def __init__(
self,
vocab_size=81,
hidden_size=768,
encoder_layers=12,
encoder_attention_heads=12,
encoder_ffn_dim=3072,
encoder_layerdrop=0.1,
decoder_layers=6,
decoder_ffn_dim=3072,
decoder_attention_heads=12,
decoder_layerdrop=0.1,
hidden_act="gelu",
positional_dropout=0.1,
hidden_dropout=0.1,
attention_dropout=0.1,
activation_dropout=0.1,
initializer_range=0.02,
layer_norm_eps=1e-5,
scale_embedding=False,
feat_extract_norm="group",
feat_proj_dropout=0.0,
feat_extract_activation="gelu",
conv_dim=(512, 512, 512, 512, 512, 512, 512),
conv_stride=(5, 2, 2, 2, 2, 2, 2),
conv_kernel=(10, 3, 3, 3, 3, 2, 2),
conv_bias=False,
num_conv_pos_embeddings=128,
num_conv_pos_embedding_groups=16,
apply_spec_augment=True,
mask_time_prob=0.05,
mask_time_length=10,
mask_time_min_masks=2,
mask_feature_prob=0.0,
mask_feature_length=10,
mask_feature_min_masks=0,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
decoder_start_token_id=2,
num_mel_bins=80,
speech_decoder_prenet_layers=2,
speech_decoder_prenet_units=256,
speech_decoder_prenet_dropout=0.5,
speaker_embedding_dim=512,
speech_decoder_postnet_layers=5,
speech_decoder_postnet_units=256,
speech_decoder_postnet_kernel=5,
speech_decoder_postnet_dropout=0.5,
reduction_factor=2,
max_speech_positions=4000,
max_text_positions=450,
encoder_max_relative_position=160,
use_guided_attention_loss=True,
guided_attention_loss_num_heads=2,
guided_attention_loss_sigma=0.4,
guided_attention_loss_scale=10.0,
use_cache=True,
is_encoder_decoder=True,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.encoder_layers = encoder_layers
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_attention_heads = encoder_attention_heads
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layers = decoder_layers
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_attention_heads = decoder_attention_heads
self.decoder_layerdrop = decoder_layerdrop
self.hidden_act = hidden_act
self.positional_dropout = positional_dropout
self.hidden_dropout = hidden_dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.scale_embedding = scale_embedding
self.feat_extract_norm = feat_extract_norm
self.feat_proj_dropout = feat_proj_dropout
self.feat_extract_activation = feat_extract_activation
self.conv_dim = list(conv_dim)
self.conv_stride = list(conv_stride)
self.conv_kernel = list(conv_kernel)
self.conv_bias = conv_bias
self.num_conv_pos_embeddings = num_conv_pos_embeddings
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
self.num_feat_extract_layers = len(self.conv_dim)
if (
(len(self.conv_stride) != self.num_feat_extract_layers)
or (len(self.conv_kernel) != self.num_feat_extract_layers)
or (len(self.conv_dim) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,"
f" `len(config.conv_kernel) = {len(self.conv_kernel)}`."
)
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
self.apply_spec_augment = apply_spec_augment
self.mask_time_prob = mask_time_prob
self.mask_time_length = mask_time_length
self.mask_time_min_masks = mask_time_min_masks
self.mask_feature_prob = mask_feature_prob
self.mask_feature_length = mask_feature_length
self.mask_feature_min_masks = mask_feature_min_masks
self.num_mel_bins = num_mel_bins
self.speech_decoder_prenet_layers = speech_decoder_prenet_layers
self.speech_decoder_prenet_units = speech_decoder_prenet_units
self.speech_decoder_prenet_dropout = speech_decoder_prenet_dropout
self.speaker_embedding_dim = speaker_embedding_dim
self.speech_decoder_postnet_layers = speech_decoder_postnet_layers
self.speech_decoder_postnet_units = speech_decoder_postnet_units
self.speech_decoder_postnet_kernel = speech_decoder_postnet_kernel
self.speech_decoder_postnet_dropout = speech_decoder_postnet_dropout
self.reduction_factor = reduction_factor
self.max_speech_positions = max_speech_positions
self.max_text_positions = max_text_positions
self.encoder_max_relative_position = encoder_max_relative_position
self.use_guided_attention_loss = use_guided_attention_loss
self.guided_attention_loss_num_heads = guided_attention_loss_num_heads
self.guided_attention_loss_sigma = guided_attention_loss_sigma
self.guided_attention_loss_scale = guided_attention_loss_scale
self.use_cache = use_cache
self.is_encoder_decoder = is_encoder_decoder
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=decoder_start_token_id,
**kwargs,
)
def inputs_to_logits_ratio(self):
return functools.reduce(operator.mul, self.conv_stride, 1)
class SpeechT5HifiGanConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`SpeechT5HifiGanModel`]. It is used to instantiate
a SpeechT5 HiFi-GAN vocoder model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the SpeechT5
[microsoft/speecht5_hifigan](https://huggingface.co/microsoft/speecht5_hifigan) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
model_in_dim (`int`, *optional*, defaults to 80):
The number of frequency bins in the input log-mel spectrogram.
sampling_rate (`int`, *optional*, defaults to 16000):
The sampling rate at which the output audio will be generated, expressed in hertz (Hz).
upsample_initial_channel (`int`, *optional*, defaults to 512):
The number of input channels into the upsampling network.
upsample_rates (`Tuple[int]` or `List[int]`, *optional*, defaults to `[4, 4, 4, 4]`):
A tuple of integers defining the stride of each 1D convolutional layer in the upsampling network. The
length of *upsample_rates* defines the number of convolutional layers and has to match the length of
*upsample_kernel_sizes*.
upsample_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[8, 8, 8, 8]`):
A tuple of integers defining the kernel size of each 1D convolutional layer in the upsampling network. The
length of *upsample_kernel_sizes* defines the number of convolutional layers and has to match the length of
*upsample_rates*.
resblock_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[3, 7, 11]`):
A tuple of integers defining the kernel sizes of the 1D convolutional layers in the multi-receptive field
fusion (MRF) module.
resblock_dilation_sizes (`Tuple[Tuple[int]]` or `List[List[int]]`, *optional*, defaults to `[[1, 3, 5], [1, 3, 5], [1, 3, 5]]`):
A nested tuple of integers defining the dilation rates of the dilated 1D convolutional layers in the
multi-receptive field fusion (MRF) module.
initializer_range (`float`, *optional*, defaults to 0.01):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
leaky_relu_slope (`float`, *optional*, defaults to 0.1):
The angle of the negative slope used by the leaky ReLU activation.
normalize_before (`bool`, *optional*, defaults to `True`):
Whether or not to normalize the spectrogram before vocoding using the vocoder's learned mean and variance.
Example:
```python
>>> from transformers import SpeechT5HifiGan, SpeechT5HifiGanConfig
>>> # Initializing a "microsoft/speecht5_hifigan" style configuration
>>> configuration = SpeechT5HifiGanConfig()
>>> # Initializing a model (with random weights) from the "microsoft/speecht5_hifigan" style configuration
>>> model = SpeechT5HifiGan(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "hifigan"
def __init__(
self,
model_in_dim=80,
sampling_rate=16000,
upsample_initial_channel=512,
upsample_rates=[4, 4, 4, 4],
upsample_kernel_sizes=[8, 8, 8, 8],
resblock_kernel_sizes=[3, 7, 11],
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
initializer_range=0.01,
leaky_relu_slope=0.1,
normalize_before=True,
**kwargs,
):
self.model_in_dim = model_in_dim
self.sampling_rate = sampling_rate
self.upsample_initial_channel = upsample_initial_channel
self.upsample_rates = upsample_rates
self.upsample_kernel_sizes = upsample_kernel_sizes
self.resblock_kernel_sizes = resblock_kernel_sizes
self.resblock_dilation_sizes = resblock_dilation_sizes
self.initializer_range = initializer_range
self.leaky_relu_slope = leaky_relu_slope
self.normalize_before = normalize_before
super().__init__(**kwargs)
__all__ = ["SpeechT5Config", "SpeechT5HifiGanConfig"]
|
transformers/src/transformers/models/speecht5/configuration_speecht5.py/0
|
{
"file_path": "transformers/src/transformers/models/speecht5/configuration_speecht5.py",
"repo_id": "transformers",
"token_count": 9178
}
| 166 |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import requests
import torch
from PIL import Image
from transformers import SuperPointConfig, SuperPointForKeypointDetection, SuperPointImageProcessor
def get_superpoint_config():
config = SuperPointConfig(
encoder_hidden_sizes=[64, 64, 128, 128],
decoder_hidden_size=256,
keypoint_decoder_dim=65,
descriptor_decoder_dim=256,
keypoint_threshold=0.005,
max_keypoints=-1,
nms_radius=4,
border_removal_distance=4,
initializer_range=0.02,
)
return config
def create_rename_keys(config, state_dict):
rename_keys = []
# Encoder weights
rename_keys.append(("conv1a.weight", "encoder.conv_blocks.0.conv_a.weight"))
rename_keys.append(("conv1b.weight", "encoder.conv_blocks.0.conv_b.weight"))
rename_keys.append(("conv2a.weight", "encoder.conv_blocks.1.conv_a.weight"))
rename_keys.append(("conv2b.weight", "encoder.conv_blocks.1.conv_b.weight"))
rename_keys.append(("conv3a.weight", "encoder.conv_blocks.2.conv_a.weight"))
rename_keys.append(("conv3b.weight", "encoder.conv_blocks.2.conv_b.weight"))
rename_keys.append(("conv4a.weight", "encoder.conv_blocks.3.conv_a.weight"))
rename_keys.append(("conv4b.weight", "encoder.conv_blocks.3.conv_b.weight"))
rename_keys.append(("conv1a.bias", "encoder.conv_blocks.0.conv_a.bias"))
rename_keys.append(("conv1b.bias", "encoder.conv_blocks.0.conv_b.bias"))
rename_keys.append(("conv2a.bias", "encoder.conv_blocks.1.conv_a.bias"))
rename_keys.append(("conv2b.bias", "encoder.conv_blocks.1.conv_b.bias"))
rename_keys.append(("conv3a.bias", "encoder.conv_blocks.2.conv_a.bias"))
rename_keys.append(("conv3b.bias", "encoder.conv_blocks.2.conv_b.bias"))
rename_keys.append(("conv4a.bias", "encoder.conv_blocks.3.conv_a.bias"))
rename_keys.append(("conv4b.bias", "encoder.conv_blocks.3.conv_b.bias"))
# Keypoint Decoder weights
rename_keys.append(("convPa.weight", "keypoint_decoder.conv_score_a.weight"))
rename_keys.append(("convPb.weight", "keypoint_decoder.conv_score_b.weight"))
rename_keys.append(("convPa.bias", "keypoint_decoder.conv_score_a.bias"))
rename_keys.append(("convPb.bias", "keypoint_decoder.conv_score_b.bias"))
# Descriptor Decoder weights
rename_keys.append(("convDa.weight", "descriptor_decoder.conv_descriptor_a.weight"))
rename_keys.append(("convDb.weight", "descriptor_decoder.conv_descriptor_b.weight"))
rename_keys.append(("convDa.bias", "descriptor_decoder.conv_descriptor_a.bias"))
rename_keys.append(("convDb.bias", "descriptor_decoder.conv_descriptor_b.bias"))
return rename_keys
def rename_key(dct, old, new):
val = dct.pop(old)
dct[new] = val
def prepare_imgs():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
im1 = Image.open(requests.get(url, stream=True).raw)
url = "http://images.cocodataset.org/test-stuff2017/000000004016.jpg"
im2 = Image.open(requests.get(url, stream=True).raw)
return [im1, im2]
@torch.no_grad()
def convert_superpoint_checkpoint(checkpoint_url, pytorch_dump_folder_path, save_model, push_to_hub, test_mode=False):
"""
Copy/paste/tweak model's weights to our SuperPoint structure.
"""
print("Downloading original model from checkpoint...")
config = get_superpoint_config()
# load original state_dict from URL
original_state_dict = torch.hub.load_state_dict_from_url(checkpoint_url)
print("Converting model parameters...")
# rename keys
rename_keys = create_rename_keys(config, original_state_dict)
new_state_dict = original_state_dict.copy()
for src, dest in rename_keys:
rename_key(new_state_dict, src, dest)
# Load HuggingFace model
model = SuperPointForKeypointDetection(config)
model.load_state_dict(new_state_dict)
model.eval()
print("Successfully loaded weights in the model")
# Check model outputs
preprocessor = SuperPointImageProcessor()
inputs = preprocessor(images=prepare_imgs(), return_tensors="pt")
outputs = model(**inputs)
# If test_mode is True, we check that the model outputs match the original results
if test_mode:
torch.count_nonzero(outputs.mask[0])
expected_keypoints_shape = (2, 830, 2)
expected_scores_shape = (2, 830)
expected_descriptors_shape = (2, 830, 256)
expected_keypoints_values = torch.tensor([[480.0, 9.0], [494.0, 9.0], [489.0, 16.0]])
expected_scores_values = torch.tensor([0.0064, 0.0140, 0.0595, 0.0728, 0.5170, 0.0175, 0.1523, 0.2055, 0.0336])
expected_descriptors_value = torch.tensor(-0.1096)
assert outputs.keypoints.shape == expected_keypoints_shape
assert outputs.scores.shape == expected_scores_shape
assert outputs.descriptors.shape == expected_descriptors_shape
assert torch.allclose(outputs.keypoints[0, :3], expected_keypoints_values, atol=1e-3)
assert torch.allclose(outputs.scores[0, :9], expected_scores_values, atol=1e-3)
assert torch.allclose(outputs.descriptors[0, 0, 0], expected_descriptors_value, atol=1e-3)
print("Model outputs match the original results!")
if save_model:
print("Saving model to local...")
# Create folder to save model
if not os.path.isdir(pytorch_dump_folder_path):
os.mkdir(pytorch_dump_folder_path)
model.save_pretrained(pytorch_dump_folder_path)
preprocessor.save_pretrained(pytorch_dump_folder_path)
model_name = "magic-leap-community/superpoint"
if push_to_hub:
print(f"Pushing {model_name} to the hub...")
model.push_to_hub(model_name)
preprocessor.push_to_hub(model_name)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://github.com/magicleap/SuperPointPretrainedNetwork/raw/master/superpoint_v1.pth",
type=str,
help="URL of the original SuperPoint checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default="model",
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument("--save_model", action="store_true", help="Save model to local")
parser.add_argument("--push_to_hub", action="store_true", help="Push model and image preprocessor to the hub")
args = parser.parse_args()
convert_superpoint_checkpoint(
args.checkpoint_url, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub
)
|
transformers/src/transformers/models/superpoint/convert_superpoint_to_pytorch.py/0
|
{
"file_path": "transformers/src/transformers/models/superpoint/convert_superpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 2864
}
| 167 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert Swin2SR checkpoints from the original repository. URL: https://github.com/mv-lab/swin2sr"""
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import Swin2SRConfig, Swin2SRForImageSuperResolution, Swin2SRImageProcessor
def get_config(checkpoint_url):
config = Swin2SRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
config.upscale = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
config.upscale = 4
config.image_size = 48
config.upsampler = "pixelshuffle_aux"
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
config.depths = [6, 6, 6, 6]
config.embed_dim = 60
config.num_heads = [6, 6, 6, 6]
config.upsampler = "pixelshuffledirect"
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
config.upscale = 4
config.upsampler = "nearest+conv"
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
config.num_channels = 1
config.upscale = 1
config.image_size = 126
config.window_size = 7
config.img_range = 255.0
config.upsampler = ""
return config
def rename_key(name, config):
if "patch_embed.proj" in name and "layers" not in name:
name = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection")
if "patch_embed.norm" in name:
name = name.replace("patch_embed.norm", "embeddings.patch_embeddings.layernorm")
if "layers" in name:
name = name.replace("layers", "encoder.stages")
if "residual_group.blocks" in name:
name = name.replace("residual_group.blocks", "layers")
if "attn.proj" in name:
name = name.replace("attn.proj", "attention.output.dense")
if "attn" in name:
name = name.replace("attn", "attention.self")
if "norm1" in name:
name = name.replace("norm1", "layernorm_before")
if "norm2" in name:
name = name.replace("norm2", "layernorm_after")
if "mlp.fc1" in name:
name = name.replace("mlp.fc1", "intermediate.dense")
if "mlp.fc2" in name:
name = name.replace("mlp.fc2", "output.dense")
if "q_bias" in name:
name = name.replace("q_bias", "query.bias")
if "k_bias" in name:
name = name.replace("k_bias", "key.bias")
if "v_bias" in name:
name = name.replace("v_bias", "value.bias")
if "cpb_mlp" in name:
name = name.replace("cpb_mlp", "continuous_position_bias_mlp")
if "patch_embed.proj" in name:
name = name.replace("patch_embed.proj", "patch_embed.projection")
if name == "norm.weight":
name = "layernorm.weight"
if name == "norm.bias":
name = "layernorm.bias"
if "conv_first" in name:
name = name.replace("conv_first", "first_convolution")
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
name = name.replace("conv_last", "final_convolution")
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
name = name.replace("conv_before_upsample.0", "conv_before_upsample")
if "upsample.0" in name:
name = name.replace("upsample.0", "upsample.convolution_0")
if "upsample.2" in name:
name = name.replace("upsample.2", "upsample.convolution_1")
name = "upsample." + name
elif config.upsampler == "pixelshuffledirect":
name = name.replace("upsample.0.weight", "upsample.conv.weight")
name = name.replace("upsample.0.bias", "upsample.conv.bias")
else:
pass
else:
name = "swin2sr." + name
return name
def convert_state_dict(orig_state_dict, config):
for key in orig_state_dict.copy().keys():
val = orig_state_dict.pop(key)
if "qkv" in key:
key_split = key.split(".")
stage_num = int(key_split[1])
block_num = int(key_split[4])
dim = config.embed_dim
if "weight" in key:
orig_state_dict[
f"swin2sr.encoder.stages.{stage_num}.layers.{block_num}.attention.self.query.weight"
] = val[:dim, :]
orig_state_dict[f"swin2sr.encoder.stages.{stage_num}.layers.{block_num}.attention.self.key.weight"] = (
val[dim : dim * 2, :]
)
orig_state_dict[
f"swin2sr.encoder.stages.{stage_num}.layers.{block_num}.attention.self.value.weight"
] = val[-dim:, :]
else:
orig_state_dict[f"swin2sr.encoder.stages.{stage_num}.layers.{block_num}.attention.self.query.bias"] = (
val[:dim]
)
orig_state_dict[f"swin2sr.encoder.stages.{stage_num}.layers.{block_num}.attention.self.key.bias"] = (
val[dim : dim * 2]
)
orig_state_dict[f"swin2sr.encoder.stages.{stage_num}.layers.{block_num}.attention.self.value.bias"] = (
val[-dim:]
)
pass
else:
orig_state_dict[rename_key(key, config)] = val
return orig_state_dict
def convert_swin2sr_checkpoint(checkpoint_url, pytorch_dump_folder_path, push_to_hub):
config = get_config(checkpoint_url)
model = Swin2SRForImageSuperResolution(config)
model.eval()
state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")
new_state_dict = convert_state_dict(state_dict, config)
missing_keys, unexpected_keys = model.load_state_dict(new_state_dict, strict=False)
if len(missing_keys) > 0:
raise ValueError("Missing keys when converting: {}".format(missing_keys))
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(f"Unexpected key {key} in state_dict")
# verify values
url = "https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true"
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
processor = Swin2SRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
image_size = 126 if "Jpeg" in checkpoint_url else 256
transforms = Compose(
[
Resize((image_size, image_size)),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
pixel_values = transforms(image).unsqueeze(0)
if config.num_channels == 1:
pixel_values = pixel_values[:, 0, :, :].unsqueeze(1)
outputs = model(pixel_values)
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
expected_shape = torch.Size([1, 3, 512, 512])
expected_slice = torch.tensor(
[[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]]
)
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
expected_shape = torch.Size([1, 3, 1024, 1024])
expected_slice = torch.tensor(
[[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]]
)
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
expected_shape = torch.Size([1, 3, 1024, 1024])
expected_slice = torch.tensor(
[[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]]
)
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
expected_shape = torch.Size([1, 3, 512, 512])
expected_slice = torch.tensor(
[[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]]
)
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
expected_shape = torch.Size([1, 3, 1024, 1024])
expected_slice = torch.tensor(
[[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]]
)
assert (
outputs.reconstruction.shape == expected_shape
), f"Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}"
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3], expected_slice, atol=1e-3)
print("Looks ok!")
url_to_name = {
"https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth": (
"swin2SR-classical-sr-x2-64"
),
"https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth": (
"swin2SR-classical-sr-x4-64"
),
"https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth": (
"swin2SR-compressed-sr-x4-48"
),
"https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth": (
"swin2SR-lightweight-x2-64"
),
"https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth": (
"swin2SR-realworld-sr-x4-64-bsrgan-psnr"
),
}
model_name = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(f"Saving model {model_name} to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
print(f"Saving image processor to {pytorch_dump_folder_path}")
processor.save_pretrained(pytorch_dump_folder_path)
if push_to_hub:
model.push_to_hub(f"caidas/{model_name}")
processor.push_to_hub(f"caidas/{model_name}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth",
type=str,
help="URL of the original Swin2SR checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the converted model to the hub.")
args = parser.parse_args()
convert_swin2sr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
|
transformers/src/transformers/models/swin2sr/convert_swin2sr_original_to_pytorch.py/0
|
{
"file_path": "transformers/src/transformers/models/swin2sr/convert_swin2sr_original_to_pytorch.py",
"repo_id": "transformers",
"token_count": 5322
}
| 168 |
# coding=utf-8
# Copyright 2022 Google LLC and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Convert T5X checkpoint to PyTorch
Steps:
- Install gsutil according to https://cloud.google.com/storage/docs/gsutil_install
- Get a T5X checkpoint at https://github.com/google-research/t5x/blob/main/docs/models.md#t5-11-checkpoints Example:
`gsutil -m cp -r gs://t5-data/pretrained_models/t5x/t5_1_1_small $HOME/`
- Create or download a corresponding config for the downloaded model. E.g. for T5 v1.1 small, you can use
https://huggingface.co/google/t5-v1_1-small/blob/main/config.json
- Convert:
```
python3 convert_t5x_checkpoint_to_pytorch.py --t5x_checkpoint_path=$HOME/t5_1_1_small --config_file=config.json\
--pytorch_dump_path=$HOME/t5_1_1_small_pt
```
"""
import argparse
import collections
import torch
from flax import traverse_util
from t5x import checkpoints
from transformers import T5Config, T5EncoderModel, T5ForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def t5x_attention_lookup(params, i, prefix, layer_name="attention"):
"""Returns the KOQV parameters of (self-)attention. Does not transpose."""
k = params[f"{prefix}/layers_{i}/{layer_name}/key/kernel"]
o = params[f"{prefix}/layers_{i}/{layer_name}/out/kernel"]
q = params[f"{prefix}/layers_{i}/{layer_name}/query/kernel"]
v = params[f"{prefix}/layers_{i}/{layer_name}/value/kernel"]
return k, o, q, v
def t5x_mlp_lookup(params, i, prefix, split_mlp_wi=False):
"""Returns the MLP parameters of a layer. Does not transpose."""
if split_mlp_wi:
wi_0 = params[f"{prefix}/layers_{i}/mlp/wi_0/kernel"]
wi_1 = params[f"{prefix}/layers_{i}/mlp/wi_1/kernel"]
wi = (wi_0, wi_1)
else:
wi = params[f"{prefix}/layers_{i}/mlp/wi/kernel"]
wo = params[f"{prefix}/layers_{i}/mlp/wo/kernel"]
return wi, wo
def t5x_layer_norm_lookup(params, i, prefix, layer_name):
"""Returns the layer norm param of a layer."""
return params[f"{prefix}/layers_{i}/{layer_name}/scale"]
def convert_t5x_to_pytorch(variables: dict, *, num_layers: int, num_decoder_layers: int, is_encoder_only: bool):
"""Converts the parameters from T5X-Flax to Transformers-PyTorch."""
old = traverse_util.flatten_dict(variables["target"])
old = {"/".join(k): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
split_mlp_wi = "encoder/layers_0/mlp/wi_0/kernel" in old
print("Split MLP:", split_mlp_wi)
new = collections.OrderedDict()
# Shared embeddings.
new["shared.weight"] = old["token_embedder/embedding"]
# Encoder.
for i in range(num_layers):
# Block i, layer 0 (Self Attention).
layer_norm = t5x_layer_norm_lookup(old, i, "encoder", "pre_attention_layer_norm")
k, o, q, v = t5x_attention_lookup(old, i, "encoder", "attention")
new[f"encoder.block.{i}.layer.0.layer_norm.weight"] = layer_norm
new[f"encoder.block.{i}.layer.0.SelfAttention.k.weight"] = k.T
new[f"encoder.block.{i}.layer.0.SelfAttention.o.weight"] = o.T
new[f"encoder.block.{i}.layer.0.SelfAttention.q.weight"] = q.T
new[f"encoder.block.{i}.layer.0.SelfAttention.v.weight"] = v.T
# Block i, layer 1 (MLP).
layer_norm = t5x_layer_norm_lookup(old, i, "encoder", "pre_mlp_layer_norm")
wi, wo = t5x_mlp_lookup(old, i, "encoder", split_mlp_wi)
new[f"encoder.block.{i}.layer.1.layer_norm.weight"] = layer_norm
if split_mlp_wi:
new[f"encoder.block.{i}.layer.1.DenseReluDense.wi_0.weight"] = wi[0].T
new[f"encoder.block.{i}.layer.1.DenseReluDense.wi_1.weight"] = wi[1].T
else:
new[f"encoder.block.{i}.layer.1.DenseReluDense.wi.weight"] = wi.T
new[f"encoder.block.{i}.layer.1.DenseReluDense.wo.weight"] = wo.T
new["encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight"] = old[
"encoder/relpos_bias/rel_embedding"
].T
new["encoder.final_layer_norm.weight"] = old["encoder/encoder_norm/scale"]
if not is_encoder_only:
# Decoder.
for i in range(num_decoder_layers):
# Block i, layer 0 (Self Attention).
layer_norm = t5x_layer_norm_lookup(old, i, "decoder", "pre_self_attention_layer_norm")
k, o, q, v = t5x_attention_lookup(old, i, "decoder", "self_attention")
new[f"decoder.block.{i}.layer.0.layer_norm.weight"] = layer_norm
new[f"decoder.block.{i}.layer.0.SelfAttention.k.weight"] = k.T
new[f"decoder.block.{i}.layer.0.SelfAttention.o.weight"] = o.T
new[f"decoder.block.{i}.layer.0.SelfAttention.q.weight"] = q.T
new[f"decoder.block.{i}.layer.0.SelfAttention.v.weight"] = v.T
# Block i, layer 1 (Cross Attention).
layer_norm = t5x_layer_norm_lookup(old, i, "decoder", "pre_cross_attention_layer_norm")
k, o, q, v = t5x_attention_lookup(old, i, "decoder", "encoder_decoder_attention")
new[f"decoder.block.{i}.layer.1.layer_norm.weight"] = layer_norm
new[f"decoder.block.{i}.layer.1.EncDecAttention.k.weight"] = k.T
new[f"decoder.block.{i}.layer.1.EncDecAttention.o.weight"] = o.T
new[f"decoder.block.{i}.layer.1.EncDecAttention.q.weight"] = q.T
new[f"decoder.block.{i}.layer.1.EncDecAttention.v.weight"] = v.T
# Block i, layer 2 (MLP).
layer_norm = t5x_layer_norm_lookup(old, i, "decoder", "pre_mlp_layer_norm")
wi, wo = t5x_mlp_lookup(old, i, "decoder", split_mlp_wi)
new[f"decoder.block.{i}.layer.2.layer_norm.weight"] = layer_norm
if split_mlp_wi:
new[f"decoder.block.{i}.layer.2.DenseReluDense.wi_0.weight"] = wi[0].T
new[f"decoder.block.{i}.layer.2.DenseReluDense.wi_1.weight"] = wi[1].T
else:
new[f"decoder.block.{i}.layer.2.DenseReluDense.wi.weight"] = wi.T
new[f"decoder.block.{i}.layer.2.DenseReluDense.wo.weight"] = wo.T
new["decoder.final_layer_norm.weight"] = old["decoder/decoder_norm/scale"]
new["decoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight"] = old[
"decoder/relpos_bias/rel_embedding"
].T
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
new["lm_head.weight"] = old["decoder/logits_dense/kernel"].T
return new
def make_state_dict(converted_params, is_encoder_only: bool):
"""Prepares a state dict for the PyTorch model."""
# Make a state dict with torch tensors.
state_dict = collections.OrderedDict([(k, torch.from_numpy(v.copy())) for (k, v) in converted_params.items()])
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
state_dict["encoder.embed_tokens.weight"] = state_dict["shared.weight"]
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
state_dict["decoder.embed_tokens.weight"] = state_dict["shared.weight"]
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print("Using shared word embeddings as lm_head.")
state_dict["lm_head.weight"] = state_dict["shared.weight"]
return state_dict
def load_t5x_weights_in_t5(model, config, t5x_checkpoint_path, is_encoder_only):
"""Replaces the params in model witht the T5X converted params."""
variables = checkpoints.load_t5x_checkpoint(t5x_checkpoint_path)
converted = convert_t5x_to_pytorch(
variables,
num_layers=config.num_layers,
num_decoder_layers=config.num_decoder_layers,
is_encoder_only=is_encoder_only,
)
state_dict = make_state_dict(converted, is_encoder_only)
model.load_state_dict(state_dict, strict=True)
def convert_t5x_checkpoint_to_pytorch(
t5x_checkpoint_path, config_file, pytorch_dump_path, is_encoder_only: bool = False
):
"""Loads the config and model, converts the T5X checkpoint, and saves a PyTorch checkpoint."""
# Initialise PyTorch model
config = T5Config.from_json_file(config_file)
print(f"Building PyTorch model from configuration: {config}")
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
model = T5EncoderModel(config)
else:
model = T5ForConditionalGeneration(config)
# Load weights from tf checkpoint
load_t5x_weights_in_t5(model, config, t5x_checkpoint_path, is_encoder_only)
# Save pytorch-model
print(f"Save PyTorch model to {pytorch_dump_path}")
model.save_pretrained(pytorch_dump_path)
# Verify that we can load the checkpoint.
model.from_pretrained(pytorch_dump_path)
print("Done")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.")
# Required parameters
parser.add_argument(
"--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False
)
args = parser.parse_args()
convert_t5x_checkpoint_to_pytorch(
args.t5x_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only
)
|
transformers/src/transformers/models/t5/convert_t5x_checkpoint_to_pytorch.py/0
|
{
"file_path": "transformers/src/transformers/models/t5/convert_t5x_checkpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 4540
}
| 169 |
# coding=utf-8
# Copyright 2021 Google Research and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TF 2.0 TAPAS model."""
from __future__ import annotations
import enum
import math
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import (
TFBaseModelOutputWithPastAndCrossAttentions,
TFBaseModelOutputWithPooling,
TFMaskedLMOutput,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import (
TFMaskedLanguageModelingLoss,
TFModelInputType,
TFPreTrainedModel,
TFSequenceClassificationLoss,
get_initializer,
keras,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_tensorflow_probability_available,
logging,
replace_return_docstrings,
)
from .configuration_tapas import TapasConfig
logger = logging.get_logger(__name__)
# soft dependency
if is_tensorflow_probability_available():
try:
import tensorflow_probability as tfp
# On the first call, check whether a compatible version of TensorFlow is installed
# TensorFlow Probability depends on a recent stable release of TensorFlow
n = tfp.distributions.Normal(loc=0.0, scale=1.0)
except ImportError:
logger.error(
"TAPAS models are not usable since `tensorflow_probability` can't be loaded. "
"It seems you have `tensorflow_probability` installed with the wrong tensorflow version. "
"Please try to reinstall it following the instructions here: https://github.com/tensorflow/probability."
)
else:
try:
import tensorflow_probability as tfp
# On the first call, check whether a compatible version of TensorFlow is installed
# TensorFlow Probability depends on a recent stable release of TensorFlow
_ = tfp.distributions.Normal(loc=0.0, scale=1.0)
except ImportError:
pass
_CONFIG_FOR_DOC = "TapasConfig"
_CHECKPOINT_FOR_DOC = "google/tapas-base"
EPSILON_ZERO_DIVISION = 1e-10
CLOSE_ENOUGH_TO_LOG_ZERO = -10000.0
@dataclass
class TFTableQuestionAnsweringOutput(ModelOutput):
"""
Output type of [`TFTapasForQuestionAnswering`].
Args:
loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` (and possibly `answer`, `aggregation_labels`, `numeric_values` and `numeric_values_scale` are provided)):
Total loss as the sum of the hierarchical cell selection log-likelihood loss and (optionally) the
semi-supervised regression loss and (optionally) supervised loss for aggregations.
logits (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Prediction scores of the cell selection head, for every token.
logits_aggregation (`tf.Tensor`, *optional*, of shape `(batch_size, num_aggregation_labels)`):
Prediction scores of the aggregation head, for every aggregation operator.
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus
the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
loss: tf.Tensor | None = None
logits: tf.Tensor = None
logits_aggregation: tf.Tensor | None = None
hidden_states: Tuple[tf.Tensor] | None = None
attentions: Tuple[tf.Tensor] | None = None
class TFTapasEmbeddings(keras.layers.Layer):
"""
Construct the embeddings from word, position and token_type embeddings. Same as BertEmbeddings but with a number of
additional token type embeddings to encode tabular structure.
"""
def __init__(self, config: TapasConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.number_of_token_type_embeddings = len(config.type_vocab_sizes)
self.reset_position_index_per_cell = config.reset_position_index_per_cell
self.hidden_size = config.hidden_size
self.max_position_embeddings = config.max_position_embeddings
self.initializer_range = config.initializer_range
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
def build(self, input_shape=None):
with tf.name_scope("word_embeddings"):
self.weight = self.add_weight(
name="weight",
shape=[self.config.vocab_size, self.hidden_size],
initializer=get_initializer(self.initializer_range),
)
with tf.name_scope("position_embeddings"):
self.position_embeddings = self.add_weight(
name="embeddings",
shape=[self.max_position_embeddings, self.hidden_size],
initializer=get_initializer(self.initializer_range),
)
for i, type_vocab_size in enumerate(self.config.type_vocab_sizes):
with tf.name_scope(f"token_type_embeddings_{i}"):
setattr(
self,
f"token_type_embeddings_{i}",
self.add_weight(
name="embeddings",
shape=[type_vocab_size, self.hidden_size],
initializer=get_initializer(self.initializer_range),
),
)
if self.built:
return
self.built = True
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
def call(
self,
input_ids: tf.Tensor = None,
position_ids: tf.Tensor = None,
token_type_ids: tf.Tensor = None,
inputs_embeds: tf.Tensor = None,
training: bool = False,
) -> tf.Tensor:
"""
Applies embedding based on inputs tensor.
Returns:
final_embeddings (`tf.Tensor`): output embedding tensor.
"""
assert not (input_ids is None and inputs_embeds is None)
if input_ids is not None:
input_shape = shape_list(input_ids)
else:
input_shape = shape_list(inputs_embeds)[:-1]
seq_length = input_shape[1]
if token_type_ids is None:
token_type_ids = tf.fill(dims=input_shape + [self.number_of_token_type_embeddings], value=0)
if position_ids is None:
# create absolute position embeddings
position_ids = tf.expand_dims(tf.range(start=0, limit=seq_length), axis=0)
position_ids = tf.broadcast_to(position_ids, shape=input_shape)
# when self.config.reset_position_index_per_cell is set to True, create relative position embeddings
if self.reset_position_index_per_cell:
# shape (batch_size, seq_len)
col_index = IndexMap(token_type_ids[:, :, 1], self.config.type_vocab_sizes[1], batch_dims=1)
# shape (batch_size, seq_len)
row_index = IndexMap(token_type_ids[:, :, 2], self.config.type_vocab_sizes[2], batch_dims=1)
# shape (batch_size, seq_len)
full_index = ProductIndexMap(col_index, row_index)
# shape (max_rows * max_columns,). First absolute position for every cell
first_position_per_segment = reduce_min(position_ids, full_index)[0]
# ? shape (batch_size, seq_len). First absolute position of the cell for every token
first_position = gather(first_position_per_segment, full_index)
# shape (1, seq_len)
position = tf.expand_dims(tf.range(start=0, limit=seq_length), axis=0)
position_ids = tf.math.minimum(self.max_position_embeddings - 1, position - first_position)
if input_ids is not None:
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
position_embeddings = tf.gather(self.position_embeddings, indices=position_ids)
final_embeddings = inputs_embeds + position_embeddings
for i in range(self.number_of_token_type_embeddings):
name = f"token_type_embeddings_{i}"
final_embeddings += tf.gather(params=getattr(self, name), indices=token_type_ids[:, :, i])
final_embeddings = self.LayerNorm(inputs=final_embeddings)
final_embeddings = self.dropout(inputs=final_embeddings, training=training)
return final_embeddings
# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention with Bert->Tapas
class TFTapasSelfAttention(keras.layers.Layer):
def __init__(self, config: TapasConfig, **kwargs):
super().__init__(**kwargs)
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number "
f"of attention heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
self.query = keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
)
self.key = keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
)
self.value = keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
)
self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob)
self.is_decoder = config.is_decoder
self.config = config
def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
# Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
# Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
return tf.transpose(tensor, perm=[0, 2, 1, 3])
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
head_mask: tf.Tensor,
encoder_hidden_states: tf.Tensor,
encoder_attention_mask: tf.Tensor,
past_key_value: Tuple[tf.Tensor],
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
batch_size = shape_list(hidden_states)[0]
mixed_query_layer = self.query(inputs=hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size)
value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size)
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size)
value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size)
key_layer = tf.concat([past_key_value[0], key_layer], axis=2)
value_layer = tf.concat([past_key_value[1], value_layer], axis=2)
else:
key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size)
value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size)
query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
if self.is_decoder:
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
# (batch size, num_heads, seq_len_q, seq_len_k)
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
attention_scores = tf.divide(attention_scores, dk)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in TFTapasModel call() function)
attention_scores = tf.add(attention_scores, attention_mask)
# Normalize the attention scores to probabilities.
attention_probs = stable_softmax(logits=attention_scores, axis=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(inputs=attention_probs, training=training)
# Mask heads if we want to
if head_mask is not None:
attention_probs = tf.multiply(attention_probs, head_mask)
attention_output = tf.matmul(attention_probs, value_layer)
attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])
# (batch_size, seq_len_q, all_head_size)
attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size))
outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "query", None) is not None:
with tf.name_scope(self.query.name):
self.query.build([None, None, self.config.hidden_size])
if getattr(self, "key", None) is not None:
with tf.name_scope(self.key.name):
self.key.build([None, None, self.config.hidden_size])
if getattr(self, "value", None) is not None:
with tf.name_scope(self.value.name):
self.value.build([None, None, self.config.hidden_size])
# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->Tapas
class TFTapasSelfOutput(keras.layers.Layer):
def __init__(self, config: TapasConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.config = config
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
# Copied from transformers.models.bert.modeling_tf_bert.TFBertAttention with Bert->Tapas
class TFTapasAttention(keras.layers.Layer):
def __init__(self, config: TapasConfig, **kwargs):
super().__init__(**kwargs)
self.self_attention = TFTapasSelfAttention(config, name="self")
self.dense_output = TFTapasSelfOutput(config, name="output")
def prune_heads(self, heads):
raise NotImplementedError
def call(
self,
input_tensor: tf.Tensor,
attention_mask: tf.Tensor,
head_mask: tf.Tensor,
encoder_hidden_states: tf.Tensor,
encoder_attention_mask: tf.Tensor,
past_key_value: Tuple[tf.Tensor],
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
self_outputs = self.self_attention(
hidden_states=input_tensor,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
training=training,
)
attention_output = self.dense_output(
hidden_states=self_outputs[0], input_tensor=input_tensor, training=training
)
# add attentions (possibly with past_key_value) if we output them
outputs = (attention_output,) + self_outputs[1:]
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self_attention", None) is not None:
with tf.name_scope(self.self_attention.name):
self.self_attention.build(None)
if getattr(self, "dense_output", None) is not None:
with tf.name_scope(self.dense_output.name):
self.dense_output.build(None)
# Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->Tapas
class TFTapasIntermediate(keras.layers.Layer):
def __init__(self, config: TapasConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = get_tf_activation(config.hidden_act)
else:
self.intermediate_act_fn = config.hidden_act
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
# Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->Tapas
class TFTapasOutput(keras.layers.Layer):
def __init__(self, config: TapasConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.config = config
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.intermediate_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
# Copied from transformers.models.bert.modeling_tf_bert.TFBertLayer with Bert->Tapas
class TFTapasLayer(keras.layers.Layer):
def __init__(self, config: TapasConfig, **kwargs):
super().__init__(**kwargs)
self.attention = TFTapasAttention(config, name="attention")
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = TFTapasAttention(config, name="crossattention")
self.intermediate = TFTapasIntermediate(config, name="intermediate")
self.bert_output = TFTapasOutput(config, name="output")
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
head_mask: tf.Tensor,
encoder_hidden_states: tf.Tensor | None,
encoder_attention_mask: tf.Tensor | None,
past_key_value: Tuple[tf.Tensor] | None,
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
input_tensor=hidden_states,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=self_attn_past_key_value,
output_attentions=output_attentions,
training=training,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
" by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
input_tensor=attention_output,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
training=training,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
intermediate_output = self.intermediate(hidden_states=attention_output)
layer_output = self.bert_output(
hidden_states=intermediate_output, input_tensor=attention_output, training=training
)
outputs = (layer_output,) + outputs # add attentions if we output them
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention.name):
self.attention.build(None)
if getattr(self, "intermediate", None) is not None:
with tf.name_scope(self.intermediate.name):
self.intermediate.build(None)
if getattr(self, "bert_output", None) is not None:
with tf.name_scope(self.bert_output.name):
self.bert_output.build(None)
if getattr(self, "crossattention", None) is not None:
with tf.name_scope(self.crossattention.name):
self.crossattention.build(None)
# Copied from transformers.models.bert.modeling_tf_bert.TFBertEncoder with Bert->Tapas
class TFTapasEncoder(keras.layers.Layer):
def __init__(self, config: TapasConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.layer = [TFTapasLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
head_mask: tf.Tensor,
encoder_hidden_states: tf.Tensor | None,
encoder_attention_mask: tf.Tensor | None,
past_key_values: Tuple[Tuple[tf.Tensor]] | None,
use_cache: Optional[bool],
output_attentions: bool,
output_hidden_states: bool,
return_dict: bool,
training: bool = False,
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
past_key_value = past_key_values[i] if past_key_values is not None else None
layer_outputs = layer_module(
hidden_states=hidden_states,
attention_mask=attention_mask,
head_mask=head_mask[i],
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
training=training,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if self.config.add_cross_attention and encoder_hidden_states is not None:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None
)
return TFBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layer", None) is not None:
for layer in self.layer:
with tf.name_scope(layer.name):
layer.build(None)
# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->Tapas
class TFTapasPooler(keras.layers.Layer):
def __init__(self, config: TapasConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
activation="tanh",
name="dense",
)
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(inputs=first_token_tensor)
return pooled_output
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
# Copied from transformers.models.bert.modeling_tf_bert.TFBertPredictionHeadTransform with Bert->Tapas
class TFTapasPredictionHeadTransform(keras.layers.Layer):
def __init__(self, config: TapasConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
name="dense",
)
if isinstance(config.hidden_act, str):
self.transform_act_fn = get_tf_activation(config.hidden_act)
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(inputs=hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
# Copied from transformers.models.bert.modeling_tf_bert.TFBertLMPredictionHead with Bert->Tapas
class TFTapasLMPredictionHead(keras.layers.Layer):
def __init__(self, config: TapasConfig, input_embeddings: keras.layers.Layer, **kwargs):
super().__init__(**kwargs)
self.config = config
self.hidden_size = config.hidden_size
self.transform = TFTapasPredictionHeadTransform(config, name="transform")
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.input_embeddings = input_embeddings
def build(self, input_shape=None):
self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
if self.built:
return
self.built = True
if getattr(self, "transform", None) is not None:
with tf.name_scope(self.transform.name):
self.transform.build(None)
def get_output_embeddings(self) -> keras.layers.Layer:
return self.input_embeddings
def set_output_embeddings(self, value: tf.Variable):
self.input_embeddings.weight = value
self.input_embeddings.vocab_size = shape_list(value)[0]
def get_bias(self) -> Dict[str, tf.Variable]:
return {"bias": self.bias}
def set_bias(self, value: tf.Variable):
self.bias = value["bias"]
self.config.vocab_size = shape_list(value["bias"])[0]
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.transform(hidden_states=hidden_states)
seq_length = shape_list(hidden_states)[1]
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size])
hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True)
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
return hidden_states
# Copied from transformers.models.bert.modeling_tf_bert.TFBertMLMHead with Bert->Tapas
class TFTapasMLMHead(keras.layers.Layer):
def __init__(self, config: TapasConfig, input_embeddings: keras.layers.Layer, **kwargs):
super().__init__(**kwargs)
self.predictions = TFTapasLMPredictionHead(config, input_embeddings, name="predictions")
def call(self, sequence_output: tf.Tensor) -> tf.Tensor:
prediction_scores = self.predictions(hidden_states=sequence_output)
return prediction_scores
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "predictions", None) is not None:
with tf.name_scope(self.predictions.name):
self.predictions.build(None)
@keras_serializable
class TFTapasMainLayer(keras.layers.Layer):
config_class = TapasConfig
def __init__(self, config: TapasConfig, add_pooling_layer: bool = True, **kwargs):
super().__init__(**kwargs)
self.config = config
self.embeddings = TFTapasEmbeddings(config, name="embeddings")
self.encoder = TFTapasEncoder(config, name="encoder")
self.pooler = TFTapasPooler(config, name="pooler") if add_pooling_layer else None
def get_input_embeddings(self) -> keras.layers.Layer:
return self.embeddings
def set_input_embeddings(self, value: tf.Variable):
self.embeddings.weight = value
self.embeddings.vocab_size = shape_list(value)[0]
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
raise NotImplementedError
@unpack_inputs
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if attention_mask is None:
attention_mask = tf.fill(dims=input_shape, value=1)
if token_type_ids is None:
token_type_ids = tf.fill(dims=input_shape + [len(self.config.type_vocab_sizes)], value=0)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
training=training,
)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1]))
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype)
one_cst = tf.constant(1.0, dtype=embedding_output.dtype)
ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype)
extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if head_mask is not None:
raise NotImplementedError
else:
head_mask = [None] * self.config.num_hidden_layers
encoder_outputs = self.encoder(
hidden_states=embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None
if not return_dict:
return (
sequence_output,
pooled_output,
) + encoder_outputs[1:]
return TFBaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "pooler", None) is not None:
with tf.name_scope(self.pooler.name):
self.pooler.build(None)
class TFTapasPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = TapasConfig
base_model_prefix = "tapas"
@property
def input_signature(self):
return {
"input_ids": tf.TensorSpec((None, None), tf.int32, name="input_ids"),
"attention_mask": tf.TensorSpec((None, None), tf.float32, name="attention_mask"),
"token_type_ids": tf.TensorSpec((None, None, 7), tf.int32, name="token_type_ids"),
}
TAPAS_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Parameters:
config ([`TapasConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
TAPAS_INPUTS_DOCSTRING = r"""
Args:
input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`np.ndarray` or `tf.Tensor` of shape `({0}, 7)`, *optional*):
Token indices that encode tabular structure. Indices can be obtained using [`AutoTokenizer`]. See this
class for more info.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. If
`reset_position_index_per_cell` of [`TapasConfig`] is set to `True`, relative position embeddings will be
used. Selected in the range `[0, config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`np.ndarray` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False``):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@add_start_docstrings(
"The bare Tapas Model transformer outputting raw hidden-states without any specific head on top.",
TAPAS_START_DOCSTRING,
)
class TFTapasModel(TFTapasPreTrainedModel):
def __init__(self, config: TapasConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.tapas = TFTapasMainLayer(config, name="tapas")
@unpack_inputs
@add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, TapasModel
>>> import pandas as pd
>>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base")
>>> model = TapasModel.from_pretrained("google/tapas-base")
>>> data = {
... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
... "Age": ["56", "45", "59"],
... "Number of movies": ["87", "53", "69"],
... }
>>> table = pd.DataFrame.from_dict(data)
>>> queries = ["How many movies has George Clooney played in?", "How old is Brad Pitt?"]
>>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="tf")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
```"""
outputs = self.tapas(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "tapas", None) is not None:
with tf.name_scope(self.tapas.name):
self.tapas.build(None)
@add_start_docstrings("""Tapas Model with a `language modeling` head on top.""", TAPAS_START_DOCSTRING)
class TFTapasForMaskedLM(TFTapasPreTrainedModel, TFMaskedLanguageModelingLoss):
def __init__(self, config: TapasConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
if config.is_decoder:
logger.warning(
"If you want to use `TFTapasForMaskedLM` make sure `config.is_decoder=False` for "
"bi-directional self-attention."
)
self.tapas = TFTapasMainLayer(config, add_pooling_layer=False, name="tapas")
self.lm_head = TFTapasMLMHead(config, input_embeddings=self.tapas.embeddings, name="cls")
def get_lm_head(self) -> keras.layers.Layer:
return self.lm_head.predictions
@unpack_inputs
@add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, TapasForMaskedLM
>>> import pandas as pd
>>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base")
>>> model = TapasForMaskedLM.from_pretrained("google/tapas-base")
>>> data = {
... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
... "Age": ["56", "45", "59"],
... "Number of movies": ["87", "53", "69"],
... }
>>> table = pd.DataFrame.from_dict(data)
>>> inputs = tokenizer(
... table=table, queries="How many [MASK] has George [MASK] played in?", return_tensors="tf"
... )
>>> labels = tokenizer(
... table=table, queries="How many movies has George Clooney played in?", return_tensors="tf"
... )["input_ids"]
>>> outputs = model(**inputs, labels=labels)
>>> logits = outputs.logits
```"""
outputs = self.tapas(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=prediction_scores)
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFMaskedLMOutput(
loss=loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "tapas", None) is not None:
with tf.name_scope(self.tapas.name):
self.tapas.build(None)
if getattr(self, "lm_head", None) is not None:
with tf.name_scope(self.lm_head.name):
self.lm_head.build(None)
class TFTapasComputeTokenLogits(keras.layers.Layer):
def __init__(self, config: TapasConfig, **kwargs):
super().__init__(**kwargs)
self.temperature = config.temperature
# cell selection heads
with tf.name_scope("output"):
self.output_weights = self.add_weight(
name="output_weights",
shape=(config.hidden_size,),
dtype=tf.float32,
trainable=True,
initializer=tf.zeros_initializer()
if config.init_cell_selection_weights_to_zero
else keras.initializers.TruncatedNormal(stddev=config.initializer_range),
)
self.output_bias = self.add_weight(
name="output_bias", shape=(), trainable=True, initializer=tf.zeros_initializer()
)
def call(self, sequence_output: tf.Tensor) -> tf.Tensor:
"""
Computes logits per token
Args:
sequence_output (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
Also known as last_hidden_state. Sequence of hidden-states at the output of the last layer of the
model.
Returns:
logits (`tf.Tensor` of shape `(batch_size, sequence_length)`): Logits per token.
"""
logits = (tf.einsum("bsj,j->bs", sequence_output, self.output_weights) + self.output_bias) / self.temperature
return logits
class TFTapasComputeColumnLogits(keras.layers.Layer):
def __init__(self, config: TapasConfig, **kwargs):
super().__init__(**kwargs)
with tf.name_scope("column_output"):
self.column_output_weights = self.add_weight(
name="column_output_weights",
shape=[config.hidden_size],
dtype=tf.float32,
trainable=True,
initializer=tf.zeros_initializer()
if config.init_cell_selection_weights_to_zero
else keras.initializers.TruncatedNormal(stddev=config.initializer_range),
)
self.column_output_bias = self.add_weight(
name="column_output_bias", shape=(), trainable=True, initializer=tf.zeros_initializer()
)
def call(self, sequence_output, cell_index, cell_mask, allow_empty_column_selection) -> tf.Tensor:
"""
Computes the column logits.
Args:
sequence_output (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
Also known as last_hidden_state. Sequence of hidden-states at the output of the last layer of the
model.
cell_index (`ProductIndexMap`):
Index that groups tokens into cells.
cell_mask (`tf.Tensor` of shape `(batch_size, max_num_rows * max_num_cols)`):
Mask for cells that exist in the table (i.e. that are not padding).
allow_empty_column_selection (`bool`):
Whether to allow not to select any column
Returns:
column_logits (`tf.Tensor`of shape `(batch_size, max_num_cols)`): Tensor containing the column logits for
every example in the batch.
"""
# First, compute the token logits (batch_size, seq_len) - without temperature
token_logits = tf.einsum("bsj,j->bs", sequence_output, self.column_output_weights) + self.column_output_bias
# Next, average the logits per cell (batch_size, max_num_cols*max_num_rows)
cell_logits, cell_logits_index = reduce_mean(token_logits, cell_index)
# Finally, average the logits per column (batch_size, max_num_cols)
column_index = cell_index.project_inner(cell_logits_index)
column_logits, out_index = reduce_sum(cell_logits * cell_mask, column_index)
cell_count, _ = reduce_sum(cell_mask, column_index)
column_logits /= cell_count + EPSILON_ZERO_DIVISION
# Mask columns that do not appear in the example.
is_padding = tf.logical_and(cell_count < 0.5, tf.not_equal(out_index.indices, 0))
column_logits += CLOSE_ENOUGH_TO_LOG_ZERO * tf.cast(is_padding, tf.float32)
if not allow_empty_column_selection:
column_logits += CLOSE_ENOUGH_TO_LOG_ZERO * tf.cast(tf.equal(out_index.indices, 0), tf.float32)
return column_logits
@add_start_docstrings(
"""
Tapas Model with a cell selection head and optional aggregation head on top for question-answering tasks on tables
(linear layers on top of the hidden-states output to compute `logits` and optional `logits_aggregation`), e.g. for
SQA, WTQ or WikiSQL-supervised tasks.
""",
TAPAS_START_DOCSTRING,
)
class TFTapasForQuestionAnswering(TFTapasPreTrainedModel):
def __init__(self, config: TapasConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
# base model
self.tapas = TFTapasMainLayer(config, name="tapas")
# dropout
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
self.compute_token_logits = TFTapasComputeTokenLogits(config, name="compute_token_logits")
self.compute_column_logits = TFTapasComputeColumnLogits(config, name="compute_column_logits")
if config.num_aggregation_labels > 0:
self.aggregation_classifier = keras.layers.Dense(
config.num_aggregation_labels,
kernel_initializer=get_initializer(config.initializer_range),
name="aggregation_classifier",
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TFTableQuestionAnsweringOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
table_mask: np.ndarray | tf.Tensor | None = None,
aggregation_labels: np.ndarray | tf.Tensor | None = None,
float_answer: np.ndarray | tf.Tensor | None = None,
numeric_values: np.ndarray | tf.Tensor | None = None,
numeric_values_scale: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFTableQuestionAnsweringOutput, Tuple[tf.Tensor]]:
r"""
table_mask (`tf.Tensor` of shape `(batch_size, seq_length)`, *optional*):
Mask for the table. Indicates which tokens belong to the table (1). Question tokens, table headers and
padding are 0.
labels (`tf.Tensor` of shape `(batch_size, seq_length)`, *optional*):
Labels per token for computing the hierarchical cell selection loss. This encodes the positions of the
answer appearing in the table. Can be obtained using [`AutoTokenizer`].
- 1 for tokens that are **part of the answer**,
- 0 for tokens that are **not part of the answer**.
aggregation_labels (`tf.Tensor` of shape `(batch_size, )`, *optional*):
Aggregation function index for every example in the batch for computing the aggregation loss. Indices
should be in `[0, ..., config.num_aggregation_labels - 1]`. Only required in case of strong supervision for
aggregation (WikiSQL-supervised).
float_answer (`tf.Tensor` of shape `(batch_size, )`, *optional*):
Float answer for every example in the batch. Set to *float('nan')* for cell selection questions. Only
required in case of weak supervision (WTQ) to calculate the aggregate mask and regression loss.
numeric_values (`tf.Tensor` of shape `(batch_size, seq_length)`, *optional*):
Numeric values of every token, NaN for tokens which are not numeric values. Can be obtained using
[`AutoTokenizer`]. Only required in case of weak supervision for aggregation (WTQ) to calculate the
regression loss.
numeric_values_scale (`tf.Tensor` of shape `(batch_size, seq_length)`, *optional*):
Scale of the numeric values of every token. Can be obtained using [`AutoTokenizer`]. Only required in case
of weak supervision for aggregation (WTQ) to calculate the regression loss.
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, TapasForQuestionAnswering
>>> import pandas as pd
>>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base-finetuned-wtq")
>>> model = TapasForQuestionAnswering.from_pretrained("google/tapas-base-finetuned-wtq")
>>> data = {
... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
... "Age": ["56", "45", "59"],
... "Number of movies": ["87", "53", "69"],
... }
>>> table = pd.DataFrame.from_dict(data)
>>> queries = ["How many movies has George Clooney played in?", "How old is Brad Pitt?"]
>>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="tf")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> logits_aggregation = outputs.logits_aggregation
```"""
outputs = self.tapas(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
pooled_output = outputs[1]
sequence_output = self.dropout(sequence_output)
if input_ids is not None:
input_shape = shape_list(input_ids)
else:
input_shape = shape_list(inputs_embeds)[:-1]
# Construct indices for the table.
if token_type_ids is None:
token_type_ids = tf.fill(input_shape + [len(self.config.type_vocab_sizes)], 0)
token_types = [
"segment_ids",
"column_ids",
"row_ids",
"prev_labels",
"column_ranks",
"inv_column_ranks",
"numeric_relations",
]
row_ids = token_type_ids[:, :, token_types.index("row_ids")]
column_ids = token_type_ids[:, :, token_types.index("column_ids")]
# Construct indices for the table.
row_index = IndexMap(
indices=tf.minimum(tf.cast(row_ids, tf.int32), self.config.max_num_rows - 1),
num_segments=self.config.max_num_rows,
batch_dims=1,
)
col_index = IndexMap(
indices=tf.minimum(tf.cast(column_ids, tf.int32), self.config.max_num_columns - 1),
num_segments=self.config.max_num_columns,
batch_dims=1,
)
cell_index = ProductIndexMap(row_index, col_index)
# Masks.
input_shape = shape_list(input_ids) if input_ids is not None else shape_list(inputs_embeds)[:-1]
if attention_mask is None:
attention_mask = tf.ones(input_shape)
# Table cells only, without question tokens and table headers.
if table_mask is None:
table_mask = tf.where(row_ids > 0, tf.ones_like(row_ids), tf.zeros_like(row_ids))
# <float32>[batch_size, seq_length]
input_mask_float = tf.cast(attention_mask, tf.float32)
table_mask_float = tf.cast(table_mask, tf.float32)
# Mask for cells that exist in the table (i.e. that are not padding).
cell_mask, _ = reduce_mean(input_mask_float, cell_index)
# Compute logits per token. These are used to select individual cells.
logits = self.compute_token_logits(sequence_output)
# Compute logits per column. These are used to select a column.
column_logits = None
if self.config.select_one_column:
column_logits = self.compute_column_logits(
sequence_output, cell_index, cell_mask, self.config.allow_empty_column_selection
)
# Aggregate logits.
logits_aggregation = None
if self.config.num_aggregation_labels > 0:
logits_aggregation = self.aggregation_classifier(pooled_output)
# Total loss calculation
total_loss = tf.zeros(shape=(1,), dtype=tf.float32)
calculate_loss = False
if labels is not None:
calculate_loss = True
is_supervised = not self.config.num_aggregation_labels > 0 or not self.config.use_answer_as_supervision
# Semi-supervised cell selection in case of no aggregation:
# If the answer (the denotation) appears directly in the table we might
# select the answer without applying any aggregation function. There are
# some ambiguous cases, see utils._calculate_aggregate_mask for more info.
# `aggregate_mask` is 1 for examples where we chose to aggregate and 0
# for examples where we chose to select the answer directly.
# `labels` encodes the positions of the answer appearing in the table.
if is_supervised:
aggregate_mask = None
else:
if float_answer is not None:
assert (
shape_list(labels)[0] == shape_list(float_answer)[0]
), "Make sure the answers are a FloatTensor of shape (batch_size,)"
# <float32>[batch_size]
aggregate_mask = _calculate_aggregate_mask(
float_answer,
pooled_output,
self.config.cell_selection_preference,
labels,
self.aggregation_classifier,
)
else:
aggregate_mask = None
raise ValueError("You have to specify float answers in order to calculate the aggregate mask")
# Cell selection log-likelihood
if self.config.average_logits_per_cell:
logits_per_cell, _ = reduce_mean(logits, cell_index)
logits = gather(logits_per_cell, cell_index)
dist_per_token = tfp.distributions.Bernoulli(logits=logits)
# Compute cell selection loss per example.
selection_loss_per_example = None
if not self.config.select_one_column:
weight = tf.where(
labels == 0,
tf.ones_like(labels, dtype=tf.float32),
self.config.positive_label_weight * tf.ones_like(labels, dtype=tf.float32),
)
selection_loss_per_token = -dist_per_token.log_prob(labels) * weight
selection_loss_per_example = tf.reduce_sum(selection_loss_per_token * input_mask_float, axis=1) / (
tf.reduce_sum(input_mask_float, axis=1) + EPSILON_ZERO_DIVISION
)
else:
selection_loss_per_example, logits = _single_column_cell_selection_loss(
logits, column_logits, labels, cell_index, col_index, cell_mask
)
dist_per_token = tfp.distributions.Bernoulli(logits=logits)
# Supervised cell selection
if self.config.disable_per_token_loss:
pass
elif is_supervised:
total_loss += tf.reduce_mean(selection_loss_per_example)
else:
# For the not supervised case, do not assign loss for cell selection
total_loss += tf.reduce_mean(selection_loss_per_example * (1.0 - aggregate_mask))
# Semi-supervised regression loss and supervised loss for aggregations
if self.config.num_aggregation_labels > 0:
if is_supervised:
# Note that `aggregate_mask` is None if the setting is supervised.
if aggregation_labels is not None:
assert (
shape_list(labels)[0] == shape_list(aggregation_labels)[0]
), "Make sure the aggregation labels are a LongTensor of shape (batch_size,)"
per_example_additional_loss = _calculate_aggregation_loss(
logits_aggregation,
aggregate_mask,
aggregation_labels,
self.config.use_answer_as_supervision,
self.config.num_aggregation_labels,
self.config.aggregation_loss_weight,
)
else:
raise ValueError(
"You have to specify aggregation labels in order to calculate the aggregation loss"
)
else:
aggregation_labels = tf.zeros(shape_list(labels)[0], dtype=tf.int32)
per_example_additional_loss = _calculate_aggregation_loss(
logits_aggregation,
aggregate_mask,
aggregation_labels,
self.config.use_answer_as_supervision,
self.config.num_aggregation_labels,
self.config.aggregation_loss_weight,
)
if self.config.use_answer_as_supervision:
if numeric_values is not None and numeric_values_scale is not None:
assert shape_list(numeric_values) == shape_list(numeric_values_scale)
# Add regression loss for numeric answers which require aggregation.
answer_loss, large_answer_loss_mask = _calculate_regression_loss(
float_answer,
aggregate_mask,
dist_per_token,
numeric_values,
numeric_values_scale,
table_mask_float,
logits_aggregation,
self.config,
)
per_example_additional_loss += answer_loss
# Zero loss for examples with answer_loss > cutoff.
per_example_additional_loss *= large_answer_loss_mask
else:
raise ValueError(
"You have to specify numeric values and numeric values scale in order to calculate the"
" regression loss"
)
total_loss += tf.reduce_mean(per_example_additional_loss)
else:
# if no label ids are provided, set them to zeros in order to properly compute logits
labels = tf.zeros_like(logits)
_, logits = _single_column_cell_selection_loss(
logits, column_logits, labels, cell_index, col_index, cell_mask
)
if not return_dict:
output = (logits, logits_aggregation) + outputs[2:]
return ((total_loss,) + output) if calculate_loss else output
return TFTableQuestionAnsweringOutput(
loss=total_loss if calculate_loss else None,
logits=logits,
logits_aggregation=logits_aggregation,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "tapas", None) is not None:
with tf.name_scope(self.tapas.name):
self.tapas.build(None)
if getattr(self, "compute_token_logits", None) is not None:
with tf.name_scope(self.compute_token_logits.name):
self.compute_token_logits.build(None)
if getattr(self, "compute_column_logits", None) is not None:
with tf.name_scope(self.compute_column_logits.name):
self.compute_column_logits.build(None)
if getattr(self, "aggregation_classifier", None) is not None:
with tf.name_scope(self.aggregation_classifier.name):
self.aggregation_classifier.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
Tapas Model with a sequence classification head on top (a linear layer on top of the pooled output), e.g. for table
entailment tasks, such as TabFact (Chen et al., 2020).
""",
TAPAS_START_DOCSTRING,
)
class TFTapasForSequenceClassification(TFTapasPreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config: TapasConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.tapas = TFTapasMainLayer(config, name="tapas")
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob, name="dropout")
self.classifier = keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@replace_return_docstrings(output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). Note: this is called
"classification_class_index" in the original implementation.
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, TapasForSequenceClassification
>>> import tensorflow as tf
>>> import pandas as pd
>>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base-finetuned-tabfact")
>>> model = TapasForSequenceClassification.from_pretrained("google/tapas-base-finetuned-tabfact")
>>> data = {
... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
... "Age": ["56", "45", "59"],
... "Number of movies": ["87", "53", "69"],
... }
>>> table = pd.DataFrame.from_dict(data)
>>> queries = [
... "There is only one actor who is 45 years old",
... "There are 3 actors which played in more than 60 movies",
... ]
>>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="tf")
>>> labels = tf.convert_to_tensor([1, 0]) # 1 means entailed, 0 means refuted
>>> outputs = model(**inputs, labels=labels)
>>> loss = outputs.loss
>>> logits = outputs.logits
```"""
outputs = self.tapas(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
pooled_output = outputs[1]
pooled_output = self.dropout(inputs=pooled_output, training=training)
logits = self.classifier(inputs=pooled_output)
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "tapas", None) is not None:
with tf.name_scope(self.tapas.name):
self.tapas.build(None)
if getattr(self, "dropout", None) is not None:
with tf.name_scope(self.dropout.name):
self.dropout.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
""" TAPAS utilities."""
class AverageApproximationFunction(str, enum.Enum):
RATIO = "ratio"
FIRST_ORDER = "first_order"
SECOND_ORDER = "second_order"
# Beginning of everything related to segmented tensors
class IndexMap:
"""Index grouping entries within a tensor."""
def __init__(self, indices, num_segments, batch_dims=0):
"""
Creates an index.
Args:
indices: <int32> Tensor of indices, same shape as `values`.
num_segments: <int32> Scalar tensor, the number of segments. All elements
in a batched segmented tensor must have the same number of segments (although many segments can be empty).
batch_dims: Python integer, the number of batch dimensions. The first
`batch_dims` dimensions of a SegmentedTensor are treated as batch dimensions. Segments in different batch
elements are always distinct even if they have the same index.
"""
self.indices = tf.convert_to_tensor(indices)
self.num_segments = tf.convert_to_tensor(num_segments)
self.batch_dims = batch_dims
def batch_shape(self):
return tf.shape(self.indices)[: self.batch_dims]
class ProductIndexMap(IndexMap):
"""The product of two indices."""
def __init__(self, outer_index, inner_index):
"""
Combines indices i and j into pairs (i, j). The result is an index where each segment (i, j) is the
intersection of segments i and j. For example if the inputs represent table cells indexed by respectively rows
and columns the output will be a table indexed by (row, column) pairs, i.e. by cell. The implementation
combines indices {0, .., n - 1} and {0, .., m - 1} into {0, .., nm - 1}. The output has `num_segments` equal to
`outer_index.num_segements` * `inner_index.num_segments`.
Args:
outer_index: IndexMap.
inner_index: IndexMap, must have the same shape as `outer_index`.
"""
if outer_index.batch_dims != inner_index.batch_dims:
raise ValueError("outer_index.batch_dims and inner_index.batch_dims must be the same.")
super(ProductIndexMap, self).__init__(
indices=(
inner_index.indices
+ outer_index.indices * tf.cast(inner_index.num_segments, inner_index.indices.dtype)
),
num_segments=inner_index.num_segments * outer_index.num_segments,
batch_dims=inner_index.batch_dims,
)
self.outer_index = outer_index
self.inner_index = inner_index
def project_outer(self, index):
"""Projects an index with the same index set onto the outer components."""
return IndexMap(
indices=tf.math.floordiv(index.indices, self.inner_index.num_segments),
num_segments=self.outer_index.num_segments,
batch_dims=index.batch_dims,
)
def project_inner(self, index):
"""Projects an index with the same index set onto the inner components."""
return IndexMap(
indices=tf.math.floormod(index.indices, self.inner_index.num_segments),
num_segments=self.inner_index.num_segments,
batch_dims=index.batch_dims,
)
def gather(values, index, name="segmented_gather"):
"""
Gathers from `values` using the index map. For each element in the domain of the index map this operation looks up
a value for that index in `values`. Two elements from the same segment always get assigned the same value.
Args:
values: [B1, ..., Bn, num_segments, V1, ...] Tensor with segment values.
index: [B1, ..., Bn, I1, ..., Ik] IndexMap.
name: Name for the TensorFlow operation.
Returns:
[B1, ..., Bn, I1, ..., Ik, V1, ...] Tensor with the gathered values.
"""
return tf.gather(values, index.indices, batch_dims=index.batch_dims, name=name)
def flatten(index, name="segmented_flatten"):
"""
Flattens a batched index map to a 1d index map. This operation relabels the segments to keep batch elements
distinct. The k-th batch element will have indices shifted by `num_segments` * (k - 1). The result is a tensor with
`num_segments` multiplied by the number of elements in the batch.
Args:
index: IndexMap to flatten.
name: Name for the TensorFlow operation.
Returns:
The flattened IndexMap.
"""
batch_size = tf.reduce_prod(index.batch_shape())
offset = tf.range(batch_size) * index.num_segments
offset = tf.reshape(offset, index.batch_shape())
for _ in range(index.batch_dims, index.indices.shape.rank):
offset = tf.expand_dims(offset, -1)
indices = tf.cast(offset, index.indices.dtype) + index.indices
return IndexMap(indices=tf.reshape(indices, [-1]), num_segments=index.num_segments * batch_size, batch_dims=0)
def range_index_map(batch_shape, num_segments, name="range_index_map"):
"""
Constructs an index map equal to range(num_segments).
Args:
batch_shape (`tf.Tensor`):
Batch shape
num_segments (`int`):
Number of segments
name (`str`, *optional*, defaults to 'range_index_map'):
Name for the operation. Currently not used
Returns:
(`IndexMap`): IndexMap of shape batch_shape with elements equal to range(num_segments).
"""
batch_shape = tf.convert_to_tensor(batch_shape)
batch_shape.shape.assert_has_rank(1)
num_segments = tf.convert_to_tensor(num_segments)
num_segments.shape.assert_has_rank(0)
indices = tf.range(num_segments)
shape = tf.concat([tf.ones_like(batch_shape, dtype=tf.int32), tf.expand_dims(num_segments, axis=0)], axis=0)
indices = tf.reshape(indices, shape)
multiples = tf.concat([batch_shape, [1]], axis=0)
indices = tf.tile(indices, multiples)
return IndexMap(indices=indices, num_segments=num_segments, batch_dims=batch_shape.shape.as_list()[0])
def _segment_reduce(values, index, segment_reduce_fn, name):
"""
Applies a segment reduction segment-wise.
Args:
values (`tf.Tensor`):
Tensor with segment values.
index (`IndexMap`):
IndexMap.
segment_reduce_fn (`str`):
Name for the reduce operation. One of "sum", "mean", "max" or "min".
name (`str`):
Name for the operation. Currently not used
Returns:
(`IndexMap`): IndexMap of shape batch_shape with elements equal to range(num_segments).
"""
# Flatten the batch dimensions, as segments ops do not support batching.
# However if `values` has extra dimensions to the right keep them
# unflattened. Segmented ops support vector-valued operations.
flat_index = flatten(index)
vector_shape = tf.shape(values)[index.indices.shape.rank :]
flattened_shape = tf.concat([[-1], vector_shape], axis=0)
flat_values = tf.reshape(values, flattened_shape)
segment_means = segment_reduce_fn(
data=flat_values, segment_ids=flat_index.indices, num_segments=flat_index.num_segments
)
# Unflatten the values.
new_shape = tf.concat([index.batch_shape(), [index.num_segments], vector_shape], axis=0)
output_values = tf.reshape(segment_means, new_shape)
output_index = range_index_map(index.batch_shape(), index.num_segments)
return output_values, output_index
def reduce_mean(values, index, name="segmented_reduce_mean"):
"""
Averages a tensor over its segments. Outputs 0 for empty segments. This operations computes the mean over segments,
with support for:
- Batching using the first dimensions [B1, B2, ..., Bn]. Each element in a batch can have different indices.
- Vectorization using the last dimension [V1, V2, ...]. If they are present the output will be a mean of vectors
rather than scalars.
Only the middle dimensions [I1, ..., Ik] are reduced by the operation.
Args:
values: [B1, B2, ..., Bn, I1, .., Ik, V1, V2, ..] tensor of values to be
averaged.
index: IndexMap [B1, B2, ..., Bn, I1, .., Ik] index defining the segments.
name: Name for the TensorFlow ops.
Returns:
A pair (output_values, output_index) where `output_values` is a tensor of shape [B1, B2, ..., Bn, num_segments,
V1, V2, ..] and `index` is an IndexMap with shape [B1, B2, ..., Bn, num_segments].
"""
return _segment_reduce(values, index, tf.math.unsorted_segment_mean, name)
def reduce_sum(values, index, name="segmented_reduce_sum"):
"""
Sums a tensor over its segments. Outputs 0 for empty segments. This operations computes the sum over segments, with
support for:
- Batching using the first dimensions [B1, B2, ..., Bn]. Each element in a batch can have different indices.
- Vectorization using the last dimension [V1, V2, ...]. If they are present the output will be a sum of vectors
rather than scalars.
Only the middle dimensions [I1, ..., Ik] are reduced by the operation.
Args:
values: [B1, B2, ..., Bn, I1, .., Ik, V1, V2, ..] tensor of values to be
averaged.
index: IndexMap [B1, B2, ..., Bn, I1, .., Ik] index defining the segments.
name: Name for the TensorFlow ops.
Returns:
A pair (output_values, output_index) where `output_values` is a tensor of shape [B1, B2, ..., Bn, num_segments,
V1, V2, ..] and `index` is an IndexMap with shape [B1, B2, ..., Bn, num_segments].
"""
return _segment_reduce(values, index, tf.math.unsorted_segment_sum, name)
def reduce_max(values, index, name="segmented_reduce_max"):
"""
Computes the maximum over segments. This operations computes the maximum over segments, with support for:
- Batching using the first dimensions [B1, B2, ..., Bn]. Each element in a batch can have different indices.
- Vectorization using the last dimension [V1, V2, ...]. If they are present the output will be an element-wise
maximum of vectors rather than scalars.
Only the middle dimensions [I1, ..., Ik] are reduced by the operation.
Args:
values: [B1, B2, ..., Bn, I1, .., Ik, V1, V2, ..] tensor of values to be
averaged.
index: IndexMap [B1, B2, ..., Bn, I1, .., Ik] index defining the segments.
name: Name for the TensorFlow ops.
Returns:
A pair (output_values, output_index) where `output_values` is a tensor of shape [B1, B2, ..., Bn, num_segments,
V1, V2, ..] and `index` is an IndexMap with shape [B1, B2, ..., Bn, num_segments].
"""
return _segment_reduce(values, index, tf.math.unsorted_segment_max, name)
def reduce_min(values, index, name="segmented_reduce_min"):
"""Computes the minimum over segments."""
return _segment_reduce(values, index, tf.math.unsorted_segment_min, name)
def _single_column_cell_selection_loss(token_logits, column_logits, labels, cell_index, col_index, cell_mask):
"""
Computes the loss for cell selection constrained to a single column. The loss is a hierarchical log-likelihood. The
model first predicts a column and then selects cells within that column (conditioned on the column). Cells outside
the selected column are never selected.
Args:
token_logits (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Tensor containing the logits per token.
column_logits (`tf.Tensor` of shape `(batch_size, max_num_cols)`):
Tensor containing the logits per column.
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Labels per token.
cell_index (`ProductIndexMap`):
Index that groups tokens into cells.
col_index (`IndexMap`):
Index that groups tokens into columns.
cell_mask (`tf.Tensor` of shape `(batch_size, max_num_rows * max_num_cols)`):
Mask for cells that exist in the table (i.e. that are not padding).
Returns:
selection_loss_per_example (`tf.Tensor` of shape `(batch_size,)`): Loss for each example. logits (`tf.Tensor`
of shape `(batch_size, sequence_length)`): New logits which are only allowed to select cells in a single
column. Logits outside of the most likely column according to *column_logits* will be set to a very low value
(such that the probabilities are 0).
"""
# First find the column we should select. We use the column with maximum
# number of selected cells.
labels_per_column, _ = reduce_sum(tf.cast(labels, tf.float32), col_index)
column_label = tf.argmax(labels_per_column, axis=-1, output_type=tf.int32)
# Check if there are no selected cells in the column. In that case the model
# should predict the special column id 0, which means "select nothing".
no_cell_selected = tf.equal(tf.reduce_max(labels_per_column, axis=-1), 0)
column_label = tf.where(no_cell_selected, tf.zeros_like(column_label), column_label)
column_dist = tfp.distributions.Categorical(logits=column_logits)
column_loss_per_example = -column_dist.log_prob(column_label)
# Reduce the labels and logits to per-cell from per-token.
logits_per_cell, _ = reduce_mean(token_logits, cell_index)
labels_per_cell, labels_index = reduce_max(tf.cast(labels, tf.int32), cell_index)
# Mask for the selected column.
column_id_for_cells = cell_index.project_inner(labels_index).indices
column_mask = tf.cast(tf.equal(column_id_for_cells, tf.expand_dims(column_label, axis=1)), tf.float32)
# Compute the log-likelihood for cells, but only for the selected column.
cell_dist = tfp.distributions.Bernoulli(logits=logits_per_cell)
cell_log_prob = cell_dist.log_prob(labels_per_cell)
cell_loss = -tf.reduce_sum(cell_log_prob * column_mask * cell_mask, axis=1)
# We need to normalize the loss by the number of cells in the column.
cell_loss /= tf.reduce_sum(column_mask * cell_mask, axis=1) + EPSILON_ZERO_DIVISION
selection_loss_per_example = column_loss_per_example
selection_loss_per_example += tf.where(no_cell_selected, tf.zeros_like(selection_loss_per_example), cell_loss)
# Set the probs outside the selected column (selected by the *model*)
# to 0. This ensures backwards compatibility with models that select
# cells from multiple columns.
selected_column_id = tf.argmax(column_logits, axis=-1, output_type=tf.int32)
selected_column_mask = tf.cast(
tf.equal(column_id_for_cells, tf.expand_dims(selected_column_id, axis=-1)), tf.float32
)
# Never select cells with the special column id 0.
selected_column_mask = tf.where(
tf.equal(column_id_for_cells, 0), tf.zeros_like(selected_column_mask), selected_column_mask
)
logits_per_cell += CLOSE_ENOUGH_TO_LOG_ZERO * (1.0 - cell_mask * selected_column_mask)
logits = gather(logits_per_cell, cell_index)
return selection_loss_per_example, logits
def _calculate_aggregate_mask(answer, pooled_output, cell_selection_preference, labels, aggregation_classifier):
"""
Finds examples where the model should select cells with no aggregation.
Returns a mask that determines for which examples should the model select answers directly from the table, without
any aggregation function. If the answer is a piece of text the case is unambiguous as aggregation functions only
apply to numbers. If the answer is a number but does not appear in the table then we must use some aggregation
case. The ambiguous case is when the answer is a number that also appears in the table. In this case we use the
aggregation function probabilities predicted by the model to decide whether to select or aggregate. The threshold
for this is a hyperparameter *cell_selection_preference*
Args:
answer (`tf.Tensor` of shape `(batch_size, )`):
Answer for every example in the batch. Nan if there is no scalar answer.
pooled_output (`tf.Tensor` of shape `(batch_size, hidden_size)`):
Output of the pooler (BertPooler) on top of the encoder layer.
cell_selection_preference (`float`):
Preference for cell selection in ambiguous cases.
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Labels per token. aggregation_classifier (`torch.nn.Linear`): Aggregation head
Returns:
aggregate_mask (`tf.Tensor` of shape `(batch_size,)`): A mask set to 1 for examples that should use aggregation
functions.
"""
# tf.Tensor(batch_size,)
aggregate_mask_init = tf.cast(tf.logical_not(tf.math.is_nan(answer)), tf.float32)
logits_aggregation = aggregation_classifier(pooled_output)
dist_aggregation = tfp.distributions.Categorical(logits=logits_aggregation)
# Index 0 corresponds to "no aggregation".
aggregation_ops_total_mass = tf.reduce_sum(dist_aggregation.probs_parameter()[:, 1:], axis=1)
# Cell selection examples according to current model.
is_pred_cell_selection = aggregation_ops_total_mass <= cell_selection_preference
# Examples with non-empty cell selection supervision.
is_cell_supervision_available = tf.reduce_sum(labels, axis=1) > 0
aggregate_mask = tf.where(
tf.logical_and(is_pred_cell_selection, is_cell_supervision_available),
tf.zeros_like(aggregate_mask_init, dtype=tf.float32),
aggregate_mask_init,
)
aggregate_mask = tf.stop_gradient(aggregate_mask)
return aggregate_mask
def _calculate_aggregation_loss_known(
logits_aggregation, aggregate_mask, aggregation_labels, use_answer_as_supervision, num_aggregation_labels
):
"""
Calculates aggregation loss when its type is known during training.
In the weakly supervised setting, the only known information is that for cell selection examples, "no aggregation"
should be predicted. For other examples (those that require aggregation), no loss is accumulated. In the setting
where aggregation type is always known, standard cross entropy loss is accumulated for all examples
Args:
logits_aggregation (`tf.Tensor` of shape `(batch_size, num_aggregation_labels)`):
Logits per aggregation operation.
aggregate_mask (`tf.Tensor` of shape `(batch_size, )`):
A mask set to 1 for examples that should use aggregation functions.
aggregation_labels (`tf.Tensor` of shape `(batch_size, )`):
Aggregation function id for every example in the batch.
use_answer_as_supervision (`bool`, *optional*):
Whether to use the answer as the only supervision for aggregation examples.
num_aggregation_labels (`int`, *optional*, defaults to 0):
The number of aggregation operators to predict.
Returns:
aggregation_loss_known (`tf.Tensor` of shape `(batch_size,)`): Aggregation loss (when its type is known during
training) per example.
"""
if use_answer_as_supervision:
# Prepare "no aggregation" targets for cell selection examples.
target_aggregation = tf.zeros_like(aggregate_mask, dtype=tf.int32)
else:
# Use aggregation supervision as the target.
target_aggregation = aggregation_labels
one_hot_labels = tf.one_hot(target_aggregation, depth=num_aggregation_labels, dtype=tf.float32)
log_probs = tf.nn.log_softmax(logits_aggregation, axis=-1)
# <float32>[batch_size]
per_example_aggregation_intermediate = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
if use_answer_as_supervision:
# Accumulate loss only for examples requiring cell selection
# (no aggregation).
return per_example_aggregation_intermediate * (1 - aggregate_mask)
else:
return per_example_aggregation_intermediate
def _calculate_aggregation_loss_unknown(logits_aggregation, aggregate_mask):
"""
Calculates aggregation loss in the case of answer supervision.
Args:
logits_aggregation (`tf.Tensor` of shape `(batch_size, num_aggregation_labels)`):
Logits per aggregation operation.
aggregate_mask (`tf.Tensor` of shape `(batch_size, )`):
A mask set to 1 for examples that should use aggregation functions
Returns:
aggregation_loss_unknown (`tf.Tensor` of shape `(batch_size,)`): Aggregation loss (in case of answer
supervision) per example.
"""
dist_aggregation = tfp.distributions.Categorical(logits=logits_aggregation)
# Index 0 corresponds to "no aggregation".
aggregation_ops_total_mass = tf.reduce_sum(dist_aggregation.probs_parameter()[:, 1:], axis=1)
# Predict some aggregation in case of an answer that needs aggregation.
# This increases the probability of all aggregation functions, in a way
# similar to MML, but without considering whether the function gives the
# correct answer.
return -tf.math.log(aggregation_ops_total_mass) * aggregate_mask
def _calculate_aggregation_loss(
logits_aggregation,
aggregate_mask,
aggregation_labels,
use_answer_as_supervision,
num_aggregation_labels,
aggregation_loss_weight,
):
"""
Calculates the aggregation loss per example.
Args:
logits_aggregation (`tf.Tensor` of shape `(batch_size, num_aggregation_labels)`):
Logits per aggregation operation.
aggregate_mask (`tf.Tensor` of shape `(batch_size, )`):
A mask set to 1 for examples that should use aggregation functions.
aggregation_labels (`tf.Tensor` of shape `(batch_size, )`):
Aggregation function id for every example in the batch.
use_answer_as_supervision (`bool`, *optional*):
Whether to use the answer as the only supervision for aggregation examples.
num_aggregation_labels (`int`, *optional*, defaults to 0):
The number of aggregation operators to predict.
aggregation_loss_weight (`float`, *optional*, defaults to 1.0):
Importance weight for the aggregation loss.
Returns:
aggregation_loss (`tf.Tensor` of shape `(batch_size,)`): Aggregation loss per example.
"""
per_example_aggregation_loss = _calculate_aggregation_loss_known(
logits_aggregation, aggregate_mask, aggregation_labels, use_answer_as_supervision, num_aggregation_labels
)
if use_answer_as_supervision:
# Add aggregation loss for numeric answers that need aggregation.
per_example_aggregation_loss += _calculate_aggregation_loss_unknown(logits_aggregation, aggregate_mask)
return aggregation_loss_weight * per_example_aggregation_loss
def _calculate_expected_result(
dist_per_cell, numeric_values, numeric_values_scale, input_mask_float, logits_aggregation, config
):
"""
Calculates the expected result given cell and aggregation probabilities.
Args:
dist_per_cell (`tfp.distributions.Bernoulli`):
Cell selection distribution for each cell.
numeric_values (`tf.Tensor` of shape `(batch_size, seq_length)`):
Numeric values of every token. Nan for tokens which are not numeric values.
numeric_values_scale (`tf.Tensor` of shape `(batch_size, seq_length)`):
Scale of the numeric values of every token.
input_mask_float (`tf.Tensor` of shape `(batch_size, seq_length)`):
Mask for the table, without question tokens and table headers.
logits_aggregation (`tf.Tensor` of shape `(batch_size, num_aggregation_labels)`):
Logits per aggregation operation.
config ([`TapasConfig`]):
Model configuration class with all the hyperparameters of the model
Returns:
expected_result (`tf.Tensor` of shape `(batch_size,)`): The expected result per example.
"""
if config.use_gumbel_for_cells:
gumbel_dist = tfp.distributions.RelaxedBernoulli(
# The token logits where already divided by the temperature and used for
# computing cell selection errors so we need to multiply it again here
config.temperature,
logits=dist_per_cell.logits_parameter() * config.temperature,
)
scaled_probability_per_cell = gumbel_dist.sample()
else:
scaled_probability_per_cell = dist_per_cell.probs_parameter()
# <float32>[batch_size, seq_length]
scaled_probability_per_cell = (scaled_probability_per_cell / numeric_values_scale) * input_mask_float
count_result = tf.reduce_sum(scaled_probability_per_cell, axis=1)
numeric_values_masked = tf.where(
tf.math.is_nan(numeric_values), tf.zeros_like(numeric_values), numeric_values
) # Mask non-numeric table values to zero.
sum_result = tf.reduce_sum(scaled_probability_per_cell * numeric_values_masked, axis=1)
avg_approximation = config.average_approximation_function
if avg_approximation == AverageApproximationFunction.RATIO:
average_result = sum_result / (count_result + EPSILON_ZERO_DIVISION)
elif avg_approximation == AverageApproximationFunction.FIRST_ORDER:
# The sum of all probabilities exept that correspond to other cells
ex = tf.reduce_sum(scaled_probability_per_cell, axis=1, keepdims=True) - scaled_probability_per_cell + 1
average_result = tf.reduce_sum(numeric_values_masked * scaled_probability_per_cell / ex, axis=1)
elif avg_approximation == AverageApproximationFunction.SECOND_ORDER:
# The sum of all probabilities exept that correspond to other cells
ex = tf.reduce_sum(scaled_probability_per_cell, axis=1, keepdims=True) - scaled_probability_per_cell + 1
pointwise_var = scaled_probability_per_cell * (1 - scaled_probability_per_cell)
var = tf.reduce_sum(pointwise_var, axis=1, keepdims=True) - pointwise_var
multiplier = (var / tf.math.square(ex) + 1) / ex
average_result = tf.reduce_sum(numeric_values_masked * scaled_probability_per_cell * multiplier, axis=1)
else:
raise ValueError("Invalid average_approximation_function: %s", config.average_approximation_function)
if config.use_gumbel_for_aggregation:
gumbel_dist = tfp.distributions.RelaxedOneHotCategorical(
config.aggregation_temperature, logits=logits_aggregation[:, 1:]
)
# <float32>[batch_size, num_aggregation_labels - 1]
aggregation_op_only_probs = gumbel_dist.sample()
else:
# <float32>[batch_size, num_aggregation_labels - 1]
aggregation_op_only_probs = stable_softmax(logits_aggregation[:, 1:] / config.aggregation_temperature, axis=-1)
all_results = tf.concat(
[
tf.expand_dims(sum_result, axis=1),
tf.expand_dims(average_result, axis=1),
tf.expand_dims(count_result, axis=1),
],
axis=1,
)
expected_result = tf.reduce_sum(all_results * aggregation_op_only_probs, axis=1)
return expected_result
def _calculate_regression_loss(
answer,
aggregate_mask,
dist_per_cell,
numeric_values,
numeric_values_scale,
input_mask_float,
logits_aggregation,
config,
):
"""
Calculates the regression loss per example.
Args:
answer (`tf.Tensor` of shape `(batch_size,)`):
Answer for every example in the batch. Nan if there is no scalar answer.
aggregate_mask (`tf.Tensor` of shape `(batch_size,)`):
A mask set to 1 for examples that should use aggregation functions.
dist_per_cell (`torch.distributions.Bernoulli`):
Cell selection distribution for each cell.
numeric_values (`tf.Tensor` of shape `(batch_size, seq_length)`):
Numeric values of every token. Nan for tokens which are not numeric values.
numeric_values_scale (`tf.Tensor` of shape `(batch_size, seq_length)`):
Scale of the numeric values of every token.
input_mask_float (`tf.Tensor` of shape `(batch_size, seq_length)`):
Mask for the table, without question tokens and table headers.
logits_aggregation (`tf.Tensor` of shape `(batch_size, num_aggregation_labels)`):
Logits per aggregation operation.
config ([`TapasConfig`]):
Model configuration class with all the parameters of the model
Returns:
per_example_answer_loss_scaled (`tf.Tensor` of shape `(batch_size,)`): Scales answer loss for each example in
the batch. large_answer_loss_mask (`tf.Tensor` of shape `(batch_size,)`): A mask which is 1 for examples for
which their answer loss is larger than the answer_loss_cutoff.
"""
# float32 (batch_size,)
expected_result = _calculate_expected_result(
dist_per_cell, numeric_values, numeric_values_scale, input_mask_float, logits_aggregation, config
)
# <float32>[batch_size]
answer_masked = tf.where(tf.math.is_nan(answer), tf.zeros_like(answer), answer)
if config.use_normalized_answer_loss:
normalizer = tf.stop_gradient(
tf.math.maximum(tf.math.abs(expected_result), tf.math.abs(answer_masked)) + EPSILON_ZERO_DIVISION
)
normalized_answer_masked = answer_masked / normalizer
normalized_expected_result = expected_result / normalizer
per_example_answer_loss = tf.compat.v1.losses.huber_loss(
normalized_answer_masked * aggregate_mask,
normalized_expected_result * aggregate_mask,
delta=tf.cast(1.0, tf.float32),
reduction=tf.losses.Reduction.NONE,
)
else:
per_example_answer_loss = tf.compat.v1.losses.huber_loss(
answer_masked * aggregate_mask,
expected_result * aggregate_mask,
delta=tf.cast(config.huber_loss_delta, tf.float32),
reduction=tf.losses.Reduction.NONE,
)
if config.answer_loss_cutoff is None:
large_answer_loss_mask = tf.ones_like(per_example_answer_loss, dtype=tf.float32)
else:
large_answer_loss_mask = tf.where(
per_example_answer_loss > config.answer_loss_cutoff,
tf.zeros_like(per_example_answer_loss, dtype=tf.float32),
tf.ones_like(per_example_answer_loss, dtype=tf.float32),
)
per_example_answer_loss_scaled = config.answer_loss_importance * (per_example_answer_loss * aggregate_mask)
return per_example_answer_loss_scaled, large_answer_loss_mask
__all__ = [
"TFTapasForMaskedLM",
"TFTapasForQuestionAnswering",
"TFTapasForSequenceClassification",
"TFTapasModel",
"TFTapasPreTrainedModel",
]
|
transformers/src/transformers/models/tapas/modeling_tf_tapas.py/0
|
{
"file_path": "transformers/src/transformers/models/tapas/modeling_tf_tapas.py",
"repo_id": "transformers",
"token_count": 47285
}
| 170 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Tuple, Union
import torch
from ...modeling_outputs import BackboneOutput
from ...modeling_utils import PreTrainedModel
from ...utils import is_timm_available, is_torch_available, requires_backends
from ...utils.backbone_utils import BackboneMixin
from .configuration_timm_backbone import TimmBackboneConfig
if is_timm_available():
import timm
if is_torch_available():
from torch import Tensor
class TimmBackbone(PreTrainedModel, BackboneMixin):
"""
Wrapper class for timm models to be used as backbones. This enables using the timm models interchangeably with the
other models in the library keeping the same API.
"""
main_input_name = "pixel_values"
supports_gradient_checkpointing = False
config_class = TimmBackboneConfig
def __init__(self, config, **kwargs):
requires_backends(self, "timm")
super().__init__(config)
self.config = config
if config.backbone is None:
raise ValueError("backbone is not set in the config. Please set it to a timm model name.")
if hasattr(config, "out_features") and config.out_features is not None:
raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead.")
pretrained = getattr(config, "use_pretrained_backbone", None)
if pretrained is None:
raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False.")
# We just take the final layer by default. This matches the default for the transformers models.
out_indices = config.out_indices if getattr(config, "out_indices", None) is not None else (-1,)
in_chans = kwargs.pop("in_chans", config.num_channels)
self._backbone = timm.create_model(
config.backbone,
pretrained=pretrained,
# This is currently not possible for transformer architectures.
features_only=config.features_only,
in_chans=in_chans,
out_indices=out_indices,
**kwargs,
)
# Converts all `BatchNorm2d` and `SyncBatchNorm` or `BatchNormAct2d` and `SyncBatchNormAct2d` layers of provided module into `FrozenBatchNorm2d` or `FrozenBatchNormAct2d` respectively
if getattr(config, "freeze_batch_norm_2d", False):
self.freeze_batch_norm_2d()
# These are used to control the output of the model when called. If output_hidden_states is True, then
# return_layers is modified to include all layers.
self._return_layers = {
layer["module"]: str(layer["index"]) for layer in self._backbone.feature_info.get_dicts()
}
self._all_layers = {layer["module"]: str(i) for i, layer in enumerate(self._backbone.feature_info.info)}
super()._init_backbone(config)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
requires_backends(cls, ["vision", "timm"])
from ...models.timm_backbone import TimmBackboneConfig
config = kwargs.pop("config", TimmBackboneConfig())
use_timm = kwargs.pop("use_timm_backbone", True)
if not use_timm:
raise ValueError("use_timm_backbone must be True for timm backbones")
num_channels = kwargs.pop("num_channels", config.num_channels)
features_only = kwargs.pop("features_only", config.features_only)
use_pretrained_backbone = kwargs.pop("use_pretrained_backbone", config.use_pretrained_backbone)
out_indices = kwargs.pop("out_indices", config.out_indices)
config = TimmBackboneConfig(
backbone=pretrained_model_name_or_path,
num_channels=num_channels,
features_only=features_only,
use_pretrained_backbone=use_pretrained_backbone,
out_indices=out_indices,
)
return super()._from_config(config, **kwargs)
def freeze_batch_norm_2d(self):
timm.utils.model.freeze_batch_norm_2d(self._backbone)
def unfreeze_batch_norm_2d(self):
timm.utils.model.unfreeze_batch_norm_2d(self._backbone)
def _init_weights(self, module):
"""
Empty init weights function to ensure compatibility of the class in the library.
"""
pass
def forward(
self,
pixel_values: torch.FloatTensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[BackboneOutput, Tuple[Tensor, ...]]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
if output_attentions:
raise ValueError("Cannot output attentions for timm backbones at the moment")
if output_hidden_states:
# We modify the return layers to include all the stages of the backbone
self._backbone.return_layers = self._all_layers
hidden_states = self._backbone(pixel_values, **kwargs)
self._backbone.return_layers = self._return_layers
feature_maps = tuple(hidden_states[i] for i in self.out_indices)
else:
feature_maps = self._backbone(pixel_values, **kwargs)
hidden_states = None
feature_maps = tuple(feature_maps)
hidden_states = tuple(hidden_states) if hidden_states is not None else None
if not return_dict:
output = (feature_maps,)
if output_hidden_states:
output = output + (hidden_states,)
return output
return BackboneOutput(feature_maps=feature_maps, hidden_states=hidden_states, attentions=None)
__all__ = ["TimmBackbone"]
|
transformers/src/transformers/models/timm_backbone/modeling_timm_backbone.py/0
|
{
"file_path": "transformers/src/transformers/models/timm_backbone/modeling_timm_backbone.py",
"repo_id": "transformers",
"token_count": 2578
}
| 171 |
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""UDOP model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class UdopConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`UdopForConditionalGeneration`]. It is used to
instantiate a UDOP model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the UDOP
[microsoft/udop-large](https://huggingface.co/microsoft/udop-large) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Arguments:
vocab_size (`int`, *optional*, defaults to 33201):
Vocabulary size of the UDOP model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`UdopForConditionalGeneration`].
d_model (`int`, *optional*, defaults to 1024):
Size of the encoder layers and the pooler layer.
d_kv (`int`, *optional*, defaults to 64):
Size of the key, query, value projections per attention head. The `inner_dim` of the projection layer will
be defined as `num_heads * d_kv`.
d_ff (`int`, *optional*, defaults to 4096):
Size of the intermediate feed forward layer in each `UdopBlock`.
num_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder and decoder.
num_decoder_layers (`int`, *optional*):
Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set.
num_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder and decoder.
relative_attention_num_buckets (`int`, *optional*, defaults to 32):
The number of buckets to use for each attention layer.
relative_attention_max_distance (`int`, *optional*, defaults to 128):
The maximum distance of the longer sequences for the bucket separation.
relative_bias_args (`List[dict]`, *optional*, defaults to `[{'type': '1d'}, {'type': 'horizontal'}, {'type': 'vertical'}]`):
A list of dictionaries containing the arguments for the relative bias layers.
dropout_rate (`float`, *optional*, defaults to 0.1):
The ratio for all dropout layers.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
feed_forward_proj (`string`, *optional*, defaults to `"relu"`):
Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`. Udopv1.1 uses the
`"gated-gelu"` feed forward projection. Original Udop uses `"relu"`.
is_encoder_decoder (`bool`, *optional*, defaults to `True`):
Whether the model should behave as an encoder/decoder or not.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
pad_token_id (`int`, *optional*, defaults to 0):
The id of the padding token in the vocabulary.
eos_token_id (`int`, *optional*, defaults to 1):
The id of the end-of-sequence token in the vocabulary.
max_2d_position_embeddings (`int`, *optional*, defaults to 1024):
The maximum absolute position embeddings for relative position encoding.
image_size (`int`, *optional*, defaults to 224):
The size of the input images.
patch_size (`int`, *optional*, defaults to 16):
The patch size used by the vision encoder.
num_channels (`int`, *optional*, defaults to 3):
The number of channels in the input images.
"""
model_type = "udop"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"}
def __init__(
self,
vocab_size=33201,
d_model=1024,
d_kv=64,
d_ff=4096,
num_layers=24,
num_decoder_layers=None,
num_heads=16,
relative_attention_num_buckets=32,
relative_attention_max_distance=128,
relative_bias_args=[{"type": "1d"}, {"type": "horizontal"}, {"type": "vertical"}],
dropout_rate=0.1,
layer_norm_epsilon=1e-6,
initializer_factor=1.0,
feed_forward_proj="relu",
is_encoder_decoder=True,
use_cache=True,
pad_token_id=0,
eos_token_id=1,
max_2d_position_embeddings=1024,
image_size=224,
patch_size=16,
num_channels=3,
**kwargs,
):
self.vocab_size = vocab_size
self.d_model = d_model
self.d_kv = d_kv
self.d_ff = d_ff
self.num_layers = num_layers
self.num_decoder_layers = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
self.num_heads = num_heads
self.relative_attention_num_buckets = relative_attention_num_buckets
self.relative_attention_max_distance = relative_attention_max_distance
self.dropout_rate = dropout_rate
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_factor = initializer_factor
self.feed_forward_proj = feed_forward_proj
self.use_cache = use_cache
# UDOP attributes
self.max_2d_position_embeddings = max_2d_position_embeddings
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
if not isinstance(relative_bias_args, list):
raise TypeError("`relative_bias_args` should be a list of dictionaries.")
self.relative_bias_args = relative_bias_args
act_info = self.feed_forward_proj.split("-")
self.dense_act_fn = act_info[-1]
self.is_gated_act = act_info[0] == "gated"
if len(act_info) > 1 and act_info[0] != "gated" or len(act_info) > 2:
raise ValueError(
f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."
"Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. "
"'gated-gelu' or 'relu'"
)
super().__init__(
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
**kwargs,
)
__all__ = ["UdopConfig"]
|
transformers/src/transformers/models/udop/configuration_udop.py/0
|
{
"file_path": "transformers/src/transformers/models/udop/configuration_udop.py",
"repo_id": "transformers",
"token_count": 3086
}
| 172 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert Hubert checkpoint."""
import argparse
import torch
from transformers import (
UniSpeechSatConfig,
UniSpeechSatForAudioFrameClassification,
UniSpeechSatForSequenceClassification,
UniSpeechSatForXVector,
Wav2Vec2FeatureExtractor,
logging,
)
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
def convert_classification(base_model_name, hf_config, downstream_dict):
model = UniSpeechSatForSequenceClassification.from_pretrained(base_model_name, config=hf_config)
model.projector.weight.data = downstream_dict["projector.weight"]
model.projector.bias.data = downstream_dict["projector.bias"]
model.classifier.weight.data = downstream_dict["model.post_net.linear.weight"]
model.classifier.bias.data = downstream_dict["model.post_net.linear.bias"]
return model
def convert_diarization(base_model_name, hf_config, downstream_dict):
model = UniSpeechSatForAudioFrameClassification.from_pretrained(base_model_name, config=hf_config)
model.classifier.weight.data = downstream_dict["model.linear.weight"]
model.classifier.bias.data = downstream_dict["model.linear.bias"]
return model
def convert_xvector(base_model_name, hf_config, downstream_dict):
model = UniSpeechSatForXVector.from_pretrained(base_model_name, config=hf_config)
model.projector.weight.data = downstream_dict["connector.weight"]
model.projector.bias.data = downstream_dict["connector.bias"]
for i, kernel_size in enumerate(hf_config.tdnn_kernel):
model.tdnn[i].kernel.weight.data = downstream_dict[
f"model.framelevel_feature_extractor.module.{i}.kernel.weight"
]
model.tdnn[i].kernel.bias.data = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"]
model.feature_extractor.weight.data = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"]
model.feature_extractor.bias.data = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"]
model.classifier.weight.data = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"]
model.classifier.bias.data = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"]
model.objective.weight.data = downstream_dict["objective.W"]
return model
@torch.no_grad()
def convert_s3prl_checkpoint(base_model_name, config_path, checkpoint_path, model_dump_path):
"""
Copy/paste/tweak model's weights to transformers design.
"""
checkpoint = torch.load(checkpoint_path, map_location="cpu")
downstream_dict = checkpoint["Downstream"]
hf_config = UniSpeechSatConfig.from_pretrained(config_path)
hf_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
base_model_name, return_attention_mask=True, do_normalize=False
)
arch = hf_config.architectures[0]
if arch.endswith("ForSequenceClassification"):
hf_model = convert_classification(base_model_name, hf_config, downstream_dict)
elif arch.endswith("ForAudioFrameClassification"):
hf_model = convert_diarization(base_model_name, hf_config, downstream_dict)
elif arch.endswith("ForXVector"):
hf_model = convert_xvector(base_model_name, hf_config, downstream_dict)
else:
raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}")
if hf_config.use_weighted_layer_sum:
hf_model.layer_weights.data = checkpoint["Featurizer"]["weights"]
hf_feature_extractor.save_pretrained(model_dump_path)
hf_model.save_pretrained(model_dump_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model."
)
parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.")
parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.")
args = parser.parse_args()
convert_s3prl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
|
transformers/src/transformers/models/unispeech_sat/convert_unispeech_original_s3prl_checkpoint_to_pytorch.py/0
|
{
"file_path": "transformers/src/transformers/models/unispeech_sat/convert_unispeech_original_s3prl_checkpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 1692
}
| 173 |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Video-LLaVA."""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
convert_to_rgb,
get_resize_output_image_size,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
VideoInput,
infer_channel_dimension_format,
is_scaled_image,
is_valid_image,
make_list_of_images,
to_numpy_array,
valid_images,
validate_preprocess_arguments,
)
from ...utils import TensorType, filter_out_non_signature_kwargs, is_vision_available, logging
logger = logging.get_logger(__name__)
if is_vision_available():
import PIL
def make_batched_videos(videos) -> List[VideoInput]:
if isinstance(videos, (list, tuple)) and isinstance(videos[0], (list, tuple)) and is_valid_image(videos[0][0]):
return videos
elif isinstance(videos, (list, tuple)) and is_valid_image(videos[0]):
if isinstance(videos[0], PIL.Image.Image):
return [videos]
elif len(videos[0].shape) == 4:
return [list(video) for video in videos]
elif is_valid_image(videos) and len(videos.shape) == 4:
return [list(videos)]
raise ValueError(f"Could not make batched video from {videos}")
class VideoLlavaImageProcessor(BaseImageProcessor):
r"""
Constructs a CLIP image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
`do_resize` in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
method.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the
`preprocess` method.
crop_size (`Dict[str, int]` *optional*, defaults to 224):
Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess`
method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
Can be overridden by the `image_std` parameter in the `preprocess` method.
do_convert_rgb (`bool`, *optional*, defaults to `True`):
Whether to convert the image to RGB.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = True,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"shortest_edge": 224}
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
self.do_convert_rgb = do_convert_rgb
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
resized to keep the input aspect ratio.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
default_to_square = True
if "shortest_edge" in size:
size = size["shortest_edge"]
default_to_square = False
elif "height" in size and "width" in size:
size = (size["height"], size["width"])
else:
raise ValueError("Size must contain either 'shortest_edge' or 'height' and 'width'.")
output_size = get_resize_output_image_size(
image,
size=size,
default_to_square=default_to_square,
input_data_format=input_data_format,
)
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
@filter_out_non_signature_kwargs()
def preprocess(
self,
images: List[ImageInput] = None,
videos: List[VideoInput] = None,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: int = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`, *optional*):
List of images to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
videos (`VideoInput`, *optional*):
List of videos to preprocess. Expects a single or batch of videos with pixel values ranging from 0 to 255. If
passing in videos with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
the longest edge resized to keep the input aspect ratio.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
has an effect if `do_resize` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
`True`.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the image to RGB.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size, param_name="size", default_to_square=False)
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size, param_name="crop_size", default_to_square=True)
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
if images is not None:
images = make_list_of_images(images)
if videos is not None:
videos = make_batched_videos(videos)
if (videos is not None and not valid_images(videos)) or (images is not None and not valid_images(images)):
raise ValueError(
"Invalid input type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
data = {}
if videos is not None:
pixel_values_videos = [
[
self._preprocess_image(
image=frame,
do_resize=do_resize,
size=size,
resample=resample,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_convert_rgb=do_convert_rgb,
data_format=data_format,
input_data_format=input_data_format,
)
for frame in video
]
for video in videos
]
data["pixel_values_videos"] = pixel_values_videos
if images is not None:
pixel_values_images = [
self._preprocess_image(
image=image,
do_resize=do_resize,
size=size,
resample=resample,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_convert_rgb=do_convert_rgb,
data_format=data_format,
input_data_format=input_data_format,
)
for image in images
]
data["pixel_values_images"] = pixel_values_images
encoded_outputs = BatchFeature(data, tensor_type=return_tensors)
return encoded_outputs
def _preprocess_image(
self,
image: ImageInput = None,
do_resize: Optional[bool] = None,
size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_center_crop: bool = None,
crop_size: int = None,
do_convert_rgb: bool = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_resize=do_resize,
size=size,
resample=resample,
)
# PIL RGBA images are converted to RGB
if do_convert_rgb:
image = convert_to_rgb(image)
# All transformations expect numpy arrays.
image = to_numpy_array(image)
if do_rescale and is_scaled_image(image):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images/video frames. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(image)
if do_resize:
image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
if do_center_crop:
image = self.center_crop(image=image, size=crop_size, input_data_format=input_data_format)
if do_rescale:
image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
if do_normalize:
image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
return image
__all__ = ["VideoLlavaImageProcessor"]
|
transformers/src/transformers/models/video_llava/image_processing_video_llava.py/0
|
{
"file_path": "transformers/src/transformers/models/video_llava/image_processing_video_llava.py",
"repo_id": "transformers",
"token_count": 8541
}
| 174 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""VisualBERT model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class VisualBertConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`VisualBertModel`]. It is used to instantiate an
VisualBERT model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the VisualBERT
[uclanlp/visualbert-vqa-coco-pre](https://huggingface.co/uclanlp/visualbert-vqa-coco-pre) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the VisualBERT model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`VisualBertModel`]. Vocabulary size of the model. Defines the
different tokens that can be represented by the `inputs_ids` passed to the forward method of
[`VisualBertModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
visual_embedding_dim (`int`, *optional*, defaults to 512):
Dimensionality of the visual embeddings to be passed to the model.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`VisualBertModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
bypass_transformer (`bool`, *optional*, defaults to `False`):
Whether or not the model should bypass the transformer for the visual embeddings. If set to `True`, the
model directly concatenates the visual embeddings from [`VisualBertEmbeddings`] with text output from
transformers, and then pass it to a self-attention layer.
special_visual_initialize (`bool`, *optional*, defaults to `True`):
Whether or not the visual token type and position type embedding weights should be initialized the same as
the textual token type and positive type embeddings. When set to `True`, the weights of the textual token
type and position type embeddings are copied to the respective visual embedding layers.
Example:
```python
>>> from transformers import VisualBertConfig, VisualBertModel
>>> # Initializing a VisualBERT visualbert-vqa-coco-pre style configuration
>>> configuration = VisualBertConfig.from_pretrained("uclanlp/visualbert-vqa-coco-pre")
>>> # Initializing a model (with random weights) from the visualbert-vqa-coco-pre style configuration
>>> model = VisualBertModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "visual_bert"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
visual_embedding_dim=512,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
bypass_transformer=False,
special_visual_initialize=True,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.visual_embedding_dim = visual_embedding_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.type_vocab_size = type_vocab_size
self.layer_norm_eps = layer_norm_eps
self.bypass_transformer = bypass_transformer
self.special_visual_initialize = special_visual_initialize
__all__ = ["VisualBertConfig"]
|
transformers/src/transformers/models/visual_bert/configuration_visual_bert.py/0
|
{
"file_path": "transformers/src/transformers/models/visual_bert/configuration_visual_bert.py",
"repo_id": "transformers",
"token_count": 2437
}
| 175 |
# coding=utf-8
# Copyright 2022 Facebook AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TF 2.0 ViT MAE (masked autoencoder) model."""
from __future__ import annotations
import collections.abc
import math
from copy import deepcopy
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...file_utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from ...modeling_tf_outputs import TFBaseModelOutput
from ...modeling_tf_utils import (
TFModelInputType,
TFPreTrainedModel,
get_initializer,
keras,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import shape_list, stable_softmax
from ...utils import logging
from .configuration_vit_mae import ViTMAEConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "ViTMAEConfig"
_CHECKPOINT_FOR_DOC = "facebook/vit-mae-base"
@dataclass
class TFViTMAEModelOutput(ModelOutput):
"""
Class for TFViTMAEModel's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
mask (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Tensor indicating which patches are masked (1) and which are not (0).
ids_restore (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Tensor containing the original index of the (shuffled) masked patches.
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus
the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
last_hidden_state: tf.Tensor = None
mask: tf.Tensor = None
ids_restore: tf.Tensor = None
hidden_states: Tuple[tf.Tensor] | None = None
attentions: Tuple[tf.Tensor] | None = None
@dataclass
class TFViTMAEDecoderOutput(ModelOutput):
"""
Class for TFViTMAEDecoder's outputs, with potential hidden states and attentions.
Args:
logits (`tf.Tensor` of shape `(batch_size, sequence_length, patch_size ** 2 * num_channels)`):
Pixel reconstruction logits.
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus
the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
logits: tf.Tensor = None
hidden_states: Tuple[tf.Tensor] | None = None
attentions: Tuple[tf.Tensor] | None = None
@dataclass
class TFViTMAEForPreTrainingOutput(ModelOutput):
"""
Class for TFViTMAEForPreTraining's outputs, with potential hidden states and attentions.
Args:
loss (`tf.Tensor` of shape `(1,)`):
Pixel reconstruction loss.
logits (`tf.Tensor` of shape `(batch_size, sequence_length, patch_size ** 2 * num_channels)`):
Pixel reconstruction logits.
mask (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Tensor indicating which patches are masked (1) and which are not (0).
ids_restore (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Tensor containing the original index of the (shuffled) masked patches.
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus
the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
loss: tf.Tensor | None = None
logits: tf.Tensor = None
mask: tf.Tensor = None
ids_restore: tf.Tensor = None
hidden_states: Tuple[tf.Tensor] | None = None
attentions: Tuple[tf.Tensor] | None = None
def get_2d_sincos_pos_embed(embed_dim, grid_size, add_cls_token=False):
"""
Create 2D sin/cos positional embeddings.
Args:
embed_dim (`int`):
Embedding dimension.
grid_size (`int`):
The grid height and width.
add_cls_token (`bool`, *optional*, defaults to `False`):
Whether or not to add a classification (CLS) token.
Returns:
(`tf.Tensor` of shape (grid_size*grid_size, embed_dim) or (1+grid_size*grid_size, embed_dim): the position
embeddings (with or without classification token)
"""
grid_h = tf.range(grid_size, dtype=tf.float32)
grid_w = tf.range(grid_size, dtype=tf.float32)
grid = tf.meshgrid(grid_w, grid_h) # here w goes first
grid = tf.stack(grid, axis=0)
grid = tf.reshape(grid, [2, 1, grid_size, grid_size])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
if add_cls_token:
pos_embed = tf.concat([tf.zeros((1, embed_dim)), pos_embed], axis=0)
return pos_embed
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
if embed_dim % 2 != 0:
raise ValueError("embed_dim must be even")
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
emb = tf.concat([emb_h, emb_w], axis=1) # (H*W, D)
return emb
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D)
"""
if embed_dim % 2 != 0:
raise ValueError("embed_dim must be even")
omega = tf.range(embed_dim // 2, dtype="float32")
omega /= embed_dim / 2.0
omega = 1.0 / 10000**omega # (D/2,)
pos = tf.reshape(pos, [-1]) # (M,)
out = tf.einsum("m,d->md", pos, omega) # (M, D/2), outer product
# half of the positions get sinusoidal pattern and the rest gets
# cosine pattern and then they are concatenated
emb_sin = tf.sin(out) # (M, D/2)
emb_cos = tf.cos(out) # (M, D/2)
emb = tf.concat([emb_sin, emb_cos], axis=1) # (M, D)
return emb
class TFViTMAEEmbeddings(keras.layers.Layer):
"""
Construct the CLS token, position and patch embeddings.
"""
def __init__(self, config: ViTMAEConfig, **kwargs):
super().__init__(**kwargs)
self.patch_embeddings = TFViTMAEPatchEmbeddings(config, name="patch_embeddings")
self.num_patches = self.patch_embeddings.num_patches
self.config = config
def build(self, input_shape=None):
self.cls_token = self.add_weight(
shape=(1, 1, self.config.hidden_size),
initializer=tf.random_normal_initializer(stddev=self.config.initializer_range),
trainable=True,
name="cls_token",
)
self.position_embeddings = self.add_weight(
shape=(1, self.num_patches + 1, self.config.hidden_size),
initializer="zeros",
trainable=False, # fixed sin-cos embedding
name="position_embeddings",
)
pos_embed = get_2d_sincos_pos_embed(
self.position_embeddings.shape[-1],
int(self.patch_embeddings.num_patches**0.5),
add_cls_token=True,
)[None, ...]
self.position_embeddings.assign(pos_embed)
if self.built:
return
self.built = True
if getattr(self, "patch_embeddings", None) is not None:
with tf.name_scope(self.patch_embeddings.name):
self.patch_embeddings.build(None)
def interpolate_pos_encoding(self, embeddings, height, width) -> tf.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
resolution images.
Source:
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
"""
batch_size, seq_len, dim = shape_list(embeddings)
num_patches = seq_len - 1
_, num_positions, _ = shape_list(self.position_embeddings)
num_positions -= 1
if num_patches == num_positions and height == width:
return self.position_embeddings
class_pos_embed = self.position_embeddings[:, :1]
patch_pos_embed = self.position_embeddings[:, 1:]
h0 = height // self.config.patch_size
w0 = width // self.config.patch_size
patch_pos_embed = tf.image.resize(
images=tf.reshape(
patch_pos_embed, shape=(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
),
size=(h0, w0),
method="bicubic",
)
patch_pos_embed = tf.reshape(tensor=patch_pos_embed, shape=(1, -1, dim))
return tf.concat(values=(class_pos_embed, patch_pos_embed), axis=1)
def random_masking(self, sequence: tf.Tensor, noise: tf.Tensor | None = None):
"""
Perform per-sample random masking by per-sample shuffling. Per-sample shuffling is done by argsort random
noise.
Args:
sequence (`tf.Tensor` of shape `(batch_size, sequence_length, dim)`)
noise (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*) which is
mainly used for testing purposes to control randomness and maintain the reproducibility
"""
batch_size, seq_length, dim = shape_list(sequence)
len_keep = int(seq_length * (1 - self.config.mask_ratio))
if noise is None:
noise = tf.random.uniform(shape=(batch_size, seq_length), minval=0.0, maxval=1.0) # noise in [0, 1)
# sort noise for each sample
ids_shuffle = tf.argsort(noise, axis=1) # ascend: small is keep, large is remove
ids_restore = tf.argsort(ids_shuffle, axis=1)
# keep the first subset
ids_keep = ids_shuffle[:, :len_keep]
sequence_unmasked = tf.gather(
sequence,
axis=1,
batch_dims=1,
indices=ids_keep,
)
# generate the binary mask: 0 is keep, 1 is remove
# this hack is needed because TF's EagerTensors don't support
# assignment
mask_keep = tf.zeros((batch_size, len_keep))
mask_remove = tf.ones((batch_size, seq_length - len_keep))
mask = tf.concat([mask_keep, mask_remove], axis=-1)
# unshuffle to get the binary mask
mask = tf.gather(mask, axis=1, batch_dims=1, indices=ids_restore)
return sequence_unmasked, mask, ids_restore
def call(
self, pixel_values: tf.Tensor, noise: tf.Tensor = None, interpolate_pos_encoding: bool = False
) -> tf.Tensor:
batch_size, num_channels, height, width = shape_list(pixel_values)
embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
if interpolate_pos_encoding:
position_embeddings = self.interpolate_pos_encoding(embeddings, height, width)
else:
position_embeddings = self.position_embeddings
# add position embeddings w/o cls token
embeddings = embeddings + position_embeddings[:, 1:, :]
# masking: length -> length * config.mask_ratio
embeddings, mask, ids_restore = self.random_masking(embeddings, noise)
# append cls token
cls_token = self.cls_token + position_embeddings[:, :1, :]
cls_tokens = tf.tile(cls_token, (shape_list(embeddings)[0], 1, 1))
embeddings = tf.concat([cls_tokens, embeddings], axis=1)
return embeddings, mask, ids_restore
class TFViTMAEPatchEmbeddings(keras.layers.Layer):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config: ViTMAEConfig, **kwargs):
super().__init__(**kwargs)
image_size, patch_size = config.image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.hidden_size
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_patches = num_patches
self.num_channels = num_channels
self.config = config
self.projection = keras.layers.Conv2D(
filters=hidden_size,
kernel_size=patch_size,
strides=patch_size,
padding="valid",
data_format="channels_last",
kernel_initializer="glorot_uniform", # following torch.nn.Linear
bias_initializer="zeros",
name="projection",
)
def call(
self, pixel_values: tf.Tensor, training: bool = False, interpolate_pos_encoding: bool = False
) -> tf.Tensor:
batch_size, num_channels, height, width = shape_list(pixel_values)
if tf.executing_eagerly():
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the"
" configuration."
)
if not interpolate_pos_encoding and (height != self.image_size[0] or width != self.image_size[1]):
raise ValueError(
f"Input image size ({height}*{width}) doesn't match model"
f" ({self.image_size[0]}*{self.image_size[1]})."
)
# When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
projection = self.projection(pixel_values)
# Change the 2D spatial dimensions to a single temporal dimension.
# shape = (batch_size, num_patches, out_channels=embed_dim)
num_patches = (width // self.patch_size[1]) * (height // self.patch_size[0])
x = tf.reshape(tensor=projection, shape=(batch_size, num_patches, -1))
return x
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "projection", None) is not None:
with tf.name_scope(self.projection.name):
self.projection.build([None, None, None, self.num_channels])
# Copied from transformers.models.vit.modeling_tf_vit.TFViTSelfAttention with ViT->ViTMAE
class TFViTMAESelfAttention(keras.layers.Layer):
def __init__(self, config: ViTMAEConfig, **kwargs):
super().__init__(**kwargs)
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number "
f"of attention heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
self.query = keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
)
self.key = keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
)
self.value = keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
)
self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob)
self.config = config
def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
# Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
# Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
return tf.transpose(tensor, perm=[0, 2, 1, 3])
def call(
self,
hidden_states: tf.Tensor,
head_mask: tf.Tensor,
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
batch_size = shape_list(hidden_states)[0]
mixed_query_layer = self.query(inputs=hidden_states)
mixed_key_layer = self.key(inputs=hidden_states)
mixed_value_layer = self.value(inputs=hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
key_layer = self.transpose_for_scores(mixed_key_layer, batch_size)
value_layer = self.transpose_for_scores(mixed_value_layer, batch_size)
# Take the dot product between "query" and "key" to get the raw attention scores.
# (batch size, num_heads, seq_len_q, seq_len_k)
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
attention_scores = tf.divide(attention_scores, dk)
# Normalize the attention scores to probabilities.
attention_probs = stable_softmax(logits=attention_scores, axis=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(inputs=attention_probs, training=training)
# Mask heads if we want to
if head_mask is not None:
attention_probs = tf.multiply(attention_probs, head_mask)
attention_output = tf.matmul(attention_probs, value_layer)
attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])
# (batch_size, seq_len_q, all_head_size)
attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size))
outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "query", None) is not None:
with tf.name_scope(self.query.name):
self.query.build([None, None, self.config.hidden_size])
if getattr(self, "key", None) is not None:
with tf.name_scope(self.key.name):
self.key.build([None, None, self.config.hidden_size])
if getattr(self, "value", None) is not None:
with tf.name_scope(self.value.name):
self.value.build([None, None, self.config.hidden_size])
# Copied from transformers.models.vit.modeling_tf_vit.TFViTSelfOutput with ViT->ViTMAE
class TFViTMAESelfOutput(keras.layers.Layer):
"""
The residual connection is defined in TFViTMAELayer instead of here (as is the case with other models), due to the
layernorm applied before each block.
"""
def __init__(self, config: ViTMAEConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.config = config
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
# Copied from transformers.models.vit.modeling_tf_vit.TFViTAttention with ViT->ViTMAE
class TFViTMAEAttention(keras.layers.Layer):
def __init__(self, config: ViTMAEConfig, **kwargs):
super().__init__(**kwargs)
self.self_attention = TFViTMAESelfAttention(config, name="attention")
self.dense_output = TFViTMAESelfOutput(config, name="output")
def prune_heads(self, heads):
raise NotImplementedError
def call(
self,
input_tensor: tf.Tensor,
head_mask: tf.Tensor,
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
self_outputs = self.self_attention(
hidden_states=input_tensor, head_mask=head_mask, output_attentions=output_attentions, training=training
)
attention_output = self.dense_output(
hidden_states=self_outputs[0], input_tensor=input_tensor, training=training
)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self_attention", None) is not None:
with tf.name_scope(self.self_attention.name):
self.self_attention.build(None)
if getattr(self, "dense_output", None) is not None:
with tf.name_scope(self.dense_output.name):
self.dense_output.build(None)
# Copied from transformers.models.vit.modeling_tf_vit.TFViTIntermediate with ViT->ViTMAE
class TFViTMAEIntermediate(keras.layers.Layer):
def __init__(self, config: ViTMAEConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = get_tf_activation(config.hidden_act)
else:
self.intermediate_act_fn = config.hidden_act
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
# Copied from transformers.models.vit.modeling_tf_vit.TFViTOutput with ViT->ViTMAE
class TFViTMAEOutput(keras.layers.Layer):
def __init__(self, config: ViTMAEConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.config = config
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
hidden_states = hidden_states + input_tensor
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.intermediate_size])
# Copied from transformers.models.vit.modeling_tf_vit.TFViTLayer with ViT->ViTMAE
class TFViTMAELayer(keras.layers.Layer):
"""This corresponds to the Block class in the timm implementation."""
def __init__(self, config: ViTMAEConfig, **kwargs):
super().__init__(**kwargs)
self.attention = TFViTMAEAttention(config, name="attention")
self.intermediate = TFViTMAEIntermediate(config, name="intermediate")
self.vit_output = TFViTMAEOutput(config, name="output")
self.layernorm_before = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_before")
self.layernorm_after = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_after")
self.config = config
def call(
self,
hidden_states: tf.Tensor,
head_mask: tf.Tensor,
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
attention_outputs = self.attention(
# in ViTMAE, layernorm is applied before self-attention
input_tensor=self.layernorm_before(inputs=hidden_states),
head_mask=head_mask,
output_attentions=output_attentions,
training=training,
)
attention_output = attention_outputs[0]
# first residual connection
hidden_states = attention_output + hidden_states
# in ViTMAE, layernorm is also applied after self-attention
layer_output = self.layernorm_after(inputs=hidden_states)
intermediate_output = self.intermediate(hidden_states=layer_output)
# second residual connection is done here
layer_output = self.vit_output(
hidden_states=intermediate_output, input_tensor=hidden_states, training=training
)
outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention.name):
self.attention.build(None)
if getattr(self, "intermediate", None) is not None:
with tf.name_scope(self.intermediate.name):
self.intermediate.build(None)
if getattr(self, "vit_output", None) is not None:
with tf.name_scope(self.vit_output.name):
self.vit_output.build(None)
if getattr(self, "layernorm_before", None) is not None:
with tf.name_scope(self.layernorm_before.name):
self.layernorm_before.build([None, None, self.config.hidden_size])
if getattr(self, "layernorm_after", None) is not None:
with tf.name_scope(self.layernorm_after.name):
self.layernorm_after.build([None, None, self.config.hidden_size])
# Copied from transformers.models.vit.modeling_tf_vit.TFViTEncoder with ViT->ViTMAE
class TFViTMAEEncoder(keras.layers.Layer):
def __init__(self, config: ViTMAEConfig, **kwargs):
super().__init__(**kwargs)
self.layer = [TFViTMAELayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
def call(
self,
hidden_states: tf.Tensor,
head_mask: tf.Tensor,
output_attentions: bool,
output_hidden_states: bool,
return_dict: bool,
training: bool = False,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = layer_module(
hidden_states=hidden_states,
head_mask=head_mask[i],
output_attentions=output_attentions,
training=training,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layer", None) is not None:
for layer in self.layer:
with tf.name_scope(layer.name):
layer.build(None)
@keras_serializable
class TFViTMAEMainLayer(keras.layers.Layer):
config_class = ViTMAEConfig
def __init__(self, config: ViTMAEConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.embeddings = TFViTMAEEmbeddings(config, name="embeddings")
self.encoder = TFViTMAEEncoder(config, name="encoder")
self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm")
def get_input_embeddings(self) -> keras.layers.Layer:
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
raise NotImplementedError
@unpack_inputs
def call(
self,
pixel_values: TFModelInputType | None = None,
noise: tf.Tensor = None,
head_mask: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
interpolate_pos_encoding: bool = False,
) -> Union[TFViTMAEModelOutput, Tuple[tf.Tensor]]:
embedding_output, mask, ids_restore = self.embeddings(
pixel_values=pixel_values,
training=training,
noise=noise,
interpolate_pos_encoding=interpolate_pos_encoding,
)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if head_mask is not None:
raise NotImplementedError
else:
head_mask = [None] * self.config.num_hidden_layers
encoder_outputs = self.encoder(
embedding_output,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(inputs=sequence_output)
if not return_dict:
return (sequence_output, mask, ids_restore) + encoder_outputs[1:]
return TFViTMAEModelOutput(
last_hidden_state=sequence_output,
mask=mask,
ids_restore=ids_restore,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "layernorm", None) is not None:
with tf.name_scope(self.layernorm.name):
self.layernorm.build([None, None, self.config.hidden_size])
class TFViTMAEPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = ViTMAEConfig
base_model_prefix = "vit"
main_input_name = "pixel_values"
VIT_MAE_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `pixel_values` only and nothing else: `model(pixel_values)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([pixel_values, attention_mask])` or `model([pixel_values, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"pixel_values": pixel_values, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Args:
config ([`ViTMAEConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
VIT_MAE_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`]
for details.
head_mask (`np.ndarray` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. This argument can be used
in eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False``):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
interpolate_pos_encoding (`bool`, *optional*, defaults to `False`):
Whether to interpolate the position encodings at the encoder and decoder.
"""
@add_start_docstrings(
"The bare ViTMAE Model transformer outputting raw hidden-states without any specific head on top.",
VIT_MAE_START_DOCSTRING,
)
class TFViTMAEModel(TFViTMAEPreTrainedModel):
def __init__(self, config: ViTMAEConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.vit = TFViTMAEMainLayer(config, name="vit")
def get_input_embeddings(self):
return self.vit.get_input_embeddings()
@unpack_inputs
@add_start_docstrings_to_model_forward(VIT_MAE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFViTMAEModelOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
pixel_values: TFModelInputType | None = None,
noise: tf.Tensor = None,
head_mask: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
interpolate_pos_encoding: bool = False,
) -> Union[TFViTMAEModelOutput, Tuple[tf.Tensor]]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, TFViTMAEModel
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/vit-mae-base")
>>> model = TFViTMAEModel.from_pretrained("facebook/vit-mae-base")
>>> inputs = image_processor(images=image, return_tensors="tf")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
```"""
outputs = self.vit(
pixel_values=pixel_values,
noise=noise,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
interpolate_pos_encoding=interpolate_pos_encoding,
)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "vit", None) is not None:
with tf.name_scope(self.vit.name):
self.vit.build(None)
class TFViTMAEDecoder(keras.layers.Layer):
def __init__(self, config, num_patches, **kwargs):
super().__init__(**kwargs)
self.decoder_embed = keras.layers.Dense(config.decoder_hidden_size, name="decoder_embed")
decoder_config = deepcopy(config)
decoder_config.hidden_size = config.decoder_hidden_size
decoder_config.num_hidden_layers = config.decoder_num_hidden_layers
decoder_config.num_attention_heads = config.decoder_num_attention_heads
decoder_config.intermediate_size = config.decoder_intermediate_size
self.decoder_layers = [
TFViTMAELayer(decoder_config, name=f"decoder_layers.{j}") for j in range(config.decoder_num_hidden_layers)
]
self.decoder_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="decoder_norm")
self.decoder_pred = keras.layers.Dense(
config.patch_size**2 * config.num_channels,
kernel_initializer=get_initializer(config.initializer_range),
name="decoder_pred",
) # encoder to decoder
self.config = config
self.num_patches = num_patches
def build(self, input_shape=None):
self.mask_token = self.add_weight(
shape=(1, 1, self.config.decoder_hidden_size),
initializer=tf.random_normal_initializer(stddev=self.config.initializer_range),
trainable=True,
name="mask_token",
)
self.decoder_pos_embed = self.add_weight(
shape=(1, self.num_patches + 1, self.config.decoder_hidden_size),
initializer="zeros",
trainable=False,
name="decoder_pos_embed",
)
decoder_pos_embed = get_2d_sincos_pos_embed(
self.decoder_pos_embed.shape[-1],
int(self.num_patches**0.5),
add_cls_token=True,
)[None, ...]
self.decoder_pos_embed.assign(decoder_pos_embed)
if self.built:
return
self.built = True
if getattr(self, "decoder_embed", None) is not None:
with tf.name_scope(self.decoder_embed.name):
self.decoder_embed.build([None, None, self.config.hidden_size])
if getattr(self, "decoder_norm", None) is not None:
with tf.name_scope(self.decoder_norm.name):
self.decoder_norm.build([None, None, self.config.decoder_hidden_size])
if getattr(self, "decoder_pred", None) is not None:
with tf.name_scope(self.decoder_pred.name):
self.decoder_pred.build([None, None, self.config.decoder_hidden_size])
if getattr(self, "decoder_layers", None) is not None:
for layer in self.decoder_layers:
with tf.name_scope(layer.name):
layer.build(None)
def interpolate_pos_encoding(self, embeddings) -> tf.Tensor:
"""
This method is a modified version of the interpolation function for ViT-mae model at the deocder, that
allows to interpolate the pre-trained decoder position encodings, to be able to use the model on higher
resolution images.
Source:
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
"""
# [batch_size, num_patches + 1, hidden_size]
_, num_positions, dim = shape_list(self.decoder_pos_embed)
# -1 removes the class dimension since we later append it without interpolation
seq_len = shape_list(embeddings)[1] - 1
num_positions = num_positions - 1
# Separation of class token and patch tokens
class_pos_embed = self.decoder_pos_embed[:, :1, :]
patch_pos_embed = self.decoder_pos_embed[:, 1:, :]
# interpolate the position embeddings
patch_pos_embed = tf.image.resize(
images=tf.reshape(patch_pos_embed, shape=(1, 1, -1, dim)),
size=(1, seq_len),
method="bicubic",
)
# [1, seq_len, hidden_size]
patch_pos_embed = tf.reshape(tensor=patch_pos_embed, shape=(1, -1, dim))
# Adding the class token back
return tf.concat(values=(class_pos_embed, patch_pos_embed), axis=1)
def call(
self,
hidden_states,
ids_restore,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
interpolate_pos_encoding=False,
):
# embed tokens
x = self.decoder_embed(hidden_states)
# append mask tokens to sequence
mask_tokens = tf.tile(
self.mask_token,
(shape_list(x)[0], shape_list(ids_restore)[1] + 1 - shape_list(x)[1], 1),
)
x_ = tf.concat([x[:, 1:, :], mask_tokens], axis=1) # no cls token
x_ = tf.gather(x_, axis=1, batch_dims=1, indices=ids_restore) # unshuffle
x = tf.concat([x[:, :1, :], x_], axis=1) # append cls token
if interpolate_pos_encoding:
decoder_pos_embed = self.interpolate_pos_encoding(x)
else:
decoder_pos_embed = self.decoder_pos_embed
# add pos embed
hidden_states = x + decoder_pos_embed
# apply Transformer layers (blocks)
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.decoder_layers):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = layer_module(
hidden_states,
head_mask=None,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
hidden_states = self.decoder_norm(hidden_states)
# predictor projection
logits = self.decoder_pred(hidden_states)
# remove cls token
logits = logits[:, 1:, :]
if not return_dict:
return tuple(v for v in [logits, all_hidden_states, all_self_attentions] if v is not None)
return TFViTMAEDecoderOutput(logits=logits, hidden_states=all_hidden_states, attentions=all_self_attentions)
@add_start_docstrings(
"The ViTMAE Model transformer with the decoder on top for self-supervised pre-training.",
VIT_MAE_START_DOCSTRING,
)
class TFViTMAEForPreTraining(TFViTMAEPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.vit = TFViTMAEMainLayer(config, name="vit")
self.decoder = TFViTMAEDecoder(
config,
num_patches=self.vit.embeddings.num_patches,
name="decoder",
)
def get_input_embeddings(self):
return self.vit.get_input_embeddings()
def _prune_heads(self, heads_to_prune):
raise NotImplementedError
def patchify(self, pixel_values, interpolate_pos_encoding: bool = False):
"""
Args:
pixel_values (`tf.Tensor` of shape `(batch_size, height, width, num_channels)` or `(batch_size, num_channels, height, width)`):
Pixel values.
interpolate_pos_encoding (`bool`, default `False`):
interpolation flag passed during the forward pass.
Returns:
`tf.Tensor` of shape `(batch_size, num_patches, patch_size**2 * num_channels)`:
Patchified pixel values.
"""
patch_size, num_channels = self.config.patch_size, self.config.num_channels
# make sure channels are last
if shape_list(pixel_values)[1] == num_channels:
pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
# sanity checks
if not interpolate_pos_encoding:
tf.debugging.assert_equal(
shape_list(pixel_values)[1],
shape_list(pixel_values)[2],
message="Make sure the pixel values have a squared size",
)
tf.debugging.assert_equal(
shape_list(pixel_values)[1] % patch_size,
0,
message="Make sure the pixel values have a size that is divisible by the patch size",
)
tf.debugging.assert_equal(
shape_list(pixel_values)[3],
num_channels,
message=(
"Make sure the number of channels of the pixel values is equal to the one set in the configuration"
),
)
# patchify
batch_size = shape_list(pixel_values)[0]
num_patches_h = shape_list(pixel_values)[1] // patch_size
num_patches_w = shape_list(pixel_values)[2] // patch_size
patchified_pixel_values = tf.reshape(
pixel_values,
(batch_size, num_patches_h, patch_size, num_patches_w, patch_size, num_channels),
)
patchified_pixel_values = tf.einsum("nhpwqc->nhwpqc", patchified_pixel_values)
patchified_pixel_values = tf.reshape(
patchified_pixel_values,
(batch_size, num_patches_h * num_patches_w, patch_size**2 * num_channels),
)
return patchified_pixel_values
def unpatchify(self, patchified_pixel_values, original_image_size: Optional[Tuple[int, int]] = None):
"""
Args:
patchified_pixel_values (`tf.Tensor` of shape `(batch_size, num_patches, patch_size**2 * num_channels)`:
Patchified pixel values.
original_image_size (`Tuple[int, int]`, *optional*):
Original image size.
Returns:
`tf.Tensor` of shape `(batch_size, height, width, num_channels)`:
Pixel values.
"""
patch_size, num_channels = self.config.patch_size, self.config.num_channels
original_image_size = (
original_image_size
if original_image_size is not None
else (self.config.image_size, self.config.image_size)
)
original_height, original_width = original_image_size
num_patches_h = original_height // patch_size
num_patches_w = original_width // patch_size
# sanity check
tf.debugging.assert_equal(
num_patches_h * num_patches_w,
shape_list(patchified_pixel_values)[1],
message=f"The number of patches in the patchified pixel values is {shape_list(patchified_pixel_values)[1]} does not match the patches of original image {num_patches_w}*{num_patches_h}",
)
# unpatchify
batch_size = shape_list(patchified_pixel_values)[0]
patchified_pixel_values = tf.reshape(
patchified_pixel_values,
(batch_size, num_patches_h, num_patches_w, patch_size, patch_size, num_channels),
)
patchified_pixel_values = tf.einsum("nhwpqc->nhpwqc", patchified_pixel_values)
pixel_values = tf.reshape(
patchified_pixel_values,
(batch_size, num_patches_h * patch_size, num_patches_w * patch_size, num_channels),
)
return pixel_values
def forward_loss(self, pixel_values, pred, mask, interpolate_pos_encoding: bool = False):
"""
Args:
pixel_values (`tf.Tensor` of shape `(batch_size, height, width, num_channels)`):
Pixel values.
pred (`tf.Tensor` of shape `(batch_size, num_patches, patch_size**2 * num_channels)`:
Predicted pixel values.
mask (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Tensor indicating which patches are masked (1) and which are not (0).
interpolate_pos_encoding (`bool`, *optional*, default `False`):
interpolation flag passed during the forward pass.
Returns:
`tf.Tensor`: Pixel reconstruction loss.
"""
target = self.patchify(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
if self.config.norm_pix_loss:
mean = tf.reduce_mean(target, axis=-1, keepdims=True)
var = tf.math.reduce_variance(target, axis=-1, keepdims=True)
target = (target - mean) / (var + 1.0e-6) ** 0.5
loss = (pred - target) ** 2
loss = tf.reduce_mean(loss, axis=-1) # [batch_size, num_patches], mean loss per patch
loss = tf.reduce_sum(loss * mask) / tf.reduce_sum(mask) # mean loss on removed patches
loss = tf.reshape(loss, (1,))
return loss
@unpack_inputs
@add_start_docstrings_to_model_forward(VIT_MAE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFViTMAEForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
pixel_values: TFModelInputType | None = None,
noise: tf.Tensor = None,
head_mask: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
interpolate_pos_encoding: bool = False,
) -> Union[TFViTMAEForPreTrainingOutput, Tuple[tf.Tensor]]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, TFViTMAEForPreTraining
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/vit-mae-base")
>>> model = TFViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base")
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> loss = outputs.loss
>>> mask = outputs.mask
>>> ids_restore = outputs.ids_restore
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.vit(
pixel_values=pixel_values,
noise=noise,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
interpolate_pos_encoding=interpolate_pos_encoding,
)
latent = outputs.last_hidden_state
ids_restore = outputs.ids_restore
mask = outputs.mask
# [batch_size, num_patches, patch_size**2*3]
decoder_outputs = self.decoder(latent, ids_restore, interpolate_pos_encoding=interpolate_pos_encoding)
logits = decoder_outputs.logits
loss = self.forward_loss(pixel_values, logits, mask, interpolate_pos_encoding=interpolate_pos_encoding)
if not return_dict:
output = (logits, mask, ids_restore) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFViTMAEForPreTrainingOutput(
loss=loss,
logits=logits,
mask=mask,
ids_restore=ids_restore,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "vit", None) is not None:
with tf.name_scope(self.vit.name):
self.vit.build(None)
if getattr(self, "decoder", None) is not None:
with tf.name_scope(self.decoder.name):
self.decoder.build(None)
__all__ = ["TFViTMAEForPreTraining", "TFViTMAEModel", "TFViTMAEPreTrainedModel"]
|
transformers/src/transformers/models/vit_mae/modeling_tf_vit_mae.py/0
|
{
"file_path": "transformers/src/transformers/models/vit_mae/modeling_tf_vit_mae.py",
"repo_id": "transformers",
"token_count": 25005
}
| 176 |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert VitPose checkpoints from the original repository.
URL: https://github.com/vitae-transformer/vitpose
Notebook to get the original logits: https://colab.research.google.com/drive/1QDX_2POTpl6JaZAV2WIFjuiqDsDwiqMZ?usp=sharing.
"""
import argparse
import os
import re
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import VitPoseBackboneConfig, VitPoseConfig, VitPoseForPoseEstimation, VitPoseImageProcessor
ORIGINAL_TO_CONVERTED_KEY_MAPPING = {
r"patch_embed.proj": "embeddings.patch_embeddings.projection",
r"pos_embed": "embeddings.position_embeddings",
r"blocks": "encoder.layer",
r"attn.proj": "attention.output.dense",
r"attn": "attention.self",
r"norm1": "layernorm_before",
r"norm2": "layernorm_after",
r"last_norm": "layernorm",
r"keypoint_head": "head",
r"final_layer": "conv",
}
MODEL_TO_FILE_NAME_MAPPING = {
# VitPose models, simple decoder
"vitpose-base-simple": "vitpose-b-simple.pth",
# VitPose models, classic decoder
"vitpose-base": "vitpose-b.pth",
# VitPose models, COCO-AIC-MPII
"vitpose-base-coco-aic-mpii": "vitpose_base_coco_aic_mpii.pth",
# VitPose+ models
"vitpose-plus-small": "vitpose+_small.pth",
"vitpose-plus-base": "vitpose+_base.pth",
"vitpose-plus-large": "vitpose+_large.pth",
"vitpose-plus-huge": "vitpose+_huge.pth",
}
def get_config(model_name):
if "plus" in model_name:
num_experts = 6
if "small" in model_name:
part_features = 96
out_indices = [12]
elif "base" in model_name:
part_features = 192
out_indices = [12]
elif "large" in model_name:
part_features = 256
out_indices = [24]
elif "huge" in model_name:
part_features = 320
out_indices = [32]
else:
raise ValueError(f"Model {model_name} not supported")
else:
num_experts = 1
part_features = 0
# size of the architecture
if "small" in model_name:
hidden_size = 384
num_hidden_layers = 12
num_attention_heads = 12
elif "large" in model_name:
hidden_size = 1024
num_hidden_layers = 24
num_attention_heads = 16
elif "huge" in model_name:
hidden_size = 1280
num_hidden_layers = 32
num_attention_heads = 16
backbone_config = VitPoseBackboneConfig(
out_indices=out_indices,
hidden_size=hidden_size,
num_hidden_layers=num_hidden_layers,
num_attention_heads=num_attention_heads,
num_experts=num_experts,
part_features=part_features,
)
use_simple_decoder = "simple" in model_name
edges = [
[15, 13],
[13, 11],
[16, 14],
[14, 12],
[11, 12],
[5, 11],
[6, 12],
[5, 6],
[5, 7],
[6, 8],
[7, 9],
[8, 10],
[1, 2],
[0, 1],
[0, 2],
[1, 3],
[2, 4],
[3, 5],
[4, 6],
]
id2label = {
0: "Nose",
1: "L_Eye",
2: "R_Eye",
3: "L_Ear",
4: "R_Ear",
5: "L_Shoulder",
6: "R_Shoulder",
7: "L_Elbow",
8: "R_Elbow",
9: "L_Wrist",
10: "R_Wrist",
11: "L_Hip",
12: "R_Hip",
13: "L_Knee",
14: "R_Knee",
15: "L_Ankle",
16: "R_Ankle",
}
label2id = {v: k for k, v in id2label.items()}
config = VitPoseConfig(
backbone_config=backbone_config,
num_labels=17,
use_simple_decoder=use_simple_decoder,
edges=edges,
id2label=id2label,
label2id=label2id,
)
return config
def convert_old_keys_to_new_keys(state_dict_keys: dict = None):
"""
This function should be applied only once, on the concatenated keys to efficiently rename using
the key mappings.
"""
output_dict = {}
if state_dict_keys is not None:
old_text = "\n".join(state_dict_keys)
new_text = old_text
for pattern, replacement in ORIGINAL_TO_CONVERTED_KEY_MAPPING.items():
if replacement is None:
new_text = re.sub(pattern, "", new_text) # an empty line
continue
new_text = re.sub(pattern, replacement, new_text)
output_dict = dict(zip(old_text.split("\n"), new_text.split("\n")))
return output_dict
# We will verify our results on a COCO image
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000000139.jpg"
image = Image.open(requests.get(url, stream=True).raw)
return image
@torch.no_grad()
def write_model(model_name, model_path, push_to_hub, check_logits=True):
# ------------------------------------------------------------
# Vision model params and config
# ------------------------------------------------------------
# params from config
config = get_config(model_name)
# ------------------------------------------------------------
# Convert weights
# ------------------------------------------------------------
# load original state_dict
filename = MODEL_TO_FILE_NAME_MAPPING[model_name]
print(f"Fetching all parameters from the checkpoint at {filename}...")
checkpoint_path = hf_hub_download(
repo_id="nielsr/vitpose-original-checkpoints", filename=filename, repo_type="model"
)
print("Converting model...")
original_state_dict = torch.load(checkpoint_path, map_location="cpu")["state_dict"]
all_keys = list(original_state_dict.keys())
new_keys = convert_old_keys_to_new_keys(all_keys)
dim = config.backbone_config.hidden_size
state_dict = {}
for key in all_keys:
new_key = new_keys[key]
value = original_state_dict[key]
if re.search("associate_heads", new_key) or re.search("backbone.cls_token", new_key):
# This associated_heads is concept of auxiliary head so does not require in inference stage.
# backbone.cls_token is optional forward function for dynamically change of size, see detail in https://github.com/ViTAE-Transformer/ViTPose/issues/34
pass
elif re.search("qkv", new_key):
state_dict[new_key.replace("self.qkv", "attention.query")] = value[:dim]
state_dict[new_key.replace("self.qkv", "attention.key")] = value[dim : dim * 2]
state_dict[new_key.replace("self.qkv", "attention.value")] = value[-dim:]
elif re.search("head", new_key) and not config.use_simple_decoder:
# Pattern for deconvolution layers
deconv_pattern = r"deconv_layers\.(0|3)\.weight"
new_key = re.sub(deconv_pattern, lambda m: f"deconv{int(m.group(1))//3 + 1}.weight", new_key)
# Pattern for batch normalization layers
bn_patterns = [
(r"deconv_layers\.(\d+)\.weight", r"batchnorm\1.weight"),
(r"deconv_layers\.(\d+)\.bias", r"batchnorm\1.bias"),
(r"deconv_layers\.(\d+)\.running_mean", r"batchnorm\1.running_mean"),
(r"deconv_layers\.(\d+)\.running_var", r"batchnorm\1.running_var"),
(r"deconv_layers\.(\d+)\.num_batches_tracked", r"batchnorm\1.num_batches_tracked"),
]
for pattern, replacement in bn_patterns:
if re.search(pattern, new_key):
# Convert the layer number to the correct batch norm index
layer_num = int(re.search(pattern, key).group(1))
bn_num = layer_num // 3 + 1
new_key = re.sub(pattern, replacement.replace(r"\1", str(bn_num)), new_key)
state_dict[new_key] = value
else:
state_dict[new_key] = value
print("Loading the checkpoint in a Vitpose model.")
model = VitPoseForPoseEstimation(config)
model.eval()
model.load_state_dict(state_dict)
print("Checkpoint loaded successfully.")
# create image processor
image_processor = VitPoseImageProcessor()
# verify image processor
image = prepare_img()
boxes = [[[412.8, 157.61, 53.05, 138.01], [384.43, 172.21, 15.12, 35.74]]]
pixel_values = image_processor(images=image, boxes=boxes, return_tensors="pt").pixel_values
filepath = hf_hub_download(repo_id="nielsr/test-image", filename="vitpose_batch_data.pt", repo_type="dataset")
original_pixel_values = torch.load(filepath, map_location="cpu")["img"]
# we allow for a small difference in the pixel values due to the original repository using cv2
assert torch.allclose(pixel_values, original_pixel_values, atol=1e-1)
dataset_index = torch.tensor([0])
with torch.no_grad():
print("Shape of original_pixel_values: ", original_pixel_values.shape)
print("First values of original_pixel_values: ", original_pixel_values[0, 0, :3, :3])
# first forward pass
outputs = model(original_pixel_values, dataset_index=dataset_index)
output_heatmap = outputs.heatmaps
print("Shape of output_heatmap: ", output_heatmap.shape)
print("First values: ", output_heatmap[0, 0, :3, :3])
# second forward pass (flipped)
# this is done since the model uses `flip_test=True` in its test config
original_pixel_values_flipped = torch.flip(original_pixel_values, [3])
outputs_flipped = model(
original_pixel_values_flipped,
dataset_index=dataset_index,
flip_pairs=torch.tensor([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]]),
)
output_flipped_heatmap = outputs_flipped.heatmaps
outputs.heatmaps = (output_heatmap + output_flipped_heatmap) * 0.5
# Verify pose_results
pose_results = image_processor.post_process_pose_estimation(outputs, boxes=boxes)[0]
if check_logits:
# Simple decoder checkpoints
if model_name == "vitpose-base-simple":
assert torch.allclose(
pose_results[1]["keypoints"][0],
torch.tensor([3.98180511e02, 1.81808380e02]),
atol=5e-2,
)
assert torch.allclose(
pose_results[1]["scores"][0],
torch.tensor([8.66642594e-01]),
atol=5e-2,
)
# Classic decoder checkpoints
elif model_name == "vitpose-base":
assert torch.allclose(
pose_results[1]["keypoints"][0],
torch.tensor([3.9807913e02, 1.8182812e02]),
atol=5e-2,
)
assert torch.allclose(
pose_results[1]["scores"][0],
torch.tensor([8.8235235e-01]),
atol=5e-2,
)
# COCO-AIC-MPII checkpoints
elif model_name == "vitpose-base-coco-aic-mpii":
assert torch.allclose(
pose_results[1]["keypoints"][0],
torch.tensor([3.98305542e02, 1.81741592e02]),
atol=5e-2,
)
assert torch.allclose(
pose_results[1]["scores"][0],
torch.tensor([8.69966745e-01]),
atol=5e-2,
)
# VitPose+ models
elif model_name == "vitpose-plus-small":
assert torch.allclose(
pose_results[1]["keypoints"][0],
torch.tensor([398.1597, 181.6902]),
atol=5e-2,
)
assert torch.allclose(
pose_results[1]["scores"][0],
torch.tensor(0.9051),
atol=5e-2,
)
elif model_name == "vitpose-plus-base":
assert torch.allclose(
pose_results[1]["keypoints"][0],
torch.tensor([3.98201294e02, 1.81728302e02]),
atol=5e-2,
)
assert torch.allclose(
pose_results[1]["scores"][0],
torch.tensor([8.75046968e-01]),
atol=5e-2,
)
elif model_name == "vitpose-plus-large":
assert torch.allclose(
pose_results[1]["keypoints"][0],
torch.tensor([398.1409, 181.7412]),
atol=5e-2,
)
assert torch.allclose(
pose_results[1]["scores"][0],
torch.tensor(0.8746),
atol=5e-2,
)
elif model_name == "vitpose-plus-huge":
assert torch.allclose(
pose_results[1]["keypoints"][0],
torch.tensor([398.2079, 181.8026]),
atol=5e-2,
)
assert torch.allclose(
pose_results[1]["scores"][0],
torch.tensor(0.8693),
atol=5e-2,
)
else:
raise ValueError("Model not supported")
print("Conversion successfully done.")
if model_path is not None:
os.makedirs(model_path, exist_ok=True)
model.save_pretrained(model_path)
image_processor.save_pretrained(model_path)
if push_to_hub:
print(f"Pushing model and image processor for {model_name} to hub")
# we created a community organization on the hub for this model
# maintained by the Transformers team
model.push_to_hub(f"usyd-community/{model_name}")
image_processor.push_to_hub(f"usyd-community/{model_name}")
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="vitpose-base-simple",
choices=MODEL_TO_FILE_NAME_MAPPING.keys(),
type=str,
help="Name of the VitPose model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to store the converted model."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
parser.add_argument(
"--check_logits", action="store_false", help="Whether or not to verify the logits of the converted model."
)
args = parser.parse_args()
write_model(
model_path=args.pytorch_dump_folder_path,
model_name=args.model_name,
push_to_hub=args.push_to_hub,
check_logits=args.check_logits,
)
if __name__ == "__main__":
main()
|
transformers/src/transformers/models/vitpose/convert_vitpose_to_hf.py/0
|
{
"file_path": "transformers/src/transformers/models/vitpose/convert_vitpose_to_hf.py",
"repo_id": "transformers",
"token_count": 7140
}
| 177 |
# coding=utf-8
# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Wav2Vec2Conformer model configuration"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class Wav2Vec2ConformerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Wav2Vec2ConformerModel`]. It is used to
instantiate an Wav2Vec2Conformer model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the Wav2Vec2Conformer
[facebook/wav2vec2-conformer-rel-pos-large](https://huggingface.co/facebook/wav2vec2-conformer-rel-pos-large)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*):
Vocabulary size of the Wav2Vec2Conformer model. Defines the number of different tokens that can be
represented by the `inputs_ids` passed when calling [`Wav2Vec2ConformerModel`]. Vocabulary size of the
model. Defines the different tokens that can be represented by the *inputs_ids* passed to the forward
method of [`Wav2Vec2ConformerModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
activation_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for activations inside the fully connected layer.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
final_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for the final projection layer of [`Wav2Vec2ConformerForCTC`].
layerdrop (`float`, *optional*, defaults to 0.1):
The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more
details.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
feat_extract_norm (`str`, *optional*, defaults to `"group"`):
The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group
normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D
convolutional layers.
feat_proj_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for output of the feature encoder.
feat_extract_activation (`str, `optional`, defaults to `"gelu"`):
The non-linear activation function (function or string) in the 1D convolutional layers of the feature
extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
feat_quantizer_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for quantized feature encoder states.
conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`):
A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the
feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers.
conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`):
A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length
of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*.
conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`):
A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The
length of *conv_kernel* defines the number of convolutional layers and has to match the length of
*conv_dim*.
conv_bias (`bool`, *optional*, defaults to `False`):
Whether the 1D convolutional layers have a bias.
num_conv_pos_embeddings (`int`, *optional*, defaults to 128):
Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional
embeddings layer.
num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16):
Number of groups of 1D convolutional positional embeddings layer.
apply_spec_augment (`bool`, *optional*, defaults to `True`):
Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see
[SpecAugment: A Simple Data Augmentation Method for Automatic Speech
Recognition](https://arxiv.org/abs/1904.08779).
mask_time_prob (`float`, *optional*, defaults to 0.05):
Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking
procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If
reasoning from the propability of each feature vector to be chosen as the start of the vector span to be
masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the
actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`.
mask_time_length (`int`, *optional*, defaults to 10):
Length of vector span along the time axis.
mask_time_min_masks (`int`, *optional*, defaults to 2),:
The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length <
mask_time_min_masks''
mask_feature_prob (`float`, *optional*, defaults to 0.0):
Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The
masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over
the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector
span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap
may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is
True`.
mask_feature_length (`int`, *optional*, defaults to 10):
Length of vector span along the feature axis.
mask_feature_min_masks (`int`, *optional*, defaults to 0),:
The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time
step, irrespectively of `mask_feature_prob`. Only relevant if
''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks''
num_codevectors_per_group (`int`, *optional*, defaults to 320):
Number of entries in each quantization codebook (group).
num_codevector_groups (`int`, *optional*, defaults to 2):
Number of codevector groups for product codevector quantization.
contrastive_logits_temperature (`float`, *optional*, defaults to 0.1):
The temperature *kappa* in the contrastive loss.
feat_quantizer_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for the output of the feature encoder that's used by the quantizer.
num_negatives (`int`, *optional*, defaults to 100):
Number of negative samples for the contrastive loss.
codevector_dim (`int`, *optional*, defaults to 256):
Dimensionality of the quantized feature vectors.
proj_codevector_dim (`int`, *optional*, defaults to 256):
Dimensionality of the final projection of both the quantized and the transformer features.
diversity_loss_weight (`int`, *optional*, defaults to 0.1):
The weight of the codebook diversity loss component.
ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`):
Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an
instance of [`Wav2Vec2ConformerForCTC`].
ctc_zero_infinity (`bool`, *optional*, defaults to `False`):
Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly
occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance
of [`Wav2Vec2ConformerForCTC`].
use_weighted_layer_sum (`bool`, *optional*, defaults to `False`):
Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an
instance of [`Wav2Vec2ConformerForSequenceClassification`].
classifier_proj_size (`int`, *optional*, defaults to 256):
Dimensionality of the projection before token mean-pooling for classification.
tdnn_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 1500)`):
A tuple of integers defining the number of output channels of each 1D convolutional layer in the *TDNN*
module of the *XVector* model. The length of *tdnn_dim* defines the number of *TDNN* layers.
tdnn_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 3, 3, 1, 1)`):
A tuple of integers defining the kernel size of each 1D convolutional layer in the *TDNN* module of the
*XVector* model. The length of *tdnn_kernel* has to match the length of *tdnn_dim*.
tdnn_dilation (`Tuple[int]` or `List[int]`, *optional*, defaults to `(1, 2, 3, 1, 1)`):
A tuple of integers defining the dilation factor of each 1D convolutional layer in *TDNN* module of the
*XVector* model. The length of *tdnn_dilation* has to match the length of *tdnn_dim*.
xvector_output_dim (`int`, *optional*, defaults to 512):
Dimensionality of the *XVector* embedding vectors.
add_adapter (`bool`, *optional*, defaults to `False`):
Whether a convolutional network should be stacked on top of the Wav2Vec2Conformer Encoder. Can be very
useful for warm-starting Wav2Vec2Conformer for SpeechEncoderDecoder models.
adapter_kernel_size (`int`, *optional*, defaults to 3):
Kernel size of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
adapter_stride (`int`, *optional*, defaults to 2):
Stride of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
num_adapter_layers (`int`, *optional*, defaults to 3):
Number of convolutional layers that should be used in the adapter network. Only relevant if `add_adapter is
True`.
output_hidden_size (`int`, *optional*):
Dimensionality of the encoder output layer. If not defined, this defaults to *hidden-size*. Only relevant
if `add_adapter is True`.
position_embeddings_type (`str`, *optional*, defaults to `"relative"`):
Can be specified to `relative` or `rotary` for relative or rotary position embeddings respectively. If left
`None` no relative position embedding is applied.
rotary_embedding_base (`int`, *optional*, defaults to 10000):
If `"rotary"` position embeddings are used, defines the size of the embedding base.
max_source_positions (`int`, *optional*, defaults to 5000):
if `"relative"` position embeddings are used, defines the maximum source input positions.
conv_depthwise_kernel_size (`int`, *optional*, defaults to 31):
Kernel size of convolutional depthwise 1D layer in Conformer blocks.
conformer_conv_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all convolutional layers in Conformer blocks.
Example:
```python
>>> from transformers import Wav2Vec2ConformerConfig, Wav2Vec2ConformerModel
>>> # Initializing a Wav2Vec2Conformer facebook/wav2vec2-conformer-rel-pos-large style configuration
>>> configuration = Wav2Vec2ConformerConfig()
>>> # Initializing a model (with random weights) from the facebook/wav2vec2-conformer-rel-pos-large style configuration
>>> model = Wav2Vec2ConformerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "wav2vec2-conformer"
def __init__(
self,
vocab_size=None,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout=0.1,
activation_dropout=0.1,
attention_dropout=0.1,
feat_proj_dropout=0.0,
feat_quantizer_dropout=0.0,
final_dropout=0.1,
layerdrop=0.1,
initializer_range=0.02,
layer_norm_eps=1e-5,
feat_extract_norm="group",
feat_extract_activation="gelu",
conv_dim=(512, 512, 512, 512, 512, 512, 512),
conv_stride=(5, 2, 2, 2, 2, 2, 2),
conv_kernel=(10, 3, 3, 3, 3, 2, 2),
conv_bias=False,
num_conv_pos_embeddings=128,
num_conv_pos_embedding_groups=16,
apply_spec_augment=True,
mask_time_prob=0.05,
mask_time_length=10,
mask_time_min_masks=2,
mask_feature_prob=0.0,
mask_feature_length=10,
mask_feature_min_masks=0,
num_codevectors_per_group=320,
num_codevector_groups=2,
contrastive_logits_temperature=0.1,
num_negatives=100,
codevector_dim=256,
proj_codevector_dim=256,
diversity_loss_weight=0.1,
ctc_loss_reduction="sum",
ctc_zero_infinity=False,
use_weighted_layer_sum=False,
classifier_proj_size=256,
tdnn_dim=(512, 512, 512, 512, 1500),
tdnn_kernel=(5, 3, 3, 1, 1),
tdnn_dilation=(1, 2, 3, 1, 1),
xvector_output_dim=512,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
add_adapter=False,
adapter_kernel_size=3,
adapter_stride=2,
num_adapter_layers=3,
output_hidden_size=None,
position_embeddings_type="relative",
rotary_embedding_base=10000,
max_source_positions=5000,
conv_depthwise_kernel_size=31,
conformer_conv_dropout=0.1,
**kwargs,
):
super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id)
self.hidden_size = hidden_size
self.feat_extract_norm = feat_extract_norm
self.feat_extract_activation = feat_extract_activation
self.conv_dim = list(conv_dim)
self.conv_stride = list(conv_stride)
self.conv_kernel = list(conv_kernel)
self.conv_bias = conv_bias
self.num_conv_pos_embeddings = num_conv_pos_embeddings
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
self.num_feat_extract_layers = len(self.conv_dim)
self.num_hidden_layers = num_hidden_layers
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.num_attention_heads = num_attention_heads
self.hidden_dropout = hidden_dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.feat_proj_dropout = feat_proj_dropout
self.final_dropout = final_dropout
self.layerdrop = layerdrop
self.layer_norm_eps = layer_norm_eps
self.initializer_range = initializer_range
self.vocab_size = vocab_size
self.use_weighted_layer_sum = use_weighted_layer_sum
self.max_source_positions = max_source_positions
self.position_embeddings_type = position_embeddings_type
self.rotary_embedding_base = rotary_embedding_base
if (
(len(self.conv_stride) != self.num_feat_extract_layers)
or (len(self.conv_kernel) != self.num_feat_extract_layers)
or (len(self.conv_dim) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,"
f" `len(config.conv_kernel) = {len(self.conv_kernel)}`."
)
# Conformer-block related
self.conv_depthwise_kernel_size = conv_depthwise_kernel_size
self.conformer_conv_dropout = conformer_conv_dropout
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
self.apply_spec_augment = apply_spec_augment
self.mask_time_prob = mask_time_prob
self.mask_time_length = mask_time_length
self.mask_time_min_masks = mask_time_min_masks
self.mask_feature_prob = mask_feature_prob
self.mask_feature_length = mask_feature_length
self.mask_feature_min_masks = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
self.num_codevectors_per_group = num_codevectors_per_group
self.num_codevector_groups = num_codevector_groups
self.contrastive_logits_temperature = contrastive_logits_temperature
self.feat_quantizer_dropout = feat_quantizer_dropout
self.num_negatives = num_negatives
self.codevector_dim = codevector_dim
self.proj_codevector_dim = proj_codevector_dim
self.diversity_loss_weight = diversity_loss_weight
# ctc loss
self.ctc_loss_reduction = ctc_loss_reduction
self.ctc_zero_infinity = ctc_zero_infinity
# adapter
self.add_adapter = add_adapter
self.adapter_kernel_size = adapter_kernel_size
self.adapter_stride = adapter_stride
self.num_adapter_layers = num_adapter_layers
self.output_hidden_size = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
self.classifier_proj_size = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
self.tdnn_dim = list(tdnn_dim)
self.tdnn_kernel = list(tdnn_kernel)
self.tdnn_dilation = list(tdnn_dilation)
self.xvector_output_dim = xvector_output_dim
@property
def inputs_to_logits_ratio(self):
return functools.reduce(operator.mul, self.conv_stride, 1)
__all__ = ["Wav2Vec2ConformerConfig"]
|
transformers/src/transformers/models/wav2vec2_conformer/configuration_wav2vec2_conformer.py/0
|
{
"file_path": "transformers/src/transformers/models/wav2vec2_conformer/configuration_wav2vec2_conformer.py",
"repo_id": "transformers",
"token_count": 8163
}
| 178 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Feature extractor class for Whisper
"""
from typing import List, Optional, Union
import numpy as np
from ... import is_torch_available
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
class WhisperFeatureExtractor(SequenceFeatureExtractor):
r"""
Constructs a Whisper feature extractor.
This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains
most of the main methods. Users should refer to this superclass for more information regarding those methods.
This class extracts mel-filter bank features from raw speech using a custom numpy implementation of the `Short Time
Fourier Transform` which should match pytorch's `torch.stft` equivalent.
Args:
feature_size (`int`, *optional*, defaults to 80):
The feature dimension of the extracted features.
sampling_rate (`int`, *optional*, defaults to 16000):
The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
hop_length (`int`, *optional*, defaults to 160):
Length of the overlaping windows for the STFT used to obtain the Mel Frequency coefficients.
chunk_length (`int`, *optional*, defaults to 30):
The maximum number of chuncks of `sampling_rate` samples used to trim and pad longer or shorter audio
sequences.
n_fft (`int`, *optional*, defaults to 400):
Size of the Fourier transform.
padding_value (`float`, *optional*, defaults to 0.0):
Padding value used to pad the audio. Should correspond to silences.
"""
model_input_names = ["input_features"]
def __init__(
self,
feature_size=80,
sampling_rate=16000,
hop_length=160,
chunk_length=30,
n_fft=400,
padding_value=0.0,
return_attention_mask=False, # pad inputs to max length with silence token (zero) and no attention mask
**kwargs,
):
super().__init__(
feature_size=feature_size,
sampling_rate=sampling_rate,
padding_value=padding_value,
return_attention_mask=return_attention_mask,
**kwargs,
)
self.n_fft = n_fft
self.hop_length = hop_length
self.chunk_length = chunk_length
self.n_samples = chunk_length * sampling_rate
self.nb_max_frames = self.n_samples // hop_length
self.sampling_rate = sampling_rate
self.mel_filters = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2,
num_mel_filters=feature_size,
min_frequency=0.0,
max_frequency=8000.0,
sampling_rate=sampling_rate,
norm="slaney",
mel_scale="slaney",
)
def _np_extract_fbank_features(self, waveform_batch: np.array, device: str) -> np.ndarray:
"""
Compute the log-mel spectrogram of the provided audio, gives similar results to Whisper's original torch
implementation with 1e-5 tolerance.
"""
if device != "cpu":
raise ValueError(
f"Got device `{device}` for feature extraction, but feature extraction on CUDA accelerator "
"devices requires torch, which is not installed. Either set `device='cpu'`, or "
"install torch according to the official instructions: https://pytorch.org/get-started/locally/"
)
log_spec_batch = []
for waveform in waveform_batch:
log_spec = spectrogram(
waveform,
window_function(self.n_fft, "hann"),
frame_length=self.n_fft,
hop_length=self.hop_length,
power=2.0,
mel_filters=self.mel_filters,
log_mel="log10",
)
log_spec = log_spec[:, :-1]
log_spec = np.maximum(log_spec, log_spec.max() - 8.0)
log_spec = (log_spec + 4.0) / 4.0
log_spec_batch.append(log_spec)
log_spec_batch = np.array(log_spec_batch)
return log_spec_batch
def _torch_extract_fbank_features(self, waveform: np.array, device: str = "cpu") -> np.ndarray:
"""
Compute the log-mel spectrogram of the audio using PyTorch's GPU-accelerated STFT implementation with batching,
yielding results similar to cpu computing with 1e-5 tolerance.
"""
waveform = torch.from_numpy(waveform).type(torch.float32)
window = torch.hann_window(self.n_fft)
if device != "cpu":
waveform = waveform.to(device)
window = window.to(device)
stft = torch.stft(waveform, self.n_fft, self.hop_length, window=window, return_complex=True)
magnitudes = stft[..., :-1].abs() ** 2
mel_filters = torch.from_numpy(self.mel_filters).type(torch.float32)
if device != "cpu":
mel_filters = mel_filters.to(device)
mel_spec = mel_filters.T @ magnitudes
log_spec = torch.clamp(mel_spec, min=1e-10).log10()
if waveform.dim() == 2:
max_val = log_spec.max(dim=2, keepdim=True)[0].max(dim=1, keepdim=True)[0]
log_spec = torch.maximum(log_spec, max_val - 8.0)
else:
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
log_spec = (log_spec + 4.0) / 4.0
if device != "cpu":
log_spec = log_spec.detach().cpu()
return log_spec.numpy()
@staticmethod
# Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm
def zero_mean_unit_var_norm(
input_values: List[np.ndarray], attention_mask: List[np.ndarray], padding_value: float = 0.0
) -> List[np.ndarray]:
"""
Every array in the list is normalized to have zero mean and unit variance
"""
if attention_mask is not None:
attention_mask = np.array(attention_mask, np.int32)
normed_input_values = []
for vector, length in zip(input_values, attention_mask.sum(-1)):
normed_slice = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7)
if length < normed_slice.shape[0]:
normed_slice[length:] = padding_value
normed_input_values.append(normed_slice)
else:
normed_input_values = [(x - x.mean()) / np.sqrt(x.var() + 1e-7) for x in input_values]
return normed_input_values
def __call__(
self,
raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
truncation: bool = True,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_attention_mask: Optional[bool] = None,
padding: Optional[str] = "max_length",
max_length: Optional[int] = None,
sampling_rate: Optional[int] = None,
do_normalize: Optional[bool] = None,
device: Optional[str] = "cpu",
return_token_timestamps: Optional[bool] = None,
**kwargs,
) -> BatchFeature:
"""
Main method to featurize and prepare for the model one or several sequence(s). Implementation uses PyTorch for
the STFT computation if available, otherwise a slower NumPy based one.
Args:
raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float
values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not
stereo, i.e. single float per timestep.
truncation (`bool`, *optional*, default to `True`):
Activates truncation to cut input sequences longer than *max_length* to *max_length*.
pad_to_multiple_of (`int`, *optional*, defaults to None):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128.
return_attention_mask (`bool`, *optional*):
Whether to return the attention mask. If left to the default, will return the attention mask according
to the specific feature_extractor's default.
[What are attention masks?](../glossary#attention-mask)
<Tip>
For Whisper models, `attention_mask` should always be passed for batched inference, to avoid subtle
bugs.
</Tip>
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
sampling_rate (`int`, *optional*):
The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
`sampling_rate` at the forward call to prevent silent errors and allow automatic speech recognition
pipeline.
padding_value (`float`, *optional*, defaults to 0.0):
The value that is used to fill the padding values / vectors.
do_normalize (`bool`, *optional*, defaults to `False`):
Whether or not to zero-mean unit-variance normalize the input. Normalizing can help to significantly
improve the performance of the model.
device (`str`, *optional*, defaults to `'cpu'`):
Specifies the device for computation of the log-mel spectrogram of audio signals in the
`_torch_extract_fbank_features` method. (e.g., "cpu", "cuda")
return_token_timestamps (`bool`, *optional*, defaults to `None`):
Whether or not to return the number of frames of the input raw_speech.
These num_frames can be used by the model to compute word level timestamps.
"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a"
f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input"
f" was sampled with {self.sampling_rate} and not {sampling_rate}."
)
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug."
)
is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
if is_batched_numpy and len(raw_speech.shape) > 2:
raise ValueError(f"Only mono-channel audio is supported for input to {self}")
is_batched = is_batched_numpy or (
isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
)
if is_batched:
raw_speech = [np.asarray([speech], dtype=np.float32).T for speech in raw_speech]
elif not is_batched and not isinstance(raw_speech, np.ndarray):
raw_speech = np.asarray(raw_speech, dtype=np.float32)
elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64):
raw_speech = raw_speech.astype(np.float32)
# always return batch
if not is_batched:
raw_speech = [np.asarray([raw_speech]).T]
batched_speech = BatchFeature({"input_features": raw_speech})
# convert into correct format for padding
padded_inputs = self.pad(
batched_speech,
padding=padding,
max_length=max_length if max_length else self.n_samples,
truncation=truncation,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask or do_normalize,
)
# zero-mean and unit-variance normalization
if do_normalize:
padded_inputs["input_features"] = self.zero_mean_unit_var_norm(
padded_inputs["input_features"],
attention_mask=padded_inputs["attention_mask"],
padding_value=self.padding_value,
)
padded_inputs["input_features"] = np.stack(padded_inputs["input_features"], axis=0)
# make sure list is in array format
input_features = padded_inputs.get("input_features").transpose(2, 0, 1)
extract_fbank_features = (
self._torch_extract_fbank_features if is_torch_available() else self._np_extract_fbank_features
)
input_features = extract_fbank_features(input_features[0], device)
if isinstance(input_features[0], List):
padded_inputs["input_features"] = [np.asarray(feature, dtype=np.float32) for feature in input_features]
else:
padded_inputs["input_features"] = input_features
if return_attention_mask:
# rescale from sample (48000) to feature (3000)
padded_inputs["attention_mask"] = padded_inputs["attention_mask"][:, :: self.hop_length]
if return_token_timestamps is not None:
padded_inputs["num_frames"] = [len(raw_speech_i) // self.hop_length for raw_speech_i in raw_speech]
if return_tensors is not None:
padded_inputs = padded_inputs.convert_to_tensors(return_tensors)
return padded_inputs
__all__ = ["WhisperFeatureExtractor"]
|
transformers/src/transformers/models/whisper/feature_extraction_whisper.py/0
|
{
"file_path": "transformers/src/transformers/models/whisper/feature_extraction_whisper.py",
"repo_id": "transformers",
"token_count": 6313
}
| 179 |
# coding=utf-8
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Flax XGLM model."""
import math
import random
from functools import partial
from typing import Optional, Tuple
import flax.linen as nn
import jax
import jax.numpy as jnp
import numpy as np
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from jax.random import PRNGKey
from ...modeling_flax_outputs import (
FlaxBaseModelOutputWithPastAndCrossAttentions,
FlaxCausalLMOutputWithCrossAttentions,
)
from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_xglm import XGLMConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/xglm-564M"
_CONFIG_FOR_DOC = "XGLMConfig"
XGLM_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a Flax Linen
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`XGLMConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
`jax.numpy.bfloat16` (on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
"""
XGLM_INPUTS_DOCSTRING = r"""
Args:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
def create_sinusoidal_positions(n_pos, dim, padding_idx=1):
half_dim = dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = np.exp(np.arange(half_dim) * -emb)
emb = np.expand_dims(np.arange(n_pos), 1) * np.expand_dims(emb, 0)
emb = np.concatenate([np.sin(emb), np.cos(emb)], 1)
emb = np.reshape(emb, (n_pos, dim))
if padding_idx is not None:
emb[padding_idx, :] = 0
return jnp.array(emb)
class FlaxXGLMAttention(nn.Module):
config: XGLMConfig
embed_dim: int
num_heads: int
dropout: float = 0.0
causal: bool = False
bias: bool = True
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self) -> None:
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} "
f"and `num_heads`: {self.num_heads})."
)
dense = partial(
nn.Dense,
self.embed_dim,
use_bias=self.bias,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()
self.out_proj = dense()
self.dropout_layer = nn.Dropout(rate=self.dropout)
if self.causal:
self.causal_mask = make_causal_mask(
jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
)
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
@nn.compact
def _concatenate_to_cache(self, key, value, query, attention_mask):
"""
This function takes projected key, value states from a single input token and concatenates the states to cached
states from previous steps. This function is slighly adapted from the official Flax repository:
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
"""
# detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable("cache", "cached_key")
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
# update key, value caches with our new 1d spatial slices
cur_index = cache_index.value
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = lax.dynamic_update_slice(cached_key.value, key, indices)
value = lax.dynamic_update_slice(cached_value.value, value, indices)
cached_key.value = key
cached_value.value = value
num_updated_cache_vectors = query.shape[1]
cache_index.value = cache_index.value + num_updated_cache_vectors
# causal mask for cached decoder self-attention: our single query position should only attend
# to those key positions that have already been generated and cached, not the remaining zero elements.
pad_mask = jnp.broadcast_to(
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
)
attention_mask = combine_masks(pad_mask, attention_mask)
return key, value, attention_mask
def __call__(
self,
hidden_states: jnp.ndarray,
key_value_states: Optional[jnp.ndarray] = None,
attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
) -> Tuple[jnp.ndarray]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
batch_size = hidden_states.shape[0]
# get query proj
query_states = self.q_proj(hidden_states)
# get key, value proj
if is_cross_attention:
# cross_attentions
key_states = self.k_proj(key_value_states)
value_states = self.v_proj(key_value_states)
else:
# self_attention
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = self._split_heads(query_states)
key_states = self._split_heads(key_states)
value_states = self._split_heads(value_states)
# handle cache prepare causal attention mask
if self.causal:
query_length, key_length = query_states.shape[1], key_states.shape[1]
if self.has_variable("cache", "cached_key"):
mask_shift = self.variables["cache"]["cache_index"]
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
causal_mask = lax.dynamic_slice(
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
)
else:
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
# combine masks if needed
if attention_mask is not None and self.causal:
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
attention_mask = combine_masks(attention_mask, causal_mask)
elif self.causal:
attention_mask = causal_mask
elif attention_mask is not None:
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
key_states, value_states, attention_mask = self._concatenate_to_cache(
key_states, value_states, query_states, attention_mask
)
# Convert the boolean attention mask to an attention bias.
if attention_mask is not None:
# attention mask in the form of attention bias
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
)
else:
attention_bias = None
dropout_rng = None
if not deterministic and self.dropout > 0.0:
dropout_rng = self.make_rng("dropout")
attn_weights = dot_product_attention_weights(
query_states,
key_states,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.dropout,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
precision=None,
)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
attn_output = self._merge_heads(attn_output)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights
class FlaxXGLMDecoderLayer(nn.Module):
config: XGLMConfig
dtype: jnp.dtype = jnp.float32
def setup(self) -> None:
self.embed_dim = self.config.d_model
self.self_attn = FlaxXGLMAttention(
config=self.config,
embed_dim=self.embed_dim,
num_heads=self.config.attention_heads,
dropout=self.config.attention_dropout,
causal=True,
dtype=self.dtype,
)
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
self.activation_fn = ACT2FN[self.config.activation_function]
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
if self.config.add_cross_attention:
self.encoder_attn = FlaxXGLMAttention(
config=self.config,
embed_dim=self.embed_dim,
num_heads=self.config.decoder_attention_heads,
dropout=self.config.attention_dropout,
dtype=self.dtype,
)
self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
self.fc1 = nn.Dense(
self.config.ffn_dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.fc2 = nn.Dense(
self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
)
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
# Copied from transformers.models.mbart.modeling_flax_mbart.FlaxMBartDecoderLayer.__call__
def __call__(
self,
hidden_states: jnp.ndarray,
attention_mask: jnp.ndarray,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
output_attentions: bool = True,
deterministic: bool = True,
) -> Tuple[jnp.ndarray]:
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache
)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
hidden_states, cross_attn_weights = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs
class FlaxXGLMDecoderLayerCollection(nn.Module):
config: XGLMConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layers = [
FlaxXGLMDecoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_layers)
]
self.layerdrop = self.config.layerdrop
def __call__(
self,
hidden_states,
attention_mask,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if not deterministic and (dropout_probability < self.layerdrop):
layer_outputs = (None, None, None)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
init_cache=init_cache,
output_attentions=output_attentions,
deterministic=deterministic,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
outputs = (hidden_states, all_hidden_states, all_self_attns, all_cross_attentions)
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
class FlaxXGLMModule(nn.Module):
config: XGLMConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
embed_dim = self.config.d_model
self.padding_idx = self.config.pad_token_id
self.max_target_positions = self.config.max_position_embeddings
self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0
self.embed_tokens = nn.Embed(
self.config.vocab_size,
embed_dim,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
)
# XGLM is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models don't have this hack
self.offset = 2
self.embed_positions = create_sinusoidal_positions(
self.config.max_position_embeddings + self.offset, embed_dim
)
self.layers = FlaxXGLMDecoderLayerCollection(self.config, self.dtype)
self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
input_shape = input_ids.shape
input_ids = input_ids.reshape(-1, input_shape[-1])
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
# embed positions
position_ids = position_ids + self.offset
positions = jnp.take(self.embed_positions, position_ids, axis=0)
hidden_states = inputs_embeds + positions
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
outputs = self.layers(
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_states = outputs[0]
last_hidden_states = self.layer_norm(last_hidden_states)
hidden_states = None
if output_hidden_states:
hidden_states = outputs[1]
hidden_states = hidden_states[:-1] + (last_hidden_states,)
if not return_dict:
outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:])
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=last_hidden_states,
hidden_states=hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
class FlaxXGLMPreTrainedModel(FlaxPreTrainedModel):
config_class = XGLMConfig
base_model_prefix: str = "model"
module_class: nn.Module = None
def __init__(
self,
config: XGLMConfig,
input_shape: Tuple[int] = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
attention_mask = jnp.ones_like(input_ids)
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
if self.config.add_cross_attention:
encoder_hidden_states = jnp.zeros(input_shape + (self.config.n_embd,))
encoder_attention_mask = attention_mask
module_init_outputs = self.module.init(
rngs,
input_ids,
attention_mask,
position_ids,
encoder_hidden_states,
encoder_attention_mask,
return_dict=False,
)
else:
module_init_outputs = self.module.init(rngs, input_ids, attention_mask, position_ids, return_dict=False)
random_params = module_init_outputs["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
def init_cache(self, batch_size, max_length):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
"""
# init input variables to retrieve cache
input_ids = jnp.ones((batch_size, max_length), dtype="i4")
attention_mask = jnp.ones_like(input_ids, dtype="i4")
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
init_variables = self.module.init(
jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
)
return unfreeze(init_variables["cache"])
@add_start_docstrings_to_model_forward(XGLM_INPUTS_DOCSTRING)
def __call__(
self,
input_ids: jnp.ndarray,
attention_mask: Optional[jnp.ndarray] = None,
position_ids: Optional[jnp.ndarray] = None,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
past_key_values: dict = None,
dropout_rng: PRNGKey = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
if encoder_hidden_states is not None and encoder_attention_mask is None:
batch_size, sequence_length = encoder_hidden_states.shape[:2]
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
# prepare encoder inputs
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
if position_ids is None:
batch_size, sequence_length = input_ids.shape
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed
# down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be
# changed by FlaxXGLMAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
outputs = self.module.apply(
inputs,
input_ids=jnp.array(input_ids, dtype="i4"),
attention_mask=jnp.array(attention_mask, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
mutable=mutable,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past_key_values = outputs
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past_key_values = outputs
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
return outputs
@add_start_docstrings(
"The bare XGLM Model transformer outputting raw hidden-states without any specific head on top.",
XGLM_START_DOCSTRING,
)
class FlaxXGLMModel(FlaxXGLMPreTrainedModel):
module_class = FlaxXGLMModule
append_call_sample_docstring(
FlaxXGLMModel,
_CHECKPOINT_FOR_DOC,
FlaxBaseModelOutputWithPastAndCrossAttentions,
_CONFIG_FOR_DOC,
)
class FlaxXGLMForCausalLMModule(nn.Module):
config: XGLMConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.model = FlaxXGLMModule(self.config, self.dtype)
self.lm_head = nn.Dense(
self.config.vocab_size,
use_bias=False,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
outputs = self.model(
input_ids,
attention_mask,
position_ids,
encoder_hidden_states,
encoder_attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = self.model.variables["params"]["embed_tokens"]["embedding"]
lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
else:
lm_logits = self.lm_head(hidden_states)
if not return_dict:
return (lm_logits,) + outputs[1:]
return FlaxCausalLMOutputWithCrossAttentions(
logits=lm_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@add_start_docstrings(
"""
The XGLM Model transformer with a language modeling head on top (linear layer with weights tied to the input
embeddings).
""",
XGLM_START_DOCSTRING,
)
class FlaxXGLMForCausalLM(FlaxXGLMPreTrainedModel):
module_class = FlaxXGLMForCausalLMModule
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
# initializing the cache
batch_size, seq_length = input_ids.shape
past_key_values = self.init_cache(batch_size, max_length)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since GPT2 uses a causal mask, those positions are masked anyways.
# Thus we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if attention_mask is not None:
position_ids = attention_mask.cumsum(axis=-1) - 1
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
else:
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
return {
"past_key_values": past_key_values,
"attention_mask": extended_attention_mask,
"position_ids": position_ids,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
return model_kwargs
append_call_sample_docstring(
FlaxXGLMForCausalLM,
_CHECKPOINT_FOR_DOC,
FlaxCausalLMOutputWithCrossAttentions,
_CONFIG_FOR_DOC,
)
__all__ = ["FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel"]
|
transformers/src/transformers/models/xglm/modeling_flax_xglm.py/0
|
{
"file_path": "transformers/src/transformers/models/xglm/modeling_flax_xglm.py",
"repo_id": "transformers",
"token_count": 14649
}
| 180 |
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
"""Tokenization classes for XLM-RoBERTa model."""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
SPIECE_UNDERLINE = "▁"
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"}
class XLMRobertaTokenizer(PreTrainedTokenizer):
"""
Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on
[SentencePiece](https://github.com/google/sentencepiece).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"<s>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
sp_model_kwargs (`dict`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
Attributes:
sp_model (`SentencePieceProcessor`):
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="<unk>",
pad_token="<pad>",
mask_token="<mask>",
sp_model_kwargs: Optional[Dict[str, Any]] = None,
**kwargs,
) -> None:
# Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(str(vocab_file))
self.vocab_file = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
self.fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
self.fairseq_offset = 1
self.fairseq_tokens_to_ids["<mask>"] = len(self.sp_model) + self.fairseq_offset
self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
sp_model_kwargs=self.sp_model_kwargs,
**kwargs,
)
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
return state
def __setstate__(self, d):
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An XLM-RoBERTa sequence has the following format:
- single sequence: `<s> X </s>`
- pair of sequences: `<s> A </s></s> B </s>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does
not make use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
@property
def vocab_size(self):
return len(self.sp_model) + self.fairseq_offset + 1 # Add the <mask> token
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def _tokenize(self, text: str) -> List[str]:
# TODO check if the t5/llama PR also applies here
return self.sp_model.encode(text, out_type=str)
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
spm_id = self.sp_model.PieceToId(token)
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (strings for sub-words) in a single string."""
out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
return out_string
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)
__all__ = ["XLMRobertaTokenizer"]
|
transformers/src/transformers/models/xlm_roberta/tokenization_xlm_roberta.py/0
|
{
"file_path": "transformers/src/transformers/models/xlm_roberta/tokenization_xlm_roberta.py",
"repo_id": "transformers",
"token_count": 5416
}
| 181 |
# coding=utf-8
# Copyright 2023 Meta AI Team and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch X-MOD model."""
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN, gelu
from ...generation import GenerationMixin
from ...modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
BaseModelOutputWithPoolingAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
MaskedLMOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_xmod import XmodConfig
logger = logging.get_logger(__name__)
# Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->Xmod
class XmodEmbeddings(nn.Module):
"""
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
"""
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
self.register_buffer(
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
)
# End copy
self.padding_idx = config.pad_token_id
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
)
def forward(
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
):
if position_ids is None:
if input_ids is not None:
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
else:
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
"""
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
Args:
inputs_embeds: torch.Tensor
Returns: torch.Tensor
"""
input_shape = inputs_embeds.size()[:-1]
sequence_length = input_shape[1]
position_ids = torch.arange(
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
)
return position_ids.unsqueeze(0).expand(input_shape)
# Copied from transformers.models.roberta.modeling_roberta.RobertaSelfAttention with Roberta->Xmod
class XmodSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
use_cache = past_key_value is not None
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
if use_cache:
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
-1, 1
)
else:
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in XmodModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
class XmodSelfOutput(nn.Module):
# Copied from transformers.models.roberta.modeling_roberta.RobertaSelfOutput.__init__
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states + input_tensor
return hidden_states
class XmodAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self = XmodSelfAttention(config, position_embedding_type=position_embedding_type)
self.output = XmodSelfOutput(config)
self.pruned_heads = set()
self.pre_norm = config.pre_norm
# Copied from transformers.models.roberta.modeling_roberta.RobertaAttention.prune_heads
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
residual = hidden_states
if self.pre_norm:
hidden_states = self.output.LayerNorm(hidden_states)
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], residual)
if not self.pre_norm:
attention_output = self.output.LayerNorm(attention_output)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.roberta.modeling_roberta.RobertaIntermediate
class XmodIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class XmodAdapter(nn.Module):
def __init__(self, config):
super().__init__()
self.bottleneck_size = config.hidden_size // config.adapter_reduction_factor
self.dense1 = nn.Linear(config.hidden_size, self.bottleneck_size)
self.dense2 = nn.Linear(self.bottleneck_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.adapter_act_fn = ACT2FN[config.hidden_act]
else:
self.adapter_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense1(hidden_states)
hidden_states = self.adapter_act_fn(hidden_states)
hidden_states = self.dense2(hidden_states)
return hidden_states
class XmodOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.ln_before_adapter = config.ln_before_adapter
self.dropout = nn.Dropout(config.hidden_dropout_prob)
if config.adapter_layer_norm:
self.adapter_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
else:
self.adapter_layer_norm = None
self.adapter_reuse_layer_norm = config.adapter_reuse_layer_norm
self.adapter_modules = nn.ModuleDict({})
for language in config.languages:
self.adapter_modules[str(language)] = XmodAdapter(config)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor, lang_ids: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states + input_tensor
hidden_states = self.lang_adapter(lang_ids, hidden_states)
return hidden_states
def lang_adapter(self, lang_ids: torch.Tensor, hidden_states: torch.Tensor):
# Process subsequent samples with the same lang_id in parallel
lang_ids, lang_lengths = torch.unique_consecutive(lang_ids, return_counts=True)
if not self.ln_before_adapter:
residual = hidden_states
if self.adapter_layer_norm is not None:
hidden_states = self.adapter_layer_norm(hidden_states)
elif self.adapter_reuse_layer_norm:
hidden_states = self.LayerNorm(hidden_states)
if self.ln_before_adapter:
residual = hidden_states
split_hidden_states = torch.split(hidden_states, lang_lengths.tolist(), 0)
lang_wise_outputs = []
for i, (lang_id, split_hidden_state) in enumerate(zip(lang_ids, split_hidden_states)):
lang = list(self.adapter_modules.keys())[int(lang_id.item())]
lang_wise_outputs.append(self.adapter_modules[lang](split_hidden_state))
hidden_states = torch.cat(lang_wise_outputs, 0)
hidden_states = self.dropout(hidden_states)
hidden_states += residual
return hidden_states
class XmodLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = XmodAttention(config)
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = XmodAttention(config, position_embedding_type="absolute")
self.intermediate = XmodIntermediate(config)
self.output = XmodOutput(config)
self.pre_norm = config.pre_norm
def forward(
self,
hidden_states: torch.Tensor,
lang_ids: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
" by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
cross_attn_past_key_value,
output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
residual = attention_output
if self.pre_norm:
attention_output = self.output.LayerNorm(attention_output)
intermediate_output = apply_chunking_to_forward(
self.feed_forward_chunk,
self.chunk_size_feed_forward,
self.seq_len_dim,
attention_output,
)
layer_output = self.output(intermediate_output, residual, lang_ids)
if not self.pre_norm:
layer_output = self.output.LayerNorm(layer_output)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
return self.intermediate(attention_output)
class XmodEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([XmodLayer(config) for _ in range(config.num_hidden_layers)])
self.is_pre_norm = config.pre_norm
if self.is_pre_norm:
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
lang_ids: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
lang_ids,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
lang_ids,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if self.is_pre_norm:
hidden_states = self.LayerNorm(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.roberta.modeling_roberta.RobertaPooler
class XmodPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class XmodPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = XmodConfig
base_model_prefix = "roberta"
supports_gradient_checkpointing = True
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def set_default_language(self, language: str):
"""
Set the default language code for the model. This is used when the language is not specified in the input.
Args:
language (`str`): The language code, such as `"en_XX"` or `"de_DE"`.
"""
if language not in self.config.languages:
raise ValueError(
f"{self} does not have an adapter for {language}. Supported languages: {list(self.config.languages)}"
)
self.config.default_language = language
def freeze_embeddings_and_language_adapters(self):
"""
Freeze the embeddings and language adapters of the model. Usually, this is applied before the model is
fine-tuned on a downstream task.
"""
logger.info("Freezing embeddings")
for parameter in self.roberta.embeddings.parameters():
parameter.requires_grad = False
logger.info("Freezing adapters")
for layer in self.roberta.encoder.layer:
if layer.output.adapter_layer_norm is not None:
for parameter in layer.output.adapter_layer_norm.parameters():
parameter.requires_grad = False
for parameter in layer.output.adapter_modules.parameters():
parameter.requires_grad = False
XMOD_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`XmodConfig`]): Model configuration class with all the parameters of the
model. Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
XMOD_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
lang_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of the language adapters that should be activated for each sample, respectively. Default: the index
that corresponds to `self.config.default_language`.
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare X-MOD Model transformer outputting raw hidden-states without any specific head on top.",
XMOD_START_DOCSTRING,
)
class XmodModel(XmodPreTrainedModel):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added between the self-attention layers, following the architecture described in *Attention is
all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser and Illia Polosukhin.
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
.. _*Attention is all you need*: https://arxiv.org/abs/1706.03762
"""
# Copied from transformers.models.clap.modeling_clap.ClapTextModel.__init__ with ClapText->Xmod
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.embeddings = XmodEmbeddings(config)
self.encoder = XmodEncoder(config)
self.pooler = XmodPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.roberta.modeling_roberta.RobertaModel.get_input_embeddings
def get_input_embeddings(self):
return self.embeddings.word_embeddings
# Copied from transformers.models.roberta.modeling_roberta.RobertaModel.set_input_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
# Copied from transformers.models.roberta.modeling_roberta.RobertaModel._prune_heads
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(XMOD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
lang_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors:
of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if lang_ids is None:
if self.config.default_language is None:
raise ValueError("Input language unknown. Please call `XmodPreTrainedModel.set_default_language()`")
adapter_languages = list(self.encoder.layer[0].output.adapter_modules.keys())
default_lang_id = adapter_languages.index(self.config.default_language)
lang_ids = default_lang_id * torch.ones(batch_size, device=device)
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
encoder_outputs = self.encoder(
embedding_output,
lang_ids=lang_ids,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
@add_start_docstrings(
"X-MOD Model with a `language modeling` head on top for CLM fine-tuning.",
XMOD_START_DOCSTRING,
)
class XmodForCausalLM(XmodPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
# Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM.__init__ with Roberta->Xmod
def __init__(self, config):
super().__init__(config)
if not config.is_decoder:
logger.warning("If you want to use `XmodLMHeadModel` as a standalone, add `is_decoder=True.`")
self.roberta = XmodModel(config, add_pooling_layer=False)
self.lm_head = XmodLMHead(config)
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM.get_output_embeddings
def get_output_embeddings(self):
return self.lm_head.decoder
# Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM.set_output_embeddings
def set_output_embeddings(self, new_embeddings):
self.lm_head.decoder = new_embeddings
@add_start_docstrings_to_model_forward(XMOD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
lang_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
past_key_values: Tuple[Tuple[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
Returns: `transformers.modeling_outputs.CausalLMOutputWithCrossAttentions` or `tuple(torch.FloatTensor)`
Example:
```python
>>> from transformers import AutoTokenizer, XmodForCausalLM, AutoConfig
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/xlm-roberta-base")
>>> config = AutoConfig.from_pretrained("facebook/xmod-base")
>>> config.is_decoder = True
>>> model = XmodForCausalLM.from_pretrained("facebook/xmod-base", config=config)
>>> model.set_default_language("en_XX")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
outputs = self.roberta(
input_ids,
lang_ids=lang_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
lm_loss = None
if labels is not None:
# we are doing next-token prediction; shift prediction scores and input ids by one
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
labels = labels[:, 1:].contiguous()
loss_fct = CrossEntropyLoss()
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=lm_loss,
logits=prediction_scores,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
# Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM._reorder_cache
def _reorder_cache(self, past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
@add_start_docstrings(
"""X-MOD Model with a `language modeling` head on top.""",
XMOD_START_DOCSTRING,
)
class XmodForMaskedLM(XmodPreTrainedModel):
_tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
# Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM.__init__ with Roberta->Xmod
def __init__(self, config):
super().__init__(config)
if config.is_decoder:
logger.warning(
"If you want to use `XmodForMaskedLM` make sure `config.is_decoder=False` for "
"bi-directional self-attention."
)
self.roberta = XmodModel(config, add_pooling_layer=False)
self.lm_head = XmodLMHead(config)
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM.get_output_embeddings
def get_output_embeddings(self):
return self.lm_head.decoder
# Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM.set_output_embeddings
def set_output_embeddings(self, new_embeddings):
self.lm_head.decoder = new_embeddings
@add_start_docstrings_to_model_forward(XMOD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
lang_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
kwargs (`Dict[str, any]`, *optional*, defaults to *{}*):
Used to hide legacy arguments that have been deprecated.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.roberta(
input_ids,
lang_ids=lang_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# Copied from transformers.models.roberta.modeling_roberta.RobertaLMHead
class XmodLMHead(nn.Module):
"""Roberta Head for masked language modeling."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
self.decoder.bias = self.bias
def forward(self, features, **kwargs):
x = self.dense(features)
x = gelu(x)
x = self.layer_norm(x)
# project back to size of vocabulary with bias
x = self.decoder(x)
return x
def _tie_weights(self):
# To tie those two weights if they get disconnected (on TPU or when the bias is resized)
# For accelerate compatibility and to not break backward compatibility
if self.decoder.bias.device.type == "meta":
self.decoder.bias = self.bias
else:
self.bias = self.decoder.bias
@add_start_docstrings(
"""
X-MOD Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
output) e.g. for GLUE tasks.
""",
XMOD_START_DOCSTRING,
)
class XmodForSequenceClassification(XmodPreTrainedModel):
# Copied from transformers.models.roberta.modeling_roberta.RobertaForSequenceClassification.__init__ with Roberta->Xmod
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.roberta = XmodModel(config, add_pooling_layer=False)
self.classifier = XmodClassificationHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(XMOD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
lang_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.roberta(
input_ids,
lang_ids=lang_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
X-MOD Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
XMOD_START_DOCSTRING,
)
class XmodForMultipleChoice(XmodPreTrainedModel):
# Copied from transformers.models.roberta.modeling_roberta.RobertaForMultipleChoice.__init__ with Roberta->Xmod
def __init__(self, config):
super().__init__(config)
self.roberta = XmodModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(XMOD_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
lang_ids: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
flat_lang_ids = lang_ids.repeat(input_ids.size(0) * input_ids.size(1)) if lang_ids is not None else None
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
flat_inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.roberta(
flat_input_ids,
lang_ids=flat_lang_ids,
position_ids=flat_position_ids,
token_type_ids=flat_token_type_ids,
attention_mask=flat_attention_mask,
head_mask=head_mask,
inputs_embeds=flat_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
X-MOD Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
XMOD_START_DOCSTRING,
)
class XmodForTokenClassification(XmodPreTrainedModel):
# Copied from transformers.models.roberta.modeling_roberta.RobertaForTokenClassification.__init__ with Roberta->Xmod
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.roberta = XmodModel(config, add_pooling_layer=False)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(XMOD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
lang_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.roberta(
input_ids,
lang_ids=lang_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# Copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead
class XmodClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
@add_start_docstrings(
"""
X-MOD Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
XMOD_START_DOCSTRING,
)
class XmodForQuestionAnswering(XmodPreTrainedModel):
# Copied from transformers.models.roberta.modeling_roberta.RobertaForQuestionAnswering.__init__ with Roberta->Xmod
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.roberta = XmodModel(config, add_pooling_layer=False)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(XMOD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
lang_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.roberta(
input_ids,
lang_ids=lang_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
are ignored. This is modified from fairseq's `utils.make_positions`.
Args:
x: torch.Tensor x:
Returns: torch.Tensor
"""
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = input_ids.ne(padding_idx).int()
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
return incremental_indices.long() + padding_idx
__all__ = [
"XmodForCausalLM",
"XmodForMaskedLM",
"XmodForMultipleChoice",
"XmodForQuestionAnswering",
"XmodForSequenceClassification",
"XmodForTokenClassification",
"XmodModel",
"XmodPreTrainedModel",
]
|
transformers/src/transformers/models/xmod/modeling_xmod.py/0
|
{
"file_path": "transformers/src/transformers/models/xmod/modeling_xmod.py",
"repo_id": "transformers",
"token_count": 31975
}
| 182 |
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/zamba2/modular_zamba2.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_zamba2.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2024 Zyphra Technologies and the HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import re
from itertools import cycle
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from ...utils.deprecation import deprecate_kwarg
from ...utils.import_utils import is_causal_conv1d_available, is_mamba_ssm_available
from .configuration_zamba2 import Zamba2Config
if is_mamba_ssm_available():
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined
else:
selective_state_update, mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined = None, None, None
if is_causal_conv1d_available():
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
else:
causal_conv1d_update, causal_conv1d_fn = None, None
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "Zyphra/Zamba2-2.7B"
class Zamba2RMSNormGated(torch.nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states, gate=None):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
if gate is not None:
hidden_states = hidden_states * nn.functional.silu(gate.to(torch.float32))
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
class Zamba2RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Zamba2RMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class Zamba2HybridDynamicCache(DynamicCache):
"""
A dynamic cache that can handle both the attention cache (which has a seq_len dimension) and the mamba cache
(which has a constant shape regardless of seq_len).
This cache has two sets of lists of tensors: `key_cache` and `value_cache` for attention cache and `conv_states`
and `ssm_states` for mamba cache. Each of these lists has `num_layers` tensors. The expected shape for each tensor
For attention layers, `key_cache` and `value_cache` have a shape of `(batch_size, num_heads, seq_len, head_dim)`,
while `conv_states` and `ssm_states` have a shape of `(batch_size, 0)` (empty tensors).
For mamba layers, `key_cache` and `value_cache` have a shape of `(batch_size, 0)` (empty tensors),
while `conv_states` represents the convolution state and has a shape of `(batch_size, d_inner, d_conv)`,
and `ssm_states` represents the ssm state and has a shape of `(batch_size, d_inner, d_state)`.
"""
def __init__(
self, config: Zamba2Config, batch_size: int, dtype: torch.dtype = torch.float16, device: Optional[str] = None
):
self.dtype = dtype
self.layers_block_type = config.layers_block_type
self.has_previous_state = False
self.intermediate_size = int(config.mamba_expand * config.hidden_size)
self.ssm_state_size = config.mamba_d_state
self.conv_kernel_size = config.mamba_d_conv
self.n_mamba_heads = config.n_mamba_heads
self.transformer_layers = []
self._modules = {}
self._parameters = {}
self._buffers = {}
self.conv_states = {}
self.ssm_states = {}
for i in range(config.num_hidden_layers):
self.conv_states[i] = torch.zeros(
batch_size,
self.intermediate_size + 2 * config.mamba_ngroups * config.mamba_d_state,
self.conv_kernel_size,
device=device,
dtype=dtype,
)
self.ssm_states[i] = torch.zeros(
batch_size, self.n_mamba_heads, config.mamba_headdim, self.ssm_state_size, device=device, dtype=dtype
)
if self.layers_block_type[i] == "hybrid":
self.transformer_layers.append(i)
self.key_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
self.value_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
# Update the cache
if self.key_cache[layer_idx].shape[-1] == 0:
self.key_cache[layer_idx] = key_states
self.value_cache[layer_idx] = value_states
else:
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=2)
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=2)
return self.key_cache[layer_idx], self.value_cache[layer_idx]
def reorder_cache(self, beam_idx: torch.LongTensor):
"""Reorders the cache for beam search, given the selected beam indices."""
for layer_idx in range(len(self.key_cache)):
device = self.key_cache[layer_idx].device
self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
device = self.value_cache[layer_idx].device
self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
device = self.conv_states[layer_idx].device
self.conv_states[layer_idx] = self.conv_states[layer_idx].index_select(0, beam_idx.to(device))
device = self.ssm_states[layer_idx].device
self.ssm_states[layer_idx] = self.ssm_states[layer_idx].index_select(0, beam_idx.to(device))
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
# take any layer that contains cache and not empty tensor
layer_idx = self.transformer_layers[0] if layer_idx not in self.transformer_layers else layer_idx
if len(self.key_cache) <= layer_idx or self.key_cache[layer_idx].numel() == 0:
return 0
return self.key_cache[layer_idx].shape[-2]
def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
raise NotImplementedError("Zamba2HybridDynamicCache does not have a legacy cache equivalent.")
@classmethod
def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache":
raise NotImplementedError("Zamba2HybridDynamicCache does not have a legacy cache equivalent.")
def update_conv_state(
self, layer_idx: int, new_conv_state: torch.Tensor, cache_position: torch.LongTensor
) -> torch.Tensor:
conv_state = self.conv_states[layer_idx]
cache_position = cache_position.clamp(0, self.conv_kernel_size - 1)
conv_state = conv_state.roll(shifts=-1, dims=-1)
conv_state[:, :, cache_position] = new_conv_state.to(conv_state.device)
self.conv_states[layer_idx].zero_()
self.conv_states[layer_idx] += conv_state
return self.conv_states[layer_idx]
def reset(self):
self.conv_states.zero_()
self.ssm_states.zero_()
class Zamba2RotaryEmbedding(nn.Module):
def __init__(
self,
config: Zamba2Config,
device=None,
):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
# we cannot use the config here to parameterize because of a factor 2 for the head_dim
inv_freq, self.attention_scaling = self.rope_init_fn(
device=device, base=config.rope_theta, dim=config.attention_head_dim
)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
def _dynamic_frequency_update(self, position_ids, device):
"""
dynamic RoPE layers should recompute `inv_freq` in the following situations:
1 - growing beyond the cached sequence length (allow scaling)
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
"""
seq_len = torch.max(position_ids) + 1
if seq_len > self.max_seq_len_cached: # growth
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
self.max_seq_len_cached = seq_len
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
# This .to() is needed if the model has been moved to a device after being initialized (because
# the buffer is automatically moved, but not the original copy)
self.original_inv_freq = self.original_inv_freq.to(device)
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
self.max_seq_len_cached = self.original_max_seq_len
@torch.no_grad()
def forward(self, x, position_ids):
if "dynamic" in self.rope_type:
self._dynamic_frequency_update(position_ids, device=x.device)
# Core RoPE block
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
device_type = x.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
cos = cos * self.attention_scaling
sin = sin * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class Zamba2Attention(nn.Module):
"""
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
and "Generating Long Sequences with Sparse Transformers".
Adapted from transformers.models.mistral.modeling_mistral.MistralAttention:
The input dimension here is attention_hidden_size = 2 * hidden_size, and head_dim = attention_hidden_size // num_heads.
The extra factor of 2 comes from the input being the concatenation of original_hidden_states with the output of the previous (mamba) layer
(see fig. 2 in https://arxiv.org/pdf/2405.16712).
Additionally, replaced
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) with
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim/2)
Multi-headed attention from 'Attention Is All You Need' paper.
Adapted from transformers.models.mistral.modeling_mistral.MistralAttention:
The input dimension here is attention_hidden_size = 2 * hidden_size, and head_dim = attention_hidden_size // num_heads.
The extra factor of 2 comes from the input being the concatenation of original_hidden_states with the output of the previous (mamba) layer
(see fig. 2 in https://arxiv.org/pdf/2405.16712).
Additionally, replaced
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) with
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim/2)
Finally, this attention layer contributes to tied transformer blocks aimed to increasing compute without increasing model size. Because this
layer is tied, un-tied adapters (formally the same as LoRA but used in the base model) modules are added to the q, k, v projectors to increase
expressivity with a small memory overhead (see Fig. 2 of https://arxiv.org/pdf/2411.15242).
"""
def __init__(
self,
config: Zamba2Config,
layer_idx: Optional[int] = None,
num_fwd_mem_blocks: int = None,
block_id: int = None,
):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.attention_hidden_size = config.attention_hidden_size
self.head_dim = config.attention_head_dim
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.scaling = (self.head_dim / 2) ** -0.5
self.is_causal = True
self.attention_dropout = config.attention_dropout
self.q_proj = nn.Linear(config.attention_hidden_size, config.num_attention_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(config.attention_hidden_size, config.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(config.attention_hidden_size, config.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
self.num_fwd_mem_blocks = num_fwd_mem_blocks
self.layer_block_map = config.hybrid_layer_ids
self.block_id = block_id
if config.use_shared_attention_adapter:
self.linear_q_adapter_list = nn.ModuleList([])
self.linear_k_adapter_list = nn.ModuleList([])
self.linear_v_adapter_list = nn.ModuleList([])
for i in range(self.num_fwd_mem_blocks):
if i % config.num_mem_blocks == block_id:
linear_q_adapter = nn.Sequential(
nn.Linear(self.attention_hidden_size, self.config.adapter_rank, bias=False),
nn.Linear(self.config.adapter_rank, self.attention_hidden_size, bias=False),
)
linear_k_adapter = nn.Sequential(
nn.Linear(self.attention_hidden_size, self.config.adapter_rank, bias=False),
nn.Linear(self.config.adapter_rank, self.attention_hidden_size, bias=False),
)
linear_v_adapter = nn.Sequential(
nn.Linear(self.attention_hidden_size, self.config.adapter_rank, bias=False),
nn.Linear(self.config.adapter_rank, self.attention_hidden_size, bias=False),
)
else:
linear_q_adapter = nn.Identity()
linear_k_adapter = nn.Identity()
linear_v_adapter = nn.Identity()
self.linear_q_adapter_list.append(linear_q_adapter)
self.linear_k_adapter_list.append(linear_k_adapter)
self.linear_v_adapter_list.append(linear_v_adapter)
self.layer_dic = {value: index for index, value in enumerate(self.layer_block_map)}
def forward(
self,
hidden_states: torch.Tensor,
layer_idx: int,
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Zamba2HybridDynamicCache] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
if self.config.use_shared_attention_adapter:
adapter_layer_idx = self.layer_dic[layer_idx]
query_states = query_states + self.linear_q_adapter_list[adapter_layer_idx](hidden_states)
key_states = key_states + self.linear_k_adapter_list[adapter_layer_idx](hidden_states)
value_states = value_states + self.linear_v_adapter_list[adapter_layer_idx](hidden_states)
query_states = query_states.view(hidden_shape).transpose(1, 2)
key_states = key_states.view(hidden_shape).transpose(1, 2)
value_states = value_states.view(hidden_shape).transpose(1, 2)
if self.config.use_mem_rope:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
key_states, value_states = past_key_value.update(key_states, value_states, layer_idx)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
# Helper methods for segment sum computation
def pad_tensor_by_size(input_tensor: torch.Tensor, pad_size: int):
"""
Padding x tensor with `pad_size` on the seq_len dim (dim=1)
Assumes that we only have tensors of either size 4 or 3
"""
pad_shape = (0, 0, 0, 0, 0, pad_size, 0, 0) if len(input_tensor.shape) == 4 else (0, 0, 0, pad_size, 0, 0)
return torch.nn.functional.pad(input_tensor, pad_shape, mode="constant", value=0)
def reshape_into_chunks(input_tensor, pad_size, chunk_size):
"""
Padding input_tensor with `pad_size` on the seq_len dim (dim=1) and
simultaneously splitting it into chunk sequences.
Assumes that we only have tensors of either size 4 or 3
"""
# [bsz, seq_len, ...] -> [bsz, seq_len multiple of chunk_size, ...]
input_tensor = pad_tensor_by_size(input_tensor, pad_size)
if len(input_tensor.shape) == 3:
# [bsz, seq_len multiple of chunk_size, num_heads] -> [bsz, -1, chunk_size, num_heads]
return input_tensor.reshape(input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2])
else:
# [bsz, seq_len multiple of chunk_size, num_heads, head_dim or state_size] -> [bsz, -1, chunk_size, num_heads, head_dim or state_size]
return input_tensor.reshape(
input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2], input_tensor.shape[3]
)
def segment_sum(input_tensor):
"""
More stable segment sum calculation. Uses cumulative sums and masking instead of direct subtractions.
"""
chunk_size = input_tensor.size(-1)
# 1. expand input tensor to have an additional dimension and repeat along that dimension
# [..., chunk_size] -> [..., chunk_size, chunk_size]
input_tensor = input_tensor[..., None].expand(*input_tensor.size(), chunk_size)
# 2. create a lower triangular mask with the diagonal set to 0 to 0 out elements above diag
mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=-1)
input_tensor = input_tensor.masked_fill(~mask, 0)
# 3. compute actual cumsum
tensor_segsum = torch.cumsum(input_tensor, dim=-2)
# 4. apply mask to keep only the lower triangular part of the cumulative sum result (incl diagonal this time)
mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=0)
tensor_segsum = tensor_segsum.masked_fill(~mask, -torch.inf)
return tensor_segsum
is_fast_path_available = all((selective_state_update, causal_conv1d_fn, causal_conv1d_update))
class Zamba2MambaMixer(nn.Module):
"""
Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`.
A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4,
and is why Mamba is called **selective** state spaces)
"""
def __init__(self, config: Zamba2Config, layer_idx: int = None):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.ssm_state_size = config.mamba_d_state
self.conv_kernel_size = config.mamba_d_conv
self.intermediate_size = int(config.mamba_expand * self.hidden_size)
self.layer_idx = layer_idx
self.use_conv_bias = config.use_conv_bias
self.activation = "silu"
self.act = nn.SiLU()
self.n_groups = config.mamba_ngroups
self.head_dim = config.mamba_headdim
self.num_heads = self.config.n_mamba_heads
self.chunk_size = config.chunk_size
self.time_step_limit = config.time_step_limit
self.time_step_min = config.time_step_min
self.time_step_max = config.time_step_max
self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.ssm_state_size
self.conv1d = nn.Conv1d(
in_channels=self.conv_dim,
out_channels=self.conv_dim,
bias=True,
kernel_size=config.mamba_d_conv,
groups=self.conv_dim,
padding=config.mamba_d_conv - 1,
)
# projection of the input hidden states
projection_size = self.intermediate_size + self.conv_dim + self.num_heads
self.in_proj = nn.Linear(
self.hidden_size,
projection_size,
bias=config.add_bias_linear,
)
# selective projection used to make dt, B and C input dependant
# time step projection (discretization)
# instantiate once and copy inv_dt in init_weights of PretrainedModel
self.dt_bias = nn.Parameter(torch.ones(self.num_heads))
# S4D real initialization. These are not discretized!
# The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded
A = torch.arange(1, self.num_heads + 1)
self.A_log = nn.Parameter(torch.log(A))
self.A_log._no_weight_decay = True
self.norm = Zamba2RMSNormGated(self.intermediate_size, eps=1e-5)
self.D = nn.Parameter(torch.ones(self.num_heads))
self.D._no_weight_decay = True
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.add_bias_linear)
if not is_fast_path_available:
logger.warning_once(
"The fast path is not available because on of `(selective_state_update, causal_conv1d_fn, causal_conv1d_update)`"
" is None. Falling back to the naive implementation. To install follow https://github.com/state-spaces/mamba/#installation and"
" https://github.com/Dao-AILab/causal-conv1d"
)
def cuda_kernels_forward(
self,
hidden_states: torch.Tensor,
cache_params: Optional[Zamba2HybridDynamicCache] = None,
attention_mask: Optional[torch.Tensor] = None,
):
# set up dimensions for reshapes later
batch_size, seq_len, _ = hidden_states.shape
groups_time_state_size = self.n_groups * self.ssm_state_size
d_to_remove = 2 * self.intermediate_size + 2 * self.n_groups * self.ssm_state_size + self.num_heads
# getting projected states from cache if it exists
if cache_params is not None and cache_params.has_previous_state:
in_projected_states = self.in_proj(hidden_states.squeeze(1)) # (B 2D)
d_mlp = (in_projected_states.shape[-1] - d_to_remove) // 2
split_projection_dim = [d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads]
_, _, gate, hidden_states_B_C, dt = torch.split(in_projected_states, split_projection_dim, dim=-1)
hidden_states_B_C = causal_conv1d_update(
hidden_states_B_C,
cache_params.conv_states[self.layer_idx],
self.conv1d.weight.squeeze(1),
self.conv1d.bias,
self.activation,
)
hidden_states, B, C = torch.split(
hidden_states_B_C,
[self.intermediate_size, groups_time_state_size, groups_time_state_size],
dim=-1,
)
A = -torch.exp(self.A_log.float()) # (nheads,)
A = A[:, None, ...][:, :, None].expand(-1, self.head_dim, self.ssm_state_size).to(dtype=torch.float32)
dt = dt[:, :, None].expand(-1, -1, self.head_dim)
dt_bias = self.dt_bias[:, None, ...].expand(-1, self.head_dim)
D = self.D[:, None, ...].expand(-1, self.head_dim)
B = B.view(batch_size, self.n_groups, B.shape[1] // self.n_groups)
C = C.view(batch_size, self.n_groups, C.shape[1] // self.n_groups)
hidden_states_reshaped = hidden_states.view(batch_size, self.num_heads, self.head_dim)
hidden_states = selective_state_update(
cache_params.ssm_states[self.layer_idx],
hidden_states_reshaped,
dt,
A,
B,
C,
D,
z=None,
dt_bias=dt_bias,
dt_softplus=True,
)
hidden_states = hidden_states.view(batch_size, self.num_heads * self.head_dim)
hidden_states = self.norm(hidden_states, gate)
out = self.out_proj(hidden_states)[:, None, ...]
# if no cache is found, calling the kernel
else:
if attention_mask is not None and not torch.all(attention_mask == 1):
# tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66
dtype = hidden_states.dtype
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
# 1. Gated MLP's linear projection
projected_states = self.in_proj(hidden_states)
A = -torch.exp(self.A_log.float()) # (num_heads) or (intermediate_size, state_size)
dt_limit_kwargs = {} if self.time_step_limit is None else {"dt_limit": self.time_step_limit}
if attention_mask is not None:
input_not_masked = torch.all(attention_mask == 1)
else:
input_not_masked = True
if self.training and cache_params is None and input_not_masked:
out, ssm_state = mamba_split_conv1d_scan_combined(
projected_states,
self.conv1d.weight.squeeze(1),
self.conv1d.bias,
self.dt_bias,
A,
D=self.D,
chunk_size=self.chunk_size,
seq_idx=None,
activation=self.activation,
rmsnorm_weight=self.norm.weight,
rmsnorm_eps=self.norm.variance_epsilon,
outproj_weight=self.out_proj.weight,
outproj_bias=self.out_proj.bias,
headdim=self.head_dim,
ngroups=self.n_groups,
norm_before_gate=False,
return_final_states=True,
**dt_limit_kwargs,
)
else:
gate, hidden_states_B_C, time_step = torch.split(
projected_states,
[self.intermediate_size, self.conv_dim, self.num_heads],
dim=-1,
)
# 1D Convolution
if cache_params is not None:
hidden_states_B_C_t = hidden_states_B_C.transpose(1, 2)
conv_state = nn.functional.pad(
hidden_states_B_C_t, (self.conv_kernel_size - hidden_states_B_C_t.shape[-1], 0)
)
cache_params.conv_states[self.layer_idx].copy_(conv_state)
if causal_conv1d_fn is None or self.activation not in ["silu", "swish"]:
hidden_states_B_C = self.act(
self.conv1d(hidden_states_B_C.transpose(1, 2)).transpose(1, 2)[:, :seq_len]
) # (B, L, self.d_inner + 2 * ngroups * d_state)
else:
hidden_states_B_C = causal_conv1d_fn(
x=hidden_states_B_C.transpose(1, 2),
weight=self.conv1d.weight.squeeze(1),
bias=self.conv1d.bias,
activation=self.activation,
).transpose(1, 2)[:, :seq_len]
hidden_states, B, C = torch.split(
hidden_states_B_C,
[self.intermediate_size, groups_time_state_size, groups_time_state_size],
dim=-1,
)
if attention_mask is not None and not torch.all(attention_mask == 1):
# tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66
dtype = hidden_states.dtype
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
scan_output, ssm_state = mamba_chunk_scan_combined(
hidden_states.view(batch_size, seq_len, -1, self.head_dim),
time_step,
A,
B.view(batch_size, seq_len, self.n_groups, -1),
C.view(batch_size, seq_len, self.n_groups, -1),
chunk_size=self.chunk_size,
D=self.D,
z=None,
seq_idx=None,
return_final_states=True,
dt_bias=self.dt_bias,
dt_softplus=True,
**dt_limit_kwargs,
)
if ssm_state is not None and cache_params is not None:
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
scan_output = scan_output.view(batch_size, seq_len, -1)
# Multiply "gate" branch and apply extra normalization layer
scan_output = self.norm(scan_output, gate)
out = self.out_proj(scan_output)
return out
# fmt: off
def torch_forward(self, input_states, cache_params: Optional[Zamba2HybridDynamicCache]=None, attention_mask: Optional[torch.Tensor]=None):
batch_size, seq_len, _ = input_states.shape
dtype = input_states.dtype
# Gated MLP's linear projection
if cache_params is not None and cache_params.has_previous_state:
projected_states = self.in_proj(input_states.squeeze(1))
else:
if attention_mask is not None and not torch.all(attention_mask==1):
# tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66
input_states = (input_states * attention_mask[:, :, None]).to(dtype)
projected_states = self.in_proj(input_states)
d_mlp = (projected_states.shape[-1] - 2 * self.intermediate_size - 2 * self.n_groups * self.ssm_state_size- self.num_heads) // 2
_, _, gate, hidden_states, dt = projected_states.split(
[d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1
)
# Convolution sequence transformation
if cache_params is not None:
ssm_state = cache_params.ssm_states[self.layer_idx].clone()
ssm_state = ssm_state.to(hidden_states.device)
if cache_params.has_previous_state:
gate = gate.unsqueeze(1)
conv_state = cache_params.conv_states[self.layer_idx] # [batch, intermediate_size, conv_kernel_size]
conv_state = torch.roll(conv_state, shifts=-1, dims=-1)
# handle batched generation - states are copied through
conv_state[:, :, -1] = hidden_states[:, 0, :] if hidden_states.ndim == 3 else hidden_states
cache_params.conv_states[self.layer_idx].copy_(conv_state)
hidden_states = torch.sum(conv_state.to(projected_states.device) * self.conv1d.weight[:, 0, :], dim=-1)
if self.use_conv_bias:
hidden_states += self.conv1d.bias
hidden_states = self.act(hidden_states).to(dtype)[:, None, ...] # [batch, 1, intermediate_size] : decoding
else:
hidden_states = hidden_states.transpose(1,2)
conv_state = nn.functional.pad(
hidden_states,
(self.conv_kernel_size - hidden_states.shape[-1], 0)
)
cache_params.conv_states[self.layer_idx].copy_(conv_state)
hidden_states = self.act(self.conv1d(hidden_states).transpose(1,2))[:, :seq_len, :] # [batch, intermediate_size, seq_len]
if attention_mask is not None and not torch.all(attention_mask==1):
dtype = hidden_states.dtype
# tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
else:
ssm_state = torch.zeros(
(batch_size, self.num_heads, self.head_dim, self.ssm_state_size),
device=hidden_states.device, dtype=dtype
)
hidden_states = self.act(self.conv1d(hidden_states.transpose(1, 2))[..., :seq_len].transpose(1, 2))
hidden_states, B, C = torch.split(hidden_states, [self.intermediate_size, self.n_groups * self.ssm_state_size, self.n_groups * self.ssm_state_size], dim=-1)
A = -torch.exp(self.A_log.float()) # [num_heads]
if cache_params is not None and cache_params.has_previous_state:
# Note: there is no need to pad parameter matrices here, as there is just one new token
# for batched generation
dt = dt[:, None, ...] if dt.ndim == 2 else dt[:, 0, :][:, None, ...]
dt = dt.transpose(1, 2).expand(batch_size, dt.shape[-1], self.head_dim)
# [num_heads] -> [num_heads, head_dim]
dt_bias = self.dt_bias[..., None].expand(self.dt_bias.shape[0], self.head_dim)
dt = torch.nn.functional.softplus(dt + dt_bias.to(dt.dtype))
dt = torch.clamp(dt, self.time_step_min) #, self.time_step_max)
A = A[..., None, None].expand(self.num_heads, self.head_dim, self.ssm_state_size).to(dtype=torch.float32)
# [bsz, num_heads, head_dim, state_size]
dA = torch.exp(dt[..., None] * A)
# Discretize B
# [bsz, n_groups * state_size] -> [bsz, n_groups, 1, state_size] ->
# -> [bsz, n_groups, group to head repetition factor, state_size] -> [bsz, num_heads, state_size]
B = B.reshape(batch_size, self.n_groups, -1)[..., None, :]
B = B.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, B.shape[-1]).contiguous()
B = B.reshape(batch_size, -1, B.shape[-1])
# [bsz, num_heads, head_dim, state_size]
dB = dt[..., None] * B[..., None, :]
# Discretize x into dB
# [bsz, intermediate_size] -> [bsz, num_heads, head_dim]
hidden_states = hidden_states.reshape(batch_size, -1, self.head_dim)
dBx = dB * hidden_states[..., None]
# State calculation
cache_params.ssm_states[self.layer_idx].copy_(
cache_params.ssm_states[self.layer_idx] * dA + dBx
)
# Subsequent output
# [bsz, n_groups * state_size] -> [bsz, num_heads, state_size]
C = C.reshape(batch_size, self.n_groups, -1)[..., None, :]
C = C.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, C.shape[-1]).contiguous()
C = C.reshape(batch_size, -1, C.shape[-1])
# [bsz, num_heads, head_dim]
ssm_states = cache_params.ssm_states[self.layer_idx].to(C.dtype) # Shape: [b, h, d, n]
# Reshape ssm_states to merge the first two dimensions
ssm_states_reshaped = ssm_states.view(batch_size * self.num_heads, self.head_dim, self.ssm_state_size) # Shape: [b*h, d, n]
C_reshaped = C.view(batch_size * self.num_heads, self.ssm_state_size, 1) # Shape: [b*h, n, 1]
y = torch.bmm(ssm_states_reshaped, C_reshaped)
y = y.view(batch_size, self.num_heads, self.head_dim)
# D skip connection
# [num_heads] -> [num_heads, head_dim]
D = self.D[..., None].expand(self.D.shape[0], self.head_dim)
y = (y + hidden_states * D).to(y.dtype)
# [bsz, num_heads, head_dim] -> [bsz, 1, intermediate_size]
y = y.reshape(batch_size, -1)[:, None, ...]
else:
# begin ssd naive implementation without einsums
dt = nn.functional.softplus(dt + self.dt_bias)
dt = torch.clamp(dt, self.time_step_min)
hidden_states = hidden_states.reshape(batch_size, seq_len, -1, self.head_dim).float()
B = B.reshape(batch_size, seq_len, -1, self.ssm_state_size).float()
C = C.reshape(batch_size, seq_len, -1, self.ssm_state_size).float()
B = B.repeat(1, 1, self.num_heads // self.n_groups, 1)
C = C.repeat(1, 1, self.num_heads // self.n_groups, 1)
pad_size = (self.chunk_size - seq_len % self.chunk_size) % self.chunk_size
D_residual = self.D[..., None] * pad_tensor_by_size(hidden_states, pad_size)
# Discretize x and A
hidden_states = hidden_states * dt[..., None]
A = A.to(hidden_states.dtype) * dt
# Rearrange into blocks/chunks
hidden_states, A, B, C = [reshape_into_chunks(t, pad_size, self.chunk_size) for t in (hidden_states, A, B, C)]
# [bsz, -1, chunk_size, num_heads] -> [bsz, num_heads, -1, chunk_size]
A = A.permute(0, 3, 1, 2)
A_cumsum = torch.cumsum(A, dim=-1)
# 1. Compute the output for each intra-chunk (diagonal blocks)
# This is the analog of a causal mask
L = torch.exp(segment_sum(A))
# First, contraction of C and B to get G (attention-weights like)
G_intermediate = C[:, :, :, None, :, :] * B[:, :, None, :, : ,:] # shape: (b, c, l, s, h, n)
G = G_intermediate.sum(dim=-1) # shape: (b, c, l, s, h)
# Step 2: Compute M, equivalent to applying attention mask to weights
M_intermediate = G[..., None] * L.permute(0, 2, 3, 4, 1)[..., None]
M = M_intermediate.sum(dim=-1)
# Step 3: Compute Y_diag (apply to values)
Y_diag = (M[..., None] * hidden_states[:, :, None]).sum(3)
# (right term of low-rank factorization of off-diagonal blocks; B terms)
decay_states = torch.exp((A_cumsum[:, :, :, -1:] - A_cumsum))
B_decay_contraction = B * decay_states.permute(0, 2, 3, 1)[..., None]
# permute back B * decay states
states = (B_decay_contraction.permute(0, 1, 3, 2, 4)[..., None] * hidden_states.permute(0, 1, 3, 2, 4)[..., None, :]).sum(dim=3).permute(0, 1, 2, 4, 3)
if cache_params is not None and cache_params.has_previous_state:
previous_states = cache_params.ssm_states[self.layer_idx][:, None, ...]
else:
previous_states = torch.zeros_like(states[:, :1])
states = torch.cat([previous_states, states], dim=1)
decay_chunk = torch.exp(segment_sum(nn.functional.pad(A_cumsum[:, :, :, -1], (1, 0))))
states_permuted = states.permute(0, 2, 1, 3, 4)
result = (decay_chunk[..., None, None] * states_permuted[:, :, None, ...]).sum(dim=2)
new_states = result.permute(0, 2, 1, 3, 4)
states, ssm_state = new_states[:, :-1], new_states[:, -1]
# Compute state -> output conversion per chunk
# (left term of low-rank factorization of off-diagonal blocks; C terms)
state_decay_out = torch.exp(A_cumsum)
# compute Yoff
C_times_states = (C[..., None, :] * states[:, :, None, ...])
state_decay_out_permuted = state_decay_out.permute(0, 2, 3, 1)
Y_off = (C_times_states.sum(-1) * state_decay_out_permuted[..., None])
# Add output of intra-chunk and inter-chunk terms (diagonal and off-diagonal blocks)
y = Y_diag + Y_off
# [bsz, -1, self.chunk_size, num_heads, head_dim] -> [bsz, (padded) seq_len, num_heads, head_dim]
y = y.reshape(batch_size, -1, self.num_heads, self.head_dim)
y = y + D_residual
# Cutting off padded chunks
if pad_size > 0:
y = y[:, :seq_len, :, :]
y = y.reshape(batch_size, seq_len, -1)
if ssm_state is not None and cache_params is not None:
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
scan_output = self.norm(y, gate)
# end ssd naive
# 4. Final linear projection
contextualized_states = self.out_proj(scan_output.to(dtype)) # [batch, seq_len, hidden_size]
return contextualized_states
# fmt: on
def forward(
self,
hidden_states,
cache_params: Optional[Zamba2HybridDynamicCache] = None,
attention_mask: Optional[torch.Tensor] = None,
):
if is_fast_path_available and "cuda" in self.in_proj.weight.device.type:
return self.cuda_kernels_forward(hidden_states, cache_params, attention_mask)
return self.torch_forward(hidden_states, cache_params, attention_mask)
class Zamba2MLP(nn.Module):
def __init__(self, config: Zamba2Config, num_fwd_mem_blocks=None, block_id: int = None):
"""
This MLP layer contributes to tied transformer blocks aimed to increasing compute without increasing model size. Because this layer
is tied, un-tied adapter modules (formally same as LoRA, but used in the base model) are added to the up and gate projectors to increase expressivity with a small memory overhead.
"""
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.num_fwd_mem_blocks = num_fwd_mem_blocks
self.block_id = block_id
self.gate_up_proj = nn.Linear(self.hidden_size, 2 * self.intermediate_size, bias=config.add_bias_linear)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.add_bias_linear)
self.act_fn = ACT2FN[config.hidden_act]
self.gate_up_proj_adapter_list = nn.ModuleList([])
for i in range(self.num_fwd_mem_blocks):
if i % config.num_mem_blocks == block_id:
gate_up_proj_adapter = nn.Sequential(
nn.Linear(self.config.hidden_size, self.config.adapter_rank, bias=False),
nn.Linear(self.config.adapter_rank, 2 * self.intermediate_size, bias=False),
)
else:
gate_up_proj_adapter = nn.Identity()
self.gate_up_proj_adapter_list.append(gate_up_proj_adapter)
layer_block_map = config.hybrid_layer_ids
self.layer_dic = {value: index for index, value in enumerate(layer_block_map)}
def forward(self, hidden_state, layer_idx=None):
gate_up_state = self.gate_up_proj(hidden_state)
layer_idx = self.layer_dic[layer_idx]
gate_up_state = gate_up_state + self.gate_up_proj_adapter_list[layer_idx](hidden_state)
gate_up_state = torch.chunk(gate_up_state, 2, dim=-1)
hidden_state = self.act_fn(gate_up_state[0]) * gate_up_state[1]
output = self.down_proj(hidden_state)
return output
class Zamba2AttentionDecoderLayer(nn.Module):
def __init__(self, config: Zamba2Config, block_id: int = None, layer_idx: Optional[int] = None):
super().__init__()
self.block_id = block_id
num_gs = len(config.hybrid_layer_ids)
self.self_attn = Zamba2Attention(config, layer_idx=-1, num_fwd_mem_blocks=num_gs, block_id=block_id)
self.feed_forward = Zamba2MLP(config, num_fwd_mem_blocks=num_gs, block_id=block_id)
self.input_layernorm = Zamba2RMSNorm(config.attention_hidden_size, eps=config.rms_norm_eps)
self.pre_ff_layernorm = Zamba2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
original_hidden_states: torch.Tensor,
layer_idx: int,
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Zamba2HybridDynamicCache] = None,
output_attentions: Optional[bool] = False,
position_embeddings: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): output of previous Mamba layer of shape `(batch, seq_len, embed_dim)`
original_hidden_states (`torch.FloatTensor`): word embedding output of shape `(batch, seq_len, embed_dim)`.
This is concatenated with `hidden_states` (which is the output of the previous (mamba) layer). The
concatenated tensor is then used as input of the pre-attention RMSNorm
(see fig. 2 in https://arxiv.org/pdf/2405.16712).
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
past_key_value (`Zamba2HybridDynamicCache`, *optional*): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
with `head_dim` being the embedding dimension of each attention head.
"""
hidden_states = torch.concatenate([hidden_states, original_hidden_states], dim=-1)
hidden_states = self.input_layernorm(hidden_states)
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
layer_idx=layer_idx,
attention_mask=attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = self.pre_ff_layernorm(hidden_states)
hidden_states = self.feed_forward(hidden_states, layer_idx)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
class Zamba2MambaDecoderLayer(nn.Module):
def __init__(self, config: Zamba2Config, layer_idx: int):
super().__init__()
self.mamba = Zamba2MambaMixer(config=config, layer_idx=layer_idx)
self.input_layernorm = Zamba2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.layer_idx = layer_idx
def forward(
self,
hidden_states: torch.Tensor,
original_hidden_states: Optional[torch.Tensor] = None,
layer_idx: int = None,
attention_mask: Optional[torch.Tensor] = None,
causal_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Zamba2HybridDynamicCache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
transformer_hidden_states: Optional[torch.Tensor] = None,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
past_key_value (`Zamba2HybridDynamicCache`, *optional*): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence.
"""
residual = hidden_states
# `transformer_hidden_states` is the output from shared transformer + linear layer (see fig. 2 in https://arxiv.org/pdf/2405.16712).
# `transformer_hidden_states` is then added to the input to the mamba layer below (as described in eq. (6) of https://arxiv.org/pdf/2405.16712).
hidden_states = (
hidden_states + transformer_hidden_states if transformer_hidden_states is not None else hidden_states
)
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.mamba(
hidden_states=hidden_states,
cache_params=past_key_value,
attention_mask=attention_mask,
)
self_attn_weights = None
# residual connection after mamba
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (past_key_value,)
return outputs
class Zamba2HybridLayer(nn.Module):
def __init__(
self, shared_transformer: Zamba2AttentionDecoderLayer, linear: nn.Linear, mamba: Zamba2MambaDecoderLayer
):
super().__init__()
self.linear = linear
self.mamba_decoder = mamba
self.shared_transformer = shared_transformer
def forward(
self,
hidden_states: torch.Tensor,
original_hidden_states: Optional[torch.Tensor] = None,
layer_idx: int = None,
attention_mask: Optional[torch.Tensor] = None,
causal_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Zamba2HybridDynamicCache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
position_embeddings: Optional[torch.LongTensor] = None,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
original_hidden_states (`torch.FloatTensor`): word embedding output that will be concatenated with
hidden activations to form the input of the shared transformer layer.
layer_idx (`int`): layer number.
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
past_key_value (`Zamba2HybridDynamicCache`, *optional*): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
with `head_dim` being the embedding dimension of each attention head.
"""
layer_outputs = self.shared_transformer(
hidden_states,
original_hidden_states=original_hidden_states,
layer_idx=layer_idx,
attention_mask=causal_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
position_embeddings=position_embeddings,
)
transformer_hidden_states = layer_outputs[0]
if output_attentions:
self_attn_weights = layer_outputs[1]
transformer_hidden_states = self.linear(transformer_hidden_states)
layer_outputs = self.mamba_decoder(
hidden_states,
transformer_hidden_states=transformer_hidden_states,
attention_mask=attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
position_embeddings=position_embeddings,
)
if output_attentions:
layer_outputs = (layer_outputs[0], self_attn_weights) + layer_outputs[2:]
return layer_outputs
class Zamba2PreTrainedModel(PreTrainedModel):
config_class = Zamba2Config
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["Zamba2AttentionDecoderLayer", "Zamba2MambaDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_flex_attn = True
_supports_sdpa = False
_supports_cache_class = True # Note: only supports Zamba2HybridDynamicCache
_is_stateful = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, Zamba2MambaMixer):
module.A_log._no_weight_decay = True
module.D._no_weight_decay = True
dt = torch.exp(
torch.rand(self.config.n_mamba_heads)
* (math.log(self.config.time_step_max) - math.log(self.config.time_step_min))
+ math.log(self.config.time_step_min)
).clamp(min=self.config.time_step_floor)
# # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
inv_dt = dt + torch.log(-torch.expm1(-dt))
with torch.no_grad():
module.dt_bias.copy_(inv_dt)
module.dt_bias._no_reinit = True
ZAMBA2_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`Zamba2Config`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
ZAMBA2_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Zamba2HybridDynamicCache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
A Zamba2HybridDynamicCache object containing pre-computed hidden-states (keys and values in the
self-attention blocks and convolution and ssm states in the mamba blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
Key and value cache tensors have shape `(batch_size, num_heads, seq_len, head_dim)`.
Convolution and ssm states tensors have shape `(batch_size, d_inner, d_conv)` and
`(batch_size, d_inner, d_state)` respectively.
See the `Zamba2HybridDynamicCache` class for more details.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare Zamba2 Model outputting raw hidden-states without any specific head on top.",
ZAMBA2_START_DOCSTRING,
)
class Zamba2Model(Zamba2PreTrainedModel):
"""
Model consisting of *config.num_hidden_layers* layers.
Args:
config: Zamba2Config
"""
def __init__(self, config: Zamba2Config):
super().__init__(config)
self.config = config
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
blocks = [Zamba2AttentionDecoderLayer(config, block_id=k) for k in range(config.num_mem_blocks)]
mamba_layers = []
linear_layers = []
self.layers_block_type = config.layers_block_type
for i in range(config.num_hidden_layers):
if config.layers_block_type[i] == "mamba":
mamba_layers.append(Zamba2MambaDecoderLayer(config, layer_idx=i))
elif config.layers_block_type[i] == "hybrid":
linear_layers.append(nn.Linear(self.config.hidden_size, self.config.hidden_size, bias=False))
mamba_layers.append(Zamba2MambaDecoderLayer(config, layer_idx=i))
mamba_layers = iter(mamba_layers)
linear_layers = iter(linear_layers)
blocks = cycle(blocks)
layers = self.get_layers(blocks, linear_layers, mamba_layers)
self.layers = nn.ModuleList(layers)
self._attn_implementation = config._attn_implementation
self.final_layernorm = Zamba2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
if config.use_mem_rope:
if config.use_long_context:
logger.warning_once(
"`use_long_context` set to `True`: using rescaled `rope_theta` and extended `max_position_embeddings`."
)
self.rotary_emb = Zamba2RotaryEmbedding(config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(ZAMBA2_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Zamba2HybridDynamicCache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
)
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
hidden_states = inputs_embeds
original_hidden_states = torch.clone(inputs_embeds)
# original_hidden_states: word embedding output that will be concatenated with hidden activations to form the input of the shared transformer layer
if use_cache and past_key_values is None:
batch_size = input_ids.shape[0] if input_ids is not None else inputs_embeds.shape[0]
past_key_values = Zamba2HybridDynamicCache(self.config, batch_size, dtype=self.dtype, device=self.device)
if cache_position is None:
past_seen_tokens = (
past_key_values.get_seq_length(layer_idx=self.first_transformer_layer_id)
if past_key_values is not None
else 0
)
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
# create position embeddings to be shared across the decoder layers
if self.config.use_mem_rope:
position_embeddings = self.rotary_emb(hidden_states, position_ids)
else:
position_embeddings = None
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for layer_idx, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
original_hidden_states,
layer_idx,
attention_mask,
causal_mask,
past_key_values,
output_attentions,
use_cache,
position_embeddings,
)
else:
layer_outputs = layer(
hidden_states,
original_hidden_states=original_hidden_states,
layer_idx=layer_idx,
attention_mask=attention_mask,
causal_mask=causal_mask,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
position_embeddings=position_embeddings,
)
hidden_states = layer_outputs[0]
if output_attentions:
if layer_outputs[1] is not None:
# append attentions only of attention layers. Mamba layers return `None` as the attention weights
all_self_attns += (layer_outputs[1],)
hidden_states = self.final_layernorm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
if past_key_values and not past_key_values.has_previous_state:
past_key_values.has_previous_state = True
output = BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
return output if return_dict else output.to_tuple()
def _update_causal_mask(self, attention_mask, input_tensor, cache_position):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
target_length = cache_position[-1] + 1
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
if attention_mask.dim() == 2:
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
def get_layers(self, blocks, linear_layers, mamba_layers):
layers = []
self._tied_weights_keys = []
self.first_transformer_layer_id = 0
for layer_id, layer_type in enumerate(self.layers_block_type):
if layer_type == "hybrid":
if self.first_transformer_layer_id == 0:
self.first_transformer_layer_id = layer_id
block = next(blocks)
if self.config.num_mem_blocks * len(self.config.hybrid_layer_ids) > 1:
prefix_pattern = rf"^layers\.{layer_id}\.shared_transformer\."
main_keys_pattern = re.compile(
prefix_pattern
+ r"(?:"
+ r"self_attn\.(?:q_proj|k_proj|v_proj|o_proj)\.weight|"
+ r"feed_forward\.(?:gate_up_proj|down_proj)\.weight|"
+ r"(?:input_layernorm|pre_ff_layernorm)\.weight"
+ r")$"
)
self._tied_weights_keys.append(main_keys_pattern)
adapter_id = 0
for _layer_type in self.layers_block_type:
if _layer_type == "hybrid" and adapter_id % self.config.num_mem_blocks == block.block_id:
adapter_pattern = re.compile(
r"^shared_transformer\.feed_forward\.gate_up_proj_adapter_list\."
+ str(adapter_id)
+ r"\.(?:0|1)\.weight$"
)
self._tied_weights_keys.append(adapter_pattern)
adapter_id += 1
if self.config.use_shared_attention_adapter:
adapter_id = 0
for _layer_type in self.layers_block_type:
if _layer_type == "hybrid" and adapter_id % self.config.num_mem_blocks == block.block_id:
attn_adapter_pattern = re.compile(
r"^shared_transformer\.self_attn\."
+ r"(?:linear_q_adapter_list|linear_k_adapter_list|linear_v_adapter_list)\."
+ str(adapter_id)
+ r"\.(?:0|1)\.weight$"
)
self._tied_weights_keys.append(attn_adapter_pattern)
adapter_id += 1
layers.append(Zamba2HybridLayer(block, next(linear_layers), next(mamba_layers)))
else:
layers.append(next(mamba_layers))
return layers
# Adapted from transformers.models.jamba.modeling_jamba.JambaForCausalLM with Jamba->Zamba2, JAMBA->ZAMBA2
class Zamba2ForCausalLM(Zamba2PreTrainedModel, GenerationMixin):
def __init__(self, config: Zamba2Config):
super().__init__(config)
self.model = Zamba2Model(config)
self._tied_weights_keys = ["lm_head.weight", *self.model._tied_weights_keys]
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(ZAMBA2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Zamba2HybridDynamicCache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**loss_kwargs,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, Zamba2ForCausalLM
>>> model = Zamba2ForCausalLM.from_pretrained("Zyphra/Zamba2-7B-v1")
>>> tokenizer = AutoTokenizer.from_pretrained("Zyphra/Zamba2-7B-v1")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
return_dict=return_dict,
)
hidden_states = outputs[0]
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
**kwargs,
):
# Overwitten -- has a unique cache type, `Zamba2HybridDynamicCache`
empty_past_kv = past_key_values is None
# Omit tokens covered by past_key_values
if not empty_past_kv:
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
# Exception 1: when passing input_embeds, input_ids may be missing entries
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
if inputs_embeds is not None: # Exception 1
input_ids = input_ids[:, -cache_position.shape[0] :]
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
input_ids = input_ids[:, cache_position]
else:
past_key_values = Zamba2HybridDynamicCache(
self.config, input_ids.shape[0], dtype=self.dtype, device=self.device
)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if not empty_past_kv:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and empty_past_kv:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids.contiguous()} # `contiguous()` needed for compilation use cases
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
"logits_to_keep": self.config.num_logits_to_keep,
"cache_position": cache_position,
}
)
return model_inputs
@add_start_docstrings(
"""
The Zamba2 Model with a sequence classification head on top (linear layer).
[`Zamba2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
ZAMBA2_START_DOCSTRING,
)
class Zamba2ForSequenceClassification(Zamba2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = Zamba2Model(config)
self._tied_weights_keys = self.model._tied_weights_keys
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(ZAMBA2_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
sequence_lengths = sequence_lengths % input_ids.shape[-1]
sequence_lengths = sequence_lengths.to(logits.device)
else:
sequence_lengths = -1
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
__all__ = ["Zamba2ForCausalLM", "Zamba2ForSequenceClassification", "Zamba2Model", "Zamba2PreTrainedModel"]
|
transformers/src/transformers/models/zamba2/modeling_zamba2.py/0
|
{
"file_path": "transformers/src/transformers/models/zamba2/modeling_zamba2.py",
"repo_id": "transformers",
"token_count": 42525
}
| 183 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.